KR101273122B1 - NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES - Google Patents
NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES Download PDFInfo
- Publication number
- KR101273122B1 KR101273122B1 KR1020110106628A KR20110106628A KR101273122B1 KR 101273122 B1 KR101273122 B1 KR 101273122B1 KR 1020110106628 A KR1020110106628 A KR 1020110106628A KR 20110106628 A KR20110106628 A KR 20110106628A KR 101273122 B1 KR101273122 B1 KR 101273122B1
- Authority
- KR
- South Korea
- Prior art keywords
- gold
- silver
- alloy nanoparticles
- silver alloy
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 95
- 229910001316 Ag alloy Inorganic materials 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title abstract description 16
- 239000010931 gold Substances 0.000 claims abstract description 87
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 claims abstract description 72
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052737 gold Inorganic materials 0.000 claims abstract description 40
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000004332 silver Substances 0.000 claims abstract description 26
- 229910052709 silver Inorganic materials 0.000 claims abstract description 25
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 20
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 17
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 101710134784 Agnoprotein Proteins 0.000 claims abstract description 10
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 21
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 12
- 238000006722 reduction reaction Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- 239000003638 chemical reducing agent Substances 0.000 abstract description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 3
- 235000011447 Geum Nutrition 0.000 abstract description 3
- 241000220313 Geum Species 0.000 abstract description 3
- 239000006227 byproduct Substances 0.000 abstract description 3
- 239000003381 stabilizer Substances 0.000 abstract description 3
- 239000002904 solvent Substances 0.000 abstract 1
- 239000012279 sodium borohydride Substances 0.000 description 14
- 229910000033 sodium borohydride Inorganic materials 0.000 description 14
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 7
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000000286 energy filtered transmission electron microscopy Methods 0.000 description 5
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-M 4-nitrophenolate Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-M 0.000 description 1
- -1 4-nitrophenolate ions Chemical class 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000003887 surface segregation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/04—Nanocrystalline
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
본 발명은 금-은 합금 나노입자의 제조방법에 관한 것으로, 구체적으로는 폴리에칠렌이민(Polyethyleneimine, PEI)를 사용하여 원스텝(one-step)으로 다량의 금-은 합금 나노입자를 제조하는 방법에 관한 것이다.
폴리에칠렌이민(Polyethyleneimine, PEI)은 염화금산과 질산은을 환원시키는 환원제로, 금-은 합금 나노입자의 안정제로, 부산물인 염화은(AgCl)의 용해제로 작용한다.
본 발명인 금-은 합금 나노입자 제조방법은 염화금산(HAuCl4)과 질산은(AgNO3)을 함유하는 수성혼합물에 폴리에칠렌이민을 투여하여 상기 염화금산과 상기 질산은으로부터 발생한 염화은을 용해시키는 단계, 상기 수성혼합물을 가열 후 교반하여 금-은 합금나노입자를 수득하는 단계를 포함한다.
금-은 합금 나노입자의 금과 은의 비율은 초기 염화금산(HAuCl4)과 질산은(AgNO3)의 상대적인 양과 일치하며, 금과 은이 완벽히 혼합되어 있는 구형의 합금 나노입자가 생성된다.The present invention relates to a method for producing gold-silver alloy nanoparticles, and more particularly, to a method for producing a large amount of gold-silver alloy nanoparticles in one-step using polyethyleneimine (PEI). will be.
Polyethyleneimine (PEI) is a reducing agent for reducing gold chloride and silver nitrate. It is a stabilizer for gold-silver alloy nanoparticles and acts as a solvent of silver chloride (AgCl) as a by-product.
In the present invention, a method for preparing gold-silver alloy nanoparticles is obtained by dissolving silver chloride generated from geum chloride and silver nitrate by administering polyethylenimine to an aqueous mixture containing geum chloride (HAuCl 4 ) and silver nitrate (AgNO 3 ). Heating and stirring the mixture to obtain gold-silver alloy nanoparticles.
The ratio of gold to silver in the gold-silver alloy nanoparticles coincides with the relative amounts of initial gold chloride (HAuCl 4 ) and silver nitrate (AgNO 3 ), resulting in spherical alloy nanoparticles with a perfect mixture of gold and silver.
Description
본 발명은 화학적 방법으로 금-은 합금 나노입자를 제조하는 방법에 관한 것으로,더욱 상세하게는 금과 은의 함량을 조절 가능하며, 원스텝(one-step)으로 다량의 금-은 합금 나노입자를 합성할 수 있는 금-은 합금 나노입자 제조방법 및 그에 따른 금-은 합금 나노입자에 관한 것이다.The present invention relates to a method for producing gold-silver alloy nanoparticles by a chemical method, more specifically, it is possible to control the content of gold and silver, and to synthesize a large amount of gold-silver alloy nanoparticles in one step. The present invention relates to a method for preparing gold-silver alloy nanoparticles, and thus gold-silver alloy nanoparticles.
합금의 표면에서 일어나는 중요한 현상 중 하나는 표면의 화학적 조성이 완전히 변형되어 입자 내부와 표면의 성질이 달라지는 표면 분리(Surface Segregation)이다. 이는 구성원자간 결합력의 차이, 원자크기의 차이, 승화열의 차이 및 표면 에너지의 차이 때문에 발생한다.One important phenomenon that takes place on the surface of the alloy is surface segregation, in which the chemical composition of the surface is completely deformed, resulting in different particle interior and surface properties. This occurs because of differences in bonding strength between members, differences in atomic sizes, differences in heat of sublimation, and differences in surface energy.
더욱이 금속 합금 나노입자의 경우 상기 제시된 이유뿐 아니라 반응 조건, 구성원소들의 혼화되는 정도, 구성원소들이 환원되는 속도 등에 의해서도 표면분리가 일어나게 된다.Moreover, in the case of the metal alloy nanoparticles, the surface separation occurs not only because of the above-mentioned reasons but also by reaction conditions, the degree of miscibility of the elements, and the rate at which the elements are reduced.
그러나, 금과 은의 합금의 경우 표면분리 없이 균질한 합금을 형성할 수 있으며, 이는 금과 은이 매우 유사한 격자상수(Lattice Constant)를 가지고, 금과 은의 함량비에 무관하게 완벽하게 혼화되기 때문이다.However, alloys of gold and silver can form homogeneous alloys without surface separation, since gold and silver have very similar lattice constants and are perfectly mixed regardless of the content ratio of gold and silver.
