JP2006329797A - Light wave range finder - Google Patents
Light wave range finder Download PDFInfo
- Publication number
- JP2006329797A JP2006329797A JP2005153317A JP2005153317A JP2006329797A JP 2006329797 A JP2006329797 A JP 2006329797A JP 2005153317 A JP2005153317 A JP 2005153317A JP 2005153317 A JP2005153317 A JP 2005153317A JP 2006329797 A JP2006329797 A JP 2006329797A
- Authority
- JP
- Japan
- Prior art keywords
- light
- amount
- received
- target
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本発明は、変調信号によって変調された測距光をターゲットに向けて出射し、出射前の光とターゲットで反射して戻ってきた光との位相差を基にターゲットまでの距離を求めることができる光波距離計に関する。 According to the present invention, the distance measuring light modulated by the modulation signal is emitted toward the target, and the distance to the target is obtained based on the phase difference between the light before the emission and the light reflected by the target and returned. It relates to an optical distance meter that can be used.
従来、位相差方式の光波距離計としては、例えば、一定周波数の電気信号で輝度変調された光を測距光と参照光に分け、測距光をターゲットに向けて出射するとともに、参照光を参照光路に導き、ターゲットで反射した測距光による反射光または参照光路からの参照光を受光素子で受光して光電変換を行って測距信号を生成し、反射光から得られた測距信号と参照光から得られた測距信号の位相差を求め、前記位相差を基にターゲットまでの距離を求めるようにしたものが知られている(特許文献1参照)。 Conventionally, as a phase difference type lightwave distance meter, for example, light whose luminance is modulated by an electric signal having a constant frequency is divided into ranging light and reference light, and the ranging light is emitted toward the target and the reference light is emitted. A distance measurement signal obtained from the reflected light, which is guided to the reference light path, is reflected by the distance measurement light reflected by the target or received from the reference light path by the light receiving element and photoelectrically converted to generate a distance measurement signal. Are known in which the phase difference of the ranging signal obtained from the reference light is obtained, and the distance to the target is obtained based on the phase difference (see Patent Document 1).
位相差方式の光波距離計において、反射光および参照光を受光素子に別々に入射して両者の位相を比較するに際しては、受光素子に入射する光の光量が測定精度に影響するので、参照光と反射光の光量レベルを同一にすることが望ましい。ところが、参照光が伝播する参照光路は、光波距離計内に一定の長さの基準光路として設けられているのに対して、測距光が伝播する光路はターゲットまでの距離によって変化するため、反射光と参照光を単に受光素子に入射したのでは、遠近距離との関係から両者の光量レベルは一致しないことが多い。 In a phase-difference optical distance meter, when the reflected light and reference light are separately incident on the light receiving element and the phases of the two are compared, the amount of light incident on the light receiving element affects the measurement accuracy. It is desirable that the light intensity level of the reflected light is the same. However, the reference optical path through which the reference light propagates is provided as a reference optical path having a fixed length in the optical distance meter, whereas the optical path through which the distance measuring light propagates changes depending on the distance to the target. If the reflected light and the reference light are simply incident on the light receiving element, the light quantity levels of the two often do not match due to the relationship with the distance.
すなわち、測距光や参照光に用いられるレーザ光は完全な平行光線束ではないため、ターゲットが配置された測点が遠方になって測距光の伝播距離が長くなるに連れて、測距光は広がってしまう。このため、光波距離計に入射する反射光の光強度は、測点が遠方になるに連れて低下することになり、反射光の光強度と参照光の光強度が一致しないことが多い。 In other words, since the laser beam used for ranging light and reference light is not a perfect parallel beam, ranging as the measuring point where the target is placed becomes far away and the propagation distance of the ranging light becomes longer. The light will spread. For this reason, the light intensity of the reflected light incident on the lightwave distance meter decreases as the measurement point becomes far away, and the light intensity of the reflected light and the light intensity of the reference light often do not match.
