[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4798011B2 - Electroluminescent material - Google Patents

Electroluminescent material Download PDF

Info

Publication number
JP4798011B2
JP4798011B2 JP2007019223A JP2007019223A JP4798011B2 JP 4798011 B2 JP4798011 B2 JP 4798011B2 JP 2007019223 A JP2007019223 A JP 2007019223A JP 2007019223 A JP2007019223 A JP 2007019223A JP 4798011 B2 JP4798011 B2 JP 4798011B2
Authority
JP
Japan
Prior art keywords
light
group
layer
compound
electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007019223A
Other languages
Japanese (ja)
Other versions
JP2007177252A (en
Inventor
弘志 北
和明 中村
則子 植田
康 大久保
岳俊 山田
善幸 硯里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007019223A priority Critical patent/JP4798011B2/en
Publication of JP2007177252A publication Critical patent/JP2007177252A/en
Application granted granted Critical
Publication of JP4798011B2 publication Critical patent/JP4798011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はエレクトロルミネッセンス素子に関し、具体的には、発光型のマルチカラー又はフルカラーディスプレイ、表示パネルなど、民生用や工業用の表示機器に好適に用いられるエレクトロルミネッセンス素子、及びカラー画像形成方法並びにカラーフィルターに関するものである。   The present invention relates to an electroluminescence element, and specifically, an electroluminescence element suitably used for consumer or industrial display devices such as a light-emitting multi-color or full-color display, a display panel, a color image forming method, and a color It relates to filters.

電子ディスプレイデバイスには、発光型と受光型とがあり、発光型としては、例えばCRT(陰極線管)、PDP(プラズマディスプレイ)、ELD(エレクトロルミネッセンスディスプレイ)、VFD(蛍光表示管)などが挙げられる。
中で、ELDについて説明する。
The electronic display device includes a light emitting type and a light receiving type. Examples of the light emitting type include a CRT (cathode ray tube), a PDP (plasma display), an ELD (electroluminescence display), and a VFD (fluorescent display tube). .
In the following, ELD will be described.

ELD(エレクトロルミネッセンスディスプレイ)とは、電界または電場により発光する材料からなる発光素子、またはそれらを複数個組み合わせたものであり、材料としては有機と無機が、さらに発光機構としては電子と正孔の再結合を利用したキャリア注入型と加速電子の衝突エネルギーを利用した加速電子型がある。材料的には一般的に無機の方が有機よりも寿命が長く安定である反面、材料の展開幅が狭く分子設計に制限がある。機構的には、一般に再結合型の方が加速電子型よりも駆動電圧が低いという利点があり、近年その利点からキャリア注入型のELDが盛んに研究されている。   An ELD (electroluminescence display) is a light-emitting element made of a material that emits light by an electric field or an electric field, or a combination of a plurality of them. The material is organic and inorganic, and the light emission mechanism is electron and hole. There are a carrier injection type using recombination and an accelerated electron type using collision energy of accelerated electrons. In general, inorganic materials have a longer life and are more stable than organic materials, but the development range of materials is narrow and molecular design is limited. In terms of mechanism, the recombination type generally has an advantage that the driving voltage is lower than that of the acceleration electron type. In recent years, the carrier injection type ELD has been actively studied due to the advantage.

ELD材料としては、具体的には以下の3種類がある。   Specifically, there are the following three types of ELD materials.

1)無機LED(材料はGaNやGaInN等の無機化合物で構成され、発光機構は再結合型。単にLED(発光ダイオード)とも呼ばれる。)
2)有機LED(材料はトリアリールアミン誘導体やスチルベン誘導体等の有機化合物で構成され、発光機構は再結合型。有機EL(エレクトロルミネッセント)、OLEDとも呼ばれる。)
3)無機EL(材料はZnS:MnやZnS:Tb等の無機化合物で構成され、発光機構は加速電子型。有機ELDよりも歴史が古いため、こちらを単にエレクトロルミネッセンス(EL)と呼ぶ場合もある。)
この中で、本発明で言う「エレクトロルミネッセンス素子」とは1)および2)であり、「エレクトロルミネッセンス材料」とは1)および2)を構成する材料のことを示す。従って、上記3)は本発明から除外される。
1) Inorganic LED (The material is composed of an inorganic compound such as GaN or GaInN, and the light emission mechanism is a recombination type. It is also simply called LED (light emitting diode).
2) Organic LED (The material is composed of organic compounds such as triarylamine derivatives and stilbene derivatives, and the light emission mechanism is a recombination type. It is also called organic EL (electroluminescent) or OLED.)
3) Inorganic EL (The material is composed of inorganic compounds such as ZnS: Mn and ZnS: Tb, and the light emission mechanism is an accelerated electron type. Since it has an older history than organic ELD, it may be simply called electroluminescence (EL). is there.)
Among them, the “electroluminescence element” in the present invention refers to 1) and 2), and the “electroluminescence material” refers to a material constituting 1) and 2). Therefore, the above 3) is excluded from the present invention.

特に近年注目されているキャリア注入型の有機エレクトロルミネッセンス素子は、有機化合物からなる薄膜を用いるようになってから、発光強度の大きいものが得られるようになってきた。例えば、米国特許第3,530,325号には発光体として単結晶アントラセン等を用いたもの、特開昭59−194393号には正孔注入層と有機発光体層とを組み合わせたもの、特開昭63−295695号には正孔注入層と有機電子注入輸送層とを組み合わせたもの、Jpn.Journal of Applied Phisycs,vol127,No.2第269〜271頁には正孔移動層と発光層と電子移動層とを組み合わせたものがそれぞれ開示されており、これらにより発光強度は改良されてきた。   In particular, a carrier injection type organic electroluminescence element that has been attracting attention in recent years has been able to obtain a high emission intensity after using a thin film made of an organic compound. For example, US Pat. No. 3,530,325 uses a single crystal anthracene or the like as a light emitter, and JP-A-59-194393 combines a hole injection layer and an organic light emitter layer. Japanese Kokai 63-295695 discloses a combination of a hole injection layer and an organic electron injection transport layer, Jpn. Journal of Applied Physics, vol 127, no. 2 pages 269-271 each disclose a combination of a hole transport layer, a light emitting layer, and an electron transport layer, and the light emission intensity has been improved by these.

一方、上記エレクトロルミネッセンス材料の発光を吸収して蛍光を発光させる蛍光体が知られている。該蛍光体を用いて、あるエレクトロルミネッセンス材料から多色の蛍光を発光させる方法については、CRT、PDP、VFD等に応用されている。しかしながら、この場合、エレクトロルミネッセンス材料の発光が電子線や遠紫外線であるなど、エネルギー的に高い、即ち発光波長が短波であることが問題となる。つまり、上記蛍光体は具体的には無機蛍光体であり、安定性については非常に高く長期使用に耐えられるものも数多く知られているが、無機蛍光体の中で励起波長が近紫外から可視領域というという長波長に励起するものはほとんどなく、特に赤色光を発光するものが全くないのが実状であった。   On the other hand, a phosphor that absorbs light emitted from the electroluminescent material to emit fluorescence is known. A method for emitting multicolor fluorescence from a certain electroluminescent material using the phosphor is applied to CRT, PDP, VFD and the like. However, in this case, there is a problem that the electroluminescence material emits light with an electron beam or far ultraviolet rays, which is high in energy, that is, the emission wavelength is short. In other words, the above phosphors are specifically inorganic phosphors, and many of them are known to have very high stability and can withstand long-term use. However, among inorganic phosphors, the excitation wavelength is visible from the near ultraviolet. There is almost no thing that excites a long wavelength called a region, and in particular, there is nothing in particular that emits red light.

また、エレクトロルミネッセンス材料から発光させることが可能な近紫外線はおよそ350nm〜400nm程度の極大発光波長の光であると推定されるが、このような近紫外線で励起する蛍光体として有機蛍光色素を用いることが、特開平3−152897号、同9−245511号、同5−258860号等で知られている。   In addition, near-ultraviolet light that can be emitted from an electroluminescent material is estimated to be light having a maximum emission wavelength of about 350 nm to 400 nm. An organic fluorescent dye is used as a phosphor excited by such near-ultraviolet light. JP-A-3-152897, JP-A-9-245511, JP-A-5-258860 and the like are known.

しかしながら、一般に有機蛍光色素は、周囲の環境に影響を受けやすく、例えば溶媒や樹脂などの媒体の種類などによっては、その蛍光波長が変化(変色)したり、消光を起こす場合があり、さらに光や熱に対して極めて不安定であり、例えば10万ルックス程度の強い光のもとでは数分から数時間程度で分解してしまうものがほとんどであり、長期保存に耐えうる有機蛍光色素は存在しない。   However, organic fluorescent dyes are generally susceptible to the surrounding environment. For example, depending on the type of medium such as a solvent or resin, the fluorescence wavelength may change (discolor) or quench, and light It is extremely unstable with respect to heat and, for example, most of them decompose in a few minutes to a few hours under strong light of about 100,000 lux, and there are no organic fluorescent dyes that can withstand long-term storage .

また、前記特許に記載されている方式は、発光体の青色ないし青緑色領域の光を吸収して、緑領域ないしは赤領域に色変換する蛍光色素を使用するものであり、緑色領域の蛍光を発する蛍光変換膜は、ストークスシフト(吸収波長と発光波長との差)が小さくてすみ、かつエレクトロルミネッセンス材料の発光の一部を透過させることが可能であり、比較的高効率で発光体の光を変換できるという特徴を持つが、赤色領域への蛍光は、大きなストークスシフトを必要とする上に、発光体の光をほとんど利用できないので、著しく変換効率が低い。具体的には数種類の励起波長の異なる蛍光色素を併用し、例えば青色光を受けて黄色になる蛍光色素と黄色を受けて赤色に光る蛍光色素のように複数の蛍光色素の光−光変換(フォトルミネッセンス)を他段階に利用する必要があり、原理上高効率化は不可能であった。   The method described in the patent uses a fluorescent dye that absorbs light in the blue or blue-green region of the light emitter and converts the color to the green or red region. The fluorescent conversion film that emits light has a small Stokes shift (difference between the absorption wavelength and the emission wavelength) and can transmit part of the light emitted from the electroluminescent material. However, since the fluorescence to the red region requires a large Stokes shift, the light from the illuminant can hardly be used, and the conversion efficiency is extremely low. Specifically, several types of fluorescent dyes with different excitation wavelengths are used in combination, for example, light-to-light conversion of a plurality of fluorescent dyes such as a fluorescent dye that turns yellow when it receives blue light and a fluorescent dye that glows red when it receives yellow light ( Photoluminescence) must be used in other stages, and in principle, high efficiency was not possible.

従って、従来の技術においては、先の変色、輝度低下、消光の問題も含めて、青色、緑色、赤色の発光輝度のバランスが悪く、中でも赤色の輝度が低く、全体的に視認性の悪い、低輝度のカラー表示にならざるを得ないという問題があった。   Therefore, in the conventional technology, including the problems of the previous discoloration, luminance reduction, and quenching, the blue, green, red emission luminance balance is bad, among them the red luminance is low, and overall visibility is poor, There was a problem that it had to be a low-luminance color display.

本発明者等は、鋭意検討の結果、無機系蛍光体及び/又は希土類錯体系蛍光体を用いることにより高輝度でかつ保存性の高いエレクトロルミネッセンス素子を得るに至り、また、該エレクトロルミネッセンス素子の応用により輝度の高いカラーフィルターを提供するに至った。   As a result of intensive studies, the present inventors have obtained an electroluminescent device having high luminance and high storage stability by using an inorganic phosphor and / or a rare earth complex-based phosphor. The application has led to the provision of color filters with high brightness.

本発明者らは鋭意努力を重ねた結果、下記のような(1)〜(3)にて上記目的を達成できることを見出した。
(1)下記一般式(A1)で表されることを特徴とするエレクトロルミネッセンス材料。
As a result of intensive efforts, the present inventors have found that the above object can be achieved by the following (1) to (3) .
(1) An electroluminescent material represented by the following general formula (A1).

Figure 0004798011
Figure 0004798011

〔式中、Ar11、Ar12およびAr13はアリール基または芳香族複素環基を表し、かつ一般式(A1)で表される化合物の分子内には少なくとも2つの内部回転異性性を付与しうる結合軸を持つビアリール基が存在する。〕
(2)下記一般式(A2)で表されることを特徴とする前記1に記載のエレクトロルミネッセンス材料。
[Wherein Ar 11 , Ar 12 and Ar 13 represent an aryl group or an aromatic heterocyclic group, and at least two internal rotational isomerisms are imparted to the molecule of the compound represented by the general formula (A1). There are biaryl groups with possible bond axes. ]
(2) The electroluminescent material as described in 1 above, which is represented by the following general formula (A2).

Figure 0004798011
Figure 0004798011

〔式中、Ar21、Ar22およびAr23はそれぞれ独立に内部回転異性性を付与しうる結合軸を有するビアリールを表す。〕
(3)下記一般式(A3)で表されることを特徴とする前記1又は2の何れかに記載のエレクトロルミネッセンス材料。
[Wherein, Ar 21 , Ar 22 and Ar 23 each independently represent a biaryl having a bond axis capable of imparting internal rotational isomerism. ]
(3) The electroluminescent material according to any one of (1) and (2), which is represented by the following general formula (A3):

Figure 0004798011
Figure 0004798011

〔式中、Ar31、Ar32およびAr33はそれぞれ独立にアリール基または芳香族複素環基を表し、かつAr31、Ar32およびAr33のうち少なくとも2つは1,1′−ビナフチル基を有するアリール基を表す。〕
また、以下の態様も本発明と同様の発明効果を奏する。
(4)下記一般式(B1)で表されることを特徴とするエレクトロルミネッセンス材料。
[In the formula, Ar 31 , Ar 32 and Ar 33 each independently represent an aryl group or an aromatic heterocyclic group, and at least two of Ar 31 , Ar 32 and Ar 33 represent a 1,1′-binaphthyl group. Represents an aryl group. ]
Moreover, the following aspects also have the same effects as the present invention.
(4) An electroluminescent material represented by the following general formula (B1).

Figure 0004798011
Figure 0004798011

〔式中、Ar41およびAr42はそれぞれ独立にアリール基または芳香族複素環基を表し、L11、L12およびL13は5員の芳香族複素環を形成するのに必要な原子群を表し、L11、L12およびL13のうち少なくとも1つは=N−、−N(R41)−、−S−または−O−を表し、R41は水素原子または置換基を表す。ただし、Ar41、Ar42およびR41のうち少なくとも1つは、内部回転異性性を付与しうる結合軸を持つビアリール基またはその部分を有する基である。また、隣接する置換基同士は互いに縮合して飽和または不飽和の環を形成しても良い。〕
(5)下記一般式(C1)で表されることを特徴とするエレクトロルミネッセンス材料。
[Wherein, Ar 41 and Ar 42 each independently represents an aryl group or an aromatic heterocyclic group, and L 11 , L 12 and L 13 represent an atomic group necessary for forming a 5-membered aromatic heterocyclic ring, respectively. And at least one of L 11 , L 12 and L 13 represents ═N—, —N (R 41 ) —, —S— or —O—, and R 41 represents a hydrogen atom or a substituent. However, at least one of Ar 41 , Ar 42 and R 41 is a biaryl group having a bond axis capable of imparting internal rotational isomerism or a group having a part thereof. Further, adjacent substituents may be condensed with each other to form a saturated or unsaturated ring. ]
(5) An electroluminescent material represented by the following general formula (C1).

Figure 0004798011
Figure 0004798011

〔式中、Ar51はアリール基または芳香族複素環基を表し、nは0から6の整数を表し、nが2以上の時複数のAr51は同じであっても異なっていても良く、また、L21、L22、L23、L24、L25およびL26は6員の含窒素芳香族複素環を形成するのに必要な原子群を表し、L21、L22、L23、L24、L25およびL26のうち少なくとも1つは=N−または−N(R51)−を表し、R51は水素原子または置換基を表す。ただし、Ar51およびR51のうち少なくとも1つは、内部回転異性性を付与しうる結合軸を持つビアリール基またはその部分を有する基である。また、隣接する置換基同士は互いに縮合して飽和または不飽和の環を形成しても良い。〕
(6)下記一般式(D1)で表されることを特徴とするエレクトロルミネッセンス材料。
[In the formula, Ar 51 represents an aryl group or an aromatic heterocyclic group, n represents an integer of 0 to 6, and when n is 2 or more, the plurality of Ar 51 may be the same or different, L 21 , L 22 , L 23 , L 24 , L 25 and L 26 represent an atomic group necessary to form a 6-membered nitrogen-containing aromatic heterocycle, and L 21 , L 22 , L 23 , At least one of L 24 , L 25 and L 26 represents ═N— or —N (R 51 ) —, and R 51 represents a hydrogen atom or a substituent. However, at least one of Ar 51 and R 51 is a biaryl group having a bond axis capable of imparting internal rotational isomerism or a group having a portion thereof. Further, adjacent substituents may be condensed with each other to form a saturated or unsaturated ring. ]
(6) An electroluminescent material represented by the following general formula (D1).

Figure 0004798011
Figure 0004798011

〔式中、Ar61およびAr62はアリール基または芳香族複素環基を表し、R61およびR62は水素原子または置換基を表す。ただし、Ar61、Ar62、R61およびR62のうち少なくとも1つは、内部回転異性性を付与しうる結合軸を持つビアリール基またはその部分を有する基である。また、隣接する置換基同士は互いに縮合して飽和または不飽和の環を形成しても良い。〕
(7)下記一般式(E1)で表されることを特徴とするエレクトロルミネッセンス材料。
[Wherein, Ar 61 and Ar 62 represent an aryl group or an aromatic heterocyclic group, and R 61 and R 62 represent a hydrogen atom or a substituent. However, at least one of Ar 61 , Ar 62 , R 61 and R 62 is a biaryl group having a bond axis capable of imparting internal rotational isomerism or a group having a part thereof. Further, adjacent substituents may be condensed with each other to form a saturated or unsaturated ring. ]
(7) An electroluminescent material represented by the following general formula (E1):

Figure 0004798011
Figure 0004798011

〔式中、Mは1価から4価にイオン状態を取りうる金属元素を表し、n’は1から4の自然数を表し、L71 -はMとイオン結合を形成し、かつMに配位可能な部分を有する1価のアニオンを表し、mはn’と同じかまたはそれよりも小さい自然数を表し、R71 -はMとイオン結合を形成する1価のアニオンを表す。ただし、L71 -、またはR71 -の少なくとも1つは、内部回転異性性を付与しうる結合軸を持つビアリール部分を有する基である。〕
(8)下記一般式(F1)又は(F2)で表されることを特徴とするエレクトロルミネッセンス材料。
[In the formula, M represents a metal element capable of taking an ionic state from monovalent to tetravalent, n ′ represents a natural number of 1 to 4, L 71 forms an ionic bond with M, and coordinates to M Represents a monovalent anion having a possible moiety, m represents a natural number equal to or smaller than n ′, and R 71 represents a monovalent anion that forms an ionic bond with M. However, at least one of L 71 and R 71 is a group having a biaryl moiety having a bond axis that can impart internal rotational isomerism. ]
(8) An electroluminescent material represented by the following general formula (F1) or (F2).