이러한 이유로 금-은 합금 나노입자는 매우 흥미로운 연구주제가 되고 있으며, 종래문헌을 살펴보면 균질한 나노입자 제조 가능하고, 화학적 안정성이 매우 높고, 그리하여 어떠한 환경에서도 사용이 가능한 것으로 알려져 있다. For this reason, gold-silver alloy nanoparticles have become a very interesting research topic, and it is known that conventional nanoparticles can produce homogeneous nanoparticles, have very high chemical stability, and thus can be used in any environment.
금-은 합금 나노입자는 다양한 물리적, 화학적 방법에 의해 합성될 수 있으며, 물리적 방법의 대표적인 예로는 금-은 합금을 2-부탄올(2-Butanol) 용액 속에서 증발과 응축을 진행하는 것이다(G.C.Papavassiliou, J.Phys.F: Metal phys.6 (1976) L103-L105). 이 방법의 단점은 합금 나노입자의 은 함량이 증가함에 따라 나노입자의 크기가 증가한다는 점이다. 또 다른 방법은 벌크 상태의 금-은 합금을 물 속에서 펄스 레이저(pulsed laser) 조사(irradiation)를 하는 것이다(Lee et al, Chem Commun. (2001) 1782-1783). 이 방법에도 대량생산이 불가능하다는 단점이 존재한다.Gold-silver alloy nanoparticles can be synthesized by a variety of physical and chemical methods, a representative example of the physical method is the evaporation and condensation of gold-silver alloy in a 2-butanol solution (GC Papavassiliou, J. Phys. F: Metal phys. 6 (1976) L103-L105). The disadvantage of this method is that the nanoparticle size increases as the silver content of the alloy nanoparticles increases. Another method is to perform pulsed laser irradiation of bulk gold-silver alloys in water (Lee et al, Chem Commun. (2001) 1782-1783). This method also has the disadvantage that mass production is impossible.
화학적 방법의 경우 금 전구체와 은 전구체를 환원제로 함께 환원시킴으로써 제조한다. 일반적으로 금 전구체로 염화금산(HAuCl4), 은 전구체로는 질산은(AgNO3)을 사용하며, 환원제로는 수소화붕소 나트륨(NaBH4), 시트르산염(Citrate), 하이드라진(Hydrazine) 등을 사용한다. 화학적 방법에 의한 제조는 대량생산의 가능성이 있다는 장점이 있으나, 염화금산(HAuCl4)과 질산은(AgNO3)을 혼합하였을 때, 염화은(AgCl)이 석출되어 한번에 많은 양을 제조할 수 없다는 문제점이 있다. In the case of the chemical method, the gold precursor and the silver precursor are prepared together with a reducing agent. Generally, gold chloride is used as gold chloride (HAuCl 4 ), silver precursor is silver nitrate (AgNO 3 ), reducing agent sodium borohydride (NaBH 4 ), citrate (Citrate), hydrazine (hydricazine), etc. are used. . The production by chemical method has the advantage of the possibility of mass production, but when the mixture of geum chloride (HAuCl 4 ) and silver nitrate (AgNO 3 ) is mixed, silver chloride (AgCl) is precipitated and it is not possible to manufacture a large amount at one time. have.
따라서, 본 발명이 이루고자 하는 기술적 과제는 원스텝(one-step)으로 다량의 금-은 합금 나노입자를 합성하는 방법을 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to provide a method for synthesizing a large amount of gold-silver alloy nanoparticles in one-step.
본 발명은 다량의 금-은 합금 나노입자를 원스텝(one-step)으로 합성하는 것을 특징으로 한다. 염화금산(HAuCl4)과 질산은(AgNO3)을 함유하는 수성혼합물에 폴리에칠렌이민을 투여하여 상기 염화금산과 상기 질산은으로부터 발생한 염화은을 용해시키는 단계; 및 상기 수성혼합물을 가열 후 교반하여 금-은 합금나노입자를 수득하는 단계를 포함하는 것을 특징으로 하는 금-은 합금 나노입자 제조방법에 관한 것이다.The present invention is characterized by synthesizing a large amount of gold-silver alloy nanoparticles in one-step. Administering polyethylenimine to an aqueous mixture containing gold chloride (HAuCl 4 ) and silver nitrate (AgNO 3 ) to dissolve the silver chloride generated from the gold chloride and the silver nitrate; And it relates to a gold-silver alloy nanoparticles manufacturing method comprising the step of heating and stirring the aqueous mixture to obtain gold-silver alloy nanoparticles.
상기 제조방법에 의해 제조된 금-은 합금 나노입자는 평균입경 1~10nm 범위를 가지며, 구형의 형태를 나타낸다. 상기 폴리에칠렌이민(polyethyleneimine, PEI)의 풍부한 아민 작용기로 인하여 (i)부산물인 염화은(AgCl)의 용해제로 작용할 뿐만 아니라, (ii)염화금산과 질산은의 환원제, (iii)금-은 합금 나노입자의 안정제로 작용한다.The gold-silver alloy nanoparticles prepared by the above production method have an average particle diameter in the range of 1 to 10 nm, and have a spherical shape. Due to the rich amine functionality of the polyethyleneimine (PEI), (i) not only acts as a dissolving agent of silver chloride (AgCl) as a by-product, but also (ii) reducing agent of gold chloride and silver nitrate, (iii) gold-silver alloy nanoparticles It acts as a stabilizer.
본 발명의 제조 방법에 의하면 원스텝(one-step)에 의해 다량의 금-은 합금 나노입자를 제조할 수 있으며, 사용목적에 따라 금과 은의 함량을 자유롭게 조절할 수 있다.According to the production method of the present invention, a large amount of gold-silver alloy nanoparticles can be manufactured by one-step, and the content of gold and silver can be freely adjusted according to the purpose of use.
도 1의 (a)는 반응시간에 따른 Au0.5Ag0.5의 UV-vis 흡수 스펙트럼 변화를 나타내는 그래프이다.
도 1의 (b)는 금-은 합금 나노입자의 금 함량에 따른 UV-vis 흡수선 그래프이다.
