JP4705347B2 - Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant - Google Patents
Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant Download PDFInfo
- Publication number
- JP4705347B2 JP4705347B2 JP2004232609A JP2004232609A JP4705347B2 JP 4705347 B2 JP4705347 B2 JP 4705347B2 JP 2004232609 A JP2004232609 A JP 2004232609A JP 2004232609 A JP2004232609 A JP 2004232609A JP 4705347 B2 JP4705347 B2 JP 4705347B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- silver
- gold
- water
- insoluble polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010419 fine particle Substances 0.000 title claims description 121
- 229910052709 silver Inorganic materials 0.000 title claims description 88
- 239000004332 silver Substances 0.000 title claims description 87
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims description 86
- 239000000049 pigment Substances 0.000 title claims description 56
- 239000002270 dispersing agent Substances 0.000 title claims description 51
- 229920003176 water-insoluble polymer Polymers 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000010931 gold Substances 0.000 claims description 62
- 229910052737 gold Inorganic materials 0.000 claims description 62
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 43
- -1 gold ion Chemical class 0.000 claims description 29
- 239000000243 solution Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000006185 dispersion Substances 0.000 claims description 21
- 239000003960 organic solvent Substances 0.000 claims description 21
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000006722 reduction reaction Methods 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 5
- 238000007614 solvation Methods 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 239000012074 organic phase Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000000084 colloidal system Substances 0.000 description 8
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 8
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 229910001961 silver nitrate Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000002344 gold compounds Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 2
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229940100890 silver compound Drugs 0.000 description 2
- 150000003379 silver compounds Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- RBWNDBNSJFCLBZ-UHFFFAOYSA-N 7-methyl-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidine-4-thione Chemical compound N1=CNC(=S)C2=C1SC1=C2CCC(C)C1 RBWNDBNSJFCLBZ-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical compound [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000010946 fine silver Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- SRCZENKQCOSNAI-UHFFFAOYSA-H gold(3+);trisulfite Chemical compound [Au+3].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O.[O-]S([O-])=O SRCZENKQCOSNAI-UHFFFAOYSA-H 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine Substances NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
本発明は非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法に関する。 The present invention relates to a method for producing silver core-gold shell fine particles protected with a water-insoluble polymer pigment dispersant.
数十nm以下の粒径を有する金微粒子は、バルクの金には見られない微粒子に特有の性質を活かして、化学的に安定な着色剤、カラーフィルター、導電性ペースト、化学反応の触媒、透明導電膜など、その応用分野を拡大している。 Gold fine particles having a particle size of several tens of nanometers or less make use of the unique properties of fine particles not found in bulk gold, chemically stable colorants, color filters, conductive pastes, chemical reaction catalysts, Its application fields such as transparent conductive films are expanding.
金微粒子のような金属微粒子を製造する方法としては、気相法と液相法がある。気相法には例えばガス中蒸発法、RAD法等があり、ガス中蒸発法では、不活性ガスを導入した真空容器内で金属を蒸発させ、チオール系やアミン系の有機化合物で被覆した状態の金属微粒子が得られる。一方、液相法は、金属イオン含有溶液に紫外光を照射あるいは還元剤を加えて金属イオンを還元することによって金属微粒子を得る方法である。特に還元剤を用いる方法は、特別な装置を必要とすることなく、比較的容易に金属微粒子を製造することが可能である。 As a method for producing metal fine particles such as gold fine particles, there are a gas phase method and a liquid phase method. Gas phase methods include, for example, gas evaporation method, RAD method, etc. In the gas evaporation method, the metal is evaporated in a vacuum vessel into which an inert gas is introduced, and is coated with a thiol or amine organic compound. Metal fine particles can be obtained. On the other hand, the liquid phase method is a method for obtaining metal fine particles by reducing metal ions by irradiating a metal ion-containing solution with ultraviolet light or adding a reducing agent. In particular, a method using a reducing agent can produce metal fine particles relatively easily without requiring a special apparatus.
近年では、新規な金属微粒子として複合金属微粒子を作製する試みもなされている。
例えば、第1金属が保護ポリマーで被覆されたポリマー保護金属コロイドを調製する工程と、該ポリマーに第2金属イオンを配位させコロイド−錯体複合体を形成する工程と、該コロイド−錯体複合体から該保護ポリマーを除去する工程とからなる複合金属コロイドの製造方法がある。(例えば特許文献1参照)
In recent years, attempts have been made to produce composite metal fine particles as novel metal fine particles.