Figure 0004798011
Figure 0004798011

〔式中、Z1およびZ2は、それぞれ独立に1価の発光性化合物残基を表し、Z3はk価の発光性化合物残基を表し、kは1〜8の自然数を表し、xは1〜3の自然数を表し、yは0〜3の整数を表し、xが2以上の時は複数のZ1は同じであっても異なっていても良く、yが2以上の時は複数のZ2は同じであっても異なっていても良く、さらにxおよびyが共に1以上の時はZ1とZ2は同じであっても異なっていてもよい。R81およびR82はそれぞれ独立に置換基を表し、nは0〜4の整数を表し、mは0〜4の整数を表し、nが2以上の時は複数のR81は同じであっても異なっていても良く、また互いに縮合して環を形成してもよく、mが2以上の時は複数のR82は同じであっても異なっていても良く、また互いに縮合して環を形成してもよく、さらにnおよびmが共に1以上の時はR81とR82は同じであっても異なっていてもよい。また、Z1、Z2、R81およびR82のそれぞれの置換基は、ナフタレン環と縮合環を形成してもよい。〕
(9)下記一般式(G1)で表される4−ハロ−1,1’−ビナフチル誘導体を原料に用い、下記一般式(G2)で表される1価のビアリール基を分子内の何れかに有することを特徴とする有機エレクトロルミネッセンス用化合物。
[Wherein, Z 1 and Z 2 each independently represent a monovalent luminescent compound residue, Z 3 represents a k-valent luminescent compound residue, k represents a natural number of 1 to 8, x Represents a natural number of 1 to 3, y represents an integer of 0 to 3, and when x is 2 or more, a plurality of Z 1 may be the same or different, and when y is 2 or more, a plurality of of Z2 may be different even in the same, Z 1 and Z 2 when further x and y is 1 or more together may or may not be the same. R 81 and R 82 each independently represent a substituent, n represents an integer of 0 to 4, m represents an integer of 0 to 4, and when n is 2 or more, the plurality of R 81 are the same. May be different from each other, may be condensed with each other to form a ring. When m is 2 or more, a plurality of R 82 may be the same or different, and may be condensed with each other to form a ring. Further, when n and m are both 1 or more, R 81 and R 82 may be the same or different. In addition, each substituent of Z 1 , Z 2 , R 81 and R 82 may form a condensed ring with a naphthalene ring. ]
(9) A 4-halo-1,1′-binaphthyl derivative represented by the following general formula (G1) is used as a raw material, and a monovalent biaryl group represented by the following general formula (G2) is any in the molecule. A compound for organic electroluminescence characterized by comprising:

Figure 0004798011
Figure 0004798011

〔式中、X91はハロゲン原子を表し、R91およびR92はそれぞれ独立に置換基を表し、nは0〜4の整数を表し、mは0〜4の整数を表し、nが2以上の時、複数のR91は同じであっても異なっていても良く、また互いに縮合して環を形成してもよく、mが2以上の時は複数のR92は同じであっても異なっていても良く、また互いに縮合して環を形成してもよく、さらにnおよびmが共に1以上の時はR91とR92は同じであっても異なっていてもよい。〕
(10)エレクトロルミネッセンス材料の少なくとも1種及び該エレクトロルミネッセンス材料の発光を吸収し該エレクトロルミネッセンス材料より発せられる極大発光波長とは異なる極大発光波長に発光する無機系蛍光体を少なくとも1種含有することを特徴とするエレクトロルミネッセンス素子。
(11)前記無機系蛍光体がSol−Gel法により製造された無機系蛍光体であることを特徴とする前記10に記載のエレクトロルミネッセンス素子。
(12)前記無機系蛍光体の極大発光波長が400〜700nmであることを特徴とする前記10又は11に記載のエレクトロルミネッセンス素子。
(13)前記無機系発光体の少なくとも1種が極大発光波長が600〜700nmであることを特徴とする前記10〜12の何れか1項に記載のエレクトロルミネッセンス素子。
(14)エレクトロルミネッセンス材料及び該エレクトロルミネッセンス材料の発光を吸収し該エレクトロルミネッセンス材料より発せられる極大発光波長とは異なる極大発光波長に発光する希土類錯体系蛍光体を含有することを特徴とするエレクトロルミネッセンス素子。
(15)前記希土類錯体系蛍光体の極大発光波長が400〜700nmであることを特徴とする前記14に記載のエレクトロルミネッセンス素子。
(16)前記希土類錯体系発光体の少なくとも1種が極大発光波長が600〜700nmであることを特徴とする前記14又は15の何れか1項に記載のエレクトロルミネッセンス素子。
(17)前記エレクトロルミネッセンス材料の極大発光波長が430nm以下であることを特徴とする前記10〜16の何れか1項に記載のエレクトロルミネッセンス素子。
(18)前記エレクトロルミネッセンス材料の極大発光波長が400〜430nmであることを特徴とする前記17に記載のエレクトロルミネッセンス素子。
(19)前記エレクトロルミネッセンス材料が有機LEDであることを特徴とする前記10〜18の何れか1項に記載のエレクトロルミネッセンス素子。
(20)前記エレクトロルミネッセンス材料が無機LEDであることを特徴とする前記10〜18の何れか1項に記載のエレクトロルミネッセンス素子。
(21)前記エレクトロルミネッセンス材料が、前記一般式(A1)、(A2)、(A3)、(B1)、(C1)、(D1)、(E1)、(F1)、(F2)、(G1)又は(G2)で表される化合物から選ばれる少なくとも1種であることを特徴とする前記10〜20の何れか1項に記載のエレクトロルミネッセンス素子。
(22)基盤上に、エレクトロルミネッセンス材料を含有する層及び該エレクトロルミネッセンス材料から発せられる光を吸収して400〜500nmに極大発光波長を有する無機系蛍光体の少なくとも1種、501〜600nmに極大発光波長を有する無機系蛍光体の少なくとも1種及び601〜700nmに極大発光波長を有する無機系蛍光体の少なくとも1種を含有する色変換層を有することを特徴とするエレクトロルミネッセンス素子。
(23)基盤上に、エレクトロルミネッセンス材料を含有する層及び該エレクトロルミネッセンス材料から発せられる光を吸収して400〜500nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種、501〜600nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種及び601〜700nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種を含有する色変換層を有することを特徴とするエレクトロルミネッセンス素子。
(24)エレクトロルミネッセンス材料から発せられる光を吸収して400〜700nmに極大発光波長を有する無機系蛍光体の少なくとも1種を含有することを特徴とする色変換フィルター。
(25)エレクトロルミネッセンス材料から発せられる光を吸収して400〜500nmに極大発光波長を有する無機系蛍光体の少なくとも1種、501〜600nmに極大発光波長を有する無機系蛍光体の少なくとも1種及び601〜700nmに極大発光波長を有する無機系蛍光体の少なくとも1種を含有することを特徴とする色変換フィルター。
(26)前記無機蛍光体がSol−Gel法により製造された無機系蛍光体であることを特徴とする前記24又は25の何れか1項に記載の色変換フィルター。
(27)エレクトロルミネッセンス材料から発せられる光を吸収して400〜700nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種を含有することを特徴とする色変換フィルター。
(28)エレクトロルミネッセンス材料から発せられる光を吸収して400〜500nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種、501〜600nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種及び601〜700nmに極大発光波長を有する希土類錯体系蛍光体の少なくとも1種を含有する色変換層を有することを特徴とする色変換フィルター。
(29)Sol−Gel法により製造された無機系蛍光体を用いて赤色よりも短波長領域の光を赤色に変換することを特徴とする色変換方法。
(30)希土類錯体系蛍光体を用いて赤色よりも短波長領域の光を赤色に変換することを特徴とする色変換方法。
(31)前記希土類錯体系蛍光体の極大吸収波長が340nm以上であることを特徴とする前記30に記載の色変換方法。
(32)下記一般式(R2)で表されるアニオン性配位子を少なくとも1つ有することを特徴とする希土類錯体系蛍光体。
[Wherein, X 91 represents a halogen atom, R 91 and R 92 each independently represents a substituent, n represents an integer of 0 to 4, m represents an integer of 0 to 4, and n is 2 or more. In this case, a plurality of R 91 may be the same or different, and may be condensed with each other to form a ring. When m is 2 or more, a plurality of R 92 may be the same or different. They may be condensed with each other to form a ring, and when n and m are both 1 or more, R 91 and R 92 may be the same or different. ]
(10) At least one kind of electroluminescent material and at least one inorganic phosphor that absorbs light emitted from the electroluminescent material and emits light at a maximum emission wavelength different from the maximum emission wavelength emitted from the electroluminescence material. An electroluminescence element characterized by the above.
(11) The electroluminescent element as described in (10) above, wherein the inorganic phosphor is an inorganic phosphor produced by a Sol-Gel method.
(12) The electroluminescent device as described in (10) or (11) above, wherein the inorganic phosphor has a maximum emission wavelength of 400 to 700 nm.
(13) The electroluminescence device as described in any one of (10) to (12) above, wherein at least one of the inorganic phosphors has a maximum emission wavelength of 600 to 700 nm.
(14) An electroluminescence material comprising an electroluminescence material and a rare earth complex-based phosphor that absorbs light emission of the electroluminescence material and emits light at a maximum emission wavelength different from the maximum emission wavelength emitted from the electroluminescence material element.
(15) The electroluminescent device as described in (14) above, wherein the rare-earth complex phosphor has a maximum emission wavelength of 400 to 700 nm.
(16) The electroluminescent device as described in any one of (14) or (15) above, wherein at least one of the rare earth complex-based light emitters has a maximum light emission wavelength of 600 to 700 nm.
(17) The electroluminescence device as described in any one of 10 to 16, wherein the electroluminescence material has a maximum emission wavelength of 430 nm or less.
(18) The electroluminescence device as described in 17 above, wherein the electroluminescence material has a maximum emission wavelength of 400 to 430 nm.
(19) The electroluminescent element as described in any one of (10) to (18) above, wherein the electroluminescent material is an organic LED.
(20) The electroluminescent element as described in any one of 10 to 18, wherein the electroluminescent material is an inorganic LED.
(21) The electroluminescent material has the general formulas (A1), (A2), (A3), (B1), (C1), (D1), (E1), (F1), (F2), (G1). The electroluminescent device according to any one of 10 to 20, wherein the electroluminescent device is at least one selected from compounds represented by (G2) or (G2).
(22) On the substrate, a layer containing an electroluminescent material and at least one inorganic phosphor having a maximum emission wavelength at 400 to 500 nm by absorbing light emitted from the electroluminescence material, maximum at 501 to 600 nm An electroluminescent device comprising a color conversion layer containing at least one inorganic phosphor having an emission wavelength and at least one inorganic phosphor having a maximum emission wavelength at 601 to 700 nm.
(23) On the substrate, a layer containing an electroluminescent material and at least one rare earth complex phosphor having a maximum emission wavelength at 400 to 500 nm by absorbing light emitted from the electroluminescent material, at 501 to 600 nm An electroluminescence device comprising a color conversion layer containing at least one rare earth complex-based phosphor having a maximum emission wavelength and at least one rare earth complex-based phosphor having a maximum emission wavelength at 601 to 700 nm.
(24) A color conversion filter comprising at least one inorganic phosphor having a maximum light emission wavelength of 400 to 700 nm by absorbing light emitted from an electroluminescent material.
(25) At least one inorganic phosphor having a maximum emission wavelength at 400 to 500 nm by absorbing light emitted from an electroluminescent material, at least one inorganic phosphor having a maximum emission wavelength at 501 to 600 nm, and A color conversion filter comprising at least one inorganic phosphor having a maximum emission wavelength at 601 to 700 nm.
(26) The color conversion filter as described in any one of 24 or 25, wherein the inorganic phosphor is an inorganic phosphor produced by a Sol-Gel method.
(27) A color conversion filter comprising at least one rare earth complex-based phosphor that absorbs light emitted from an electroluminescent material and has a maximum emission wavelength at 400 to 700 nm.
(28) At least one rare earth complex phosphor having a maximum emission wavelength at 400 to 500 nm by absorbing light emitted from an electroluminescent material, and at least one rare earth complex phosphor having a maximum emission wavelength at 501 to 600 nm A color conversion filter comprising a color conversion layer containing a seed and at least one rare earth complex-based phosphor having a maximum emission wavelength at 601 to 700 nm.
(29) A color conversion method characterized in that light in a shorter wavelength region than red is converted into red using an inorganic phosphor produced by the Sol-Gel method.
(30) A color conversion method characterized by converting light in a shorter wavelength region than red using a rare earth complex phosphor.
(31) The color conversion method as described in 30 above, wherein the rare earth complex phosphor has a maximum absorption wavelength of 340 nm or more.
(32) A rare earth complex phosphor having at least one anionic ligand represented by the following general formula (R2).

Figure 0004798011
Figure 0004798011

〔式中、R101は水素原子又は置換基を表し、Y101は酸素原子、硫黄原子又は−N(R102)−を表し、R102は水素原子又は置換基を表し、Z101は炭素と炭素の二重結合と共に4〜8員環を形成するのに必要な原子群を表す。〕
また、次の態様を本発明に用いることもできる。
(A)下記一般式(N1)で表されることを特徴とするエレクトロルミネッセンス材料、
[Wherein, R 101 represents a hydrogen atom or a substituent, Y 101 represents an oxygen atom, a sulfur atom or —N (R 102 ) —, R 102 represents a hydrogen atom or a substituent, and Z 101 represents carbon and It represents an atomic group necessary for forming a 4- to 8-membered ring together with a carbon double bond. ]
Moreover, the following aspect can also be used for this invention.
(A) An electroluminescent material represented by the following general formula (N1):

Figure 0004798011
Figure 0004798011

〔式中、Arはアリール基を表し、Aは炭素原子、窒素原子、硫黄原子または酸素原子を表し、XはAおよびNとともに5員または6員の含窒素芳香族複素環を形成するのに必要な原子群を表し、Yは3つの炭素原子とともに5員または6員の芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表し、式中のC−N結合、C−A結合、C−C結合は単結合または2重結合を表し、Rは水素原子または置換基またはArを表す。さらに [In the formula, Ar represents an aryl group, A represents a carbon atom, a nitrogen atom, a sulfur atom or an oxygen atom, and X, together with A and N, forms a 5- or 6-membered nitrogen-containing aromatic heterocyclic ring. Y represents an atomic group necessary for forming a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring with three carbon atoms, and a C—N bond in the formula, A C—A bond and a C—C bond represent a single bond or a double bond, and R represents a hydrogen atom, a substituent or Ar. further

Figure 0004798011
Figure 0004798011

で表される含窒素芳香族複素環および A nitrogen-containing aromatic heterocycle represented by

Figure 0004798011
Figure 0004798011

で表される芳香族炭化水素環または芳香族複素環はさらに炭化水素環または複素環により縮合されていてもよい。〕 The aromatic hydrocarbon ring or aromatic heterocyclic ring represented by the above may be further condensed with a hydrocarbon ring or a heterocyclic ring. ]

Figure 0004798011
Figure 0004798011

〔式中、R101は水素原子又は置換基を表し、Y101は酸素原子、硫黄原子又は−N(R102)−を表し、R102は水素原子又は置換基を表し、Z101は炭素と炭素の二重結合と共に4〜8員環を形成するのに必要な原子群を表す。〕 [Wherein, R 101 represents a hydrogen atom or a substituent, Y 101 represents an oxygen atom, a sulfur atom or —N (R 102 ) —, R 102 represents a hydrogen atom or a substituent, and Z 101 represents carbon and It represents an atomic group necessary for forming a 4- to 8-membered ring together with a carbon double bond. ]

第1の効果としては、微粒子無機蛍光体または有機配位子によって配位された希土類金属錯体を用いた色変換フィルターを得ることができたこと、第2の効果としては、色変換フィルターと公知の近紫外発光有機エレクトロルミネッセンス素子との組み合わせにより、可視光に発光波長を変換できることを確認できたこと、第3の効果としては、色変換フィルターと本発明の近紫外ないしは紫色領域に発光する本発明の化合物を用いた有機エレクトロルミネッセンス素子との組み合わせにより、良好な可視発光を確認でき、かつその発光寿命が長いことがわかったこと、第4の効果としては内部回転異性性を付与しうる結合軸が存在するビアリール基を有する本発明の化合物を用いた有機エレクトロルミネッセンス素子において高い発光輝度ないしは発光効率と長い発光寿命が両立されることを確認できたことが挙げられる。 The first effect, it was possible to obtain a color conversion filter using a rare earth metal complex coordinated by fine particles phosphor or an organic ligand, as a second effect, and the color conversion filter It has been confirmed that the emission wavelength can be converted into visible light by combination with a known near-ultraviolet light emitting organic electroluminescence element. As a third effect , the color conversion filter and the near ultraviolet or purple region of the present invention emit light. The combination with the organic electroluminescent device using the compound of the present invention has confirmed that good visible light emission can be confirmed and that the light emission lifetime is long, and the fourth effect is that internal rotational isomerism can be imparted. High luminance in organic electroluminescent devices using the compounds of the present invention having a biaryl group with a bond axis Stone can be mentioned that it is confirmed that the luminous efficiency and a long emission lifetime is achieved.

以下に本発明を詳細に説明する。 The present invention is described in detail below.

本発明において、エレクトロルミネッセンス材料とは、電場又は電界によって発光する材料であって、具体的には陽極と陰極から、それぞれ正孔と電子が注入され、それらが再結合する際に発光する材料であり、加速電子の衝突エネルギーによる発光(いわゆる無機エレクトロルミネッセンス)する材料とは異なる。   In the present invention, an electroluminescent material is a material that emits light by an electric field or an electric field, and specifically, a material that emits light when holes and electrons are injected from an anode and a cathode, respectively, and recombined. Yes, it is different from a material that emits light (so-called inorganic electroluminescence) by collision energy of accelerated electrons.

電場又は電界によって発光するとは、例えば発光層を挟んで一対の対向電極を有し、該電極に電流を流すことで該発光層に含有されるエレクトロルミネッセンス材料が発光するものである。これは、発光層を挟んだ一対の対向電極の一方の電極から注入された電子と、もう一方の電極から注入された正孔により発光層内で再結合が起こり、エレクトロルミネッセンス材料がより高いエネルギー準位に励起され、励起されたエレクトロルミネッセンス材料が元の基底状態に戻る際にエネルギーを光として放出することにより起こると考えられている。   Light emission by an electric field or an electric field means that, for example, a light emitting layer has a pair of counter electrodes, and an electroluminescent material contained in the light emitting layer emits light when a current is passed through the electrodes. This is because recombination occurs in the light-emitting layer due to electrons injected from one electrode of a pair of counter electrodes sandwiching the light-emitting layer and holes injected from the other electrode, and the electroluminescent material has higher energy. It is believed to occur by emitting energy as light when excited to a level and the excited electroluminescent material returns to its original ground state.

本発明に用いられるエレクトロルミネッセンス材料は、電場又は電界によって発光するものであれば特に制限はなく、例えば窒化ガリウム(GaN)のような無機のエレクトロルミネッセンス材料(無機LEDともいう)でもよく、有機のエレクトロルミネッセンス材料(有機LEDともいう)のいずれであってもかまわないが、有機LEDを用いることが発光効率の点から好ましい。   The electroluminescent material used in the present invention is not particularly limited as long as it emits light by an electric field or electric field. For example, an inorganic electroluminescent material (also referred to as inorganic LED) such as gallium nitride (GaN) may be used. Any of electroluminescent materials (also referred to as organic LEDs) may be used, but organic LEDs are preferably used from the viewpoint of light emission efficiency.

本発明においては、エレクトロルミネッセンス材料は電場又は電界により430nm以下に極大発光波長を有するものであることが好ましく、更には400〜430nmに極大発光波長を有するものであることが好ましい。   In the present invention, the electroluminescent material preferably has a maximum emission wavelength of 430 nm or less by an electric field or an electric field, and more preferably has a maximum emission wavelength of 400 to 430 nm.

また、CIE色度図表上では、新編色彩科学ハンドブック第4刷 日本色彩学会編 第108頁に記載されている「図4.16 色刺激(光の色)の色名と色度座標との関係」の中の Purplish Blue、Blueish PurpleまたはPurpleの領域であることが好ましい。   In addition, on the CIE chromaticity diagram, the new edition of Color Science Handbook, 4th edition, Japanese Color Society, edited by page 108, “Figure 4.16 Relationship between color name of color stimulus (color of light) and chromaticity coordinates” "Purple Blue, Blueish Purple, or Purple."

用いられるエレクトロルミネッセンス材料について具体的に説明する。   The electroluminescent material used will be specifically described.

用いられるエレクトロルミネッセンス材料は、前記の一般式(A1)、(A2)、(A3)、(B1)、(C1)、(D1)、(E1)、(F1)、(F2)で表される化合物ならびに(G1)で表される4−ハロ−1,1’−ビナフチル誘導体を原料として用い(G2)で表される1価のビアリール基を分子内のいずれかに有する化合物があげられる。   The electroluminescent material used is represented by the general formulas (A1), (A2), (A3), (B1), (C1), (D1), (E1), (F1), and (F2). Examples thereof include a compound and a compound having a monovalent biaryl group represented by (G2) in any one of the molecules using a 4-halo-1,1′-binaphthyl derivative represented by (G1) as a raw material.

一般式(N1)、(A1)、(A2)、(A3)、(B1)、(C1)および(D1)において、Ar、Ar11、Ar12、Ar13、Ar21、Ar22、Ar23、Ar31、Ar32、Ar33、Ar41、Ar42、Ar51、Ar61およびAr62で表されるアリール基は、π電子の数が4n+2(nは自然数)であれば特に制限はなく、単環でも縮合環でもいい。さらに該アリール基は置換基によって置換されていてもよく、その置換されていてもいい置換基としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アミノ基、ハロゲン原子、水酸基、メルカプト基、カルボキシル基、アシルアミノ基、スルホンアミド基、ホスホンアミド基、カルバモイル基、エステル基、アルコキシ基、アリールオキシ基、ニトロ基、シアノ基、シリル基等が挙げられる。また該アリール基の互いに隣接する場所に複数の置換基が置換する場合には、互いに縮合して炭化水素環または複素環を形成してもよく、さらにはスピロ構造を有する部分があっても良い。 In the general formulas (N1), (A1), (A2), (A3), (B1), (C1) and (D1), Ar, Ar 11 , Ar 12 , Ar 13 , Ar 21 , Ar 22 , Ar 23 , Ar 31 , Ar 32 , Ar 33 , Ar 41 , Ar 42 , Ar 51 , Ar 61 and Ar 62 are not particularly limited as long as the number of π electrons is 4n + 2 (n is a natural number). It may be a single ring or a condensed ring. Further, the aryl group may be substituted by a substituent, and the substituent which may be substituted includes an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an amino group, Examples include halogen atoms, hydroxyl groups, mercapto groups, carboxyl groups, acylamino groups, sulfonamido groups, phosphonamido groups, carbamoyl groups, ester groups, alkoxy groups, aryloxy groups, nitro groups, cyano groups, silyl groups, and the like. When a plurality of substituents are substituted at positions adjacent to each other in the aryl group, they may be condensed with each other to form a hydrocarbon ring or a heterocyclic ring, and there may be a part having a spiro structure. .