도 1의 (c)는 금-은 합금 나노입자의 금 함량 변화에 따른 최대 SPR 밴드 위치변화 그래프이다.
도 1의 (d)는 금-은 합금 나노입자와 금과 은 나노입자의 단순 혼합물의 광 흡수 스펙트럼 흡수선 비교 그래프이다.
도 2는 본 발명에 의해 생성된 금-은 합금 나노입자의 금 함량에 따른 EF-TEM 이미지이다. 도 2의 (a)는 은 나노입자, 도 2의 (b)는 Au0.25Ag0.75, 도 2의 (c)는 Au0.5Ag0.5, 도 2의 (d)는 Au0.75Ag0.25, 도 2의 (e)는 금 나노입자에 대한 EF-TEM 이미지이다.
도 3은 본 발명에 의해 생성된 금-은 합금 나노입자의 EDX 분석결과 그래프이다. 도 3의 (a)는 Au0.25Ag0.75, 도 3의 (b)는 Au0.5Ag0.5, 도 3의 (c)는 Au0.75Ag0.25 의 EDX 분석결과 그래프이다.
도 4의 (a)는 본 발명에 의해 생성된 Au0.5Ag0.5의 XRD 패턴이다.
도 4의 (b)는 폴리에칠렌이민에 의해 환원된 상태의 은에 대한 XPS 스펙트럼이다.
도 4의 (c)는 폴리에칠렌이민에 의해 환원된 상태의 금에 대한 XPS 스펙트럼이다.
도 5는 4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, 4-나이트로페놀의 UV-vis 스펙트럼 변화 그래프이다.
도 6의 (a)는 4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, 촉매로 금-은 합금 나노입자(Au0.5Ag0.5)를 사용하는 경우의 UV-vis 스펙트럼 변화 그래프이다.
도 6의 (b)는 4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, 촉매로 금-은 합금 나노입자(Au0.5Ag0.5)를 사용하는 경우, 반응시간(t)에 따른 변화 그래프이다.
도 7의 (a)는 은 나노입자, Au0.25Ag0.75, Au0.5Ag0.5 , Au0.75Ag0.25, 금 나노입자를 촉매로 사용하여 4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, 반응시간(t)에 따른 변화 그래프이다.
도 7의 (b)는 금-은 합금 나노입자 촉매의 금 함량에 따른 4-나이트로페놀 환원반응의 반응속도상수 변화 그래프이다.Figure 1 (a) is a graph showing the UV-vis absorption spectrum change of Au 0.5 Ag 0.5 with the reaction time.
Figure 1 (b) is a UV-vis absorption line graph according to the gold content of the gold-silver alloy nanoparticles.
Figure 1 (c) is a graph of the maximum SPR band position change according to the gold content of the gold-silver alloy nanoparticles.
Figure 1 (d) is a graph of light absorption spectral absorption line comparison of a simple mixture of gold-silver alloy nanoparticles and gold and silver nanoparticles.
2 is an EF-TEM image according to the gold content of the gold-silver alloy nanoparticles produced by the present invention. Figure 2 (a) is silver nanoparticles, Figure 2 (b) is Au 0.25 Ag 0.75 , Figure 2 (c) is Au 0.5 Ag 0.5 , Figure 2 (d) is Au 0.75 Ag 0.25 , Figure 2 (e) is an EF-TEM image of gold nanoparticles.
Figure 3 is a graph of the EDX analysis of the gold-silver alloy nanoparticles produced by the present invention. Figure 3 (a) is Au 0.25 Ag 0.75 , Figure 3 (b) is Au 0.5 Ag 0.5 , Figure 3 (c) is a graph of EDX analysis results of Au 0.75 Ag 0.25 .
Figure 4 (a) is an XRD pattern of Au 0.5 Ag 0.5 produced by the present invention.
(B) of FIG. 4 is XPS spectrum of silver in the state reduced by polyethyleneimine.
(C) of FIG. 4 is XPS spectrum of gold in the state reduced by polyethylenimine.
5 is a graph of UV-vis spectral change of 4-nitrophenol in the reaction of reducing 4-nitrophenol by sodium borohydride.
FIG. 6 (a) is a graph of UV-vis spectrum change when gold-silver alloy nanoparticles (Au 0.5 Ag 0.5 ) are used as a catalyst in a reaction of reducing 4-nitrophenol by sodium borohydride.
Figure 6 (b) is a reaction of reducing 4-nitrophenol by sodium borohydride, in the case of using gold-silver alloy nanoparticles (Au 0.5 Ag 0.5 ) as a catalyst, according to the reaction time (t) It is a change graph.
7 (a) shows the reaction of reducing 4-nitrophenol by sodium borohydride using silver nanoparticles, Au 0.25 Ag 0.75 , Au 0.5 Ag 0.5 , Au 0.75 Ag 0.25 , and gold nanoparticles as catalysts. According to reaction time (t) It is a change graph.
Figure 7 (b) is a graph of the reaction rate constant change of the 4-nitrophenol reduction reaction according to the gold content of the gold-silver alloy nanoparticle catalyst.
이하 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명은 다량의 금-은 합금 나노입자를 원스텝(one-step)으로 합성하는 것을 특징으로 한다. 염화금산(HAuCl4)과 질산은(AgNO3)을 함유하는 수성혼합물에 폴리에칠렌이민을 투여하여 상기 염화금산과 상기 질산은으로부터 발생한 염화은을 용해시키는 단계; 및 상기 수성혼합물을 가열 후 교반하여 금-은 합금나노입자를 수득하는 단계를 포함하는 것을 특징으로 하는 금-은 합금 나노입자 제조방법에 관한 것이다.The present invention is characterized by synthesizing a large amount of gold-silver alloy nanoparticles in one-step. Administering polyethylenimine to an aqueous mixture containing gold chloride (HAuCl 4 ) and silver nitrate (AgNO 3 ) to dissolve the silver chloride generated from the gold chloride and the silver nitrate; And it relates to a gold-silver alloy nanoparticles manufacturing method comprising the step of heating and stirring the aqueous mixture to obtain gold-silver alloy nanoparticles.