For example, a step of preparing a polymer-protected metal colloid in which a first metal is coated with a protective polymer, a step of coordinating a second metal ion to the polymer to form a colloid-complex complex, and the colloid-complex complex There is a method for producing a composite metal colloid comprising a step of removing the protective polymer from the metal. (For example, see Patent Document 1)
また、粒子径10nm以下の金等の貴金属又はこの貴金属を含む合金コロイド超微粒子を核とし、分散剤としてアルキルアミン、カルボン酸アミド又はアミノカルボン酸塩存在下で核の表面に還元法により金等の貴金属又はこの貴金属を含む合金を析出させることによって、金属微粒子分散液を得る方法も開示されている。(例えば特許文献2参照) Also, a noble metal such as gold having a particle diameter of 10 nm or less or an alloy colloidal ultrafine particle containing this noble metal as a nucleus, and gold or the like by a reduction method on the surface of the nucleus in the presence of alkylamine, carboxylic acid amide or aminocarboxylate as a dispersant. There is also disclosed a method of obtaining a metal fine particle dispersion by precipitating a noble metal or an alloy containing the noble metal. (For example, see Patent Document 2)
また例えば、高分子顔料分散剤を含む原料金属コロイド溶液中で、金属化合物の還元を行なうことにより、大きな粒子径及び高い金属濃度を有する金属コロイド溶液の製造方法が提案されている。(例えば特許文献3参照)
上記製法を用いて、コア部を安価な金属微粒子、シェル部を金微粒子で構成した複合金属微粒子を製造すれば、金微粒子と同等の特性を有し、しかも従来の金単独で構成された微粒子を製造する方法よりも金使用量が少なく、コストを削減できるのではないかと期待された。 Using the above manufacturing method, if composite metal fine particles having a core portion made of inexpensive metal fine particles and a shell portion made of gold fine particles are produced, the fine particles have the same characteristics as gold fine particles and are made of conventional gold alone. It was expected that the amount of gold used would be less than the manufacturing method, and the cost could be reduced.
しかしながら、特許文献1のような複合金属コロイドの製造方法では、コロイド−錯体複合体を作製する工程に非常に時間を要するため、生産性が悪いといった問題があった。また特許文献2のような金属微粒子分散液の調製方法では、得られた金属微粒子分散液に未反応の分散剤が多量に残存するため、反応後の反応液を複数回洗浄する必要があり、製造に時間を要した。更に、特許文献3のような金属コロイド溶液の製造方法では、原料金属コロイド溶液に金属化合物、還元剤を投入するため、金属化合物由来の残留イオンが得られた金属コロイド溶液中に残存するといった不具合があった。
However, the method for producing a composite metal colloid as disclosed in Patent Document 1 has a problem in that productivity is poor because a process for producing a colloid-complex complex requires a very long time. Further, in the method for preparing a metal fine particle dispersion as in
本発明は、上記問題に鑑みてなされたものであり、洗浄を複数回行なうことを必要とせず、簡便にかつ生産性良く、しかも安価で、金と同様の光学特性を呈し、再分散可能な銀−金の複合金属微粒子を製造する方法を提案するものである。 The present invention has been made in view of the above problems, and does not require washing multiple times, is simple and productive, is inexpensive, exhibits the same optical characteristics as gold, and is redispersible. A method for producing silver-gold composite metal fine particles is proposed.
即ち本発明は、非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法であって、(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液と(ロ)金イオン含有水溶液との界面において、金イオンの還元反応を行い、銀微粒子表面に金微粒子を析出させて銀コア−金シェル微粒子を形成し、前記銀コア−金シェル微粒子が存在する前記有機溶媒と前記水溶液とを分離して前記有機溶媒を取り出すことを特徴とする。 That is, the present invention relates to a method for producing silver core-gold shell fine particles protected with a water-insoluble polymer pigment dispersant, wherein (a) the silver fine particles protected with the water-insoluble polymer pigment dispersant are mixed with water. at the interface between compatibility without organic solvent silver fine particle dispersion solution dispersed in the (b) gold ion-containing aqueous solution, subjected to reduction of gold ions, to cause fine particles of gold to be deposited on the silver microparticle surface silver core - gold shell Fine particles are formed, the organic solvent containing the silver core-gold shell fine particles is separated from the aqueous solution, and the organic solvent is taken out .
更に本発明は、上記非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法であって、非水溶性高分子顔料分散剤で保護された銀微粒子は、銀イオン含有溶液を、顔料親和性基を主鎖および/または複数の側鎖に有し、かつ溶媒和部分を構成する複数の側鎖を有し、更に前記溶媒和部分が疎水性の構造を有する非水溶性高分子顔料分散剤の存在下で、銀イオンの還元反応を行い、溶媒を除去することにより得られることを特徴とする。 Furthermore, the present invention relates to a method for producing silver core-gold shell fine particles protected with the water-insoluble polymer pigment dispersant, wherein the silver fine particles protected with the water-insoluble polymer pigment dispersant contain silver ions. the solution has a pigment affinity groups in the main chain and / or side chains and having a plurality of side chains that constitute the solvation portion, nonaqueous further the solvated portion has a hydrophobic structure It is obtained by carrying out a reduction reaction of silver ions in the presence of a conductive polymer pigment dispersant and removing the solvent.
本発明により得られた銀コア−金シェル微粒子は、銀微粒子を金微粒子が被覆したコア−シェル構造であって、その周りを非水溶性高分子顔料分散剤が取り囲んだ構成となっており、金微粒子と同等の光学特性を呈することから、再分散が可能で安価な金微粒子代替品の製造方法として期待できる。 The silver core-gold shell fine particles obtained by the present invention have a core-shell structure in which silver fine particles are coated with gold fine particles, and the surroundings are surrounded by a water-insoluble polymer pigment dispersant. Since it exhibits optical properties equivalent to those of gold fine particles, it can be expected as a method for producing an inexpensive gold fine particle substitute that can be redispersed.