そこで、従来技術では、図2に示すように、送光素子(レーザダイオード)50の発光による光を、送光駆動回路52の駆動によって一定周波数で輝度変調の施された光として、この光をターゲット56に向けて測距光L10として送光した後に、光路切換器54を介して参照光路に参照光L12を送光し、前記参照光L12を受光素子58で受光し、受光素子58で反射光L14または参照光L12に応じて光電変換を行って測距信号又は参照信号を生成し、この測距信号を増幅器60で増幅したあと受光信号処理回路62に導くにようになっている。さらに、参照光路の途中に、参照光L12の光量を一定の減衰率で低下させる光学フィルタ64を設けるとともに、反射光L14を受光素子58に導く反射光路上に反射光L14の光量を減衰させる光学フィルタ66を配置し、光学フィルタ66をモータ68によって回転させる構成が採用されている。
Therefore, in the prior art, as shown in FIG. 2, the light emitted from the light transmitting element (laser diode) 50 is converted into light that has been subjected to luminance modulation at a constant frequency by driving the light transmitting
すなわち、参照光路の距離は一定であるので、光学フィルタ64を透過した参照光L12の光量は常に一定であり、受光素子58には一定光量の参照光L12が入射することになる。受光素子58は、電源回路70によって一定の逆電圧が印加されており、受光素子58に参照光L12が入射したときには、一定光量の参照光L12にしたがった測距信号を生成することができる。
That is, since the distance of the reference light path is constant, the light amount of the reference light L12 that has passed through the
一方、光学フィルタ66は、図3に示すにように、回転円板67を備えており、回転円板67の中心はモータ68の回転軸に連結されている。この回転円板67は、複数の単位フィルタF1〜F8に分割されており、各単位フィルタF1〜F8の光減衰率は番号の順番に順次大きくなるように設定されている。例えば、最も減衰率の小さい単位フィルタF1は0dB、最も減衰率の大きい単位フィルタF8は42dBとなるように、順次6dBずつ減衰率が増加するように構成されている。そして、受光信号処理回路62からの指令を基にモータ駆動回路72がモータ68を回転駆動すると、モータ68の回転に伴って回転円板67が回転し、単位フィルタF1〜F8のうちいずれかの単位フィルタが反射光L14の光路中に挿入されるようになっている。この場合、ターゲット56までの距離が長くなることに伴って反射光L14の光量が減少したときには、光減衰率が小さい単位フィルタが選択され、参照光L12の光量と反射光L14の光量とを一致させるためのモータ制御が行われるようになっている。すなわち、最も光減衰率の大きい単位フィルタF8を透過した反射光L14の光量と参照光L12の光量とを一致させ、ターゲット56までの距離が遠くなるにしたがって、単位フィルタF8よりも光減衰率の小さい単位フィルタを順次選択することで、反射光L14の光量と参照光L12の光量とを一致させることができる。
On the other hand, as shown in FIG. 3, the
従来技術においては、参照光L12の光量と反射光L14の光量とを一致させるために、反射光L14の受光量を受光信号処理回路62で測定し、その測定結果を基にモータ駆動回路72の駆動を制御しているため、適正な受光量になるまで回転円板67を回転させなければならず、回転円板67の回転に伴う動作時間が必要である。しかも、測距光L10は、野外を伝播するため、ターゲット56までの距離が一定であっても、図4に示すように、大気の揺らぎによって光量が変化することがある。光学フィルタ66を透過する反射光L14の光量が大気の揺らぎによって変動し、光量の変化が速すぎるときには、正確な受光量を算出するまでに時間を要し、指定の受光量となるように、モータ68を位置決めすることが困難となる。すなわち、大気の揺らぎに伴って反射光L14の光量が変化した場合、揺らぎの中心で光量が設定値になるように、回転円板67を位置決めさせる必要があるが、回転円板67の位置を瞬時に決定することは困難である。
In the prior art, in order to make the light quantity of the reference light L12 coincide with the light quantity of the reflected light L14, the received light quantity of the reflected light L14 is measured by the received light
本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、ターゲットからの反射光の受光量をより迅速に適切な値に制御することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to more quickly control the amount of reflected light from the target to an appropriate value.