상기 제조방법에 의해 제조된 금-은 합금 나노입자는 평균입경 1~10nm 범위를 가지며, 구형의 형태를 나타낸다. 상기 폴리에칠렌이민(polyethyleneimine, PEI)의 풍부한 아민 작용기로 인하여 (i)부산물인 염화은(AgCl)의 용해제로 작용할 뿐만 아니라, (ii)염화금산과 질산은의 환원제, (iii)금-은 합금 나노입자의 안정제로 작용한다.The gold-silver alloy nanoparticles prepared by the above production method have an average particle diameter in the range of 1 to 10 nm, and have a spherical shape. Due to the rich amine functionality of the polyethyleneimine (PEI), (i) not only acts as a dissolving agent of silver chloride (AgCl) as a by-product, but also (ii) reducing agent of gold chloride and silver nitrate, (iii) gold-silver alloy nanoparticles It acts as a stabilizer.
금-은 합금 나노입자의 금과 은의 함량은 초기 염화금산과 질산은의 비율과 거의 일치하며, 완벽하게 균질한 영가 금(zero-valent Au)와 영가 은(zero-valent Ag)의 합금 나노입자가 생성된다. Au3+(AuCl4 -/Au +1.002V vs SHE)와 Ag+(Ag+/Ag, +0.7996V vs SHE)의 환원전위에 비추어 볼 때, 금-은 합금 나노입자의 형성은 금 원자가 먼저 결정핵을 형성하고, 이어서 남은 금 원자와 은 원자가 금 결정핵의 표면을 덮는 순서로 진행되는 것을 알 수 있다.The content of gold and silver in the gold-silver alloy nanoparticles is about the same as the ratio of the initial gold chloride and silver nitrate, and the alloy nanoparticles of perfectly homogeneous zero-valent Au and zero-valent Ag Is generated. Au 3+ (AuCl 4 - / Au + 1.002V vs SHE) and in light of the reduction potential of the Ag + (Ag + / Ag, + 0.7996V vs SHE), the gold-silver alloy nanoparticles are formed of gold atoms are first It can be seen that the crystal nuclei are formed, and then the remaining gold atoms and silver atoms proceed in the order of covering the surface of the gold crystal nuclei.
본 명세서에 Au0.25Ag0.75, Au0.5Ag0.5, Au0.75Ag0.25 라는 표현은 각각 염화금산과 질산은을 25:75. 50:50, 75:25의 비율로 혼합하여 제조한 금-은 합금 나노입자를 의미한다. In the present specification, the expressions Au 0.25 Ag 0.75 , Au 0.5 Ag 0.5 , Au 0.75 Ag 0.25 refer to gold chloride and silver nitrate, respectively, in 25:75. Gold-silver alloy nanoparticles prepared by mixing in a ratio of 50:50 and 75:25.
이하에서는 본 발명의 바람직한 태양인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 다만, 하기 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 본 발명의 범위가 하기 실시예로만 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples which are preferred embodiments of the present invention. However, the following examples are intended to assist the understanding of the present invention, and the scope of the present invention is not limited to the following examples.
< 실시예 ><Examples>
금-은 합금 나노입자 제조의 일 실시예는 다음과 같다. 일정량의 HAuCl4 및 AgNO3가 포함되어 있는 수용액(총 농도는 5.1mM로 유지됨) 44ml에 2%(w/w) PEI 6.0ml를 혼합한 후, 100℃에서 180분간 교반시켜 금-은 합금 나노입자를 합성하였다. 본 발명에 사용되는 HAuCl4 및 AgNO3의 혼합비율은 제조하고자 하는 금-은 합금 나노입자의 금, 은 함량과 대등하다. 따라서 본 발명에 투입되는 HAuCl4 및 AgNO3의 양은 원하는 금 함량의 금-은 합금 나노입자에 따라서 달라질 수 있다. 또한, 교반시간은 60분 내지 180분이 바람직하다.
One embodiment of the gold-silver alloy nanoparticles production is as follows. Aqueous solution containing a certain amount of HAuCl 4 and AgNO 3 (total concentration is maintained at 5.1mM) mixed with 6.0
< 시험예1 ><Test Example 1>
금-은 합금 나노입자의 존재 확인.Confirmation of Gold-Silver Alloy Nanoparticles.
본 발명에 의하여 금-은 합금 나노입자가 형성된다는 것을 확인하기 위하여, 광 흡수 스펙트럼(optical absorption spectra)을 사용하였다. 금 나노입자와 은 나노입자를 단순히 혼합할 경우, 두 개의 SPR(Surface Plasmon Resonance) 밴드가 각각 400nm와 520nm에서 나타나게 된다. 한편, 금-은 합금 나노입자의 SPR 밴드는 400nm와 520nm 사이에서 하나만 나타난다. In order to confirm that gold-silver alloy nanoparticles were formed by the present invention, an optical absorption spectra was used. By simply mixing gold and silver nanoparticles, two Surface Plasmon Resonance (SPR) bands appear at 400 nm and 520 nm, respectively. On the other hand, only one SPR band of gold-silver alloy nanoparticles appears between 400 nm and 520 nm.
도 1의 (a)는 Au0.5Ag0.5의 반응시간에 따른 UV-vis 흡수 스펙트럼 변화를 나타내는 그래프이다. 도 1의 (a)에서 선(i)은 반응 전의 스팩트럼, 선(ii)은 15분 경과시의 스팩트럼, 선(iii)은 30분 경과시의 스팩트럼, 선(iv)은 1시간 경과시의 스팩트럼, 선(v)은 2시간 경과시의 스팩트럼, 선(vi)은 3시간 경과시의 스팩트럼에 관한 것이다. Figure 1 (a) is a graph showing the UV-vis absorption spectrum change with the reaction time of Au 0.5 Ag 0.5 . In FIG. 1A, line (i) is the spectrum before reaction, line (ii) is the spectrum after 15 minutes, line (iii) is the spectrum after 30 minutes, and line (iv) is after 1 hour. The spectrum, line v, refers to the spectrum after 2 hours, and the line vi relates to the spectrum after 3 hours.