一般式(N1)、(A1)、(A2)、(A3)、(B1)、(C1)および(D1)において、Ar、Ar11、Ar12、Ar13、Ar21、Ar22、Ar23、Ar31、Ar32、Ar33、Ar41、Ar42、Ar51、Ar61およびAr62で表される芳香族複素環基とは、π電子の数が4n+2(nは自然数)である単環もしくは縮合環の複素環化合物の任意の位置から水素原子を一つ取り除いたものを表し、例えば、それに該当する複素環化合物としては、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、1,2,4−トリアゾール、1,2,3−トリアゾール、オキサゾール、チアゾール、イソオキサゾール、イソチアゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、1,3,5−トリアジン等が挙げられ、それら複素環はさらに縮合環を形成していてもよい。 In the general formulas (N1), (A1), (A2), (A3), (B1), (C1) and (D1), Ar, Ar 11 , Ar 12 , Ar 13 , Ar 21 , Ar 22 , Ar 23 , Ar 31 , Ar 32 , Ar 33 , Ar 41 , Ar 42 , Ar 51 , Ar 61, and Ar 62 are simple aromatic heterocyclic groups represented by 4n + 2 (n is a natural number). A compound obtained by removing one hydrogen atom from an arbitrary position of a heterocyclic compound of a ring or a condensed ring. For example, examples of the heterocyclic compound corresponding thereto include furan, thiophene, pyrrole, imidazole, pyrazole, 1, 2, 4 -Triazole, 1,2,3-triazole, oxazole, thiazole, isoxazole, isothiazole, furazane, pyridine, pyrazine, pyrimidine, pyridazine, 1,3,5-triazine, etc. Is, they heterocyclic ring may further form a condensed ring.

一般式(B1)、(C1)、(D1)、(E1)、(F1)、(F2)、(G1)および(G2)において、R41、R51、R61、R62、R71、R81、R82、R91およびR92で表される置換基としては、置換可能なものならば特に制限はないが、代表的にはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アミノ基、ハロゲン原子、水酸基、メルカプト基、カルボキシル基、アシルアミノ基、スルホンアミド基、ホスホンアミド基、カルバモイル基、エステル基、アルコキシ基、アリールオキシ基、ニトロ基、シアノ基、シリル基等が挙げられる。また、該置換基中の互いに隣接する場所に複数の置換基が置換する場合には、互いに縮合して炭化水素環または複素環を形成してもよく、さらにはスピロ構造を有する部分があっても良い。 In the general formulas (B1), (C1), (D1), (E1), (F1), (F2), (G1) and (G2), R 41 , R 51 , R 61 , R 62 , R 71 , The substituent represented by R 81 , R 82 , R 91 and R 92 is not particularly limited as long as it can be substituted, but typically, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl Group, heterocyclic group, amino group, halogen atom, hydroxyl group, mercapto group, carboxyl group, acylamino group, sulfonamido group, phosphonamido group, carbamoyl group, ester group, alkoxy group, aryloxy group, nitro group, cyano group, A silyl group etc. are mentioned. In addition, when a plurality of substituents are substituted at positions adjacent to each other in the substituent, they may be condensed with each other to form a hydrocarbon ring or a heterocyclic ring, and there is a portion having a spiro structure. Also good.

一般式(N1)において、   In general formula (N1),

Figure 0004798011
Figure 0004798011

で表される含窒素複素環基としては、5員または6員の6π系の芳香族複素環が好ましく、具体的には、2−ピリジル基、2−ピリミジル基、6−ピリミジル基、2−ピラジル基、3−ピリダジル基、2−オキサゾリル基、2−チアゾリル基、3−イソオキサゾリル基、3−イソチアゾリル基、3−フラザニル基、3−ピラゾリル基、2−イミダゾリル基、4−イミダゾリル基、2−ピロロ基、2−オキサジアゾリル基、2−チアジアゾリル基、2−(1,2,4−トリアゾリル)基、2−(1,3,5−トリアジル)基、3−(1,2,4−トリアジル)基等が挙げられる。さらに該含窒素複素環は例えばR41で説明した置換基によって置換されていても良く、さらに縮合環(例えば2−ピリジル基に炭化水素環を縮合させた2−キノリル基、3−ピラゾリル基に複素環を縮合させた6−(1H−ピラゾロ[5,1−c][1,2,4]トリアゾリル)基等)を形成してもよい。 Is preferably a 5-membered or 6-membered 6π aromatic heterocycle, specifically, 2-pyridyl group, 2-pyrimidyl group, 6-pyrimidyl group, 2- Pyrazyl group, 3-pyridyl group, 2-oxazolyl group, 2-thiazolyl group, 3-isoxazolyl group, 3-isothiazolyl group, 3-furazanyl group, 3-pyrazolyl group, 2-imidazolyl group, 4-imidazolyl group, 2- Pyrrolo group, 2-oxadiazolyl group, 2-thiadiazolyl group, 2- (1,2,4-triazolyl) group, 2- (1,3,5-triazyl) group, 3- (1,2,4-triazyl) Groups and the like. Further, the nitrogen-containing heterocycle may be substituted with, for example, the substituent described for R 41 , and may further be condensed with a condensed ring (for example, a 2-quinolyl group obtained by condensing a hydrocarbon ring with a 2-pyridyl group, or a 3-pyrazolyl group). A 6- (1H-pyrazolo [5,1-c] [1,2,4] triazolyl) group or the like obtained by condensing a heterocyclic ring) may be formed.

一般式(N1)において、   In general formula (N1),

Figure 0004798011
Figure 0004798011

で表される芳香族炭化水素環基は、4n+2π系の芳香族炭化水素化合物から任意の位置の水素原子を1つ取り除いたものであり、具体的にはフェニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、1−アントリル基、9−フェナントリル基、2−トリフェニレニル基、3−ペリレニル基等が挙げられる。さらに該炭化水素環は例えばR41で説明した置換基によって置換されていても良く、さらに縮合環(例えば9−フェナントリル基に炭化水素環を縮合させた9−ピレニル基、フェニル基に複素環を縮合させた8−キノリル基等)を形成してもよい。 Is a group obtained by removing one hydrogen atom at an arbitrary position from a 4n + 2π aromatic hydrocarbon compound, specifically, a phenyl group, a 1-naphthyl group, 2- A naphthyl group, 9-anthryl group, 1-anthryl group, 9-phenanthryl group, 2-triphenylenyl group, 3-perylenyl group, and the like can be given. Further, the hydrocarbon ring may be substituted with the substituent described for R 41 , for example, and a condensed ring (for example, a 9-pyrenyl group obtained by condensing a hydrocarbon ring with a 9-phenanthryl group, a phenyl group with a heterocyclic ring). A condensed 8-quinolyl group or the like may be formed.

一般式(N1)において、   In general formula (N1),

Figure 0004798011
Figure 0004798011

で表される芳香族複素環基は、含窒素芳香族複素環に結合する部分の両隣接位が炭素原子であり、かつ4n+2π系の芳香族基であれば特に制限はなく、具体的には、3−ピリジル基、5−ピリミジル基、4−ピリダジル基、5−ピリダジル基、4−イソオキサゾリル基、4−イソチアゾリル基、4−ピラゾリル基、3−ピロロ基、3−フリル基、3−チエニル基等が挙げられる。さらに該複素環は例えばR41で説明した置換基によって置換されていても良く、さらに縮合環を形成してもよい。 The aromatic heterocyclic group represented by the formula is not particularly limited as long as both adjacent positions of the portion bonded to the nitrogen-containing aromatic heterocyclic ring are carbon atoms and a 4n + 2π aromatic group, specifically 3-pyridyl group, 5-pyrimidyl group, 4-pyridazyl group, 5-pyridazyl group, 4-isoxazolyl group, 4-isothiazolyl group, 4-pyrazolyl group, 3-pyrrolo group, 3-furyl group, 3-thienyl group Etc. Further, the heterocyclic ring may be substituted with the substituent described in R 41 , for example, and may further form a condensed ring.

一般式(A1)、(A2)、(B1)、(C1)、(D1)、(E1)、(F1)および(F2)に記載されている「内部回転異性性を付与しうる結合軸」とは、例えば下記1,1’−ビナフチルのナフタレン核とナフタレン核をつなぐ結合軸のように、常温常圧下において立体障害により360度の自由回転ができないような結合軸のことを意味し、便宜的にはCPK模型を組んだ際に360度の自由回転ができなければその結合軸は「内部回転異性性を付与しうる結合軸」であると言うことができる。   “A bond axis capable of imparting internal rotational isomerism” described in the general formulas (A1), (A2), (B1), (C1), (D1), (E1), (F1) and (F2) Means a bond axis that cannot be freely rotated 360 degrees due to steric hindrance under normal temperature and pressure, such as a bond axis that connects the naphthalene nucleus and naphthalene nucleus of 1,1′-binaphthyl described below. Specifically, if a 360-degree free rotation is not possible when a CPK model is assembled, it can be said that the bond axis is a “bond axis that can impart internal rotational isomerism”.

また、「内部回転異性性を付与しうる結合軸」を有する化合物には異性体が存在し、その異性体を「アトロプ異性体」または「内部回転光学異性体」(化学大辞典 第6巻 第588頁 共立出版)というが、逆に言うと「内部回転異性性を付与しうる結合軸」をもつ化合物(または置換基)とは「アトロプ異性体」または「内部回転光学異性体」が存在する化合物(または置換基)と言い換えることもできる。   In addition, there are isomers in a compound having a “bonding axis capable of imparting internal rotational isomerism”, and the isomers are referred to as “atrop isomers” or “internal rotational optical isomers” (Chemical Dictionary, Vol. 6, Vol. 588, Kyoritsu Shuppan), but conversely, a compound (or substituent) having a “bonding axis capable of imparting internal rotational isomerism” includes an “atrop isomer” or an “internal rotational optical isomer”. It can also be referred to as a compound (or substituent).

Figure 0004798011
Figure 0004798011

以下に「内部回転異性性を付与しうる結合軸を持つビアリール基」を有する置換基の基本骨格(図で示す化合物から任意の位置の水素原子を取り除いたものが置換基となる。また、その基本骨格はさらにR41で説明したような置換基によって置換されていても良く、さらに縮合環を形成してもよい。)の一例を示すが本発明はこれらに限定されるものではない。 The basic skeleton of a substituent having the following “biaryl group having a bond axis capable of imparting internal rotational isomerism” (a compound obtained by removing a hydrogen atom at an arbitrary position from the compound shown in the figure becomes a substituent. The basic skeleton may be further substituted with a substituent as described for R 41 and may further form a condensed ring.) However, the present invention is not limited thereto.

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

一般式(E1)においてMで表される金属元素は、1価から4価のイオン構造が採れるものであれば特に制限はないが、Be、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Pd、Cu、B、Al、Ga、In、Tl、Si、Geが好ましく、Be、Mg、Ca、Sr、Ba、Zn、Cu、B、Al、Ga、Inがさらに好ましく、Be、Al、Zn、Gaが最も好ましい。   The metal element represented by M in the general formula (E1) is not particularly limited as long as it can take a monovalent to tetravalent ionic structure, but Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg , Pd, Cu, B, Al, Ga, In, Tl, Si, Ge are preferable, Be, Mg, Ca, Sr, Ba, Zn, Cu, B, Al, Ga, In are more preferable, Be, Al, Zn and Ga are most preferable.

一般式(E1)において、L71 -で表されるMとイオン結合を形成し、かつMに配位可能な部分を有する1価のアニオンとは、酸性状態では酸素原子、硫黄原子または窒素原子上にプロトンが付加された状態を採りうる、すなわち解離性基を有する(−OH、−NH、−SH)化合物からプロトンを1つ取った形のものを示し、かつ該酸素原子、硫黄原子または窒素原子から2ないし3原子隔てた位置に窒素原子またはカルコゲン原子(O、S、Se、Te)のような金属に配位可能な原子を有するものであり、例えば、8−ヒドロキシキノリンの水酸基からプロトンを取った酸素アニオン、1H−2−(1−ピラゾリル)イミダゾールの1位のNHからプロトンを取った窒素アニオン等が挙げられる。 In the general formula (E1), a monovalent anion that forms an ionic bond with M represented by L 71 and has a moiety capable of coordinating with M is an oxygen atom, a sulfur atom, or a nitrogen atom in an acidic state. A state in which one proton is taken from a (—OH, —NH, —SH) compound having a dissociable group, which can take a state in which a proton is added to the above, and the oxygen atom, sulfur atom or It has an atom capable of coordinating to a metal such as a nitrogen atom or a chalcogen atom (O, S, Se, Te) at a position 2 to 3 atoms away from the nitrogen atom, for example, from the hydroxyl group of 8-hydroxyquinoline Examples thereof include an oxygen anion that takes a proton, and a nitrogen anion that takes a proton from NH at the 1-position of 1H-2- (1-pyrazolyl) imidazole.

一般式(E1)において、R71 -で表されるMとイオン結合を形成する1価のアニオンは、pH8以上の塩基性条件下でアニオンを発生するものであれば特に制限はなく、例えば、4−ヒドロキシ−1,1’−ビフェニル、2−メルカプトナフタレン、1H−ピラゾロ[5,1−c][1,2,4]トリアゾールからプロトンを1つ取り除いたアニオン等が挙げられる。 In the general formula (E1), the monovalent anion that forms an ionic bond with M represented by R 71 is not particularly limited as long as it generates an anion under a basic condition of pH 8 or higher. Examples include an anion obtained by removing one proton from 4-hydroxy-1,1′-biphenyl, 2-mercaptonaphthalene, 1H-pyrazolo [5,1-c] [1,2,4] triazole.

一般式(F1)において、Z1およびZ2で表される1価の発光性化合物残基とは、室温下で発光を示す化合物の任意の位置から水素原子または置換基を1つ取り除いたものを表し、一般式(F2)において、Z3で表されるk価の発光性化合物残基とは、室温下で発光を示す化合物の任意の位置から水素原子または置換基をk個取り除いたものを表し、該室温下で発光を示す化合物の「発光」は蛍光発光でも燐光発光でもよい。 In the general formula (F1), the monovalent luminescent compound residue represented by Z 1 and Z 2 is one obtained by removing one hydrogen atom or substituent from any position of a compound that emits light at room temperature. In the general formula (F2), the k-valent luminescent compound residue represented by Z 3 is obtained by removing k hydrogen atoms or substituents from any position of the compound that emits light at room temperature. The “luminescence” of the compound that emits light at room temperature may be either fluorescence emission or phosphorescence emission.

発光性化合物残基となりうる発光性化合物としては、レーザー色素のように可視領域に吸収を有する蛍光色素でも、蛍光増白剤のように紫外領域に吸収を有する蛍光化合物でも、さらにポルフィリンのプラチナ錯体やビアセチルのような燐光発光化合物でもよく、具体的には、例えば八木國夫、吉田善一、太田利一共著「蛍光 −理論・測定・応用−」(南江堂)の第99頁〜122頁に記載されている有機蛍光物質、同書第251頁〜270頁に記載されている蛍光増白剤、さらに同書第274頁〜287頁に記載されている蛍光色素がその代表例として挙げられ、特に好ましくは、トリフェニレンやペリレン等に代表される縮合環式芳香族炭化水素環化合物、p−ターフェニルやクオーターフェニル等に代表される線状共役多環式炭化水素化合物、アクリジン、キノリン、カルバゾール、カルバゾン、フルオレン、キサンチオン、アロキサジン、アクリドン、フラボン、クマリン、ナフトイミダゾール、ベンゾオキサゾールおよびジベンゾフェナジン等に代表される縮合環式芳香族複素環化合物、チアゾール、オキサゾール、オキサジアゾール、チアジアゾールおよびトリアゾール等に代表される芳香族複素環化合物、アミノクロロマレイックイミド、メチルアミノシトラコニックメチルイミド、デカペンタエンカルボン酸およびデカペンタエンジカルボン酸等に代表される共役系脂肪族化合物、アクリジンオレンジNO、メチレンブルー、フルオロセイン、エオシン、ローダミンおよびベンソフラビン等に代表される蛍光色素化合物、オキサカルボシアニン、カルボシアニン、チアカルボシアニンおよび2−(アニリノポリエチニル)−ベンゾチアゾール等の感光色素化合物、ポルフィリン、クロロフィルおよびリボフラビン等に代表される天然色素化合物、ジアミノスチルベン、ジスチリルベンゼン、ベンジジン、ジアミノカルバゾール、トリアゾール、イミダゾール、チアゾール、オキサゾール、イミダゾロン、ジヒドロピリジン、クマリン、カルボスチリル、ジアミノジベンゾチオフェンオキシド、ジアミノフルオレン、オキサシアニン、アミノナフタルイミド、ピラゾリンおよびオキサジアゾール系の蛍光増白剤 等が挙げられ、さらにこれらは置換基を有していてもよく、さらに縮合環を形成していてもよい。   Luminescent compounds that can become luminescent compound residues include fluorescent dyes that absorb in the visible region such as laser dyes, fluorescent compounds that absorb in the ultraviolet region such as fluorescent whitening agents, and platinum complexes of porphyrins. And phosphorescent compounds such as biacetyl may be used. Specifically, for example, described in pages 99 to 122 of "Fluorescence -Theory / Measurement / Application-" (Nanedo) by Kunio Yagi, Zenichi Yoshida and Toshikazu Ota. Examples of the organic fluorescent substances described above, fluorescent whitening agents described on pages 251 to 270 of the same book, and fluorescent dyes described on pages 274 to 287 of the same book are given as typical examples. , Condensed cyclic aromatic hydrocarbon ring compounds typified by triphenylene and perylene, linear conjugated polycyclic hydrocarbons typified by p-terphenyl and quarterphenyl Compounds, acridine, quinoline, carbazole, carbazone, fluorene, xanthion, alloxazine, acridone, flavone, coumarin, naphthimidazole, benzoxazole, dibenzophenazine, and other condensed cyclic aromatic heterocyclic compounds, thiazole, oxazole, oxadi Aromatic heterocyclic compounds represented by azole, thiadiazole, triazole, etc., conjugated aliphatic compounds represented by aminochloromaleic imide, methylaminocitraconic methylimide, decapentaene carboxylic acid, decapentaene dicarboxylic acid, etc. , Fluorescent pigment compounds represented by acridine orange NO, methylene blue, fluorescein, eosin, rhodamine and benzoflavin, oxacarbocyanine, carbocyanine, Photosensitive dye compounds such as thiacarbocyanine and 2- (anilinopolyethynyl) -benzothiazole, natural dye compounds typified by porphyrin, chlorophyll and riboflavin, diaminostilbene, distyrylbenzene, benzidine, diaminocarbazole, triazole, imidazole , Thiazole, oxazole, imidazolone, dihydropyridine, coumarin, carbostyril, diaminodibenzothiophene oxide, diaminofluorene, oxacyanine, aminonaphthalimide, pyrazoline and oxadiazole-based fluorescent whitening agents, and the like. And a condensed ring may be formed.

一般式(G1)において、X91で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アスタチン原子が挙げられるが、この中で好ましいものは臭素原子およびヨウ素原子である。 In the general formula (G1), examples of the halogen atom represented by X 91 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and an astatine atom. Among these, a bromine atom and an iodine atom are preferable. .

本発明において、エレクトロルミネッセンス材料は後述する正孔注入材料、電子注入材料を兼ねても良い。つまり、正孔注入や電子注入能力を併せもっていても良い。また、エレクトロルミネッセンス材料は、該材料をホストとするドーピング材料(ドーパント、ゲストともいう)を必要に応じて併用しても良い。   In the present invention, the electroluminescent material may also serve as a hole injection material and an electron injection material described later. In other words, hole injection and electron injection capability may be provided. In addition, the electroluminescent material may be used in combination with a doping material (also referred to as a dopant or a guest) that uses the material as a host as necessary.

以下にエレクトロルミネッセンス材料の具体例をA−1〜A−30、B−1〜B−24、C−1〜C−9、D−1〜D−12、E−1〜E−19、F−1〜F−21として挙げるが、それらに限定されるものではない。 Below elect b Luminescence A-1 to A-30 Specific examples of the material, B-1~B-24, C -1~C-9, D-1~D-12, E-1~E-19, It is given as F-1 to F-21, but not limited to its these.

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

次に、本発明でいうエレクトロルミネッセンス素子とは、基盤上に前記下エレクトロルミネッセンス材料と、該エレクトロルミネッセンス材料から発せられる光を吸収して蛍光を発する無機系蛍光体又は希土類錯体系蛍光体とを含有し、エレクトロルミネッセンス材料を含有する層を挟んで一対の対向電極を有する素子をいう。ここで、エレクトロルミネッセンス材料と無機系蛍光体又は希土類錯体系蛍光体とは別の層に含有されており、同一の層に存在することはない。   Next, the electroluminescence element referred to in the present invention includes the lower electroluminescence material on a substrate, and an inorganic phosphor or a rare earth complex phosphor that absorbs light emitted from the electroluminescence material and emits fluorescence. An element having a pair of counter electrodes with a layer containing an electroluminescent material interposed therebetween. Here, the electroluminescent material and the inorganic phosphor or the rare earth complex phosphor are contained in different layers and do not exist in the same layer.

下の記載において、特に指定のない限り、エレクトロルミネッセンス材料は発光層を含有する層を発光層、正孔注入層、電子注入層の何れかの層に存在し、無機系蛍光体及び/又は希土類錯体系蛍光体は色変換層に存在するものである。   In the description below, unless otherwise specified, the electroluminescent material has a layer containing a light emitting layer in any one of a light emitting layer, a hole injection layer, and an electron injection layer, and is an inorganic phosphor and / or rare earth. The complex phosphor is present in the color conversion layer.