また本発明の銀コア−金シェル微粒子は、有機相、すなわち水と相溶性のない有機溶媒中に存在することから、金イオン含有水溶液を作製する際に副生成された雑イオンなどは水相に残され、洗浄工程を複数回行なう必要がない。更に、銀微粒子分散溶液の作製時に新たに分散剤を添加する必要がなく、ひいては未反応の分散剤が有機相に多量に残存することがないため、洗浄工程を複数回実施する必要はない。よって、銀コア−金シェル微粒子を簡便に生産性よく製造することができる。 Further, since the silver core-gold shell fine particles of the present invention are present in an organic phase, that is, in an organic solvent that is not compatible with water, miscellaneous ions generated as a by-product during the preparation of the gold ion-containing aqueous solution are In other words, it is not necessary to perform the washing process a plurality of times. Furthermore, it is not necessary to add a new dispersant when preparing the silver fine particle dispersion solution, and as a result, a large amount of unreacted dispersant does not remain in the organic phase, so that it is not necessary to perform the washing step a plurality of times. Therefore, the silver core-gold shell fine particles can be easily produced with high productivity.
以下、本発明を詳細に説明する。
本発明の非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法は、(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液と(ロ)金イオン含有水溶液との界面において、金イオンの還元反応を行い、銀微粒子表面に金微粒子を析出させて銀コア−金シェル微粒子を形成し、前記銀コア−金シェル微粒子が存在する前記有機溶媒と前記水溶液とを分離して前記有機溶媒を取り出すことを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing the silver core-gold shell fine particles protected with the water-insoluble polymer pigment dispersant of the present invention is as follows: (i) The silver fine particles protected with the water-insoluble polymer pigment dispersant are not compatible with water. At the interface between the silver fine particle dispersed solution dispersed in the organic solvent and the (b) gold ion-containing aqueous solution, a reduction reaction of gold ions is performed to deposit the gold fine particles on the surface of the silver fine particles to form silver core-gold shell fine particles. The organic solvent containing the silver core-gold shell fine particles is separated from the aqueous solution, and the organic solvent is taken out .
非水溶性高分子顔料分散剤で保護された銀微粒子1は、図1に示すように銀微粒子2の周りを非水溶性高分子顔料分散剤4が取り囲んだ構成であって、例えば特開平11−76800号公報に開示されているような作製方法により得られる。すなわち、銀化合物を溶媒に溶解した後、非水溶性高分子顔料分散剤の存在下で銀を還元させる。その後、溶媒を除去することにより、非水溶性高分子顔料分散剤で保護された銀微粒子を得ることができる。上記銀化合物としては、例えば酢酸銀、硝酸銀、過塩素酸銀などを挙げることができる。
The silver fine particles 1 protected with the water-insoluble polymer pigment dispersant have a configuration in which the water-insoluble polymer pigment dispersant 4 surrounds the silver
ここで使用する非水溶性高分子顔料分散剤としては、例えば(1)顔料親和性基を主鎖および/または複数の側鎖に有し、かつ溶媒和部分を構成する複数の側鎖を有する高分子が挙げられる。ここで前記溶媒和部分は疎水性の構造を有する。また顔料親和性基を1分子中に2〜3000個、前記溶媒和部分を構成する側鎖を1分子中に2〜1000個有し、数平均分子量が2000〜100万のものが好ましく用いられる。顔料親和性基として具体的には、カルボン酸、アミンを有することが望ましい。また(1)以外にも、(2)主鎖中に顔料親和性基からなる複数の顔料親和部分を有する高分子、(3)主鎖の片末端に顔料親和性基からなる顔料親和部分を有する直鎖状の高分子なども使用可能である。 As the water-insoluble polymer pigment dispersant used here, for example, (1) having a pigment affinity group in the main chain and / or a plurality of side chains, and having a plurality of side chains constituting a solvation part Examples include polymers. Wherein the solvated portion has a hydrophobic structure. Further, those having 2 to 3000 pigment affinity groups in one molecule and 2 to 1000 side chains constituting the solvation part in one molecule and having a number average molecular weight of 2,000 to 1,000,000 are preferably used. . Specifically, it is desirable to have a carboxylic acid and an amine as the pigment affinity group. In addition to (1), (2) a polymer having a plurality of pigment affinity groups consisting of pigment affinity groups in the main chain, and (3) a pigment affinity part consisting of pigment affinity groups at one end of the main chain. It is also possible to use linear polymers having the same.
非水溶性高分子顔料分散剤として市販品では、ソルスパースシリーズ(アビシア社製)、EFKAシリーズ(EFKAケミカル社製)、アジスパーシリーズ(味の素社製)などが挙げられる。 Commercially available water-insoluble polymer pigment dispersants include Solsperse series (Avicia), EFKA series (EFKA Chemical), Ajisper series (Ajinomoto).
非水溶性高分子顔料分散剤で保護された銀微粒子において、銀微粒子の平均粒子径は1〜30nmであることが望ましい。1nm未満であれば、コア−シェル構造微粒子のコアとしての役割を果たさなくなる。30nmを超えると、発色性が悪くなるため好ましくない。また非水溶性高分子顔料分散剤は、銀微粒子100重量部に対して300〜100000重量部であることが望ましい。300重量部未満であると、銀微粒子の分散安定性に乏しく、100000重量部を超えると、金イオンを還元して銀コア−金シェル微粒子を作製する際に金微粒子単独が生成される可能性がある。 In silver fine particles protected with a water-insoluble polymer pigment dispersant, the average particle size of the silver fine particles is preferably 1 to 30 nm. If the thickness is less than 1 nm, the core-shell structured fine particles can no longer serve as the core. If it exceeds 30 nm, the color developability deteriorates, which is not preferable. The water-insoluble polymer pigment dispersant is desirably 300 to 100,000 parts by weight with respect to 100 parts by weight of the silver fine particles. If the amount is less than 300 parts by weight, the dispersion stability of the silver fine particles is poor, and if it exceeds 100000 parts by weight, gold fine particles alone may be produced when reducing the gold ions to produce silver core-gold shell fine particles. There is.