도 1의 (a)에 포함된 오른쪽 상단 삽입도면은 Au0.5Ag0.5의 반응시간에 따른 최대 흡수 파장의 변화를 나타낸다. 결국, 도 1의 (a)에 의하여 반응시간이 증가할수록 금-은 합금 나노입자의 생성률이 증가하는 것을 알 수 있다.The upper right insertion diagram included in (a) of FIG. 1 shows a change in the maximum absorption wavelength according to the reaction time of Au 0.5 Ag 0.5 . As a result, it can be seen that the production rate of the gold-silver alloy nanoparticles increases as the reaction time increases according to (a) of FIG. 1.
도 1의 (b)는 본 발명에 의하여 제조된 금-은 합금 나노입자의 금-은 함량에 따른 UV-vis 흡수선을 개시한다. 선(i)은 은 나노입자, 선(ii)은 Au0.25Ag0.75 나노입자, 적색(iii)은 Au0.5Ag0.5 나노입자, 선(iv)은 Au0.75Ag0.25 나노입자, 선(v)은 금 나노입자 의 UV-vis 흡수선을 나타낸다. 도 1의 (c)는 금의 함량 변화에 따른 최대 SPR 밴드 위치 변화이다. 결국, 본 발명에 의하여 함량 조절된 금-은 합금 나노입자의 제조가 가능하다는 것을 알 수 있다.Figure 1 (b) discloses the UV-vis absorption line according to the gold-silver content of the gold-silver alloy nanoparticles prepared by the present invention. Line (i) is silver nanoparticle, line (ii) is Au 0.25 Ag 0.75 nanoparticle, red (iii) is Au 0.5 Ag 0.5 nanoparticle, line (iv) is Au 0.75 Ag 0.25 nanoparticle, line (v) is The UV-vis absorption line of gold nanoparticles is shown. Figure 1 (c) is the change in the maximum SPR band position according to the change in the gold content. As a result, it can be seen that the production of gold-silver alloy nanoparticles controlled by the present invention.
도 1의 (d)는 금 나노입자와 은 나노입자를 물리적으로 혼합한 혼합물의 흡수선 그래프와 본 발명에 의하여 생성된 금-은 합금 나노입자(염화금산과 질산은을 1:1의 비율로 혼합하여 제조한 Au0.5Ag0.5)의 흡수선을 비교한 광 흡수 스펙트럼(optical absorption spectra) 흡수선 그래프이다.
Figure 1 (d) is an absorption line graph of a mixture of physically mixed gold nanoparticles and silver nanoparticles and gold-silver alloy nanoparticles produced by the present invention (by mixing the hydrochloric acid and silver nitrate in a ratio of 1: 1 Optical absorption spectra absorption line graph comparing the absorption line of the prepared Au 0.5 Ag 0.5 ).
< 시험예2 > <Test Example 2>
나노입자의 모양 및 크기 조사.Investigate the shape and size of nanoparticles.
본 발명에 의하여 생성되는 은 나노입자, 금-은 합금 나노입자 및 금 나노입자의 모양과 크기는 투과전자현미경(EF-TEM)으로 확인할 수 있다. The shape and size of silver nanoparticles, gold-silver alloy nanoparticles, and gold nanoparticles produced by the present invention can be confirmed by transmission electron microscope (EF-TEM).
도 2는 본 발명에 의해 생성된 금-은 합금 나노입자의 금 함량에 따른 EF-TEM 이미지이다. 도 2의 (a)는 은 나노입자, 도 2의 (b)는 Au0.25Ag0.75, 도 2의 (c)는 Au0.5Ag0.5, 도 2의 (d)는 Au0.75Ag0.25, 도 2의 (e)는 금 나노입자에 대한 EF-TEM 이미지이다.2 is an EF-TEM image according to the gold content of the gold-silver alloy nanoparticles produced by the present invention. Figure 2 (a) is silver nanoparticles, Figure 2 (b) is Au 0.25 Ag 0.75 , Figure 2 (c) is Au 0.5 Ag 0.5 , Figure 2 (d) is Au 0.75 Ag 0.25 , Figure 2 (e) is an EF-TEM image of gold nanoparticles.
합성된 금-은 합금 나노입자를 포함하는 수용액을 15분 동안 초음파 처리를 하고, 초음파 처리된 수용액 극미량을 탄소 코팅된 구리 격자판(carbon-coated copper grid) 위에서 건조하였다. 도 2에 의하면, 각 나노입자는 모두 구형이며, 평균 입자크기는 각각 7.0±2.5nm, 4.2±1.3nm, 5.2±1.5nm,6.0±1.4nm, 7.5±1.5nm이다.
An aqueous solution containing the synthesized gold-silver alloy nanoparticles was sonicated for 15 minutes, and a very small amount of the sonicated aqueous solution was dried on a carbon-coated copper grid. According to Figure 2, each nanoparticle is all spherical, the average particle size is 7.0 ± 2.5 nm, 4.2 ± 1.3 nm, 5.2 ± 1.5 nm, 6.0 ± 1.4 nm, 7.5 ± 1.5 nm, respectively.
< 시험예3 > <Test Example 3>
금-은 합금 나노입자 내의 금과 은의 함량조사.Investigation of the content of gold and silver in gold-silver alloy nanoparticles.
도 3은 본 발명에 의해 생성된 금-은 합금 나노입자의 EDX 분석결과 그래프이다. 도 3에 의하면, 금-은 합금 나노입자의 금과 은 함량이 초기 염화금산과 질산은의 비율과 거의 일치한다는 것을 알 수 있다. 도 3의 (a)는 Au0.25Ag0.75, 도 3의 (b)는 Au0.5Ag0.5, 도 3의 (c)는 Au0.75Ag0.25 의 EDX 분석결과 그래프이다. 각 합금입자의 금과 은의 비율은 22.7:77.3, 48.5:51.5, 76.1:23.9으로 초기 염화금산과 질산은의 비율과 거의 일치함을 알 수 있다.
Figure 3 is a graph of the EDX analysis of the gold-silver alloy nanoparticles produced by the present invention. 3, it can be seen that the gold and silver contents of the gold-silver alloy nanoparticles almost coincide with the ratio of the initial gold chloride and silver nitrate. Figure 3 (a) is Au 0.25 Ag 0.75 , Figure 3 (b) is Au 0.5 Ag 0.5 , Figure 3 (c) is a graph of EDX analysis results of Au 0.75 Ag 0.25 . The ratio of gold and silver in each alloy particle is 22.7: 77.3, 48.5: 51.5, and 76.1: 23.9, which is almost identical to the ratio of initial gold chloride and silver nitrate.