また、本発明におけるエレクトロルミネッセンス素子は、必要に応じて電子注入層や、正孔注入層を介在させてもかまわない。   Moreover, the electroluminescent element in this invention may interpose an electron injection layer and a hole injection layer as needed.

本発明のエレクトロルミネッセンス素子に好ましく用いられる基盤は、ガラス、プラスチックなどの種類には特に限定はなく、また、透明のものであれば特に制限はない。本発明のエレクトロルミネッセンス素子に好ましく用いられる基盤としては例えばガラス、石英、光透過性プラスチックフィルムを挙げることができる。   The substrate preferably used for the electroluminescent device of the present invention is not particularly limited in the kind of glass, plastic, etc., and is not particularly limited as long as it is transparent. Examples of the substrate preferably used for the electroluminescence device of the present invention include glass, quartz, and a light transmissive plastic film.

光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。   Examples of the light transmissive plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). And a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP), or the like.

本発明のエレクトロルミネッセンス素子は、本発明のエレクトロルミネッセンス材料を発光層に用いることが好ましいが、公知の発光材料と併用してもかまわない。具体的には例えば「有機EL素子とその工業化最前線」 1998年11月30日 (株)エヌ・ティー・エス発行(以下、文献Aということもある。)の第1編第3章(第35頁〜第51頁)に記載されている低分子系発光材料、同文献Aの第1編第4章(第55頁〜第79頁)に記載されている色素ドープ材料、同文献Aの第1編第5章(第81頁〜第100頁、第178頁〜第189頁、だい192頁〜第212頁)に記載されている高分子系材料などを挙げることができる。また、これらの文献中の引用文献に挙がっている化合物も同様に使用することができる。   In the electroluminescent element of the present invention, the electroluminescent material of the present invention is preferably used for the light emitting layer, but may be used in combination with a known light emitting material. Specifically, for example, “Organic EL device and the forefront of its industrialization” November 30, 1998 issued by NTS Co., Ltd. (hereinafter also referred to as Document A) Chapter 1 Chapter 3 (Part 1) 35 to 51)), the dye-doped material described in the first chapter, Chapter 4 (pages 55 to 79) of the first volume of the document A, Examples thereof include polymer materials described in Chapter 1 Chapter 5 (pages 81 to 100, pages 178 to 189, pages 192 to 212). In addition, compounds listed in the cited references in these documents can be used in the same manner.

エレクトロルミネッセンス素子は通常2つの電極間に単層または複数の層を含有して構成され、該構成層としては前記発光層の他に正孔注入層(または電荷注入層、ホール注入層、電荷輸送層、ホール輸送層ともいう)、電子注入層(または電子輸送層ともいう)等が挙げられる。   An electroluminescence element is usually configured to contain a single layer or a plurality of layers between two electrodes. As the constituent layer, in addition to the light emitting layer, a hole injection layer (or charge injection layer, hole injection layer, charge transport) is used. A layer, a hole transport layer), an electron injection layer (or an electron transport layer), and the like.

前記、正孔注入層および電子注入層は必要に応じてさらに積層構造をとっていてもよく、例えば、陽極/第1正孔注入層/第2正孔注入層(正孔輸送層)/発光層/第2電子注入層(電子輸送層)/第1電子注入層/陰極のような層構成を取ってもよい。   The hole injection layer and the electron injection layer may further have a laminated structure as necessary, for example, anode / first hole injection layer / second hole injection layer (hole transport layer) / light emission. A layer structure such as layer / second electron injection layer (electron transport layer) / first electron injection layer / cathode may be employed.

以下に本発明におけるエレクトロルミネッセンス素子の層構成の例を示す(ただし、上記の如く複数の正孔注入層および/または電子注入層についての記載は省略するが、当然それらが複数の化合物を重ねてなる積層構造を形成していても良い。)
基板/色変換層/基板/陽極/発光層/陰極
(2)基板/色変換層/基板/陽極/正孔注入層/発光層/陰極
(3)基板/色変換層/基板/陽極/発光層/電子注入層/陰極
(4)基板/色変換層/基板/陽極/正孔注入層/発光層/電子注入層/陰極
(5)基板/陽極/発光層/陰極/色変換層/基板
(6)基板/陽極/正孔注入層/発光層/陰極/色変換層/基板
(7)基板/陽極/発光層/電子注入層/陰極/色変換層/基板
(8)基板/陽極/正孔注入層/発光層/電子注入層/陰極/色変換層/基板
ここで、色変換層と接する基板と陽極と接する基板とは、同じであっても異なっていても良く、さらに各素子の外側を基板で覆っても良い。
An example of the layer structure of the electroluminescence element in the present invention is shown below (however, as described above, description of a plurality of hole injection layers and / or electron injection layers is omitted, but naturally, they overlap a plurality of compounds) (It is also possible to form a laminated structure.)
Substrate / color conversion layer / substrate / anode / emission layer / cathode (2) substrate / color conversion layer / substrate / anode / hole injection layer / emission layer / cathode (3) substrate / color conversion layer / substrate / anode / emission Layer / electron injection layer / cathode (4) substrate / color conversion layer / substrate / anode / hole injection layer / light emitting layer / electron injection layer / cathode (5) substrate / anode / light emitting layer / cathode / color conversion layer / substrate (6) substrate / anode / hole injection layer / light emitting layer / cathode / color conversion layer / substrate (7) substrate / anode / light emitting layer / electron injection layer / cathode / color conversion layer / substrate (8) substrate / anode / Hole injection layer / light emitting layer / electron injection layer / cathode / color conversion layer / substrate Here, the substrate in contact with the color conversion layer and the substrate in contact with the anode may be the same or different. The outside may be covered with a substrate.

なお、陽極と発光層または正孔注入層の間、および、陰極と発光層または電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。   A buffer layer (electrode interface layer) may be present between the anode and the light emitting layer or hole injection layer and between the cathode and the light emitting layer or electron injection layer.

バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、文献Aの第2編第2章「電極材料」(第123頁〜第166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。   The buffer layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the light emission efficiency. The second chapter, Chapter 2, “Electrode Material” (pages 123 to 166) of Document A The anode buffer layer and the cathode buffer layer are described in detail.

陽極バッファー層としては、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   As the anode buffer layer, a polymer using a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, or a conductive polymer such as polyaniline (emeraldine) or polythiophene. Examples include a buffer layer.

陰極バッファー層としては、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。   As the cathode buffer layer, a metal buffer layer typified by strontium or aluminum, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, or aluminum oxide And oxide buffer layers.

上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1〜100nmの範囲が好ましい。   The buffer layer is preferably a very thin film, and depending on the material, the film thickness is preferably in the range of 0.1 to 100 nm.

発光層、正孔注入層、電子注入層又はバッファー層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜化することにより形成することができるが、特に分子堆積膜であることが好ましい。ここで、分子堆積膜とは、該化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と凝集構造、高次構造の相違や、それに起因する機能的な相違により区別することができる。   As a method for forming a light emitting layer, a hole injection layer, an electron injection layer, or a buffer layer, it can be formed by thinning by a known method such as a vapor deposition method, a spin coating method, a casting method, or an LB method. However, a molecular deposited film is particularly preferable. Here, the molecular deposited film is a thin film formed by deposition from the vapor phase state of the compound, or a film formed by solidification from the molten state or liquid phase state of the compound. Usually, this molecular deposited film can be distinguished from a thin film (molecular accumulated film) formed by the LB method, a difference in aggregation structure and higher order structure, and a functional difference resulting therefrom.

また、この発光層は、特開昭57−51781号公報に記載されているように、樹脂などの結着材と共に上記発光材料を溶剤に溶かして溶液としたのち、これをスピンコート法などにより薄膜化して形成することができる。このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、5nm〜5μmの範囲で用いられることが好ましい。   Further, as described in JP-A-57-51781, this light emitting layer is prepared by dissolving the above light emitting material in a solvent together with a binder such as a resin, and then using a spin coating method or the like. It can be formed as a thin film. There is no restriction | limiting in particular about the film thickness of the light emitting layer formed in this way, Although it can select suitably according to a condition, It is preferable to use in the range of 5 nm-5 micrometers.

このエレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO、亜鉛ドープ酸化インジウム(IZO)などの導電性透明材料が挙げられる。該陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 As the anode in this electroluminescence element, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , ZnO, and zinc-doped indium oxide (IZO). The anode may be formed by forming a thin film by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or (100 μm) when pattern accuracy is not so required. As described above, a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.

この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は103Ω/□以下が好ましい。陽極の膜厚は材料によって適宜選択できるが、10nm〜1μm程度で用いるのが好ましく、10〜200nmであることが更に好ましい。 When light emission is extracted from the anode, the transmittance is desirably greater than 10%, and the sheet resistance as the anode is preferably 10 3 Ω / □ or less. The thickness of the anode can be appropriately selected depending on the material, but is preferably about 10 nm to 1 μm, and more preferably 10 to 200 nm.

一方、陰極としては、仕事関数の小さい(4eV未満)金属(電子注入性金属と称することもある)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、カリウム、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。 On the other hand, as the cathode, a metal having a work function (less than 4 eV) metal (sometimes referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include potassium, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.

これらの中で、電子注入性及び酸化などに対する耐久性の点から、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物などのように、電子注入性金属とこれより仕事関数の値が大きな金属との混合物が好適である。 Among these, from the point of durability against electron injection and oxidation, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, etc. As described above, a mixture of an electron injecting metal and a metal having a larger work function value is preferable.

ただし、陰極表面に前記のような陰極バッファー層を塗設して使用する場合には、仕事関数の制限は解除され、例えば特開平11−224783号に記載されているように陰極バッファー層(該特許明細書中では「電子注入層」と称している)にアルカリ金属やアルカリ土類金属のフッ化物を用いることにより、陰極はITOやSnO2、In23、ZnO:Al等の通常陽極として使用される仕事関数の大きな物質を使用することもでき、また文献Aの第145頁第15行目〜第28行目に記載されているように、陰極バッファー層としてフッ化リチウム(膜厚0.5〜1μm)を用いることにより、アルミニウムが陰極材料として使用できること、等が知られており、このような陰極バッファー層を用いる場合の陰極材料としては、前記金属酸化物やアルミニウムの他、銀、銅、プラチナ、金等の周期律表で「金属」として定義されている元素が使用できる。 However, when the cathode buffer layer as described above is used on the cathode surface, the work function limitation is removed, and for example, as described in JP-A No. 11-224783, By using a fluoride of an alkali metal or alkaline earth metal in the patent specification (referred to as “electron injection layer”), the cathode is usually an anode such as ITO, SnO 2 , In 2 O 3 , ZnO: Al, etc. A material having a large work function used as a material can be used, and as described in Document A, page 145, lines 15 to 28, lithium fluoride (film thickness) is used as a cathode buffer layer. It is known that aluminum can be used as a cathode material by using 0.5 to 1 μm), and as a cathode material in the case of using such a cathode buffer layer, Other metal oxides or aluminum, silver, copper, platinum, elements that are defined as "metal" in the periodic table such as gold can be used.

該陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。さらに、特開平11−8074号に記載されているようなメッキ法によって作成することも可能である。   The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, it can be formed by a plating method as described in JP-A-11-8074.

陰極としてのシート抵抗は103Ω/□以下が好ましい。また、陰極の膜厚は10nm〜100μmであることが好ましく、50〜2000nmであることが更に好ましい。 The sheet resistance as the cathode is preferably 10 3 Ω / □ or less. The film thickness of the cathode is preferably 10 nm to 100 μm, and more preferably 50 to 2000 nm.

なお、発光を透過させるため、エレクトロルミネッセンス素子の発光層と色変換層との間に位置する電極が、透明又は半透明であることが発光効率が向上し好ましい。   In order to transmit light, it is preferable that the electrode positioned between the light emitting layer and the color conversion layer of the electroluminescence element is transparent or translucent because the light emission efficiency is improved.

ここで、電極が透明又は半透明であるとは400nm〜700nmにおける可視光透過率が20%以上であることを意味し、50%以上であることが好ましい。本発明において必要に応じて設けられる正孔注入層は、陽極より注入された正孔を発光層に伝達する機能を有するものであり、この正孔注入層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入さる。また、発光層に陰極又は電子注入層より注入された電子と、発光層と正孔注入層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。   Here, that an electrode is transparent or translucent means that the visible light transmittance in 400 nm-700 nm is 20% or more, and it is preferable that it is 50% or more. The hole injection layer provided as necessary in the present invention has a function of transmitting holes injected from the anode to the light emitting layer, and this hole injection layer is interposed between the anode and the light emitting layer. As a result, many holes are injected into the light emitting layer with a lower electric field. In addition, light emission performance such as accumulation of electrons at the interface in the light emitting layer and improvement in light emission efficiency due to the barrier between electrons injected into the light emitting layer from the cathode or the electron injection layer and electrons present at the interface between the light emitting layer and the hole injection layer. It becomes an excellent element.

この正孔注入層に用いられる材料(以下、正孔注入材料という)については、前記の機能を有するものであれば特に制限はなく、従来、公知のものの中から任意のものを選択して用いることができる。   The material used for the hole injection layer (hereinafter referred to as hole injection material) is not particularly limited as long as it has the above-mentioned function, and any conventionally selected one is used. be able to.

上記正孔注入材料は、正孔の注入、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。   The hole injection material has either hole injection or electron barrier properties, and may be either organic or inorganic.

有機の正孔注入材料には、例えば、特開昭63−295695号公報、特開平2−191694号公報、特開平3−792号公報、特開平5−234681号公報、特開平5−239455号公報、特開平5−299174号公報、特開平7−126225号公報、特開平7−126226号公報、特開平8−100172号公報、EP0650955A1号公報等に記載されている各種有機化合物を用いることができる。例えば、フタロシアニン誘導体、テトラアリールベンジシン化合物、芳香族三級アミン、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、ポリチオフェン等である。これらの化合物は2種以上を併用してもよく、併用するときは別層にして積層したり、混合したりすればよい。   Examples of the organic hole injecting material include JP-A 63-295695, JP-A 2-191694, JP-A 3-792, JP-A-5-234681, and JP-A-5-239455. Various organic compounds described in JP-A-5-299174, JP-A-7-126225, JP-A-7-126226, JP-A-8-1001922, EP0650955A1, and the like are used. it can. For example, phthalocyanine derivatives, tetraarylbenzidine compounds, aromatic tertiary amines, hydrazone derivatives, carbazole derivatives, triazole derivatives, imidazole derivatives, oxadiazole derivatives having amino groups, polythiophenes, and the like. Two or more of these compounds may be used in combination, and when used in combination, they may be laminated as separate layers or mixed.

正孔注入層を積層して使用する場合(正孔注入と正孔輸送の機能を使い分ける時)は、上記の化合物のなかから好ましい組合せを選択して用いることができる。このとき、陽極(ITO等)側からイオン化ポテンシャルの小さい化合物の層の順に積層することが好ましい。また、陽極表面には薄膜性(製膜性)の良好な化合物(例えば特開平4−308688号等に記載されているスターバースト型化合物等がその代表例である)を用いることが好ましい。   When the hole injection layer is stacked and used (when the functions of hole injection and hole transport are properly used), a preferred combination can be selected from the above compounds. At this time, it is preferable to laminate in order of a compound layer having a small ionization potential from the anode (ITO or the like) side. Further, it is preferable to use a compound having a good thin film property (film forming property) (for example, a starburst type compound described in JP-A-4-308688 or the like is a typical example) for the anode surface.

上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミン(TPD)、2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニル、1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン、ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン、ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン、N,N’−ジフェニル−N,N’−ジ(4−メトキシフェニル)−4,4’−ジアミノビフェニル、N,N,N’,N’−テトラフェニル−4,4’−ジアミノジフェニルエーテル、4,4’−ビス(ジフェニルアミノ)クオードリフェニル、N,N,N−トリ(p−トリル)アミン、4−(ジ−p−トリルアミノ)−4’−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン、4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン、3−メトキシ−4’−N,N−ジフェニルアミノスチルベンゼン、N−フェニルカルバゾール、さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4’−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4′′−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。   Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N ′. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1- Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p- Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadri Phenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene, 3-methoxy-4′-N, N-diphenylaminostilbenzene, N-phenylcarbazole, and two condensations described in US Pat. No. 5,061,569 Having an aromatic ring in the molecule, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type (MTDATA).

また、無機の正孔注入材料としてp型−Si、p型−SiCなどを使用することができる。   Moreover, p-type-Si, p-type-SiC, etc. can be used as an inorganic hole injection material.

この正孔注入層は、上記正孔注入材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層の膜厚については特に制限はないが、5nm〜5μm程度であることが好ましい。   The hole injection layer can be formed by thinning the hole injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of a positive hole injection layer, It is preferable that it is about 5 nm-5 micrometers.

また、必要に応じて用いられる電子注入層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。   Moreover, the electron injection layer used as needed is only required to have a function of transmitting electrons injected from the cathode to the light emitting layer, and the material thereof is selected from any conventionally known compounds. Can be used.

電子注入層は、発光層に用いる化合物の電子注入輸送機能がさほど高くないときなどに設けられ、陰極からの電子の注入を容易にする機能、電子を輸送する機能および正孔を妨げる機能を有する。なお、電子注入輸送層は、注入機能を持つ層と輸送機能を持つ層とに別個に設けてもよい。   The electron injection layer is provided when the electron injection / transport function of the compound used for the light emitting layer is not so high, and has a function of facilitating the injection of electrons from the cathode, a function of transporting electrons, and a function of blocking holes. . Note that the electron injecting and transporting layer may be provided separately for the layer having an injection function and the layer having a transport function.

この電子注入層に用いられる材料(以下、電子注入材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。また、特開昭59−194393号公報に記載されている一連の電子伝達性化合物は、該公報では発光層を形成する材料として開示されているが、電子注入材料としても使用することができる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、アリールアミノ基、アルキルアミノ基に置換したトリアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子注入材料として用いることができる。   Examples of materials used in this electron injection layer (hereinafter referred to as electron injection materials) include heterocyclic tetracarboxylic anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, carbodiimide, Examples include fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. In addition, a series of electron transfer compounds described in JP-A-59-194393 is disclosed as a material for forming a light emitting layer in the publication, but can also be used as an electron injection material. Further, the oxadiazole derivative has a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, a triazole derivative substituted with an arylamino group or an alkylamino group, or a quinoxaline ring known as an electron withdrawing group. A quinoxaline derivative can also be used as an electron injection material.

また、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子注入材料として用いることができる。その他、前記文献A第 編第 章第38頁〜第48頁に記載の金属錯体系材料、メタルフリーメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子注入材料として好ましく用いることができる。また、正孔注入層と同様に、n型−Si、n型−SiCなどの無機半導体も電子注入材料として用いることができる。   In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as the electron injection material. In addition, the metal complex materials described in the above-mentioned Reference A, Chapter Chapters 38-48, metal-free metal phthalocyanines, or those having terminal ends substituted with alkyl groups, sulfonic acid groups, etc. It can be preferably used as an injection material. Similarly to the hole injection layer, an inorganic semiconductor such as n-type Si or n-type SiC can also be used as the electron injection material.

この電子注入層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。   This electron injection layer can be formed by forming the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.

電子注入層としての膜厚は、特に制限はないが、5nm〜5μm程度であることが好ましい。   Although the film thickness as an electron injection layer does not have a restriction | limiting in particular, It is preferable that it is about 5 nm-5 micrometers.

電子注入層は、上記の電子注入材料一種又は二種以上を含有する一層構造であってもよいし、あるいは、同一組成又は異種組成の複数層を有する積層構造であってもよい。   The electron injection layer may have a single layer structure containing one or two or more of the above electron injection materials, or may have a multilayer structure having a plurality of layers having the same composition or different compositions.

次に、本発明における無機系蛍光体及び希土類錯体系蛍光体について説明する。   Next, the inorganic phosphor and the rare earth complex phosphor in the present invention will be described.

本発明において、無機系蛍光体、希土類錯体系蛍光体としては、前記エレクトロルミネッセンス材料から発せられる発光を吸収して該エレクトロルミネッセンス材料の極大発光波長とは異なる極大発光波長に発光するものであれば特に制限はない。   In the present invention, the inorganic phosphor and the rare earth complex-based phosphor are not particularly limited as long as they absorb light emitted from the electroluminescent material and emit light at a maximum emission wavelength different from the maximum emission wavelength of the electroluminescence material. There is no particular limitation.

ここで、エレクトロルミネッセンス材料から発せられる極大発光波長と異なる発光波長とは、エレクトロルミネッセンス材料が発する極大発光波長に対して、無機系蛍光体の極大発光波長が10nm以上離れたものをいう。   Here, the emission wavelength different from the maximum emission wavelength emitted from the electroluminescent material means that the maximum emission wavelength of the inorganic phosphor is 10 nm or more away from the maximum emission wavelength emitted from the electroluminescence material.

本発明のエレクトロルミネッセンス素子に含有される無機系蛍光体又は希土類錯体系蛍光体は、エレクトロルミネッセンス材料から発せられる光によって400〜700nmの領域に極大発光を有するものであることが好ましい。   The inorganic phosphor or the rare earth complex phosphor contained in the electroluminescence element of the present invention preferably has a maximum light emission in a region of 400 to 700 nm by light emitted from the electroluminescence material.