上述の如き非水溶性高分子顔料分散剤で保護された銀微粒子を用いて、(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液を作製する。水と相溶性のない有機溶媒としては、トルエン、キシレン、ヘキサン等の有機溶媒が挙げられる。有機溶媒であっても、エタノール、メタノールなどの水と相溶性のある有機溶媒は好ましくない。尚、銀微粒子分散溶液の固形分濃度は1〜50重量%となるよう調整されることが望ましい。また銀濃度は0.001〜30重量%であることが望ましい。 Using silver fine particles protected with a water-insoluble polymer pigment dispersant as described above, (a) silver fine particles protected with a water-insoluble polymer pigment dispersant are dispersed in an organic solvent incompatible with water. A silver fine particle dispersion solution is prepared. Examples of organic solvents that are not compatible with water include organic solvents such as toluene, xylene, and hexane. Even if it is an organic solvent, the organic solvent compatible with water, such as ethanol and methanol, is not preferable. In addition, it is desirable to adjust the solid content concentration of the silver fine particle dispersion solution to be 1 to 50% by weight. The silver concentration is preferably 0.001 to 30% by weight.
本発明の(ロ)金イオン含有水溶液は、例えば金化合物を水に溶解することにより調製できる。金化合物としては、塩化金酸、塩化第一金、塩化第二金、亜硫酸金、金酸カリウムなど、水に溶解することにより金イオンを生じるものが挙げられる。 The (b) gold ion-containing aqueous solution of the present invention can be prepared, for example, by dissolving a gold compound in water. Examples of the gold compound include those that generate gold ions when dissolved in water, such as chloroauric acid, gold chloride, gold chloride, gold sulfite, and potassium metal oxide.
(ロ)金イオン含有水溶液の金モル濃度は特に制限されるものではないが、1×10−5〜0.5mol/lであることが望ましい。1×10−5mol/l未満の場合、銀微粒子の金被覆が充分ではなく、金微粒子と同様の光学特性が得難い。一方、0.5mol/lを超えると、銀微粒子表面の金析出量が多くなり、金微粒子同士及び/又は銀コア−金シェル微粒子同士の凝集が起こり易く、ひいては所望の光学特性が得難い。 (B) The gold molar concentration of the aqueous solution containing gold ions is not particularly limited, but is preferably 1 × 10 −5 to 0.5 mol / l. When it is less than 1 × 10 −5 mol / l, the gold coating of the silver fine particles is not sufficient, and it is difficult to obtain the same optical characteristics as the gold fine particles. On the other hand, when it exceeds 0.5 mol / l, the amount of gold deposited on the surface of the silver fine particles is increased, and the gold fine particles and / or the silver core-gold shell fine particles are easily aggregated, so that it is difficult to obtain desired optical characteristics.
金イオンの還元に際して、(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液と(ロ)金イオン含有水溶液を混合する。その混合比率としては各溶液に含まれる金属重量比、すなわち銀と金が重量比で1:0.1〜50となるよう混合されることが望ましい。0.1未満の場合は、銀微粒子の金被覆が充分ではなく、金微粒子と同様の光学特性が得難い。一方、50を超えた場合は、銀微粒子表面の金析出量が多くなり、金微粒子同士及び/又は銀コア−金シェル微粒子同士の凝集が起こり易く、ひいては所望の光学特性が得難い。 When reducing gold ions, (b) a silver particle dispersion solution in which silver particles protected with a water-insoluble polymer pigment dispersant are dispersed in an organic solvent incompatible with water and (b) a solution containing gold ions To do. As for the mixing ratio, it is desirable that the metal is contained in each solution in a weight ratio, that is, silver and gold are mixed so that the weight ratio is 1: 0.1-50. If it is less than 0.1, the gold coating of the silver fine particles is not sufficient, and it is difficult to obtain the same optical characteristics as the gold fine particles. On the other hand, when it exceeds 50, the amount of gold deposited on the surface of the silver fine particles is increased, and the gold fine particles and / or the silver core-gold shell fine particles are likely to be aggregated, so that desired optical characteristics are hardly obtained.
金イオンの還元方法としては、前記混合溶液に還元剤を添加する方法により行なうことができる。還元剤は、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩、ヒドラジン化合物、クエン酸及びその塩、コハク酸及びその塩、アスコルビン酸及びその塩などを用いることができる。これらは水あるいは、エタノール、プロパノール等のアルコールに0.01〜0.1mol/l程度の濃度で溶解して使用することができる。 The gold ion can be reduced by a method of adding a reducing agent to the mixed solution. Reducing agents are metal borohydrides such as sodium borohydride and potassium borohydride, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium magnesium hydride, calcium aluminum hydride An aluminum hydride salt such as hydrazine compound, citric acid and its salt, succinic acid and its salt, ascorbic acid and its salt and the like can be used. These can be used by dissolving in water or an alcohol such as ethanol or propanol at a concentration of about 0.01 to 0.1 mol / l.