< 시험예4 ><Test Example 4>
금-은 합금 나노입자의 결정구조 확인.Crystal structure confirmation of gold-silver alloy nanoparticles.
금-은 합금 나노입자의 결정구조를 확인하기 위하여 X-ray 회절(XRD) 분석을 하였다. 도 4의 (a)는 본 발명에 의해 생성된 Au0.5Ag0.5의 XRD 패턴이다. 도 4의 (a)에 의하면, 면심입방구조(fcc) 금 또는 은 입자의 (111), (200), (220), (311) 면을 따라 반사되었음을 보여주는 2θ=38.2, 44.2, 64.5, 77.4에서의 피크를 관찰할 수 있다. 금과 은은 거의 유사한 격자상수(각각 4.07825, 4.0862)를 가지기 때문에 금-은 합금 나노입자의 XRD 패턴은 금과 은의 비율을 달리하더라도 별다른 차이를 나타내지 않는다.
X-ray diffraction (XRD) analysis was performed to confirm the crystal structure of the gold-silver alloy nanoparticles. Figure 4 (a) is an XRD pattern of Au 0.5 Ag 0.5 produced by the present invention. According to (a) of FIG. 4, 2θ = 38.2, 44.2, 64.5, 77.4 showing that the surface center cubic (fcc) gold or silver particles are reflected along the (111), (200), (220), and (311) planes. The peak at can be observed. Since gold and silver have almost similar lattice constants (4.07825 and 4.0862, respectively), the XRD pattern of the gold-silver alloy nanoparticles does not show any difference even if the ratio of gold and silver is different.
< 시험예5 > <Test Example 5>
금-은 합금 나노입자의 영가상태 확인Check the zero-valent state of gold-silver alloy nanoparticles
금-은 합금 나노입자(Au0.5Ag0.5)의 금과 은의 산화상태를 확인하기 위하여 광전자분광법(XPS)을 사용하였고, 금과 은의 산화수는 0 임을 확인하였다. 도 4의 (b)는 폴리에칠렌이민에 의해 환원된 상태의 은에 대한 XPS 스펙트럼이고, 도 4의 (c)는 폴리에칠렌이민에 의해 환원된 상태의 금에 대한 XPS 스펙트럼이다.도 4의 (b)에 나타난 368eV, 374eV에서의 피크는 각각 금속 은(Ag0)의 3d5/2, 3d3/2의 피크이고, 도 4의 (c)에 나타난 83.7eV, 87.4eV에서의 피크는 금속 금(Au0)의 4f7/2, 4f5/2의 피크이다.
Photoelectron spectroscopy (XPS) was used to confirm the oxidation state of gold and silver of the gold-silver alloy nanoparticles (Au 0.5 Ag 0.5 ), and the oxidation number of gold and silver was found to be zero. (B) of FIG. 4 is an XPS spectrum of silver in the state reduced by polyethyleneimine, and FIG. 4 (c) is an XPS spectrum of the gold of the state reduced by polyethyleneimine. The peaks at 368 eV and 374 eV are 3d 5/2 and 3d 3/2 peaks of the metal silver (Ag 0 ), respectively. The peaks at 83.7 eV and 87.4 eV shown in (c) of FIG. Au 0 ) peaks of 4f 7/2 and 4f 5/2 .
< 시험예6 ><Test Example 6>
4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, Au0.5Ag0.5 를 촉매로 사용할 경우, 환원반응속도의 측정.In the reaction of reducing 4-nitrophenol by sodium borohydride, the measurement of the reduction reaction rate when Au 0.5 Ag 0.5 is used as a catalyst.
본 발명에 의하여 제조된 금 나노입자, 은 나노입자, Au0.25Ag0.75, Au0.5Ag0.5, Au0.75Ag0.25의 촉매적 특성은 수소화붕소나트륨(NaBH4)에 의한 4-나이트로페놀(4-Nitrophenol)의 환원반응에 상기 금-은 합금 나노입자를 촉매로 사용하여 확인할 수 있다. 상기 환원반응의 생성물인 4-아미노페놀(4-Aminophenol)은 사진 현상액, 부식방지제, 염색제 등 많은 분야에 사용될 수 있어서 4-나이트로페놀(4-Nitrophenol)을 직접 환원시킬 수 있는 촉매가 요구되고 있다. The catalytic properties of gold nanoparticles, silver nanoparticles, Au 0.25 Ag 0.75 , Au 0.5 Ag 0.5 , Au 0.75 Ag 0.25 prepared by the present invention are 4- nitrophenol (4-B) by sodium borohydride (NaBH 4 ). Nitrophenol) can be confirmed by using the gold-silver alloy nanoparticles as a catalyst for the reduction reaction. 4-aminophenol, which is a product of the reduction reaction, can be used in many fields such as photographic developer, corrosion inhibitor, and dyeing agent, and thus a catalyst capable of directly reducing 4-nitrophenol is required. have.
도 5에 의하면, 4-나이트로페놀을 수소화붕소나트륨에 의하여 환원시키는 반응에서, 촉매를 사용하지 않는 경우, 평형이 유리한 4-나이트로페놀의 환원은 일어나지 않는다(4-나이트로페놀/4-아미노페놀과 H3PO3/BH4의 표준환원전위는 각각 -0.76V와 -1.33V)는 것을 알 수 있다. 이는 수소화붕소나트륨으로 인하여 액성이 염기성이 되어 4-나이트로페놀레이트 이온(4-Nitro phenolate)이 생성되기 때문이다. 도 5는 금-은 합금 나노입자 없이 4-나이트로페놀 용액에 NaBH4를 투여하였을 때, UV-vis 스펙트럼의 변화를 그래프로 나타낸다. 도면 5는 본 연구의 촉매반응 반응조건상 수소화붕소나트륨이 과량으로 들어가기 때문에 염기성조건이되며, 이 때문에 나이트로페놀이 나이트로페놀레이트로 변하여 최대흡광도가 317 nm에서 400nm쪽으로 바뀌는 것을 나타낸다.