前記目的を達成するために、請求項1に係る光波距離計においては、変調信号によって変調された測距光をターゲットに向けて送光する測距光送光手段と、前記変調信号によって変調された参照光を参照光路に向けて送光する参照光送光手段と、前記ターゲットからの反射光または前記参照光路からの参照光を受光したときに印加電圧に従った受光量で光電変換を行って測距信号を出力する受光手段と、前記受光手段が前記反射光を受光したときの受光量に応じて前記受光手段に対する印加電圧を制御する電圧制御手段と、前記受光手段が前記参照光を受光したときの受光量に応じて前記受光手段に入射する参照光の光量を調整する光量調整手段と、前記受光手段の出力による測距信号のうち前記ターゲットからの反射光に基づいて得られた測距信号と前記参照光に基づいて得られた測距信号との位相差を基に前記ターゲットまでの距離を演算する演算手段とを備えた構成とした。 In order to achieve the above object, in the optical distance meter according to claim 1, ranging light transmitting means for transmitting the ranging light modulated by the modulation signal toward the target, modulated by the modulation signal. A reference light transmitting means for transmitting the reference light toward the reference optical path, and photoelectric conversion with a received light amount according to an applied voltage when the reflected light from the target or the reference light from the reference optical path is received. A light receiving means for outputting a ranging signal, a voltage control means for controlling a voltage applied to the light receiving means in accordance with the amount of light received when the light receiving means receives the reflected light, and the light receiving means for outputting the reference light. Obtained based on the reflected light from the target among the light amount adjusting means for adjusting the light quantity of the reference light incident on the light receiving means according to the amount of light received when received, and the distance measuring signal output from the light receiving means And configured to include a calculating means for calculating a distance to the target based on the phase difference of the distance measurement signal obtained based and No. 距信 to the reference light.
(作用)測距光をターゲットに向けて送光するとともに参照光を参照光路に向けて送光し、ターゲットからの反射光または参照光路からの参照光を受光して光電変換を行って測距信号を生成し、ターゲットからの反射光に基づいて得られた測距信号と参照光に基づいて得られた測距信号との位相差を基にターゲットまでの距離を算出するに際して、受光手段が測距光を受光したときの受光量に応じて受光手段に対する印加電圧を光電変換時の印加電圧として制御するとともに、受光手段が参照光を受光したときの受光量に応じて受光手段に入射する参照光の光量を調整するようにしたため、反射光の受光量をより迅速に適切な値に制御することができる。 (Operation) Distance measurement light is transmitted toward the target and reference light is transmitted toward the reference optical path, and the reflected light from the target or the reference light from the reference optical path is received to perform photoelectric conversion to perform distance measurement. When generating a signal and calculating the distance to the target based on the phase difference between the distance measurement signal obtained based on the reflected light from the target and the distance measurement signal obtained based on the reference light, the light receiving means The voltage applied to the light receiving means is controlled as the applied voltage at the time of photoelectric conversion according to the amount of light received when the distance measuring light is received, and the light receiving means enters the light receiving means according to the amount of light received when the reference light is received. Since the amount of reference light is adjusted, the amount of reflected light received can be controlled to an appropriate value more quickly.
すなわち、受光手段が、反射光または参照光を受光したときに印加電圧にしたがった受光量で光電変換を行って測距信号を出力するに際して、受光手段が反射光を受光したときの受光量に応じて受光手段に対する印加電圧を光電変換時の印加電圧として制御することで、反射光が大気の揺らぎの影響を受けて光量が変化しても、光量の変化に合わせて印加電圧を制御することで、反射光の受光量をより迅速に制御することができる。しかも、参照光は参照光路を伝播し大気の揺らぎの影響を受けないため、受光手段が参照光を受光したときの受光量に応じて受光手段に入射する参照光の光量を調整することで、参照光の受光量を反射光の受光量に一致させることができる。 That is, when the light receiving means receives the reflected light or the reference light and performs photoelectric conversion with the received light amount according to the applied voltage and outputs a distance measurement signal, the light receiving means receives the reflected light when the reflected light is received. Accordingly, by controlling the applied voltage to the light receiving means as the applied voltage at the time of photoelectric conversion, the applied voltage is controlled in accordance with the change in the amount of light even if the amount of reflected light changes due to the influence of atmospheric fluctuations. Thus, the amount of reflected light received can be controlled more quickly. Moreover, since the reference light propagates through the reference light path and is not affected by fluctuations in the atmosphere, by adjusting the amount of the reference light incident on the light receiving means according to the amount of light received when the light receiving means receives the reference light, The received light amount of the reference light can be matched with the received light amount of the reflected light.