また、本発明のエレクトロルミネッセンス素子に含有される無機系蛍光体又は希土類錯体系蛍光体は、エレクトロルミネッセンス材料から発せられる極大発光波長に対して180nm以上長波側に極大発光波長を有するものを少なくとも1種含有することが好ましい。   In addition, the inorganic phosphor or the rare earth complex phosphor contained in the electroluminescent element of the present invention has at least one having a maximum emission wavelength on the long wave side of 180 nm or more with respect to the maximum emission wavelength emitted from the electroluminescence material. It is preferable to contain a seed.

また、本発明のエレクトロルミネッセンス素子は、フルカラー化の目的で、エレクトロルミネッセンス材料から発せられる光によって400〜500nmに極大発光波長を有する無機系蛍光体又は希土類錯体系蛍光体の少なくとも1種、501〜600nmに極大発光波長を有する無機系蛍光体又は希土類錯体系蛍光体の少なくとも1種及び601〜700nmに極大発光波長を有する無機系蛍光体又は希土類錯体系蛍光体の少なくとも1種をそれぞれ有する色変換層を有することが好ましい。   The electroluminescent device of the present invention is an inorganic phosphor or a rare earth complex phosphor having a maximum emission wavelength of 400 to 500 nm by light emitted from an electroluminescent material for the purpose of full color, 501- Color conversion having at least one inorganic phosphor or rare earth complex phosphor having a maximum emission wavelength at 600 nm and at least one inorganic phosphor or rare earth complex phosphor having a maximum emission wavelength at 601 to 700 nm It is preferable to have a layer.

色変換層は、用途によって様々な形態を採ることができる。   The color conversion layer can take various forms depending on the application.

例えば、白色の面状発光体にしたい場合には、青色に発光する蛍光体と黄色に発光する蛍光体の混合物を用いるか、または、青色発光、緑色発光、赤色発光の3種の蛍光体の混合物を用いるが、その場合は特にパターニングする必要はなく、均一の厚みで塗設すれば良い。   For example, when a white planar light emitter is desired, a mixture of a phosphor emitting blue light and a phosphor emitting yellow light is used, or three kinds of phosphors of blue light emission, green light emission, and red light emission are used. Although a mixture is used, in that case, it is not necessary to perform patterning, and it may be applied with a uniform thickness.

液晶ディスプレイのカラーフィルターのような、多色化された色変換フィルターを得たい場合は、必要とする発光色の得られる蛍光体をストライプ状、ドット状またはモザイク状にパターニングすればよく、そのパターニング方法としては、従来の液晶ディスプレイ用カラーフィルターの製造方法がそのまま適用でき、具体的には顔料分散法、印刷法、インクジェット法等で作成することができる。   When you want to obtain a multicolored color conversion filter such as a color filter for liquid crystal displays, you only need to pattern the phosphors with the required emission color in stripes, dots or mosaics. As a method, a conventional method for producing a color filter for a liquid crystal display can be applied as it is, and specifically, it can be prepared by a pigment dispersion method, a printing method, an ink jet method or the like.

本発明における無機系蛍光体の組成は特に制限はないが、結晶母体であるY22S、Zn2SiO4、Ca5(PO43Cl等に代表される金属酸化物及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Al、Mn、In、Cu、Sb等の金属のイオンを賦活剤または共賦活剤として組み合わせたものが好ましい。 The composition of the inorganic phosphor in the present invention is not particularly limited, but metal oxides such as Y 2 O 2 S, Zn 2 SiO 4 , Ca 5 (PO 4 ) 3 Cl, etc., which are crystal bases, and ZnS, In sulfides represented by SrS, CaS, etc., ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ag, Al, Mn, What combined the ion of metals, such as In, Cu, and Sb, as an activator or a co-activator is preferable.

結晶母体を更に詳しく説明すると、結晶母体としては金属酸化物が好ましく、例えば、(X)3Al1627、(X)4Al1425、(X)3Al2Si210、(X)4Si28、(X)2Si26、(X)227、(X)225、(X)5(PO43Cl、(X)2Si38−2(X)Cl2
〔ここで、Xはアルカリ土類金属を表す。なお、Xで表されるアルカリ土類金属は単一成分でも2種類以上の混合成分でもよく、その混合比率は任意でよい。〕のようなアルカリ土類金属で置換された酸化アルミニウム、酸化ケイ素、リン酸、ハロリン酸等が代表的な結晶母体として挙げられる。
In more detail, the crystal matrix is preferably a metal oxide, such as (X) 3 Al 16 O 27 , (X) 4 Al 14 O 25 , (X) 3 Al 2 Si 2 O 10 , ( X) 4 Si 2 O 8 , (X) 2 Si 2 O 6 , (X) 2 P 2 O 7 , (X) 2 P 2 O 5 , (X) 5 (PO 4 ) 3 Cl, (X) 2 Si 3 O 8 -2 (X) Cl 2
[Wherein X represents an alkaline earth metal. The alkaline earth metal represented by X may be a single component or two or more mixed components, and the mixing ratio may be arbitrary. As typical crystal bases, aluminum oxide, silicon oxide, phosphoric acid, halophosphoric acid and the like substituted with an alkaline earth metal such as

その他の好ましい結晶母体としては、亜鉛の酸化物および硫化物、イットリウムやガドリウム、ランタン等の希土類金属の酸化物およびその酸化物の酸素の一部を硫黄原子に換えた(硫化物)もの、および希土類金属の硫化物およびそれらの酸化物や硫化物に任意の金属元素を配合したもの等が挙げられる。   Other preferable crystal matrixes include oxides and sulfides of zinc, oxides of rare earth metals such as yttrium, gadolinium and lanthanum, and oxides in which part of the oxygen is replaced with sulfur atoms (sulfides), and Examples include rare earth metal sulfides and oxides or sulfides thereof containing any metal element.

結晶母体の好ましい例を以下に列挙する。   Preferred examples of the crystal matrix are listed below.

ZnS、Y22S、Y3Al512、Y2SiO10、Zn2SiO4、Y23、BaMgAl1017、BaAl1219、(Ba、Sr、Mg)O・aAl23、(Y、Gd)BO3、(Zn、Cd)S、SrGa24、SrS、GaS、SnO2、Ca10(PO46(F、Cl)2、(Ba、Sr)(Mg、Mn)Al1017、(Sr、Ca、Ba、Mg)10(PO46Cl2、(La、Ce)PO4、CeMgAl1119、GdMgB510、Sr227、Sr4Al1425、Y2SO4、Gd22S、Gd23、YVO4、Y(P,V)O4等である。 ZnS, Y 2 O 2 S, Y 3 Al 5 O 12 , Y 2 SiO 10 , Zn 2 SiO 4 , Y 2 O 3 , BaMgAl 10 O 17 , BaAl 12 O 19 , (Ba, Sr, Mg) O · aAl 2 O 3 , (Y, Gd) BO 3 , (Zn, Cd) S, SrGa 2 S 4 , SrS, GaS, SnO 2 , Ca 10 (PO 4 ) 6 (F, Cl) 2 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 , (La, Ce) PO 4 , CeMgAl 11 O 19 , GdMgB 5 O 10 , Sr 2 P 2 O 7 , Sr 4 Al 14 O 25 , Y 2 SO 4 , Gd 2 O 2 S, Gd 2 O 3 , YVO 4 , Y (P, V) O 4 and the like.

以上の結晶母体及び賦活剤または共賦活剤は、同族の元素と一部置き換えたものでも構わないし、とくに元素組成に制限はなく、紫外領域の光または紫色領域の光を吸収して可視光を発するものであればよい。   The above crystal matrix and activator or coactivator may be partially replaced with elements of the same family, and there is no particular restriction on the element composition, and visible light is absorbed by absorbing light in the ultraviolet region or light in the purple region. Anything can be used.

本発明において、無機蛍光体の賦活剤、共賦活剤として好ましいものは、La、Eu、Tb、Ce、Yb、Pr等に代表されるランタノイド元素のイオン、Ag、Mn、Cu、In、Al 等の金属 のイオンであり、そのドープ量は母体に対して0.001〜100モル%が好ましく、0.01〜50モル%がさらに好ましい。   In the present invention, preferred as the activator and coactivator of the inorganic phosphor are ions of lanthanoid elements represented by La, Eu, Tb, Ce, Yb, Pr and the like, Ag, Mn, Cu, In, Al, etc. The metal ion is preferably from 0.001 to 100 mol%, more preferably from 0.01 to 50 mol%, based on the matrix.

賦活剤、共賦活剤は結晶母体を構成するイオンの一部を上記ランタノイドのようなイオンに置き換えることでその結晶の中にドープされる。   The activator and coactivator are doped into the crystal by replacing some of the ions constituting the crystal matrix with ions such as the above lanthanoids.

蛍光体結晶の実際の組成は、厳密に記載すれば以下のような組成式になるが、賦活剤の量の大小は本質的な蛍光特性に影響を及ぼさないことが多いので、以下特にことわりのない限り下記xやyの数値は記載しないこととする。例えばSr4-xAl1425:Eu2+ xは、本発明においてはSr4Al1425:Eu2+と表記する。 Strictly speaking, the actual composition of the phosphor crystal has the following composition formula, but since the amount of the activator often does not affect the intrinsic fluorescence properties, the following is especially true: Unless otherwise specified, the following numerical values of x and y are not described. For example, Sr 4-x Al 14 O 25 : Eu 2+ x is expressed as Sr 4 Al 14 O 25 : Eu 2+ in the present invention.

以下に代表的な無機蛍光体(結晶母体と賦活剤によって構成される無機蛍光体)の組成式を記載するが、本発明はこれらに限定されるものではない。(Baz Mg1-z3-x-yAl1627:Eu2+ x,Mn2+ y、Sr4-xAl1425:Eu2+ x、(Sr1-z Baz1-xl2Si28:Eu2+ x、Ba2-xSiO4:Eu2+ x、Sr2-xSiO4:Eu2+ x、Mg2-xSiO4:Eu2+ x、(BaSr)1-xSiO4:Eu2+ x、Y2-x-ySiO5:Ce3+ x,Tb3+ y、Sr2-x25:Eu2+ x、Sr2-x27:Eu2+ x、(BayCazMg1-y-z5-x(PO43Cl:Eu2+ x、Sr2-xSi38−2SrCl2:Eu2+ x[x,yおよびzはそれぞれ1以下の任意の数を表す。]
以下に本発明に好ましく使用される無機蛍光体を示すが、本発明はこれらの化合物に限定されるものではない。
[青色発光 無機蛍光化合物]
(BL−1) Sr227:Sn4+
(BL−2) Sr4Al1425:Eu2+
(BL−3) BaMgAl1017:Eu2+
(BL−4) SrGa24:Ce3+
(BL−5) CaGa24:Ce3+
(BL−6) (Ba、Sr)(Mg、Mn)Al1017:Eu2+
(BL−7) (Sr、Ca、Ba、Mg)10(PO46Cl2:Eu2+
(BL−8) BaAl2SiO8:Eu2+
(BL−9) Sr227:Eu2+
(BL−10) Sr5(PO43Cl:Eu2+
(BL−11) (Sr,Ca,Ba)5(PO43Cl:Eu2+
(BL−12) BaMg2Al1627:Eu2+
(BL−13) (Ba,Ca)5(PO43Cl:Eu2+
(BL−14) Ba3MgSi28:Eu2+
(BL−15) Sr3MgSi28:Eu2+
[緑色発光 無機蛍光化合物]
(GL−1) (BaMg)Al1627:Eu2+,Mn2+
(GL−2) Sr4Al1425:Eu2+
(GL−3) (SrBa)Al2Si28:Eu2+
(GL−4) (BaMg)2SiO4:Eu2+
(GL−5) Y2SiO5:Ce3+,Tb3+
(GL−6) Sr227−Sr225:Eu2+
(GL−7) (BaCaMg)5(PO43Cl:Eu2+
(GL−8) Sr2Si38−2SrCl2:Eu2+
(GL−9) Zr2SiO4、MgAl1119:Ce3+,Tb3+
(GL−10) Ba2SiO4:Eu2+
(GL−11) Sr2SiO4:Eu2+
(GL−12) (BaSr)SiO4:Eu2+
[赤色発光 無機蛍光化合物]
(RL−1) Y22S:Eu3+
(RL−2) YAlO3:Eu3+
(RL−3) Ca22(SiO46:Eu3+
(RL−4) LiY9(SiO462:Eu3+
(RL−5) YVO4:Eu3+
(RL−6) CaS:Eu3+
(RL−7) Gd23:Eu3+
(RL−8) Gd22S:Eu3+
(RL−9) Y(P,V)O4:Eu3+
本発明に用いられる無機蛍光体は、発光強度の観点から、製造時に機械的破砕工程を経ない、つまりビルドアップ法で合成されるものが好ましく、特にSol−Gel法等による液相法によって製造されるものが好ましい。また、組成上は無機酸化物が母体となっているものが好ましい。
The composition formulas of typical inorganic phosphors (inorganic phosphors composed of a crystal matrix and an activator) are described below, but the present invention is not limited to these. (Ba z Mg 1-z) 3-xy Al 16 O 27: Eu 2+ x, Mn 2+ y, Sr 4-x Al 14 O 25: Eu 2+ x, (Sr 1-z Ba z) 1- x A l2 Si 2 O 8: Eu 2+ x, Ba 2-x SiO 4: Eu 2+ x, Sr 2-x SiO 4: Eu 2+ x, Mg 2-x SiO 4: Eu 2+ x, ( BaSr) 1-x SiO 4: Eu 2+ x, Y 2-xy SiO 5: Ce 3+ x, Tb 3+ y, Sr 2-x P 2 O 5: Eu 2+ x, Sr 2-x P 2 O 7: Eu 2+ x, ( Ba y Ca z Mg 1-yz) 5-x (PO 4) 3 Cl: Eu 2+ x, Sr 2-x Si 3 O 8 -2SrCl 2: Eu 2+ x [ x, y and z each represents an arbitrary number of 1 or less. ]
The inorganic phosphors preferably used in the present invention are shown below, but the present invention is not limited to these compounds.
[Blue light emitting inorganic fluorescent compound]
(BL-1) Sr 2 P 2 O 7 : Sn 4+
(BL-2) Sr 4 Al 14 O 25 : Eu 2+
(BL-3) BaMgAl 10 O 17 : Eu 2+
(BL-4) SrGa 2 S 4 : Ce 3+
(BL-5) CaGa 2 S 4 : Ce 3+
(BL-6) (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+
(BL-7) (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+
(BL-8) BaAl 2 SiO 8 : Eu 2+
(BL-9) Sr 2 P 2 O 7 : Eu 2+
(BL-10) Sr 5 (PO 4 ) 3 Cl: Eu 2+
(BL-11) (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+
(BL-12) BaMg 2 Al 16 O 27 : Eu 2+
(BL-13) (Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+
(BL-14) Ba 3 MgSi 2 O 8 : Eu 2+
(BL-15) Sr 3 MgSi 2 O 8 : Eu 2+
[Green light emitting inorganic fluorescent compound]
(GL-1) (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+
(GL-2) Sr 4 Al 14 O 25 : Eu 2+
(GL-3) (SrBa) Al 2 Si 2 O 8 : Eu 2+
(GL-4) (BaMg) 2 SiO 4 : Eu 2+
(GL-5) Y 2 SiO 5: Ce 3+, Tb 3+
(GL-6) Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu 2+
(GL-7) (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+
(GL-8) Sr 2 Si 3 O 8 -2SrCl 2: Eu 2+
(GL-9) Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+
(GL-10) Ba 2 SiO 4 : Eu 2+
(GL-11) Sr 2 SiO 4 : Eu 2+
(GL-12) (BaSr) SiO 4 : Eu 2+
[Red emission inorganic fluorescent compound]
(RL-1) Y 2 O 2 S: Eu 3+
(RL-2) YAlO 3 : Eu 3+
(RL-3) Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+
(RL-4) LiY 9 (SiO 4 ) 6 O 2 : Eu 3+
(RL-5) YVO 4 : Eu 3+
(RL-6) CaS: Eu 3+
(RL-7) Gd 2 O 3 : Eu 3+
(RL-8) Gd 2 O 2 S: Eu 3+
(RL-9) Y (P, V) O 4 : Eu 3+
From the viewpoint of emission intensity, the inorganic phosphor used in the present invention is preferably not subjected to a mechanical crushing process at the time of production, that is, synthesized by a build-up method, and particularly produced by a liquid phase method such as a Sol-Gel method. Are preferred. Moreover, what has an inorganic oxide as a base | matrix is preferable on a composition.

Sol−Gel法による製造方法とは、例えば、作花済夫著「ゾル−ゲル法の応用」(1997年アグネ承風社発行)に詳しく書かれているが、基本的には、溶液から出発し、溶液のゾル化、ゲル化を経て材料を溶融法よりも低温で合成する方法を意味し、本発明でいう「Sol−Gel法」とは、蛍光体製造の少なくとも1工程で液相法での反応を行うことを指し、通常の無機蛍光体合成に適用される溶融反応で行う合成法と区別することができる。本発明のSol−Gel法は、一般的には母体または賦活剤または共賦活剤に用いる元素(金属)を例えばテトラメトキシシラン(Si(OCH34)やユーロピウム−2,4−ペンタンジオネート(Eu3+(CH3COCH=C(O−)CH33)等の金属アルコキシドや金属錯体、またはそれらの有機溶媒溶液に金属単体を加えて作るダブルアルコキシド(例えばAl(OBu)3の2−ブタノール溶液に金属マグネシウムを加えて作るMg〔Al(OBu)32等)、金属ハロゲン化物、有機酸の金属塩、金属単体として必要量混合し、液相状態で熱的または化学的に重縮合することによる製造方法を意味し、必要に応じて焼成や還元処理等を施してもよい。 The manufacturing method based on the Sol-Gel method is described in detail in, for example, “Application of the Sol-Gel Method” by Sakuo Sakuo (published by Agne Jofusha, 1997). Means a method of synthesizing a material at a lower temperature than the melting method through sol-formation and gelation of the solution. The “Sol-Gel method” in the present invention is a liquid-phase method in at least one step of phosphor production. It can be distinguished from a synthesis method performed by a melt reaction applied to normal inorganic phosphor synthesis. In the Sol-Gel method of the present invention, generally, an element (metal) used for a base, an activator or a coactivator is, for example, tetramethoxysilane (Si (OCH 3 ) 4 ) or europium-2,4-pentandionate. Metal alkoxides and metal complexes such as (Eu 3 + (CH 3 COCH═C (O—) CH 3 ) 3 ), or double alkoxides made by adding a simple metal to an organic solvent solution thereof (for example, Al (OBu) 3 (Mg [Al (OBu) 3 ] 2 etc.) made by adding magnesium metal to 2-butanol solution), metal halide, metal salt of organic acid, necessary amount of metal as a simple substance, and mixed in the liquid phase thermally or chemically Means a production method by polycondensation, and may be subjected to firing, reduction treatment or the like, if necessary.

なお、本発明で用いられる金属アルコキシド、金属ハロゲン化物、金属塩または金属の「金属」とは、一般に周期律表等で定義されている「金属類(Metals)」の他に「遷移金属(Transition Metals)」の全ての元素、「ランタノイド」の全ての元素、「アクチノイド」の全ての元素、および「非金属(Non Metals)」として定義されるホウ素、珪素(シリコン)を含んだものとして定義する。   The “metal” of the metal alkoxide, metal halide, metal salt or metal used in the present invention is generally “transition metal (transition metal)” in addition to “metals” defined in the periodic table or the like. All elements of “Metals”, all elements of “lanthanoid”, all elements of “actinoid”, and boron, silicon defined as “Non Metals” .

上記無機蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、さらにはそれらの併用によるもの等が挙げられる。   The above-mentioned inorganic phosphor may be subjected to surface modification treatment as necessary. The method is based on chemical treatment such as a silane coupling agent, or physical treatment by adding fine particles of submicron order. And those by the combined use thereof.

本発明で用いられるシランカップリング剤としては、日本ユニカー株式会社発行(1997年8月2日)の「NUCシリコーン シランカップリング剤」カタログに記載されているものがそのまま使え、その具体例としては、例えば、β−(3,4−エポキシシクロヘキシル)−エチルトリアルコキシシラン、グリシジルオキシエチルトリエトキシシラン、γ−アクリロイルオキシ−n−プロピルトリ−n−プロピルオキシシラン、γ−メタクリロイルオキシ−n−プロピル−n−プロピルオキシシラン、ジ(γ−アクリロイルオキシ−n−プロピル)ジ−n−プロピルオキシシラン、アクリロイルオキシジメトキシエチルシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどが挙げられる。   As the silane coupling agent used in the present invention, those described in the “NUC silicone silane coupling agent” catalog issued by Nihon Unicar Co., Ltd. (August 2, 1997) can be used as they are, and specific examples thereof are as follows. For example, β- (3,4-epoxycyclohexyl) -ethyltrialkoxysilane, glycidyloxyethyltriethoxysilane, γ-acryloyloxy-n-propyltri-n-propyloxysilane, γ-methacryloyloxy-n-propyl -N-propyloxysilane, di (γ-acryloyloxy-n-propyl) di-n-propyloxysilane, acryloyloxydimethoxyethylsilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (Aminoethyl) γ-aminopropylmethyl Dimethoxysilane, .gamma.-aminopropyltriethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, etc. .gamma.-mercaptopropyl trimethoxysilane.