According to Fig. 5, in the reaction for reducing 4-nitrophenol with sodium borohydride, when no catalyst is used, reduction of 4-nitrophenol with favorable equilibrium does not occur (4-nitrophenol / 4- The standard reduction potentials of aminophenol and H 3 PO 3 / BH 4 are -0.76V and -1.33V, respectively. This is because the sodium borohydride becomes basic in liquid form to form 4-nitrophenolate ions (4-Nitro phenolate). FIG. 5 graphically shows the change in UV-vis spectrum when NaBH 4 is administered to 4- nitrophenol solution without gold-silver alloy nanoparticles. 5 shows the basic condition because sodium borohydride is in excess in the catalysis reaction condition of the present study, the nitrophenol is changed to nitrophenolate, the maximum absorbance is changed from 317 nm to 400 nm.
도 6에 의하면, 상기 나노입자를 촉매로 사용할 경우, 4-나이트로페놀이 4-아미노페놀로의 환원이 일어난다는 사실을 확인할 수 있다. 도 6의 (a)에 의하면, UV-vis 스펙트럼의 400nm 피크가 점차적으로 감소하고 4-아미노페놀의 308nm 피크가 점차적으로 증가함을 통해 위와 같은 환원반응의 경과를 알 수 있다. 이와 더불어 용액의 색상도 밝은 노란색에서 연두색으로 변한다. 도 6의 (a)는 Au0.5Ag0.5 사용시 UV-vis 스펙트럼 변화이다. 다른 나노입자들(Au0.25Ag0.75, Au0.75Ag0.25)에서도 동일한 결과가 나타난다. 수소화붕소나트륨을 투여하자마자 금-은 나노입자는 촉매 역할을 시작하며 BH4-로부터 전자를 받아 4-나이트로페놀에 전자를 전달한다.
According to FIG. 6, it can be seen that when the nanoparticles are used as catalysts, reduction of 4-nitrophenol into 4-aminophenol occurs. According to (a) of FIG. 6, the 400 nm peak of the UV-vis spectrum gradually decreases and the 308 nm peak of 4-aminophenol gradually increases, indicating the progress of the above reduction reaction. In addition, the color of the solution changes from light yellow to light green. Figure 6 (a) is a change in the UV-vis spectrum when using Au 0.5 Ag 0.5 . The same result occurs for other nanoparticles (Au 0.25 Ag 0.75 , Au 0.75 Ag 0.25 ). As soon as sodium borohydride is administered, the gold-silver nanoparticles begin to catalyze and receive electrons from BH4- and transfer electrons to 4-nitrophenol.
25℃, PMMA(poly(methylmethacrylate) cell에서 10mM의 4-나이트로페놀(4-Nitrophenol) 15와 각각 0.1mM의 Au0.5Ag0.5 용액 30를 초 정제수 2.6mL와 혼합하였다. 1.0M NaBH4 100를 투여한 후 용액을 저어주고, 시간에 따른 반응물 변화를 측정하기 위하여 UV-vis 흡수스펙트럼을 관측하였다.
10 ℃ 4-nitrophenol at 25 ℃, PMMA (poly (methylmethacrylate) cell) 15 And Au 0.5 Ag 0.5 solution at 0.1 mM each 30 Was mixed with 2.6 mL of ultra purified water. 1.0
수소화붕소나트륨은 4-나이트로페놀에 비하여 매우 고농도로 사용하였기 때문에, 수소화붕소나트륨의 농도가 반응 전체에 걸쳐서 일정하게 유지된다고 가정할 때, 전체반응은 4-나이트로페놀에 대하여 유사일차반응(pseudo-first reaction)인 것으로 나타났다.
Since sodium borohydride was used at a much higher concentration than 4-nitrophenol, assuming that the concentration of sodium borohydride remains constant throughout the reaction, the overall reaction is similar to that of 4-nitrophenol. pseudo-first reaction).
도6의 (b)는 반응속도상수를 계산하기 위하여 반응시간(t)에 따른 를 그래프로 도시한 것이며, Au0.5Ag0.5의 반응속도상수는 25℃에서 1.60 X 10-2s-1이다.
6 (b) shows the reaction time (t) in order to calculate the reaction rate constant. It is shown graphically, the reaction rate constant of Au 0.5 Ag 0.5 is 1.60 X 10 -2 s -1 at 25 ℃.
< 시험예7 ><Test Example 7>
촉매별 환원반응속도 비교Comparison of Reduction Rate by Catalyst
상기 시험예6의 Au0.5Ag0.5 용액을 각각 은 나노입자, Au0.25Ag0.75, Au0.75Ag0.25, 금 나노입자 용액으로 치환하여 반응속도를 측정하였다. 도 7의 (a)는 각 촉매별 반응속도상수를 계산하기 위하여 반응시간(t)에 따른 를 그래프로 도시한 것이며, 금 나노입자, Au0.25Ag0.75, Au0.75Ag0.25, 은 나노입자 용액의 반응속도상수는 25℃에서 각각 이다. 도 7의 (b)는 금 함량에 따른 반응속도상수의 변화를 나타내며, 기하급수적으로 증가하는 모습을 보였다.The reaction rate was measured by substituting the Au 0.5 Ag 0.5 solution of Test Example 6 with silver nanoparticles, Au 0.25 Ag 0.75 , Au 0.75 Ag 0.25 , and gold nanoparticle solutions, respectively. Figure 7 (a) is according to the reaction time (t) to calculate the reaction rate constant for each catalyst The reaction rate constants of the gold nanoparticles, Au 0.25 Ag 0.75 , Au 0.75 Ag 0.25 , and silver nanoparticle solutions are respectively 25 ° C. to be. Figure 7 (b) shows the change in the reaction rate constant according to the gold content, it was shown to increase exponentially.
Claims (5)
상기 염화금산과 상기 질산은의 반응으로 생성된 염화은을 상기 수성혼합물에 용해시키는 단계; 및
상기 수성혼합물을 가열 후 교반하여 금-은 합금 나노입자를 수득하는 단계를 포함하는 금-은 합금 나노입자 제조방법.Adding and reacting polyethylenimine to an aqueous mixture including hydrochloric acid (HAuCl 4 ) and silver nitrate (AgNO 3 );
Dissolving silver chloride produced by the reaction of the gold chloride acid with the silver nitrate in the aqueous mixture; And
Method of producing a gold-silver alloy nanoparticles comprising the step of heating and stirring the aqueous mixture to obtain gold-silver alloy nanoparticles.