請求項2に係る光波距離計においては、請求項1に記載の光波距離計において、前記受光手段は、アバランシェフォトダイオードで構成され、前記電圧制御手段は、前記アバランシェフォトダイオードに印加電圧として逆方向電圧を印加するとともに、前記アバランシェフォトダイオードの反射光受光時における受光量の増加または減少に応じて前記逆方向電圧を小さくまたは大きくしてなる構成とした。 According to a second aspect of the present invention, in the optical distance meter according to the first aspect, the light receiving unit is configured by an avalanche photodiode, and the voltage control unit is reversely applied as an applied voltage to the avalanche photodiode. A voltage is applied, and the reverse voltage is reduced or increased in accordance with an increase or decrease in the amount of light received when the avalanche photodiode receives reflected light.
(作用)受光手段をアバランシェフォトダイオードで構成し、アバランシェフォトダイオードに印加電圧として逆方向電圧を印加すると、印加電圧に応じて増幅率が変化し、増幅率にしたがって受光量が変化するため、反射光の受光量に応じて逆方向電圧を変化させることで、反射光の受光量を適正な受光量に迅速に制御することができる。例えば、ターゲットまでの距離が短いときには逆方向電圧を下げて増幅率を下げることで受光量を減少させ、逆にターゲットまでの距離が長いときには逆方向電圧を高くして増幅率を上げることで受光量を増加させることができる。このため、反射光受光時における受光量の増加に応じて逆方向電圧を小さくすることで、近距離測定では、ノイズレベルが小さくなり、より安定した測距が可能になる。 (Operation) When the light receiving means is composed of an avalanche photodiode and a reverse voltage is applied as an applied voltage to the avalanche photodiode, the amplification factor changes according to the applied voltage, and the amount of received light changes according to the amplification factor. By changing the reverse voltage according to the amount of received light, the amount of reflected light can be quickly controlled to an appropriate amount. For example, when the distance to the target is short, the reverse voltage is lowered and the gain is lowered to reduce the amount of received light. Conversely, when the distance to the target is long, the reverse voltage is raised to raise the gain. The amount can be increased. For this reason, by reducing the reverse voltage in accordance with the increase in the amount of light received when receiving reflected light, the noise level is reduced in short-distance measurement, and more stable distance measurement is possible.
以上の説明から明らかなように、請求項1に係る光波距離計によれば、反射光の受光量をより迅速に適切な値に制御することができる。 As is clear from the above description, the light wave distance meter according to claim 1 can control the amount of received reflected light to an appropriate value more quickly.
請求項2によれば、近距離測定では、ノイズレベルが小さくなり、より安定した測距が可能になる。 According to the second aspect, in the short distance measurement, the noise level is reduced, and more stable distance measurement is possible.
以下、本発明の実施の形態を実施例に基づいて説明する。図1は、本発明の一実施例を示す光波距離計のブロック構成図である。 Hereinafter, embodiments of the present invention will be described based on examples. FIG. 1 is a block diagram of a light wave distance meter showing an embodiment of the present invention.
図1において、位相差方式の光波距離計10は、送光駆動回路12、送光素子14、光路切換器16、光学フィルタ18、モータ20、モータ駆動回路22、受光素子24、増幅器26、受光信号処理回路28、電源回路30を備えて構成されている。なお、図1では、視準望遠鏡や送受光の対物レンズなどの光学系は省略してある。
In FIG. 1, a phase difference type
送光駆動回路12は、例えば、温度補償された水晶発振器を備えており、水晶発振器から図示しない基準信号を変調信号として出力するようになっているとともに、送光素子14の両端に電圧を印加し、送光素子14の発光による光を変調信号によって変調するようになっている。なお、基準信号と測距信号と参照信号から位相差を求めている。送光素子14は、例えば、レーザダイオードを用いて構成されており、送光素子14の発光に伴う光が変調信号によって変調されて測距光L1または参照光L2として送光されるようになっている。測距光L1は光路切換器16を介してターゲット32に向けて送光されるようになっている。すなわち、送光駆動回路12、送光素子14、光路切換器16は測距光L1をターゲット32に向けて送光する測距光送光手段として構成されている。