本発明で用いられる微粒子としては、無機微粒子であることが好ましく、例えば、シリカ、チタニア、ジルコニア、酸化亜鉛等の微粒子が挙げられる。   The fine particles used in the present invention are preferably inorganic fine particles, and examples thereof include fine particles of silica, titania, zirconia, zinc oxide and the like.

また、特にSol−Gel法で製造する場合、蛍光体の前駆溶液または一次粒子を含む液を透明基板に印刷法やインクジェット法等でパターニングした後に焼成や還元処理等の結晶化処理または高輝度化処理を施しても良い。   In particular, when manufacturing by the Sol-Gel method, a phosphor precursor solution or a liquid containing primary particles is patterned on a transparent substrate by a printing method, an inkjet method, or the like, followed by crystallization treatment such as baking or reduction treatment or high brightness. Processing may be performed.

次に、本発明における希土類錯体系蛍光体としては、希土類金属としてCe、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等を有するものが挙げられ、錯体を形成する有機配位子としては、芳香族系、非芳香族系のどちらでも良く、好ましく下記一般式(1)又は一般式(R2)で表される化合物が好ましい。   Next, examples of the rare earth complex phosphor in the present invention include those having Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, etc. as rare earth metals, The organic ligand forming the complex may be either aromatic or non-aromatic, and is preferably a compound represented by the following general formula (1) or general formula (R2).

一般式(1)
Xa−(La)−(Lb)n−(Lc)−Ya
[式中、La、Lb、Lcはそれぞれ独立に2個以上の結合手を持つ原子を表わし、nは0または1を表わし、XaはLaの隣接位に配位可能な原子を有する置換基を表わし、YaはLcの隣接位に配位可能な原子を有する置換基を表わす。さらにXaの任意の部分とLaとは互いに縮合して環を形成してもよく、Yaの任意の部分とLcとは互いに縮合して環を形成してもよく、LaとLcとは互いに縮合して環を形成してもよく、さらに分子内に芳香族炭化水素環または芳香族複素環が少なくとも一つ存在する。ただし、Xa−(La)−(Lb)n−(Lc)−Yaがβ−ジケトン誘導体やβ−ケトエステル誘導体、β−ケトアミド誘導体又は前記ケトンの酸素原子を硫黄原子又は−N(R1)−に置き換えたもの、クラウンエーテルやアザクラウンエーテルまたはチアクラウンエーテルまたはクラウンエーテルの酸素原子を任意の数硫黄原子または−N(R1)−に置き換えたクラウンエーテルを表わす場合には芳香族炭化水素環または芳香族複素環は無くてもよい。]
一般式(1)において、XaおよびYaで表される配位可能な原子とは、具体的には酸素原子、窒素原子、硫黄原子、セレン原子、テルル原子であり、特に酸素原子、窒素原子、硫黄原子であることが好ましい。
General formula (1)
Xa- (La)-(Lb) n- (Lc) -Ya
[In the formula, La, Lb, and Lc each independently represent an atom having two or more bonds, n represents 0 or 1, and Xa represents a substituent having an atom capable of coordinating at an adjacent position of La. Y represents a substituent having an atom capable of coordinating at the adjacent position of Lc. Further, any part of Xa and La may be condensed with each other to form a ring, any part of Ya and Lc may be condensed with each other to form a ring, and La and Lc are condensed with each other. Thus, a ring may be formed, and at least one aromatic hydrocarbon ring or aromatic heterocyclic ring exists in the molecule. However, Xa- (La)-(Lb) n- (Lc) -Ya is a β-diketone derivative, β-ketoester derivative, β-ketoamide derivative, or oxygen atom of the ketone as a sulfur atom or —N (R1) —. In the case of representing a substituted, crown ether, azacrown ether, thiacrown ether or crown ether in which the oxygen atom of the crown ether is replaced with any number of sulfur atoms or —N (R1) —, an aromatic hydrocarbon ring or aromatic There may be no group heterocycle. ]
In the general formula (1), the coordinateable atoms represented by Xa and Ya are specifically an oxygen atom, a nitrogen atom, a sulfur atom, a selenium atom, and a tellurium atom, particularly an oxygen atom, a nitrogen atom, A sulfur atom is preferred.

一般式(1)において、La、Lb、Lcで表される2個以上の結合手を持つ原子としては、特に制限はないが、代表的には炭素原子、酸素原子、窒素原子、シリコン原子、チタン原子等が挙げられるが、このましいものは炭素原子である。   In the general formula (1), the atom having two or more bonds represented by La, Lb, and Lc is not particularly limited, but is typically a carbon atom, an oxygen atom, a nitrogen atom, a silicon atom, Titanium atoms and the like can be mentioned, but a preferable one is a carbon atom.

以下に一般式(1)で表される希土類錯体系蛍光体の具体例を示すが、本発明はこれらに限定されるものではない。   Specific examples of the rare earth complex phosphor represented by the general formula (1) are shown below, but the present invention is not limited thereto.

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

次に、色変換フィルターについて説明する。 Next , the color conversion filter will be described.

色変換フィルターとは、光源の色(発光色)を所望の色に変換するのに用いられる波長変換素子のことであり、基本的には光源の最大極大波長よりも10nm以上長波長に波長を変換できる波長変換素子であり、具体的な用途としては、特開平3−152897号、同9−245511号、同11−297477号等に記載されたフルカラーディスプレイ用フィルター(青色の光源から緑および赤に変換し、それらをストライプ状に配置することによって青、緑、赤の発光を可能とする色変換フィルター)、照明や液晶ディスプレーのバックライト用の白色発光用フィルター(400〜700nmの可視領域の光を幅広く発光させる色変換フィルター)、ネオンサインや自動車の計器類の部分発光用フィルター(必要に応じた場所に必要な色を表示するための色変換フィルター)などがその代表例として挙げられる。   A color conversion filter is a wavelength conversion element used to convert the color of a light source (emission color) to a desired color. Basically, the wavelength is longer than the maximum maximum wavelength of the light source by 10 nm or longer. This is a wavelength conversion element that can be converted. Specific applications include filters for full-color displays described in JP-A Nos. 3-152897, 9-245511, 11-297477, etc. (from blue light sources to green and red By converting them into stripes, they are arranged in stripes to make color conversion filters that can emit blue, green, and red light, and white light emission filters for lighting and liquid crystal display backlights (400-700 nm in the visible region). Color conversion filters that emit a wide range of light), partial emission filters for neon signs and automotive instruments (necessary colors where needed) And color conversion filter) for displaying can be mentioned as a typical example.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this.

実施例(1−1) エレクトロルミネッセンス素子(UV−1)の作製
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)〔1,1’−ビフェニル〕−4,4’−ジアミン(TPD)200mgを入れ、別のモリブデン製抵抗加熱ボートにp−クウオーターフェニル(PQP)200mgを入れ、さらに別のモリブデン製抵抗加熱ボートにトリス(8−ヒドロキシキノリナート)アルミニウム(Alq3)を200mg入れ、真空蒸着装置に取付けた。次いで、真空槽を4×10-4Paまで減圧した後、TPDの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで透明支持基板に蒸着し、膜厚60nmの正孔注入層を設けた。さらに、PQPの入った前記加熱ボートを通電して220℃まで加熱し、蒸着速度0.1〜0.3nm/secで前記正孔注入層上に蒸着して膜厚40nmの発光層を設けた。さらに、Alq3の入った前記加熱ボートを通電して250℃まで加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚20nmの電子注入層を設けた。なお、蒸着時の基板温度は室温であった。次に、真空槽をあけ、電子注入層の上にステンレス鋼製の長方形穴あきマスクを設置し、一方、モリブデン製抵抗加熱ボートにマグネシウム3gを入れ、タングステン製の蒸着用バスケットに銀を0.5g入れ、再び真空槽を2×10-4Paまで減圧した後、マグネシウム入りのボートに通電して蒸着速度1.5〜2.0nm/secでマグネシウムを蒸着し、この際、同時に銀のバスケットを加熱し、蒸着速度0.1nm/secで銀を蒸着し、前記マグネシウムと銀との混合物からなる対向電極とすることにより、エレクトロルミネッセンス素子UV−1を作製した。
Example (1-1) Fabrication of electroluminescence element (UV-1) After patterning on a substrate (NA-45 manufactured by NH Techno Glass) having a 150 nm ITO film formed on glass as an anode, this ITO transparent electrode The transparent support substrate provided with was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while N, N′-diphenyl-N, N′-bis (3-methylphenyl) [1,1 200 mg of '-biphenyl] -4,4'-diamine (TPD), 200 mg of p-quarterphenyl (PQP) in another molybdenum resistance heating boat, and tris (8 - hydroxyquinolinato) aluminum (Alq 3) was placed 200mg, mounted in a vacuum deposition apparatus. Next, after reducing the pressure of the vacuum chamber to 4 × 10 −4 Pa, power is supplied to the heating boat containing TPD and heated to 220 ° C., and the transparent support substrate is deposited at a deposition rate of 0.1 to 0.3 nm / sec. Evaporation was performed to provide a hole injection layer having a thickness of 60 nm. Furthermore, the heating boat containing PQP was energized and heated to 220 ° C., and deposited on the hole injection layer at a deposition rate of 0.1 to 0.3 nm / sec to provide a light emitting layer having a thickness of 40 nm. . Further, the heating boat containing Alq 3 was energized and heated to 250 ° C., and deposited on the light emitting layer at a deposition rate of 0.1 nm / sec to provide an electron injection layer having a thickness of 20 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature. Next, a vacuum chamber is opened, and a stainless steel rectangular perforated mask is placed on the electron injection layer. On the other hand, 3 g of magnesium is placed in a molybdenum resistance heating boat, and 0.02 of silver is placed in a tungsten vapor deposition basket. After putting 5 g and depressurizing the vacuum tank to 2 × 10 −4 Pa again, energizing the boat containing magnesium to deposit magnesium at a deposition rate of 1.5 to 2.0 nm / sec. Was heated, and silver was deposited at a deposition rate of 0.1 nm / sec to form a counter electrode made of the mixture of magnesium and silver, thereby producing an electroluminescent device UV-1.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、発光最大波長380nmの発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, emission with a maximum emission wavelength of 380 nm was obtained.

実施例(1−2) 比較用エレクトロルミネッセンス素子(B−1)の作製
(1−1)の発光体p−クウオーターフェニル(PQP)を4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(DPVBi)に置き換えた以外は(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(B−1)を作製した。
Example (1-2) Production of Comparative Electroluminescent Element (B-1) Luminescent substance p-quarterphenyl (PQP) of (1-1) was converted to 4,4′-bis (2,2′-diphenylvinyl). ) A comparative electroluminescent device (B-1) produced in exactly the same manner as (1-1) except that it was replaced with biphenyl (DPVBi).

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、発光最大波長475nmの青色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, blue light emission with a maximum emission wavelength of 475 nm was obtained.

Figure 0004798011
Figure 0004798011

実施例(2−1) 例示化合物(GL−10) Ba2SiO4:Eu2+の合成
0.016モルのアンモニアを含有するアンモニア水にエタノール150mlと水150mlを加えアルカリ液を作製した。
Example (2-1) Example Compound (GL-10) Synthesis of Ba 2 SiO 4 : Eu 2+ 150 ml of ethanol and 150 ml of water were added to ammonia water containing 0.016 mol of ammonia to prepare an alkaline solution.

さらにテトラエトキシシラン8.33g(0.04モル)とユーロピウム(III)アセチルアセトナート錯体2水和物0.097g(0.2ミリモル)を150mlのエタノールに溶解した溶液を室温下にて前記アルカリ液中に滴下速度約1ml/minで攪拌しながら添加し、ゾル液を調整した。得られたゾルをエバポレータで約15倍(約30ml)に濃縮し、これに0.3mol/lの硝酸バリウム水溶液を295ml添加しゲル化させた。   Further, a solution prepared by dissolving 8.33 g (0.04 mol) of tetraethoxysilane and 0.097 g (0.2 mmol) of europium (III) acetylacetonate complex dihydrate in 150 ml of ethanol was added to the alkali at room temperature. The solution was added to the solution while stirring at a dropping rate of about 1 ml / min to prepare a sol solution. The obtained sol was concentrated about 15 times (about 30 ml) with an evaporator, and 295 ml of 0.3 mol / l barium nitrate aqueous solution was added thereto to cause gelation.

得られた湿潤ゲルは密閉容器中、60℃で一晩熟成させた。その後エタノール(約300ml)中に攪拌分散させ、濾紙(Advantec 5A)を用いた吸引濾過により分取し、室温で乾燥した。乾燥ゲルは、5% H2−N2雰囲気中、1000℃で2時間熱処理を施し、太陽光下で薄緑色に光る無機蛍光体 GL−10 (Ba2SiO4:Eu2+0.005) 2.7gを得た。 The obtained wet gel was aged in a sealed container at 60 ° C. overnight. Thereafter, the mixture was stirred and dispersed in ethanol (about 300 ml), collected by suction filtration using filter paper (Advantec 5A), and dried at room temperature. The dried gel is an inorganic phosphor GL-10 (Ba 2 SiO 4 : Eu 2+ 0.005) that is heat-treated at 1000 ° C. for 2 hours in a 5% H 2 —N 2 atmosphere and glows light green under sunlight. 2.7 g was obtained.

GL−10 の成分組成はXRDスペクトルにより分析した。その結果主成分はBa2SiO4、微量含まれる副成分はBaSiO3とBa3SiO5であることがわかった。 The component composition of GL-10 was analyzed by XRD spectrum. As a result, it was found that the main component was Ba 2 SiO 4 and the minor components contained were a trace amount of BaSiO 3 and Ba 3 SiO 5 .

GL−10の平均粒径は1.05μm、発光極大波長は500nm(励起光405nm)の緑色に発光する蛍光体であることがわかった。   GL-10 was found to be a phosphor that emits green light having an average particle diameter of 1.05 μm and an emission maximum wavelength of 500 nm (excitation light 405 nm).

また、同様な方法で、赤色発光微粒子無機蛍光体(RL−5)(平均粒径約0.85μm、極大発光波長610nm(励起光375nm))と青色発光無機蛍光体(BL−3)(平均粒径0.90μm、極大発光波長432nm(励起光375nm))を得た。   Further, in the same manner, red-emitting fine particle inorganic phosphor (RL-5) (average particle diameter of about 0.85 μm, maximum emission wavelength 610 nm (excitation light 375 nm)) and blue-emitting inorganic phosphor (BL-3) (average) A particle size of 0.90 μm and a maximum emission wavelength of 432 nm (excitation light: 375 nm)) were obtained.

実施例(2−2) 微粒子無機蛍光体の表面物性改質
平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ−グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と無機蛍光体(GL−10)20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質した(GL−10)を得た。
Example (2-2) Surface property modification of fine particle inorganic phosphor 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of Aerosil having an average particle diameter of 5 nm, and the system was opened for 1 hour at room temperature. Stir. The mixture and 20 g of inorganic phosphor (GL-10) were transferred to a mortar and thoroughly mixed, and then heated in a 70 ° C. oven for 2 hours and further in a 120 ° C. oven for 2 hours to modify the surface (GL-10). )

また、同様にして、RL−5とBL−3の表面改質も行った。   Similarly, the surface modification of RL-5 and BL-3 was also performed.

実施例(2−3) 比較無機蛍光体の表面物性改
機蛍光体(RL−5)を化成オプトニクス社製KX−605(ZnSiO:Mn2+、平均粒径7μm、極大発光波長570nm(励起光343nm))に置き換えた以外は上記(2−2)記載の方法と全く同じ方法でKX−605の表面改質を行った。
Surface properties improvements of Example (2-3) Comparative inorganic phosphor
No aircraft phosphor (RL-5) a chemical conversion Optonix Co. KX-605: but substituting the (Zn 2 SiO 4 Mn 2+, average particle size 7 [mu] m, the maximum emission wavelength 570 nm (the excitation light 343 nm)) of the (2 -2) Surface modification of KX-605 was performed in exactly the same manner as described.

実施例(3−1) 無機蛍光体を用いた色変換フィルターの作製
上記の表面改質を施した赤色発光無機蛍光体(RL−5)10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して色変換フィルター(F−1)を作成した。
Example (3-1) red manufactured was subjected to a surface modification of the color conversion filter using the inorganic fluorescent substance emitting inorganic phosphor (RL-5) 10 g, a mixed solution of toluene / ethanol = 1/1 30 g of butyral (BX-1) dissolved in (300 g) was added and stirred, and then coated on glass with a wet film thickness of 200 μm. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to prepare a color conversion filter (F-1).

また、これと同じ方法で緑色発光無機蛍光体(GL−10)を塗設した色変換フィルター(F−2)および青色発光無機蛍光体(BL−3)を塗設した色変換フィルター(F−3)を作成した。   In addition, a color conversion filter (F-2) coated with a green light emitting inorganic phosphor (GL-10) and a color conversion filter (F−) coated with a blue light emitting inorganic phosphor (BL-3) by the same method. 3) was created.

さらに、同様な方法で比較無機蛍光体KX−605(表面改質処理を施したもの)を塗設した比較用色変換カラーフィルター(F−4)を作成した。   Further, a comparative color conversion color filter (F-4) coated with a comparative inorganic phosphor KX-605 (surface-modified) was prepared in the same manner.

色変換フィルターF−1、F−2およびF−3はほぼ無色で透明なフィルターであるのに対し、比較の色変換フィルターF−4は白色に濁りほとんど光透過性がなかった。   The color conversion filters F-1, F-2, and F-3 are almost colorless and transparent filters, while the comparative color conversion filter F-4 is white and turbid with little light transmission.

可視光透過率はF−1が54%、F−2が57%、F−3が57%、F−4が4%であった。   Visible light transmittance was 54% for F-1, 57% for F-2, 57% for F-3, and 4% for F-4.

実施例(3−2) 希土類錯体系蛍光体を用いた色変換フィルターの作成
トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gに本発明の希土類錯体系蛍光体(RE−17)3gを溶解し、厚さ80μmのポリエーテルスルフォン(PES)フィルム上にWet膜厚150μmで塗布し、温風乾燥して、本発明の赤色発光の色変換フィルター(F−5)を作成した。
Example (3-2) Preparation of Color Conversion Filter Using Rare Earth Complex Phosphor The rare earth complex of the present invention was added to 30 g of butyral (BX-1) dissolved in a mixed solution (300 g) of toluene / ethanol = 1/1. 3 g of the system phosphor (RE-17) is dissolved, applied onto a polyethersulfone (PES) film having a thickness of 80 μm with a wet film thickness of 150 μm, dried with warm air, and the red color conversion filter of the present invention ( F-5) was prepared.

また、これと同様に、RE−17の替わりにRE−23を用いて、緑色発光の色変換フィルター(F−6)を作成した。 Similarly to this, using a RE-23 in place of RE-17, was prepared the color conversion filter of the green emission (F-6).

さらに、RE−17の替わりにRE−1を用いて、本発明の青色発光の色変換フィルター(F−7)を作成した。   Furthermore, the blue light emitting color conversion filter (F-7) of the present invention was prepared using RE-1 instead of RE-17.

実施例(3−3) 蛍光色素を用いた色変換フィルターの作成(比較)
上記(3−2)のRE−17の替わりに蛍光色素 クマリン6 2.0gと蛍光顔料ソルベントイエロー116 0.5gに替えた以外は(3−2)と同様な方法で比較となる青色光励起緑色発光の色変換フィルター(F−8)を作成した。
Example (3-3) Preparation of color conversion filter using fluorescent dye (comparison)
Instead of RE-17 in (3-2) above, blue light-excited green which is compared in the same manner as in (3-2) except that 2.0 g of fluorescent dye Coumarin 6 and 0.5 g of fluorescent pigment Solvent Yellow 116 are used. An emission color conversion filter (F-8) was prepared.

また、(3−2)のRE−17の替わりに蛍光顔料ソルベントイエロー116を1.0g、ベーシックバイオレット11を0.5gおよびローダミン6Gを0.5gに替えた以外は(3−2)と同様な方法で比較となる青色光励起赤色発光の色変換フィルター(F−9)を作成した。   Also, (3-2) is the same as (3-2) except that 1.0 g of fluorescent pigment solvent yellow 116, 0.5 g of basic violet 11 and 0.5 g of rhodamine 6G are substituted for RE-17. The color conversion filter (F-9) of blue light excitation red light emission used as a comparison was prepared.

(1−1)で作製したエレクトロルミネッセンス素子(UV−1)と(3−1)で作製した色変換フィルター(F−1)を重ね乾燥窒素ガス雰囲気下で12V直流電圧をかけると、色変換フィルターから発光する輝度は、26cd/m2であり、CIE色度座標はx=0.64、y=0.29で赤色(レッド)の発光がでていることを観測した。 When the electroluminescence element (UV-1) produced in (1-1) and the color conversion filter (F-1) produced in (3-1) are overlapped and a 12 V DC voltage is applied in a dry nitrogen gas atmosphere, color conversion is performed. Luminance emitted from the filter was 26 cd / m 2 , and CIE chromaticity coordinates were x = 0.64, y = 0.29, and red (red) emission was observed.