また金イオンの還元は、(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液と(ロ)金イオン含有水溶液の界面で行なわれる。水相と有機相の界面で金イオンの還元を行なうことで、銀微粒子の表面で金を析出せしめることができ、金微粒子が単体で生成することを抑制する。そのために、還元剤の添加速度を調節することが望ましい。 In addition, the reduction of gold ions involves (a) a silver fine particle dispersion solution in which silver fine particles protected with a water-insoluble polymer pigment dispersant are dispersed in an organic solvent incompatible with water, and (b) a gold ion-containing aqueous solution. Performed at the interface. By reducing the gold ions at the interface between the aqueous phase and the organic phase, gold can be precipitated on the surface of the silver fine particles, and the formation of the gold fine particles as a simple substance is suppressed. Therefore, it is desirable to adjust the addition rate of the reducing agent.
これにより得られた銀コア−金シェル微粒子10は、図2に示すように銀微粒子2を金微粒子3が被覆した銀コア−金シェル構造であって、その周りを非水溶性高分子顔料分散剤4が取り囲んだ構成となっており、有機相、すなわち水と相溶性のない有機溶媒中に存在する。この混合溶液を例えば分液漏斗等により有機相を分離し、該有機相から有機溶媒を除去することにより、非水溶性高分子顔料分散剤に保護された銀コア−金シェル微粒子を得ることができる。ここで、金イオン含有水溶液を作製する際に副生成された雑イオン(金化合物として塩化金酸を使用した場合は塩素イオンなど)は水相に残されるため、洗浄工程を複数回行なう必要がなく、また相間移動剤を使用しなくともよいといった利点がある。更に、非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させて銀微粒子分散溶液とすることから、銀微粒子分散溶液の作製時に新たに分散剤を添加する必要がなく、ひいては未反応の分散剤が有機相に多量に残存することがないため、洗浄工程を複数回実施する必要はないといった特徴もある。
The resulting silver core-gold shell
尚、得られた銀コア−金シェル微粒子の平均粒子径は5〜100nmであることが望ましい。5nm未満であると粒子径が小さすぎて発色性が十分でなく、100nmを超えると粒子径が大きすぎて発色が十分でなくなる。 The average particle diameter of the obtained silver core-gold shell fine particles is preferably 5 to 100 nm. Particle size is less than 5nm is not sufficient chromogenic too small may develop color particle size too large is not sufficient when more than 100 nm.
以下、本発明を実施例にて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
100mlビーカー中において、蒸留水50mlに硝酸銀0.186gを溶解させ硝酸銀水溶液を作製した。別の300mlビーカー中に、100mlの水と、
カルボン酸、アミンを顔料親和性基として有する櫛型構造のポリエステル系非水溶性高分子顔料分散剤1.96g(ソルスパース(商品名)アビシア社製)
をいれ、マグネチックスターラ−を用いて、80°Cで加熱・攪拌を行なった。次に、該300mlビーカーに前記硝酸銀水溶液を流し入れ、2分間加熱・攪拌を行った後、ジブチルアミン2.4gを1g/minの滴下速度で添加した。滴下終了後、更に30分間加熱・攪拌した後、上澄み液を除去し、残分を蒸留水で2〜3回洗浄して、黄色の沈殿物である非水溶性高分子顔料分散剤で保護された銀微粒子を採取した。
In a 100 ml beaker, 0.186 g of silver nitrate was dissolved in 50 ml of distilled water to prepare a silver nitrate aqueous solution. In another 300 ml beaker, 100 ml of water,
1.96 g of a polyester-based water-insoluble polymer pigment dispersant having a comb structure having carboxylic acid and amine as a pigment affinity group (Solsperse (trade name) manufactured by Avicia)
The mixture was heated and stirred at 80 ° C. using a magnetic stirrer. Next, the silver nitrate aqueous solution was poured into the 300 ml beaker, heated and stirred for 2 minutes, and then 2.4 g of dibutylamine was added at a dropping rate of 1 g / min. After completion of the dropwise addition, the mixture is further heated and stirred for 30 minutes, and then the supernatant is removed, and the residue is washed 2 to 3 times with distilled water and protected with a water-insoluble polymer pigment dispersant that is a yellow precipitate. Silver fine particles were collected.
実施例1
上記非水溶性高分子顔料分散剤で保護された銀微粒子(銀6重量%)0.12gをトルエン30mlに分散させて、銀微粒子分散溶液を作製した。一方で、塩化金酸(金50重量%)0.14gを水30mlに溶解させて、金イオン含有水溶液を調製した。
上記金イオン含有水溶液と上記銀微粒子分散溶液を混合した後、マグネチックスターラーを用いて80°Cで加熱・攪拌を行いながら、ジブチルアミン1.00gを1g/minの滴下速度で添加した。還元剤を滴下終了後、更に30分間、加熱・攪拌を行なった後、分液ロートを用いて有機相を取り出した。この有機相は赤色を呈し、紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図3の(a)のようなUV−VISスペクトルが得られた。
Example 1
A silver fine particle dispersion solution was prepared by dispersing 0.12 g of silver fine particles (silver 6 wt%) protected with the above water-insoluble polymer pigment dispersant in 30 ml of toluene. On the other hand, 0.14 g of chloroauric acid (50% by weight of gold) was dissolved in 30 ml of water to prepare an aqueous solution containing gold ions.