The light
一方、送光素子14から送光される参照光L2は光路切換器16を介して参照光路(光路切換器16と受光素子24とを結ぶ一定距離の光路であって、例えば、光ケーブルで構成されている基準光路。)に送光されるようになっている。すなわち、送光駆動回路12、送光素子14、光路切換器16は、参照光L2を参照光路に向けて送光する参照光送光手段として構成されている。そして、この参照光路の途中には、光学フィルタ18が設けられており、光学フィルタ18は回転円板18aを備えている。この回転円板18aはその中心がモータ20の回転軸20aに連結され、モータ20の駆動によって回転するようになっている。回転円板18aには複数の単位フィルタ(図示せず)が回転軸20aを中心に周方向に沿って配置されている。各単位フィルタの光減衰率は異なる値に設定されており、参照光L2がいずれかの単位フィルタを通過することによってその光量が調整されるようになっている。すなわち、モータ駆動回路22からの駆動信号を基にモータ20が光学フィルタ18の回転円板18aを回転することで、いずれかの単位フィルタが参照光路中に挿入され、受光素子24に入射する参照光L2の光量が調整されるようになっている。この場合、光学フィルタ18、モータ20、モータ駆動回路22は光量調整手段を構成することになる。
On the other hand, the reference light L2 transmitted from the
受光素子24は、例えば、アバランシェフォトダイオードを用いて構成されており、受光素子24の両端(アノードとカソード)には電源回路30から逆方向電圧が印加されている。受光素子24を構成するアバランシェフォトダイオードは、逆方向電圧の大きさに応じて増幅率が変化するように構成されており、逆方向電圧を小さくするとそれに応じて増幅率も低下し、逆方向電圧を高くするとそれに応じて増幅率が高くなるようになっている。このため、ターゲット32までの距離が短いときには逆方向電圧を小さくして増幅率を下げることで受光量を小さくすることができ、逆に、ターゲット32までの距離が長いときには逆方向電圧を高くして増幅率を上げ、受光量を大きくすることができる。この受光素子24は、印加電圧にしたがった受光量で光電変換を行って測距信号を生成し、生成した測距信号を増幅器26に出力する受光手段として構成されている。例えば、ターゲット32からの反射光L3を受光したときには、反射光L3の受光量にしたがった測距信号を出力し、参照光L2を受光したときには、参照光L2の受光量にしたがった測距信号を出力するようになっている。
The
増幅器26は、受光素子24の出力による測距信号を増幅し、増幅した測距信号を受光信号処理回路28に出力するようになっている。受光信号処理回路28は、A/D変換器やCPUなどの演算器を備えて構成されており、アナログ信号による測距信号をデジタルデータに変換する。また、参照光L2の受光量や反射光L3の受光量を求め、この受光量にしたがった制御信号をモータ駆動回路22や電源回路30に出力するようになっている。さらに、受光信号処理回路28は、ターゲット32からの反射光L3に基づいて得られた測距信号と参照光L2に基づいて得られた測距信号との位相差を基にターゲット32までの距離を演算する演算手段として構成されている。受光信号処理回路28によって求められた距離は測距値として表示器(図示せず)に表示されるようになっている。
The
上記構成による光波距離計10において、光路切換器16における光路が測距光L1の光路に切換られているときに、送光素子14から測距光L1が送光されると、この測距光L1は光路切換器16を介してターゲット32に向けて送光される。この測距光L1がターゲット32で反射し、反射光L3として受光素子24で受光されると、受光素子24はそのときの印加電圧にしたがった受光量で光電変換を行って測距信号を出力する。この測距信号が受光信号処理回路28で処理され、反射光受光時の受光量が求められると、受光信号処理回路28から電源回路30に対して制御信号が出力され、受光素子24の印加電圧は光電変換時の印加電圧として、反射光受光時の受光量に応じて制御される。この際、反射光L3の受光量が大気の揺らぎの影響を受けて変化しても、受光信号処理回路28におけるCPUにおいて、揺らぎの中心光量を推定するための演算が行われ、この演算結果に従って、反射光L3の受光量に応じた逆方向電圧が受光素子24に即座に印加されるため、反射光L3の受光量として適正な値に迅速に制御することができる。
In the
一方、光路切換器16が参照光L2を送光するための光路に切り換えられたときには、送光素子14からの参照光L2は光路切換器16から参照光路に向けて送光される。参照光路を伝播する参照光L2は光学フィルタ18によってその光量が調整され、光量の調整された参照光L2が受光素子24に入射する。このとき受光素子24は、反射光受光時と同じ印加電圧にしたがった受光量で光電変換を行って参照信号を出力する。そしてこの参照信号を基に受光信号処理回路28において参照光L2の受光量を求め、参照光L2の受光量に応じた制御信号をモータ駆動回路22に出力する。これによりモータ20が駆動され、光学フィルタ18の中の指定の単位フィルタが参照光路中に挿入され、参照光L2の受光量と反射光L3の受光量とを一致させるための制御が行われる。この場合、参照光L2は大気の揺らぎの影響を受けないため、大気の揺らぎの中心光量を推定するための演算を行うことなく、反射光L3の受光量と参照光L2の受光量とを一致させるためのモータ制御が受光信号処理回路28とモータ駆動回路22により実行され、受光素子24に入射する参照光L2の光量を指定の値に調整することができる。
On the other hand, when the optical path switch 16 is switched to the optical path for transmitting the reference light L2, the reference light L2 from the
本実施例によれば、反射光L3の受光量を適正な受光量に制御するに際して、受光素子24に印加する印加電圧を反射光L3の受光量に応じて制御し、参照光L2の受光量を光学フィルタ18の回転円板18aの回転によって調整するようにしたため、反射光L3の光量と参照光L2の光量を一定にするための制御を迅速に行うことができるとともに、反射光L3の受光量に応じて受光素子24に対する逆方向電圧を制御することで、適正な受光量にすることができる。
According to the present embodiment, when the received light amount of the reflected light L3 is controlled to an appropriate received light amount, the applied voltage applied to the
また、受光量が多い近距離測定では、受光素子24に対する逆方向電圧を小さくすることで、ノイズレベルが小さくなり、より安定した測距が可能になる。