금-은 합금 나노입자의 금 또는 은 함량은 반응 전의 염화금산과 질산은의 비율과 대등하게 형성되는 것을 특징으로 하는 금-은 합금 나노입자 제조방법.The method of claim 1,
The gold or silver content of the gold-silver alloy nanoparticles is a method of producing a gold-silver alloy nanoparticles, characterized in that formed equal to the ratio of gold chloride and silver nitrate before the reaction.
상기 금-은 합금 나노입자는 4-나이트로페놀의 환원반응에서 촉매로 사용되는 것을 특징으로 하는 금-은 합금 나노입자.The method of claim 3,
The gold-silver alloy nanoparticles are gold-silver alloy nanoparticles, characterized in that used as a catalyst in the reduction reaction of 4-nitrophenol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110106628A KR101273122B1 (en) | 2011-10-18 | 2011-10-18 | NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110106628A KR101273122B1 (en) | 2011-10-18 | 2011-10-18 | NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130042363A KR20130042363A (en) | 2013-04-26 |
KR101273122B1 true KR101273122B1 (en) | 2013-06-13 |
Family
ID=48441081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110106628A Expired - Fee Related KR101273122B1 (en) | 2011-10-18 | 2011-10-18 | NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101273122B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104259474B (en) * | 2014-09-23 | 2016-09-07 | 中国科学院化学研究所 | A kind of preparation method of gold core-shell structured nanomaterials |
CN109986088B (en) * | 2018-05-31 | 2022-04-19 | 北京工业大学 | Preparation and application of a kind of gold-silver alloy nanoparticles for metal micro-nano structure assembly |
EP3820454A4 (en) * | 2018-11-07 | 2023-03-15 | University of Notre Dame du Lac | NANOPARTICLES Mimicking A PHAGE |
CN113579243B (en) * | 2021-06-01 | 2023-08-01 | 广东省科学院健康医学研究所 | Honeysuckle nanometer flower and preparation method and application thereof |
CN115383106B (en) * | 2022-08-01 | 2023-12-19 | 中国科学院合肥物质科学研究院 | An asymmetric gold-silver nanostructure material and its preparation method and use |
CN115155614A (en) * | 2022-08-09 | 2022-10-11 | 国泰新科工业科技(宜兴)有限公司 | Preparation method and application of flower-shaped magnetic nano gold catalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008131392A1 (en) | 2007-04-23 | 2008-10-30 | Hewlett-Packard Development Company, L.P. | Intercalated compound |
KR101029138B1 (en) | 2009-05-21 | 2011-04-13 | 서울대학교산학협력단 | Method for preparing gold or silver nanoparticle film having surface enhanced Raman scattering activity |
KR20110107429A (en) * | 2010-03-25 | 2011-10-04 | 전북대학교산학협력단 | Method for producing metal nanoparticles using biomass |
-
2011
- 2011-10-18 KR KR1020110106628A patent/KR101273122B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008131392A1 (en) | 2007-04-23 | 2008-10-30 | Hewlett-Packard Development Company, L.P. | Intercalated compound |
KR101029138B1 (en) | 2009-05-21 | 2011-04-13 | 서울대학교산학협력단 | Method for preparing gold or silver nanoparticle film having surface enhanced Raman scattering activity |
KR20110107429A (en) * | 2010-03-25 | 2011-10-04 | 전북대학교산학협력단 | Method for producing metal nanoparticles using biomass |
Non-Patent Citations (1)
Title |
---|
Bull. Korean Chem. Soc. Vol. 32, No. 7, pp. 2469-2472 (2011) * |
Also Published As
Publication number | Publication date |
---|---|
KR20130042363A (en) | 2013-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10286382B2 (en) | Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures | |
Saha et al. | Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction | |
Ahmed et al. | Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (AgAu, AuPd) versus Trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques | |
KR101273122B1 (en) | NOVEL FABRICATION OF POLYETHYLENEIMINE-CAPPED Au-Ag ALLOY NANOPARTICLES | |
Zhang et al. | Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles | |
Kundu et al. | Size-selective synthesis and catalytic application of polyelectrolyte encapsulated gold nanoparticles using microwave irradiation | |
He et al. | Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties | |
Xia et al. | Preparation of bimetallic nanoparticles using a facile green synthesis method and their application | |
Kumari et al. | Sol–gel synthesis of Pd@ PdO core–shell nanoparticles and effect of precursor chemistry on their structural and optical properties | |
US20110064825A1 (en) | Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions | |
Gong et al. | Facile synthesis of ultra stable Fe3O4@ Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property | |
KR20100122919A (en) | A process for the preparation of silver nano particles | |
Pawlik et al. | Silver nanocubes: from serendipity to mechanistic understanding, rational synthesis, and niche applications | |
Chang et al. | High-yield water-based synthesis of truncated silver nanocubes | |
Pan et al. | Graphene oxide-promoted reshaping and coarsening of gold nanorods and nanoparticles | |
KR101701762B1 (en) | Multi-branched star-shaped Au nanoparticles and synthesizing method thereof | |
Arkas et al. | Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices | |
Lu et al. | Carbon dots as a ‘green’reagent to produce shape and size controlled gold nanoparticles for application in pollutant degradation | |
CN108187739B (en) | A kind of raisin bread type gold-silica nano catalyst and its preparation and application | |
KR101890463B1 (en) | Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method | |
Liu et al. | Rational design of stable Cu and AuCu nanoparticles for investigations of size-enhanced SERS applications | |
Shahzad et al. | A Simple and Fast Aqueous‐Phase Synthesis of Ultra‐Highly Concentrated Silver Nanoparticles and Their Catalytic Properties | |
Adekoya et al. | Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol | |
Chairam et al. | Facile, versatile and green synthesis of silver nanoparticles by mung bean starch and their catalytic activity in the reduction of 4-nitrophenol | |
KR100969479B1 (en) | Synthesis method of gold nanoparticles with adjustable particle size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20111018 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130530 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130603 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130603 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170410 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170410 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180409 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20180409 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20190401 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20200423 Start annual number: 8 End annual number: 8 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220314 |