After the gold ion-containing aqueous solution and the silver fine particle dispersion were mixed, 1.00 g of dibutylamine was added at a dropping rate of 1 g / min while heating and stirring at 80 ° C. using a magnetic stirrer. After completion of the dropping of the reducing agent, the mixture was further heated and stirred for 30 minutes, and then the organic phase was taken out using a separatory funnel. The organic phase was red, and when the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS), a UV-VIS spectrum as shown in FIG. 3A was obtained.
実施例2
塩化金酸(金50重量%)の添加量を0.07gとした以外は、実施例1と同様に行った。有機相は赤色を呈し、紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図3の(b)のようなUV−VISスペクトルが得られた。
Example 2
The same operation as in Example 1 was conducted except that the amount of chloroauric acid (50% by weight of gold) added was 0.07 g. The organic phase was red, and the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS). As a result, a UV-VIS spectrum as shown in FIG. 3B was obtained.
実施例3
ジブチルアミンの添加量を1.50gとした以外は、実施例1と同様に行なった。有機相は赤色を呈し、紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図3の(c)のようなUV−VISスペクトルが得られた。
Example 3
The same operation as in Example 1 was conducted except that the amount of dibutylamine added was 1.50 g. The organic phase was red, and when the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS), a UV-VIS spectrum as shown in FIG. 3C was obtained.
比較例1
上記非水溶性高分子顔料分散剤で保護された銀微粒子(銀6重量%)0.01gをトルエン30mlに分散させて、銀微粒子分散溶液を作製した。紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図4の(d)のようなUV−VISスペクトルが得られた。
Comparative Example 1
0.01 g of silver fine particles (6% by weight of silver) protected with the above water-insoluble polymer pigment dispersant was dispersed in 30 ml of toluene to prepare a silver fine particle dispersion solution. When the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS), a UV-VIS spectrum as shown in FIG. 4D was obtained.
比較例2
100mlビーカー中において、蒸留水50mlに塩化金酸0.23gを溶解させ塩化金酸水溶液を作製した。別の300mlビーカー中に、100mlの水と、カルボン酸、アミンを顔料親和性基として有する櫛型構造のポリエステル系非水溶性高分子顔料分散剤1.96g(ソルスパース(商品名)アビシア社製)をいれ、マグネチックスターラ−を用いて、80°Cで加熱・攪拌を行なった。次に、該300mlビーカーに前塩化金酸水溶液を流し入れ、2分間加熱・攪拌を行った後、ジブチルアミン2.4gを1g/minの滴下速度で添加した。滴下終了後、更に30分間加熱・攪拌した後、上澄み液を除去し、残分を蒸留水で2〜3回洗浄して、黄色の沈殿物である非水溶性高分子顔料分散剤で保護された金微粒子を採取した。
上記非水溶性高分子顔料分散剤で保護された金微粒子(金6重量%)0.01gをトルエン30mlに分散させて、金微粒子分散溶液を作製した。紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図4の(e)のようなUV−VISスペクトルが得られた。
Comparative Example 2
In a 100 ml beaker, 0.23 g of chloroauric acid was dissolved in 50 ml of distilled water to prepare an aqueous chloroauric acid solution. In another 300 ml beaker, 1.96 g of a polyester-based water-insoluble polymer pigment dispersant having a comb structure having 100 ml of water, carboxylic acid and amine as pigment affinity groups (Solsperse (trade name) manufactured by Avicia) The mixture was heated and stirred at 80 ° C. using a magnetic stirrer. Next, the aqueous chloroauric acid solution was poured into the 300 ml beaker, heated and stirred for 2 minutes, and then 2.4 g of dibutylamine was added at a dropping rate of 1 g / min. After completion of the dropwise addition, the mixture is further heated and stirred for 30 minutes, and then the supernatant is removed, and the residue is washed 2 to 3 times with distilled water and protected with a water-insoluble polymer pigment dispersant that is a yellow precipitate. Gold fine particles were collected.
A gold fine particle dispersion solution was prepared by dispersing 0.01 g of gold fine particles (6 wt% gold) protected with the above water-insoluble polymer pigment dispersant in 30 ml of toluene. When the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS), a UV-VIS spectrum as shown in FIG. 4 (e) was obtained.
比較例3
比較例1の銀微粒子分散溶液及び比較例2の金微粒子分散溶液の混合溶液を作製した。紫外・可視分光光度計(UV−VIS)で吸光度を測定したところ、図4の(f)のようなUV−VISスペクトルが得られた。
Comparative Example 3
A mixed solution of the silver fine particle dispersion solution of Comparative Example 1 and the gold fine particle dispersion solution of Comparative Example 2 was prepared. When the absorbance was measured with an ultraviolet / visible spectrophotometer (UV-VIS), a UV-VIS spectrum as shown in (f) of FIG. 4 was obtained.