Further, in short distance measurement with a large amount of received light, by reducing the reverse voltage with respect to the
なお、受光素子24としては、アバランシェフォトダイオードの代わりにピンフォトダイオードを用いることもできる。
As the
10 光波距離計
12 送光駆動回路
14 送光素子
16 光路切換器
18 光学フィルタ
20 モータ
22 モータ駆動回路
24 受光素子
28 受光信号処理回路
30 電源回路
32 ターゲット
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005153317A JP2006329797A (en) | 2005-05-26 | 2005-05-26 | Light wave range finder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005153317A JP2006329797A (en) | 2005-05-26 | 2005-05-26 | Light wave range finder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006329797A true JP2006329797A (en) | 2006-12-07 |
Family
ID=37551635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005153317A Pending JP2006329797A (en) | 2005-05-26 | 2005-05-26 | Light wave range finder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006329797A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215878A (en) * | 2007-02-28 | 2008-09-18 | Yamaha Motor Co Ltd | Light receiving device, laser radar device, and vehicle |
JP2008286669A (en) * | 2007-05-18 | 2008-11-27 | Sokkia Topcon Co Ltd | Light wave range finder |
WO2011079497A1 (en) * | 2009-12-29 | 2011-07-07 | 江苏徕兹光电科技有限公司 | Phase measurement calibrating method and calibrating device based on liquid crystal light valve principle |
JP2012073210A (en) * | 2010-09-30 | 2012-04-12 | Topcon Corp | Distance measurement device |
JP2012108016A (en) * | 2010-11-18 | 2012-06-07 | Seiko Epson Corp | Optical position detection device, and apparatus with position detection function |
WO2013116963A1 (en) * | 2012-02-10 | 2013-08-15 | 江苏徕兹光电科技有限公司 | Calibration method and distance measurement device thereof based on phase measurement of double-wavelength laser tube |
CN104515997A (en) * | 2013-09-26 | 2015-04-15 | 江苏徕兹光电科技有限公司 | Calibration method and range finding apparatus based on single liquid crystal light valve phase measuring |
JP2019174228A (en) * | 2018-03-28 | 2019-10-10 | 株式会社トプコン | Light wave distance meter and surveying device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06258436A (en) * | 1993-03-05 | 1994-09-16 | Sokkia Co Ltd | Electro-optical distance measuring equipment |
JPH0850178A (en) * | 1994-08-09 | 1996-02-20 | Sokkia Co Ltd | Optical wave range finder |
JPH1062549A (en) * | 1996-08-15 | 1998-03-06 | Nikon Corp | Distance measuring equipment |
-
2005
- 2005-05-26 JP JP2005153317A patent/JP2006329797A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06258436A (en) * | 1993-03-05 | 1994-09-16 | Sokkia Co Ltd | Electro-optical distance measuring equipment |
JPH0850178A (en) * | 1994-08-09 | 1996-02-20 | Sokkia Co Ltd | Optical wave range finder |
JPH1062549A (en) * | 1996-08-15 | 1998-03-06 | Nikon Corp | Distance measuring equipment |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215878A (en) * | 2007-02-28 | 2008-09-18 | Yamaha Motor Co Ltd | Light receiving device, laser radar device, and vehicle |
JP2008286669A (en) * | 2007-05-18 | 2008-11-27 | Sokkia Topcon Co Ltd | Light wave range finder |
WO2011079497A1 (en) * | 2009-12-29 | 2011-07-07 | 江苏徕兹光电科技有限公司 | Phase measurement calibrating method and calibrating device based on liquid crystal light valve principle |