実施例(4−1) (エレクトロルミネッセンス素子の発光効率、寿命および色調の評価)
エレクトロルミネッセンス素子(UV−1)および比較用エレクトロルミネッセンス素子(B−1)の各々に色変換フィルターまたは比較の色変換フィルターを蛍光体層がエレクトロルミネッセンス素子の発光面と相対するように重ね、温度23℃、乾燥窒素ガス雰囲気下で12V直流電圧印加による連続点灯を行い、点灯開始時の発光効率(lm/W)および輝度の半減する時間を測定した。発光効率は試料No.7の発光効率を100とした時の相対値で表し、輝度の半減する時間は試料No.8の輝度が半減する時間を100とした相対値で表した。結果を表1に示す。
Example (4-1) (Evaluation of Luminous Efficiency, Lifetime and Color Tone of Electroluminescent Element)
A color conversion filter or a comparative color conversion filter is superimposed on each of the electroluminescence element (UV-1) and the comparative electroluminescence element (B-1) so that the phosphor layer faces the light emitting surface of the electroluminescence element, and the temperature is increased. Continuous lighting was performed by applying a DC voltage of 12 V in a dry nitrogen gas atmosphere at 23 ° C., and the light emission efficiency (lm / W) at the start of lighting and the time for halving the luminance were measured. Luminous efficiency was measured using sample no. 7 is expressed as a relative value when the luminous efficiency is set to 100. The time when the luminance of 8 is reduced by half is expressed as a relative value, where 100 is taken. The results are shown in Table 1.

Figure 0004798011
Figure 0004798011

表1より、赤色に発光する、色変換フィルターを有するエレクトロルミネッセンス素子(試料No.1および2)は比較の試料No.3に比べ発光効率が高く寿命も長いことがわかった。さらに発光色も試料の方が好ましい色調であった。 From Table 1, the electroluminescence elements (sample Nos. 1 and 2) that emit red light and have a color conversion filter are comparative sample Nos. It was found that the luminous efficiency was higher than that of 3, and the lifetime was longer. Further luminescent color was also preferable color tone towards the sample.

また、緑色に発光する、色変換フィルターを有するエレクトロルミネッセンス素子(試料No.4および6)は色変換フィルターに従来の無機系蛍光体を使用した比較の試料No.5に比べて圧倒的に発光効率が高いことがわかった。さらに青色発光のエレクトロルミネッセンス素子と色変換フィルターとの組み合わせである試料No.7と比べても、発光効率が高く、寿命も長いことがわかった。さらに発光色も比較試料より好ましい色調であった。 In addition, electroluminescent elements (sample Nos. 4 and 6) that emit green light and have a color conversion filter are comparative sample Nos. Using a conventional inorganic phosphor as the color conversion filter. It was found that the luminous efficiency was overwhelmingly higher than 5. Furthermore, sample No. 2 which is a combination of a blue light emitting electroluminescence element and a color conversion filter. Compared to 7, it was found that the luminous efficiency was high and the lifetime was long. Furthermore, the luminescent color was a more preferable color tone than the comparative sample.

さらに青色に発光する試料No.8および9においても高い発光効率と高い経時安定性が確認された。 Furthermore specimen you emits blue light No. Also in 8 and 9, high luminous efficiency and high temporal stability were confirmed.

実施例(5−1) (LED素子の評価)
日亜化学(株)製紫外発光LED素子(UV LED Lamp)にLED素子側に蛍光体層が近づくように色変換フィルター(F−1)、(F−5)をそれぞれ重ねて電圧をかけ発光したところ輝度、色調ともに良好な赤色光を発した。同様に色変換フィルター(F−2)、(F−6)をそれぞれ重ねて電圧をかけ発光したところ輝度、色調ともに良好な緑色光を発した。同様に色変換フィルター(F−3)、(F−7)をそれぞれ重ねて電圧をかけ発光したところ輝度、色調ともに良好な青色光を発した。
Example (5-1) (Evaluation of LED element)
Color conversion filters (F-1) and (F-5) are superimposed on the LED element side of the UV light emitting LED element (UV LED Lamp) manufactured by Nichia Corporation to apply light and emit light. As a result, red light with good luminance and color tone was emitted. Similarly, when the color conversion filters (F-2) and (F-6) were superposed on each other and voltage was applied to emit light, green light with good luminance and color tone was emitted. Similarly, when the color conversion filters (F-3) and (F-7) were superposed on each other and voltage was applied to emit light, blue light with good luminance and color tone was emitted.

実施例(6−1) 化合物N−7を使用したエレクトロルミネッセンス素子(S−N7)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物N−7に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−N7)を作製した。
Example (6-1) of the light emitter p- click water phenyl (PQP) the reduction compounds of Preparation Examples of electroluminescent devices using compound N7 (S-N7) (1-1 ) N- A comparative electroluminescent device (S-N7) produced in exactly the same manner as in Example (1-1) except that 7 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、紫色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, purple light emission was obtained.

実施例(6−2) 本発明の化合物A−3を使用したエレクトロルミネッセンス素子(S−A3)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を本発明の化合物A−3に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−A3)を作製した。
Example (6-2) Preparation of electroluminescent device (S-A3) using compound A-3 of the present invention The phosphor p-quarterphenyl (PQP) of Example (1-1) was converted to the compound of the present invention. A comparative electroluminescent element (S-A3) produced in exactly the same manner as in Example (1-1) except that A-3 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、薄紫色の発光を得た。   When a direct current of 10 volts was applied with the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, light-violet emission was obtained.

実施例(6−3) 化合物B−1を使用したエレクトロルミネッセンス素子(S−B1)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物B−1に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−B1)を作製した。
Example (6-3) of the light emitter p- click water phenyl (PQP) the reduction compound of Preparation Example (1-1) of compound electroluminescent devices using B1 (S-B1) B- A comparative electroluminescent device (S-B1) was produced in exactly the same manner as in Example (1-1) except that it was replaced with 1.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、紫色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, purple light emission was obtained.

実施例(6−4) 化合物D−5を使用したエレクトロルミネッセンス素子(S−D5)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物D−5に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−D5)を作製した。
Example (6-4) of the light emitter p- click water phenyl (PQP) the reduction compound of compound electroluminescent devices using D5 Preparation Example of (S-D5) (1-1) D- A comparative electroluminescent device (S-D5) was produced in exactly the same manner as in Example (1-1) except that it was replaced with 5.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、紫色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, purple light emission was obtained.

実施例(6−5) 化合物F−1を使用したエレクトロルミネッセンス素子(S−F1)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物F−1に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−F1)を作製した。
Example (6-5) of the light emitter p- click water phenyl (PQP) the reduction compound of Preparation Example (1-1) of compound electroluminescent devices using F1 (S-F1) F- A comparative electroluminescent device (S-F1) produced in exactly the same manner as in Example (1-1) except that 1 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、紫色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, purple light emission was obtained.

実施例(7−1) (本発明の近紫外〜紫発光化合物の評価)
上記実施例(6−1)〜(6−5)で作成した近紫外〜紫発光のエレクトロルミネッセンス素子およびその比較として実施例(1−1)で作成した従来の発光材料を用いて作成したエレクトロルミネッセンス素子(UV−1)の各々に色変換フィルター F−2を蛍光体層がエレクトロルミネッセンス素子の発光面と相対するように重ね、温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m)および輝度の半減する時間を測定した。発光輝度は試料No.701の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.701の輝度が半減する時間を100とした相対値で表した。結果を表2に示す。
Example (7-1) (Evaluation of Near-UV to Purple Luminescent Compound of the Present Invention)
Electro produced using the conventional luminescent material produced in Example (1-1) as a comparison with the electroluminescent device of near ultraviolet to purple light produced in the above Examples (6-1) to (6-5). Each of the luminescence elements (UV-1) is overlaid with a color conversion filter F-2 so that the phosphor layer faces the light emitting surface of the electroluminescence element, and is continuously applied by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. Lighting was performed, and the light emission luminance (cd / m 2 ) at the start of lighting and the time during which the luminance was reduced by half were measured. The emission luminance is the sample No. The relative luminance when the light emission luminance of 701 is 100 is shown. The time when the luminance of 701 is halved is expressed as a relative value with respect to 100. The results are shown in Table 2.

Figure 0004798011
Figure 0004798011

表2より明らかなように、発光化合物(A−3、B−1、D−5、F−1)を使用したエレクトロルミネッセンス素子(S−A3、S−B1、S−D5、S−F1)は、従来の発光化合物を用いたエレクトロルミネッセンス素子(UV−1)に比べ、同じ色変換フィルターを用いた際の発光輝度が非常に高く、さらに寿命も大幅に改善されることがわかった。なお、試料No.702は、前記発行化合物(N−1)を用いた。 Table 2 As is clear, light emission compound electroluminescent devices using (A3, B1, D5, F1 ) (S-A3, S-B1, S-D5, S-F1 ) Has a very high emission luminance when using the same color conversion filter as compared with the conventional electroluminescent device (UV-1) using a light emitting compound, and it has been found that the lifetime is greatly improved. Sample No. 702 used the said issue compound (N-1).

(可視領域に発光する化合物を使用したエレクトロルミネッセンス素子の作製)
実施例(8−1) 化合物C−8を使用したエレクトロルミネッセンス素子(S−C8)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物C−8に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−C8)を作製した。
(Preparation of electroluminescent device using that of compound to emit light in the visible region)
Example (8-1) of the light emitter p- click water phenyl (PQP) the reduction compound of Preparation Example (1-1) of the electroluminescent devices using compound C8 (S-C8) C- A comparative electroluminescent device (S-C8) produced in exactly the same manner as in Example (1-1) except that 8 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、青緑色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, blue-green light emission was obtained.

実施例(8−2) 化合物E−1を使用したエレクトロルミネッセンス素子(S−E1)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物E−1に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−E1)を作製した。
Example (8-2) of the light emitter p- click water phenyl (PQP) the reduction compound of Preparation Example (1-1) of compound electroluminescent devices using E1 (S-E1) E- A comparative electroluminescent device (S-E1) produced in exactly the same manner as in Example (1-1) except that 1 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、緑色の発光を得た。   When a direct current of 10 volts was applied using the ITO electrode of this element as an anode and the counter electrode made of magnesium and silver as a cathode, green light emission was obtained.

実施例(8−3) 化合物F−7を使用したエレクトロルミネッセンス素子(S−F7)の作製
実施例(1−1)の発光体p−クウオーターフェニル(PQP)を化合物F−7に置き換えた以外は実施例(1−1)と全く同じ方法で作製した比較用エレクトロルミネッセンス素子(S−F7)を作製した。
Example (8-3) of compound electroluminescent devices using F7 (S-F7) emitters p- click water phenyl (PQP) the reduction compound of Preparation Example (1-1) of F- A comparative electroluminescent device (S-F7) produced in exactly the same manner as in Example (1-1) except that 7 was replaced was produced.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、青色の発光を得た。   When a direct current of 10 volts was applied with the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, blue light emission was obtained.

(本発明の化合物と公知の類似化合物との性能比較)
実施例(9−1)比較のエレクトロルミネッセンス素子(CF−1)の作製
実施例(1−1)と同様な方法を用い、図101に示す構成のエレクトロルミネッセンス素子を作製した。
(Performance comparison between the compounds of the present invention and known similar compounds)
Example (9-1) Production of Comparative Electroluminescent Element (CF-1) An electroluminescent element having the structure shown in FIG. 101 was produced in the same manner as in Example (1-1).

第1層の正孔輸送層にNPBを70nmの厚さで、第2層の発光層にZn(BOX)2を50nmの厚さで、第3層の電子輸送層にOXD−7を30nmの厚さで積層した以外は実施例(1−1)のエレクトロルミネッセンス素子(UV−1)と全く同様の手法で比較のエレクトロルミネッセンス素子CF−1を作製した。   NPB is 70 nm thick for the first hole transport layer, Zn (BOX) 2 is 50 nm thick for the second light emitting layer, and OXD-7 is 30 nm thick for the third electron transport layer. A comparative electroluminescent element CF-1 was produced in exactly the same manner as the electroluminescent element (UV-1) of Example (1-1) except that the layers were stacked with a thickness.

この素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として直流10ボルトを印加したところ、青色の発光を得た。   When a direct current of 10 volts was applied with the ITO electrode of this element as the anode and the counter electrode made of magnesium and silver as the cathode, blue light emission was obtained.

Figure 0004798011
Figure 0004798011

実施例(9−2)トリアリールアミン系化合物の性能比較(正孔輸送材料としての評価)
実施例(9−1)で作製したエレクトロルミネッセンス素子(CF−1)の第1層の正孔輸送材料であるNPBのみを表3に示す化合物に替えたエレクトロルミネッセンス素子(9201〜9214)を作製した。
Example (9-2) Performance comparison of triarylamine compounds (Evaluation as hole transport materials)
Electroluminescent elements (9201 to 9214) in which only NPB, which is the hole transport material of the first layer of the electroluminescent element (CF-1) prepared in Example (9-1), was replaced with the compounds shown in Table 3 were manufactured. did.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9201の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9201の輝度が半減する時間を100とした相対値で表した。結果を表3に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. The relative luminance when the light emission luminance of 9201 is assumed to be 100 is shown. The time when the luminance of 9201 is halved is expressed as a relative value, where 100 is the time. The results are shown in Table 3.

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

Figure 0004798011
Figure 0004798011

表3から明らかなように、本発明のトリアリールアミン系化合物をエレクトロルミネッセンス素子の正孔輸送材料として使用した試料(No.9207〜921)は何れも発光輝度が高くまた素子の発光寿命も長いことがわかる。 As apparent from Table 3, the emission lifetime of the hole transporting material samples (No.9207~921 2) was used as both the high emission luminance also elements of triarylamine compound electroluminescent device of the present invention also I understand that it is long.

例えば、N,N,N−トリ−p−ターフェニルアミン(QA−1)を使用した試料(No.9201)に対し、結合軸を3つ有する本発明の化合物A−3では約2倍の発光輝度と2倍以上の寿命があることがわかる。   For example, with respect to the sample (No. 9201) using N, N, N-tri-p-terphenylamine (QA-1), the compound A-3 of the present invention having three bond axes is about twice as much. It can be seen that the light emission brightness and the lifetime are more than twice as long.

また、3つ以上のトリアリールアミン部分を有するQA−2およびQA−3を用いた試料(No.9202、9203)に対しては、3つのトリアリールアミン部分を持ち且つC2対称軸を分子内に3つ有する本発明の化合物(A−13)を使用した試料(9209)の方が発光輝度、寿命ともに高いことがわかった。   In addition, for samples using QA-2 and QA-3 having three or more triarylamine moieties (No. 9202, 9203), it has three triarylamine moieties and the C2 symmetry axis is intramolecular. It was found that the sample (9209) using the compound (A-13) of the present invention having three at the same time has higher emission luminance and lifetime.

同様に、ベンジジン(ナフチジン)誘導体である比較化合物QA−4、QA−5およびQA−6に比べ、本発明の化合物A−6、A−18、A−19およびF−1はそれを正孔輸送層に用いたエレクトロルミネッセンス素子において高い発光輝度と長い発光寿命とが両立されることがわかった。   Similarly, in comparison with comparative compounds QA-4, QA-5 and QA-6 which are benzidine (naphthidine) derivatives, the compounds A-6, A-18, A-19 and F-1 of the present invention do It was found that the electroluminescence device used for the transport layer has both a high emission luminance and a long emission lifetime.

つまり、分子内に2つ以上のアトロプ結合軸を持つビアリール基を有する本発明のトリアリールアミン系化合物は全般的に、アトロプ結合軸を持つビアリール基を有さないか、もしくは1個だけ有する化合物に比べ、それを正孔輸送材料に用いたエレクトロルミネッセンス素子において、正孔輸送機能が高くさらに寿命が長いことがこの結果から明らかになった。   That is, the triarylamine compound of the present invention having a biaryl group having two or more atrop bond axes in the molecule generally has no or only one biaryl group having an atrop bond axis. As a result, it was clarified from this result that the electroluminescence device using the same as the hole transport material has a higher hole transport function and a longer life.

実施例(9−3)トリアリールアミン系化合物の性能比較(正孔輸送材料兼発光材料としての評価)
実施例(9−1)および(9−2)のエレクトロルミネッセンス素子の作成において、第2層(発光層)を蒸着しない以外は同様の方法で図102に示す第1層(正孔輸送層兼発光層)と第3層(電子輸送層)の2層構成とした有機EL(9300〜9312)を作製した。
Example (9-3) Performance comparison of triarylamine compounds (evaluation as hole transporting material and light emitting material)
In the production of the electroluminescent devices of Examples (9-1) and (9-2), the first layer (also serving as a hole transport layer) shown in FIG. Organic EL (9300 to 9312) having a two-layer structure of a light emitting layer and a third layer (electron transport layer) was produced.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9301の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9301の輝度が半減する時間を100とした相対値で表した。結果を表4に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. This is expressed as a relative value when the light emission luminance of 9301 is set to 100. The time when the luminance of 9301 is reduced by half is expressed as a relative value. The results are shown in Table 4.

Figure 0004798011
Figure 0004798011

表4からわかるように、比較のトリアリールアミン系化合物(NPB、QA−1〜QA−6)は何れも正孔輸送材料兼発光材料になることがわかるが、何れの場合も発光輝度が低くまた寿命も短い。   As can be seen from Table 4, the comparative triarylamine compounds (NPB, QA-1 to QA-6) are all hole-transporting materials and light-emitting materials, but in any case the emission luminance is low. In addition, the lifetime is short.

それに対し本発明のアトロプ結合軸を持つビアリール基を分子内に2個以上有するトリアリールアミン系化合物を用いたエレクトロルミネッセンス素子では、高い発光輝度と長い寿命とを両立しうることがわかった。   On the other hand, it was found that an electroluminescence device using a triarylamine compound having two or more biaryl groups having an atrop bond axis in the molecule can achieve both high emission luminance and long life.

Figure 0004798011
Figure 0004798011

実施例(9−4)5員複素環化合物の性能比較(電子輸送材料としての評価)
実施例(9−1)で作製したエレクトロルミネッセンス素子(CF−1)の第3層の電子輸送材料であるOXD−7のみを表5に示す化合物に替えたエレクトロルミネッセンス素子(9401〜9411)を作製した。
Example (9-4) Performance comparison of 5-membered heterocyclic compounds (evaluation as electron transport materials)
Electroluminescent elements (9401 to 9411) in which only OXD-7, which is the electron transport material of the third layer of the electroluminescent element (CF-1) prepared in Example (9-1), was replaced with the compounds shown in Table 5. Produced.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9401の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9401の輝度が半減する時間を100とした相対値で表した。結果を表5に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. It is expressed as a relative value when the light emission luminance of 9401 is 100. The time when luminance of 9401 is reduced to half is expressed as a relative value. The results are shown in Table 5.

Figure 0004798011
Figure 0004798011

表5から明らかなように、5員複素環化合物をエレクトロルミネッセンス素子の電子輸送材料として使用した試料(No.9403〜9411)は、従来の電子輸送材料を用いて作製した試料(9200、9401および9402)に比べて何れも発光輝度の向上が認められた。また素子の発光寿命も非常に大きく改善された。このような効果(特に素子の寿命において)は、アトロプ結合軸を持つビアリール基を分子内に1つ有する5員複素環化合物(B−1、B−3、B−7、B−9、B−10)においても十分に発揮されるが、さらに分子内に2つのアトロプ結合軸を持つビアリール基を有する5員複素環化合物(B−2、B−8、B−6、F−3)ではその効果がより顕著になるという傾向も認められた。 As apparent from Table 5, samples (Nos. 9403 to 9411) using a 5- membered heterocyclic compound as an electron transport material of an electroluminescence device are samples (9200, 9401 and 9401) prepared using conventional electron transport materials. Compared with 9402), the emission luminance was improved. In addition, the light emission life of the device was greatly improved. (At the life of the particular device) such effect, 5-membered heterocyclic compound that Yusuke one in the molecule biaryl group having atropisomers bond axis (B-1, B-3 , B-7, B-9 , although sufficiently exhibited even in B-10), 5-membered heterocyclic compound that having a biaryl group having two atropisomeric bond axis to further the molecule (B-2, B-8 , B-6, F In 3), the tendency that the effect becomes more remarkable was also recognized.

実施例(9−5)5員複素環化合物化合物の性能比較(電子輸送材料兼発光材料としての評価)
実施例(9−4)のエレクトロルミネッセンス素子の作成において、第2層(発光層)を蒸着しない以外は同様の方法で図103に示す第1層(正孔輸送層)と第3層(電子輸送層兼発光層)の2層構成とした有機EL(9500〜9511)を作製した。
Example (9-5) Performance comparison of 5-membered heterocyclic compound (evaluation as electron transport material and light-emitting material)
In the production of the electroluminescent element of Example (9-4), the first layer (hole transport layer) and the third layer (electrons) shown in FIG. An organic EL (9500 to 9511) having a two-layer structure of a transport layer and a light emitting layer was produced.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9501の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9501の輝度が半減する時間を100とした相対値で表した。結果を表6に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. This is expressed as a relative value when the light emission luminance of 9501 is 100. The time when the luminance of 9501 is halved is expressed as a relative value with respect to 100. The results are shown in Table 6.