この結果、実施例1〜3では波長;528〜530nmに吸収ピークを示し、これは比較例1の銀微粒子の表面プラズモン共鳴吸収ピーク位置(波長;420nm)とは異なり、比較例2の金微粒子の表面プラズモン共鳴吸収ピーク位置とほぼ等しく、かつ短波長にシフトしていないことからも、実施例は銀−金合金微粒子ではなく、銀微粒子の表面が金で被覆された銀コア−金シェル微粒子であることが知見された。また、金微粒子と銀微粒子を混合した比較例3のスペクトル構造が、波長;528nmと420nmにピークを有することからも、実施例が銀微粒子と金微粒子が独立で並存するわけではないことも確認できた。 As a result, in Examples 1 to 3, an absorption peak was observed at a wavelength of 528 to 530 nm, which was different from the surface plasmon resonance absorption peak position (wavelength; 420 nm) of the silver fine particle of Comparative Example 1, and the gold fine particle of Comparative Example 2 Since the surface plasmon resonance absorption peak position is substantially the same and the wavelength is not shifted to a short wavelength, the examples are not silver-gold alloy fine particles, but silver core-gold shell fine particles in which the surface of silver fine particles is coated with gold. It was found that. In addition, since the spectral structure of Comparative Example 3 in which gold fine particles and silver fine particles are mixed has peaks at wavelengths; 528 nm and 420 nm, it is confirmed that the silver fine particles and the gold fine particles are not coexisting independently. did it.
実施例1で得た有機相を、エバポレーターを用いて溶剤であるトルエンを除去することにより、非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の固形物を得ることができた。この固形物0.01gをアセトン,乳酸ブチル各20mlに夫々添加したところ、凝集や沈殿することなく再分散させることができた。また水20mlに該固形物0.01gを添加したところ、赤色の沈殿が確認された。 By removing toluene, which is a solvent, from the organic phase obtained in Example 1 using an evaporator, a solid material of silver core-gold shell fine particles protected with a water-insoluble polymer pigment dispersant can be obtained. It was. When 0.01 g of this solid was added to 20 ml each of acetone and butyl lactate, they could be redispersed without aggregation or precipitation. When 0.01 g of the solid was added to 20 ml of water, a red precipitate was confirmed.
このことから得られた銀コア−金シェル微粒子は、非水溶性高分子顔料分散剤で保護されており、有機溶媒に再分散可能であることが判った。 From this, it was found that the silver core-gold shell fine particles obtained were protected with a water-insoluble polymer pigment dispersant and redispersible in an organic solvent.
金微粒子の代替品を製造する方法として、コストダウンが期待でき、得られた銀コア−金シェル微粒子は塗料や樹脂組成物用の着色剤などとして様々な分野に適用できる。 As a method for producing an alternative to gold fine particles, cost reduction can be expected, and the obtained silver core-gold shell fine particles can be applied to various fields as a colorant for paints and resin compositions.
1 非水溶性高分子顔料分散剤で保護された銀微粒子
2 銀微粒子
3 金微粒子
4 非水溶性高分子顔料分散剤
10 非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子
DESCRIPTION OF SYMBOLS 1 Silver fine particle protected with water-insoluble
Claims (2)
(イ)非水溶性高分子顔料分散剤で保護された銀微粒子を水と相溶性のない有機溶媒に分散させた銀微粒子分散溶液と(ロ)金イオン含有水溶液との界面において、金イオンの還元反応を行い、銀微粒子表面に金微粒子を析出させて銀コア−金シェル微粒子を形成し、前記銀コア−金シェル微粒子が存在する前記有機溶媒と前記水溶液とを分離して前記有機溶媒を取り出すことを特徴とする非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法。 A method for producing silver core-gold shell fine particles protected with a water-insoluble polymer pigment dispersant,
(B) At the interface between a silver fine particle dispersion solution in which silver fine particles protected with a water-insoluble polymer pigment dispersant are dispersed in an organic solvent incompatible with water and (b) a gold ion-containing aqueous solution, A reduction reaction is performed to deposit gold fine particles on the surface of the silver fine particles to form silver core-gold shell fine particles, and the organic solvent containing the silver core-gold shell fine particles is separated from the aqueous solution to remove the organic solvent. A method for producing silver core-gold shell fine particles protected with a water-insoluble polymer pigment dispersant, which is characterized by being taken out .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004232609A JP4705347B2 (en) | 2004-08-09 | 2004-08-09 | Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004232609A JP4705347B2 (en) | 2004-08-09 | 2004-08-09 | Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006052238A JP2006052238A (en) | 2006-02-23 |
JP4705347B2 true JP4705347B2 (en) | 2011-06-22 |
Family
ID=36029921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004232609A Expired - Fee Related JP4705347B2 (en) | 2004-08-09 | 2004-08-09 | Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4705347B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112683894A (en) * | 2020-12-22 | 2021-04-20 | 关文婷 | Method for measuring hexavalent chromium in cigarette mainstream smoke |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1993758A2 (en) * | 2006-03-08 | 2008-11-26 | Northwestern University | Photoinduced phase separation of gold in two-component nanoparticles to form nanoprisms |
JP5288848B2 (en) * | 2007-10-05 | 2013-09-11 | 油脂製品株式会社 | Gold coloring pigment and method for producing gold coloring pigment |
WO2009096569A1 (en) * | 2008-02-01 | 2009-08-06 | Kyushu University, National University Corporation | Method for producing metal nanomaterial and metal nanomaterial obtained by the same |
US9545668B2 (en) * | 2009-11-27 | 2017-01-17 | Tokusen Kogyo Co., Ltd. | Fine metal particle-containing composition |