US8525977B2 (en) | 2009-12-29 | 2013-09-03 | Baiwen Qiao | Phase measurement calibrating method and calibrating device based on liquid crystal light valve principle |
JP2012073210A (en) * | 2010-09-30 | 2012-04-12 | Topcon Corp | Distance measurement device |
JP2012108016A (en) * | 2010-11-18 | 2012-06-07 | Seiko Epson Corp | Optical position detection device, and apparatus with position detection function |
WO2013116963A1 (en) * | 2012-02-10 | 2013-08-15 | 江苏徕兹光电科技有限公司 | Calibration method and distance measurement device thereof based on phase measurement of double-wavelength laser tube |
CN104515997A (en) * | 2013-09-26 | 2015-04-15 | 江苏徕兹光电科技有限公司 | Calibration method and range finding apparatus based on single liquid crystal light valve phase measuring |
CN104515997B (en) * | 2013-09-26 | 2017-08-25 | 江苏徕兹测控科技有限公司 | Calibration method and its range unit based on single liquid crystal light valve phase measurement |
JP2019174228A (en) * | 2018-03-28 | 2019-10-10 | 株式会社トプコン | Light wave distance meter and surveying device |
JP7082892B2 (en) | 2018-03-28 | 2022-06-09 | 株式会社トプコン | Laser rangefinder and surveying device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9519052B2 (en) | Distance measuring device | |
EP2805179B1 (en) | Optical system for range finding | |
US20220365214A1 (en) | On-chip monitoring and calibration circuits for frequency modulated continuous wave lidar | |
JP4876735B2 (en) | Optical pulse tester | |
JP3139435B2 (en) | Laser diode light wavelength controller | |
US10310085B2 (en) | Photonic integrated distance measuring pixel and method of distance measurement | |
JP5137106B2 (en) | Light wave distance meter | |
JP2006329797A (en) | Light wave range finder | |
US5239353A (en) | Optical distance measuring apparatus | |
US6693703B2 (en) | Distance measuring device and method for adjusting photodetection unit of distance measuring device | |
JP4002199B2 (en) | Light wave distance meter | |
JP5672052B2 (en) | Light adjustment device, light detection device, and distance measurement device | |
KR101025396B1 (en) | Portable sensor interrogation system using a ratating disk | |
JP5515199B2 (en) | Optical pulse test apparatus and adjustment method thereof | |
RU2558011C2 (en) | Apparatus for digitally processing information obtained from gyrolaser and respective gyrolaser | |
KR20010044477A (en) | Apparatus and Method for mearsuring a distance using LASER | |
JP2006138702A (en) | Light wave range finder | |
JP4707142B2 (en) | Light wave distance meter | |
JP2008267893A (en) | Electro-optical range finder | |
JP2006086395A (en) | External resonator type wave length variable light source | |
WO2020250308A1 (en) | Laser beam control device, optical space communication device and optical space communication system | |
JPH04134089U (en) | Lightwave ranging device | |
CN114910921A (en) | Optical wave distance meter and distance calculating method | |
CN118712877A (en) | Laser radar, narrow linewidth external cavity semiconductor laser and control method thereof | |
JP2006086429A (en) | Wavelength variable light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080410 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110705 |