Figure 0004798011
Figure 0004798011

表6から明らかなように、5員複素環化合物をエレクトロルミネッセンス素子の電子輸送材料兼発光材料として使用した試料(No.9503〜9511)は、従来の電子輸送材料を用いて作製した試料(9500、9501および9502)に比べて何れも発光輝度の大幅な向上が認められた。また素子の発光寿命も非常に大きく改善された。このような効果(特に素子の寿命において)は、アトロプ結合軸を持つビアリール基を分子内に1つ有する5員複素環化合物(B−1、B−3、B−7、B−9、B−10)においても十分に発揮されるが、さらに分子内に2つのアトロプ結合軸を持つビアリール基を有する5員複素環化合物(B−2、B−8、B−6、F−3)ではその効果がより顕著になるという傾向も認められた。 As is apparent from Table 6, the sample (No. 9503 to 9511) using the 5- membered heterocyclic compound as the electron transport material and the light emitting material of the electroluminescence element is a sample (9500) prepared using a conventional electron transport material. , 9501 and 9502), a significant improvement in emission luminance was observed. In addition, the light emission life of the device was greatly improved. (At the life of the particular device) such effect, 5-membered heterocyclic compound that Yusuke one in the molecule biaryl group having atropisomers bond axis (B-1, B-3 , B-7, B-9 , although sufficiently exhibited even in B-10), 5-membered heterocyclic compound that having a biaryl group having two atropisomeric bond axis to further the molecule (B-2, B-8 , B-6, F In 3), the tendency that the effect becomes more remarkable was also recognized.

実施例(9−6)6員複素環化合物の性能比較(電子輸送材料としての評価)
実施例(9−1)で作製したエレクトロルミネッセンス素子(CF−1)の第3層の電子輸送材料であるOXD−7のみを表7に示す化合物に替えたエレクトロルミネッセンス素子(9601〜9605)を作製した。
Example (9-6) Performance comparison of 6-membered heterocyclic compounds (evaluation as electron transport materials)
Electroluminescent elements (9601 to 9605) in which only OXD-7, which is the electron transport material of the third layer of the electroluminescent element (CF-1) produced in Example (9-1), was replaced with the compounds shown in Table 7. Produced.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9601の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9601の輝度が半減する時間を100とした相対値で表した。結果を表7に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. The relative luminance when the emission luminance of 9601 is 100 is shown. The time when the luminance of 9601 is halved is expressed as a relative value with respect to 100. The results are shown in Table 7.

Figure 0004798011
Figure 0004798011

表7から明らかなように、6員複素環化合物をエレクトロルミネッセンス素子の電子輸送材料として使用した試料(No.9602〜9605)は、従来の電子輸送材料を用いて作製した試料(9601)に比べて何れも発光輝度の向上が認められた。また素子の発光寿命も非常に大きく改善されることがわかった。 As is clear from Table 7, the sample (No. 9602-9605) using the 6- membered heterocyclic compound as the electron transport material of the electroluminescence device is compared with the sample (9601) manufactured using the conventional electron transport material. In all cases, an improvement in emission luminance was observed. It was also found that the light emission life of the device was greatly improved.

実施例(9−7)6員複素環化合物化合物の性能比較(電子輸送材料兼発光材料としての評価)
実施例(9−6)で作製したエレクトロルミネッセンス素子(9601〜9605)の第2層(発光層)を取り除き、第1層(正孔輸送)と第3層(電子輸送層層兼発光層)の2層構成とした有機EL(9701〜9705)を作製した。これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9701の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9701の輝度が半減する時間を100とした相対値で表した。結果を表8に示す。
Example (9-7) Performance comparison of 6-membered heterocyclic compound (evaluation as electron transport material and light-emitting material)
The 2nd layer (light emitting layer) of the electroluminescent element (9601-9605) produced in Example (9-6) was removed, and the 1st layer (hole transport) and the 3rd layer (electron transport layer layer / light emitting layer) An organic EL (9701-9705) having a two-layer structure was prepared. These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. The relative luminance when the emission luminance of 9701 is assumed to be 100 is shown. The time when the luminance of 9701 is reduced by half is expressed as a relative value, where 100 is the time. The results are shown in Table 8.

Figure 0004798011
Figure 0004798011

表8から明らかなように、6員複素環化合物をエレクトロルミネッセンス素子の電子輸送材料兼発光材料として使用した試料(No.9702〜9705)は、従来の電子輸送材料を用いて作製した試料(9701)に比べて何れも発光輝度の大幅な向上が認められた。また素子の発光寿命も非常に大きく改善されることがわかった。 As is clear from Table 8, a sample (No. 9702-9705) in which a 6- membered heterocyclic compound was used as an electron transport material and a light-emitting material of an electroluminescence element was prepared using a conventional electron transport material (9701). In all cases, a significant improvement in light emission luminance was observed. It was also found that the light emission life of the device was greatly improved.

実施例(9−8)6員複素環化合物のその他の使用
合物C−9は蛍光性ドーパントとして、従来のキナクリドンおよびN,N’−ジメチルキナクリドン(DMQA)に比べ、Alq3等の発光材料との併用で高い発光輝度と長い寿命が達成されることがわかった。
Other uses of the embodiment (9-8) 6-membered heterocyclic cyclized compound
As of compound C-9 is fluorescent dopant, conventional quinacridone and N, N'-dimethyl quinacridone compared with quinacridone (DMQA), that the high emission luminance and long life in combination with luminescent material Alq3 etc. is achieved all right.

また、化合物C−6においては、黄緑色に発光する発光材料となることがわかった。 In the reduction compound C-6, was found to be light-emitting material that emits yellow-green.

実施例(9−9)スチルベン系化合物の性能比較(発光材料としての評価)
実施例(9−1)で作製したエレクトロルミネッセンス素子(CF−1)の第2層の発光材料であるZn(BOX)2のみを表9に示す化合物に替えたエレクトロルミネッセンス素子(9901〜9908)を作製した。
Example (9-9) Performance comparison of stilbene compounds (evaluation as light emitting material)
An electroluminescent device (9901-9908) in which only the Zn (BOX) 2, which is the light emitting material of the second layer of the electroluminescent device (CF-1) produced in Example (9-1), was replaced with the compounds shown in Table 9. Was made.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m2)および輝度の半減する時間を測定した。発光輝度は試料No.9901の発光輝度を100とした時の相対値で表し、輝度の半減する時間は試料No.9901の輝度が半減する時間を100とした相対値で表した。結果を表9に示す。 These elements were continuously lit by applying a 15 V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C. using the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the emission luminance (cd / m 2) at the start of lighting. ) And the time to reduce the luminance by half. The emission luminance is the sample No. The relative luminance when the emission luminance of 9901 is 100 is shown. The time when the luminance of 9901 is reduced by half is expressed as a relative value, where 100 is the time. The results are shown in Table 9.

Figure 0004798011
Figure 0004798011

表9から明らかなように、5員複素環スチルベン系化合物をエレクトロルミネッセンス素子の発光材料として使用した試料(No.9902〜9908)は、従来の発光材料を用いて作製した試料(9901)に比べて何れも発光輝度の向上が認められた。また素子の発光寿命も大きく改善された。このような効果は、アトロプ結合軸を持つビアリール基を分子内に1つ有するスチルベン系化合物(D−1、D−5、D−8、D−11、D−12)においても十分に発揮されるが、さらに分子内に2つのアトロプ結合軸を持つビアリール基を有するスチルベン系化合物(D−2、D−4)ではその効果がより顕著になるという傾向も認められた。 As is clear from Table 9, the sample (No. 9902-9908) using the 5- membered heterocyclic stilbene compound as the luminescent material of the electroluminescence device is compared with the sample (9901) manufactured using the conventional luminescent material. In all cases, an improvement in emission luminance was observed. In addition, the light emission life of the device was greatly improved. This effect is sufficient even in one Yusuke Angeles Chiruben compound biaryl groups in the molecule with atropisomers bond axis (D-1, D-5 , D-8, D-11, D-12) While being exerted was also observed tendency further away Chiruben based compound having a biaryl group having two atropisomeric coupling shaft (D-2, D-4 ) in its effect becomes more pronounced in the molecule .

実施例(9−10)金属錯体系化合物の性能比較(電子輸送材料兼発光材料としての評価)
実施例(9−1)で作製したエレクトロルミネッセンス素子(CF−1)の第2層の発光材料であるZn(BOX)2を表10に示す化合物に替え、さらに第3層の電子輸送層を取り除いた正孔輸送層(第1層)と電子輸送層兼発光層(第2層)の2層構成のエレクトロルミネッセンス素子(91001〜91008)を作製した。
Example (9-10) Performance Comparison of Metal Complex Compounds (Evaluation as Electron Transport Material and Light-Emitting Material)
Zn (BOX) 2, which is the light-emitting material of the second layer of the electroluminescent device (CF-1) produced in Example (9-1), is replaced with a compound shown in Table 10, and a third electron transport layer is further formed. Electroluminescent elements (91001 to 91008) having a two-layer structure of the removed hole transport layer (first layer) and electron transport layer / light-emitting layer (second layer) were produced.

これらの素子のITO電極を陽極、マグネシウムと銀からなる対向電極を陰極として温度23℃、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光効率(lm/W)および輝度の半減する時間を測定した。発光効率は試料No.91001の発光効率を100とした時の相対値で表し、輝度の半減する時間は試料No.91001の輝度が半減する時間を100とした相対値で表した。結果を表10に示す。   These elements were continuously lit by applying a 15V DC voltage in a dry nitrogen gas atmosphere at a temperature of 23 ° C with the ITO electrode as the anode and the counter electrode made of magnesium and silver as the cathode, and the luminous efficiency at the start of lighting (lm / W) And the time to halve the luminance was measured. Luminous efficiency was measured using sample no. The time when the luminance is reduced by half is expressed as a relative value when the luminous efficiency of 91001 is 100. The time when the luminance of 91001 is halved is expressed as a relative value with respect to 100. The results are shown in Table 10.

Figure 0004798011
Figure 0004798011

表10から明らかなように、金属錯体系化合物をエレクトロルミネッセンス素子の電子輸送材料兼発光材料として使用した試料(No.91003〜91007)は、従来の材料を用いて作製した試料(91001および91002)に比べて何れも発光効率が良好(発光波長が大きく異なり発光輝度では比較できないため発光効率での比較を行った)であった。また素子の発光寿命も大きく改善されることがわかった。 As is apparent from Table 10, the samples using the metallic complex compound as an electron transporting material and light emitting material of the electroluminescent element (Nanba91003~91007), a sample prepared by using the conventional materials (91001 and 91002 ) In all cases, the light emission efficiency was good (the light emission wavelength was greatly different and the light emission luminance could not be compared, so the light emission efficiency was compared). It was also found that the light emission lifetime of the device was greatly improved.

エレクトロルミネッセンス材料の代表的合成方
般式(N1)で表される2−アリールフェニルピリジン誘導体は、Shuichi Oi,Susumu Fukita and YoshioInoue Chem.Comumun.,1998,2439−2440に記載された方法で合成することができる。
Typical synthesis how electroluminescent material
2-aryl-phenylpyridine derivative represented by a general formula (N1) is, Shuichi Oi, Susumu Fukita and YoshioInoue Chem. Commun. 1998, 2439-2440.

その他、ビナフチル基を有する種々の化合物の合成は代表的には、スキーム2〜スキーム5に示したような合成経路で合成することができる。 Other synthesis of various compounds having bi-naphthyl group can typically be synthesized by synthetic routes as illustrated in Scheme 2 Scheme 5.

次にその代表例として、スキーム4で示した経路によるトリアリールアミン(A−18)の合成例を示す。 Next, as a typical example, synthesis examples of routes by belt rear reel amine shown in Scheme 4 (A-18).

Figure 0004798011
Figure 0004798011

〔合成例1〕
4−ブロモ−1,1’−ビナフチル〔化合物XX〕の合成:1,1’−ビナフチル50g (197mmol) を2000ml四つ口フラスコ内で塩化メチレン600mlに溶解させ、氷浴中において臭素3.4ml(65.6mol、3分の1当量)を塩化メチレンで10倍希釈した溶液を滴下した。滴下終了後溶液をサンプリングし、高速液体クロマトグラフィーによって反応率を確認しながら、さらに臭素溶液を3分の1当量ずつ2回加えた。その後室温で一昼夜撹拌した後、溶媒を減圧下で留去した。得られた粗生成物をアセトニトリルから再結晶を行ない、さらにメタノールによって懸濁洗浄を2回行なうことによって4−ブロモ−1,1’−ビナフチルを43.9g (67.0%) 得た。
[合成例2]
N,N’−ジフェニル−N,N’−ビナフチルベンジジン[化合物A−18]の合成:500ml三ツ口フラスコ内に4−ブロモ−1,1’−ビナフチル10g(30.0mmol) 、N,N’−ジフェニルベンジジン5.05g (15.0mmol)、銅粉末を0.48g (7.50mmol)、炭酸カリウムを4.73g (34.2mmol)、ニトロベンゼン25mlを入れ、200℃で30時間撹拌した。反応終了後トルエンを加え、濾過して無機物を除いた。次いでろ液を水洗して硫酸マグネシウムで乾燥し、溶媒を留去して、トルエン−ヘキサン混合溶媒を用いたシリカゲルカラムクロマトグラフィーにより分離精製することによりN,N’−ジフェニル−N,N’−ビナフチルベンジジンを5.40g (65.0mmol、43.0%)得た。
[Synthesis Example 1]
Synthesis of 4-bromo-1,1′-binaphthyl [Compound XX]: 50 g (197 mmol) of 1,1′-binaphthyl was dissolved in 600 ml of methylene chloride in a 2000 ml four-necked flask and 3.4 ml of bromine in an ice bath. A solution obtained by diluting (65.6 mol, 1/3 equivalent) with methylene chloride 10 times was added dropwise. After completion of the dropwise addition, the solution was sampled, and a bromine solution was further added twice by 1/3 equivalent while confirming the reaction rate by high performance liquid chromatography. Then, after stirring overnight at room temperature, the solvent was distilled off under reduced pressure. The obtained crude product was recrystallized from acetonitrile, and suspended and washed twice with methanol to obtain 43.9 g (67.0%) of 4-bromo-1,1′-binaphthyl.
[Synthesis Example 2]
Synthesis of N, N′-diphenyl-N, N′-binaphthylbenzidine [Compound A-18]: 10 g (30.0 mmol) of 4-bromo-1,1′-binaphthyl, N, N′— in a 500 ml three-necked flask Diphenylbenzidine (5.05 g, 15.0 mmol), copper powder (0.48 g, 7.50 mmol), potassium carbonate (4.73 g, 34.2 mmol), and nitrobenzene (25 ml) were added, and the mixture was stirred at 200 ° C. for 30 hours. After completion of the reaction, toluene was added and filtered to remove inorganic substances. Next, the filtrate was washed with water and dried over magnesium sulfate, the solvent was distilled off, and the residue was separated and purified by silica gel column chromatography using a toluene-hexane mixed solvent to obtain N, N'-diphenyl-N, N'-. 5.40 g (65.0 mmol, 43.0%) of binaphthylbenzidine was obtained.

エレクトロルミネッセンス素子の構造断面図Cross-sectional view of structure of electroluminescence element

Claims (3)

下記一般式(A1)で表されることを特徴とするエレクトロルミネッセンス材料。
Figure 0004798011
〔式中、Ar11、Ar12およびAr13はアリール基または芳香族複素環基を表し、かつ一般式(A1)で表される化合物の分子内には少なくとも2つの内部回転異性性を付与しうる結合軸を持つビアリール基が存在する。〕
The electroluminescent material represented by the following general formula (A1).
Figure 0004798011
[In the formula, Ar 11 , Ar 12 and Ar 13 represent an aryl group or an aromatic heterocyclic group, and impart at least two internal rotational isomerisms in the molecule of the compound represented by the general formula (A1). There are biaryl groups with possible bond axes. ]
下記一般式(A2)で表されることを特徴とする請求項1に記載のエレクトロルミネッセンス材料。
Figure 0004798011
〔式中、Ar21、Ar22およびAr23はそれぞれ独立に内部回転異性性を付与しうる結合軸を有するビアリールを表す。〕
It represents with the following general formula (A2), The electroluminescent material of Claim 1 characterized by the above-mentioned.
Figure 0004798011
[Wherein Ar 21 , Ar 22 and Ar 23 each independently represent a biaryl having a bond axis capable of imparting internal rotational isomerism. ]
下記一般式(A3)で表されることを特徴とする請求項1又は2の何れかに記載のエレクトロルミネッセンス材料。
Figure 0004798011
〔式中、Ar31、Ar32およびAr33はそれぞれ独立にアリール基または芳香族複素環基を表し、かつAr31、Ar32およびAr33のうち少なくとも2つは1,1′−ビナフチル基を有するアリール基を表す。〕
It represents with the following general formula (A3), The electroluminescent material in any one of Claim 1 or 2 characterized by the above-mentioned.
Figure 0004798011
[In the formula, Ar 31 , Ar 32 and Ar 33 each independently represent an aryl group or an aromatic heterocyclic group, and at least two of Ar 31 , Ar 32 and Ar 33 represent a 1,1′-binaphthyl group. Represents an aryl group. ]
JP2007019223A 1998-12-25 2007-01-30 Electroluminescent material Expired - Lifetime JP4798011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019223A JP4798011B2 (en) 1998-12-25 2007-01-30 Electroluminescent material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP37045298 1998-12-25
JP1998370452 1998-12-25
JP24640499 1999-08-31
JP1999246404 1999-08-31
JP2007019223A JP4798011B2 (en) 1998-12-25 2007-01-30 Electroluminescent material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36599699A Division JP3968933B2 (en) 1998-12-25 1999-12-24 Electroluminescence element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011002575A Division JP5545226B2 (en) 1998-12-25 2011-01-08 Electroluminescent material
JP2011002574A Division JP5545225B2 (en) 1998-12-25 2011-01-08 Electroluminescent material

Publications (2)

Publication Number Publication Date
JP2007177252A JP2007177252A (en) 2007-07-12
JP4798011B2 true JP4798011B2 (en) 2011-10-19

Family

ID=38302725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019223A Expired - Lifetime JP4798011B2 (en) 1998-12-25 2007-01-30 Electroluminescent material

Country Status (1)

Country Link
JP (1) JP4798011B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678983B2 (en) * 2001-05-14 2011-04-27 三井化学株式会社 Organic electroluminescence device
TW201014896A (en) * 2008-09-01 2010-04-16 Fuji Electric Holdings Conjugated high-molecular-weight copolymer, color conversion film using same, and multicolor light-emitting organic el device
TWI475011B (en) 2008-12-01 2015-03-01 Tosoh Corp 1,3,5-triazine derivatives and method for producing thereof, and organic electroluminescent elements using them as components
DE102008064200A1 (en) * 2008-12-22 2010-07-01 Merck Patent Gmbh Organic electroluminescent device
JP5829828B2 (en) * 2010-04-06 2015-12-09 株式会社半導体エネルギー研究所 Organometallic complex, light emitting element and light emitting device
JP5735791B2 (en) * 2010-12-07 2015-06-17 住友化学株式会社 Device containing metal complex
JP6048643B2 (en) * 2012-08-06 2016-12-21 国立大学法人島根大学 Luminescent material
WO2014189072A1 (en) 2013-05-22 2014-11-27 コニカミノルタ株式会社 Electronic device, organic electroluminescent element, organic thin-film solar cell, and dye-sensitized solar cell
JP5403179B1 (en) 2013-05-22 2014-01-29 コニカミノルタ株式会社 Charge transfer thin film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330034A (en) * 1993-03-24 1994-11-29 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP3175816B2 (en) * 1995-04-04 2001-06-11 出光興産株式会社 Organic electroluminescence device
JP3777682B2 (en) * 1996-11-25 2006-05-24 東洋インキ製造株式会社 Organic electroluminescence device material and organic electroluminescence device using the same
JPH1154280A (en) * 1997-07-31 1999-02-26 Chisso Corp Organic electroluminescent element using naphthylamine derivative
JP2956691B1 (en) * 1998-05-22 1999-10-04 日本電気株式会社 Organic electroluminescence device
JP2001072872A (en) * 1999-07-02 2001-03-21 Konica Corp Resin composition and optical lens
JP3855587B2 (en) * 2000-03-27 2006-12-13 コニカミノルタホールディングス株式会社 Thermal recording medium, write-once information recording element, recording method, information reading method, organic electroluminescence element multicoloring method, temperature measuring method, and irreversible temperature marker

Also Published As

Publication number Publication date
JP2007177252A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5601409B2 (en) Electroluminescent material
JP3968933B2 (en) Electroluminescence element
JP5120398B2 (en) Organic electroluminescence element and display device
JP4798011B2 (en) Electroluminescent material
US7871713B2 (en) Electroluminescent material, electroluminescent element and color conversion filter
JP3873720B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING THE SAME
JP2003045662A (en) Organic electroluminescent element and display device
JP5340999B2 (en) Organic electroluminescence element and display device
JP2002249765A (en) Organic electroluminescence element, material for organic electroluminescence element and display device
JP5321710B2 (en) Organic electroluminescence element and display device
JP4962577B2 (en) Organic electroluminescence device
JP4556335B2 (en) Organic electroluminescence device
JP4496684B2 (en) Organic electroluminescence device
JP5129359B2 (en) Organic electroluminescence element and display device
JP5035394B2 (en) Organic electroluminescence element and display device
JP5379179B2 (en) Organic electroluminescence element and display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term