DE102009059102A1 (en) * | 2009-12-18 | 2011-06-22 | Leibniz-Institut für Neue Materialien gemeinnützige GmbH, 66123 | Process for the preparation of encapsulated metal colloids as inorganic color pigments |
CN114131037B (en) * | 2021-12-07 | 2022-06-21 | 南京医科大学第二附属医院 | Preparation method of gold-silver alloy nanoshell with high SERS activity |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180647A (en) * | 1997-07-17 | 1999-03-26 | Nippon Paint Co Ltd | Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material |
JPH11140436A (en) * | 1997-11-07 | 1999-05-25 | Matsushita Electric Ind Co Ltd | Heat-sensitive coloring material and its production |
JP2000296339A (en) * | 1999-04-13 | 2000-10-24 | Toyota Motor Corp | Composite metal colloid and its production as well as catalyst for purification of gas and its production |
JP2001080917A (en) * | 1999-09-09 | 2001-03-27 | Mitsuboshi Belting Ltd | Production of ultrafine particle carrying body |
JP2002256308A (en) * | 2001-02-28 | 2002-09-11 | Mitsuboshi Belting Ltd | Method for manufacturing fine noble-metal particle |
JP2004051997A (en) * | 2002-07-16 | 2004-02-19 | Ulvac Japan Ltd | Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor |
JP2004075703A (en) * | 2002-08-09 | 2004-03-11 | Nippon Paint Co Ltd | Method of preparing metal colloidal solution and metal colloidal solution |
-
2004
- 2004-08-09 JP JP2004232609A patent/JP4705347B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180647A (en) * | 1997-07-17 | 1999-03-26 | Nippon Paint Co Ltd | Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material |
JPH11140436A (en) * | 1997-11-07 | 1999-05-25 | Matsushita Electric Ind Co Ltd | Heat-sensitive coloring material and its production |
JP2000296339A (en) * | 1999-04-13 | 2000-10-24 | Toyota Motor Corp | Composite metal colloid and its production as well as catalyst for purification of gas and its production |
JP2001080917A (en) * | 1999-09-09 | 2001-03-27 | Mitsuboshi Belting Ltd | Production of ultrafine particle carrying body |
JP2002256308A (en) * | 2001-02-28 | 2002-09-11 | Mitsuboshi Belting Ltd | Method for manufacturing fine noble-metal particle |
JP2004051997A (en) * | 2002-07-16 | 2004-02-19 | Ulvac Japan Ltd | Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor |
JP2004075703A (en) * | 2002-08-09 | 2004-03-11 | Nippon Paint Co Ltd | Method of preparing metal colloidal solution and metal colloidal solution |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112683894A (en) * | 2020-12-22 | 2021-04-20 | 关文婷 | Method for measuring hexavalent chromium in cigarette mainstream smoke |
CN112683894B (en) * | 2020-12-22 | 2021-12-17 | 章文春 | Method for measuring hexavalent chromium in cigarette mainstream smoke |
Also Published As
Publication number | Publication date |
---|---|
JP2006052238A (en) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101111338B (en) | Fine metal particle, process for producing the same, composition containing the same, and use thereof | |
Long et al. | The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology | |
KR100716201B1 (en) | Metal nanoparticles and method for manufacturing thereof | |
US6929675B1 (en) | Synthesis metal nanoparticle | |
JP2022116130A (en) | Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method | |
EP2254692B1 (en) | Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions | |
US10226822B2 (en) | Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent | |
KR101541930B1 (en) | Organoamine stabilized silver nanoparticles and process for producing same | |
JP2008013846A (en) | Method for producing metal nanoparticle, and metal nanoparticle | |
JP2007217794A (en) | Metal nanoparticle and method of producing the same | |
CN109890541A (en) | The manufacturing method of silver nanowires | |
EP3227037B1 (en) | Universal one-pot and up-scalable synthesis of sers encoded nanoparticles | |
JP2010077526A (en) | Method for preparing metal nanoparticle using metal seed and metal nanoparticle comprising metal seed | |
US20150129813A1 (en) | Irradiation-assisted production of nanostructures | |
JP4248857B2 (en) | Method for producing silver fine particles | |
JP4705347B2 (en) | Method for producing silver core-gold shell fine particles protected with water-insoluble polymer pigment dispersant | |
JP2006089786A (en) | Method for producing metallic nano-particle dispersed in polar solvent | |
Bryan et al. | Preparation of THPC-generated silver, platinum, and palladium nanoparticles and their use in the synthesis of Ag, Pt, Pd, and Pt/Ag nanoshells | |
KR101273122B1 (en) | NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES | |
JP5548548B2 (en) | Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. | |
JPH10195505A (en) | Metallic superfine particle and production thereof | |
JP2010209455A (en) | Method of preparing metal nanoparticle and method of preparing metal nanoparticle dispersion solution | |
JP2003147417A (en) | Nano-size metal particles and method for manufacturing the same | |
JP5786637B2 (en) | Method for producing silver-copper composite nanoparticles | |
Newmai et al. | Molecular aspects of oligomer-coupled ultra-small Au nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4705347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |