[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06330034A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JPH06330034A
JPH06330034A JP6051526A JP5152694A JPH06330034A JP H06330034 A JPH06330034 A JP H06330034A JP 6051526 A JP6051526 A JP 6051526A JP 5152694 A JP5152694 A JP 5152694A JP H06330034 A JPH06330034 A JP H06330034A
Authority
JP
Japan
Prior art keywords
group
layer
carbon atoms
adhesion improving
improving layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6051526A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakamura
浩昭 中村
Yoshio Hironaka
義雄 弘中
Tadashi Kusumoto
正 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6051526A priority Critical patent/JPH06330034A/en
Publication of JPH06330034A publication Critical patent/JPH06330034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide an organic electroluminescent element having increased adhesiveness between a cathode and an electron injection layer and enabling uniform light emission. CONSTITUTION:The organic electroluminescence element is produced by inserting an adhesion improving layer between a cathode and an organic layer. The dipole component of the surface energy of the adhesion improving layer is >=4dyn/cm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機エレクトロルミネ
ッセンス素子に関し、詳しくは陰極と電子注入層との付
着性を高め、均一発光が可能な有機エレクトロルミネッ
センス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device, and more particularly, to an organic electroluminescence device capable of uniform light emission by enhancing the adhesion between a cathode and an electron injection layer.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】現
在、エレクトロルミネッセンス素子(以下、EL素子と
略称することがある)は自己発光により視認性が高く、
完全固体素子であり耐衝撃性に優れるという特徴を有し
ており、無機・有機化合物を用いた様々な素子が提案さ
れ、かつ実用化が試みられている。これらの素子のう
ち、有機化合物を用いた有機EL素子は印加電圧を大幅
に低下させることができることから、各種の材料および
それを用いた素子の開発が進められている。このような
有機EL素子の素子構成としては、陽極/発光層/陰極
を基本構成として発光性能の向上のため正孔注入層や電
子注入層を必要に応じて設ける構成が知られている。こ
れらの構成においては、陰極にMg,Al,Inといっ
た金属が用いられているが、これらの金属は発光層や電
子注入層に用いられる有機化合物との付着性が悪い。こ
のような付着性が悪い素子構成においては、素子の機械
的強度が低下し、発光が不均一(無発光領域を生じる場
合もある)となる。さらに、このような素子は発光面内
の負荷が不均一となるため素子の劣化を促進し寿命を短
くする原因となり、実用化への問題となっている。
2. Description of the Related Art At present, electroluminescence elements (hereinafter sometimes abbreviated as EL elements) have high visibility due to self-luminance.
Since it is a completely solid element and has a characteristic of excellent impact resistance, various elements using inorganic / organic compounds have been proposed and attempted to be put into practical use. Among these elements, an organic EL element using an organic compound can greatly reduce the applied voltage, and therefore various materials and elements using the same are being developed. As an element structure of such an organic EL element, there is known a structure in which a hole injection layer and an electron injection layer are provided as necessary to improve the light emission performance, based on a basic structure of an anode / a light emitting layer / a cathode. In these configurations, metals such as Mg, Al and In are used for the cathode, but these metals have poor adhesion to the organic compounds used for the light emitting layer and the electron injection layer. In such a device structure having poor adhesion, the mechanical strength of the device is reduced, and the light emission becomes nonuniform (a non-light emitting region may occur). Further, in such an element, the load on the light emitting surface becomes non-uniform, which promotes deterioration of the element and shortens its life, which is a problem for practical use.

【0003】[0003]

【課題を解決するための手段】有機EL素子が、不均一
な発光をする原因は、上述のように陰極と有機層間の付
着性が不充分であることである。一般に2つの物質の付
着性は、各々の物質の持っている表面エネルギーによっ
て決定される。この2つの物質の表面エネルギーの差が
大きいと付着性は悪く、小さいと付着性は良いと言われ
ている。よって、一般に金属の表面エネルギーは大き
く、有機物の表面エネルギーは小さいことから付着性が
悪いことは容易に想像できる。有機物の表面エネルギー
を生成する成分としては、分散力成分(所謂、ファンデ
ルワールス力)と双極子相互作用成分(以下、双極子成
分と称す)(クーロン力)とがあり、それぞれ力の作用
が及ぶ距離や対象が異なる。本発明者らは、鋭意研究の
結果、金属と有機物の間の付着性に関して、特に双極子
成分が表面エネルギーに重要な役割を果たしていること
を発見し、双極子成分が4dyn/cm以上の物質を有
機物と陰極の間に挿入することにより、有機物と陰極の
付着性が向上し、均一発光をすることを見出した。すな
わち、本発明は、陰極と有機層の間に接着改善層を有す
る有機エレクトロルミネッセンス素子において、該接着
改善層の表面エネルギーの双極子成分が4dyn/cm
以上であることを特徴とする有機エレクトロルミネッセ
ンス素子を提供するものである。
The cause of non-uniform light emission of an organic EL device is that the adhesion between the cathode and the organic layer is insufficient as described above. Generally, the adhesiveness of two substances is determined by the surface energy of each substance. It is said that if the difference between the surface energies of these two substances is large, the adhesion is poor, and if the difference is small, the adhesion is good. Therefore, since the surface energy of metals is generally large and the surface energy of organic substances is small, it can be easily imagined that the adhesion is poor. There are a dispersive force component (so-called van der Waals force) and a dipole interaction component (hereinafter referred to as dipole component) (Coulomb force) as components that generate the surface energy of an organic substance. The range and target are different. As a result of diligent research, the present inventors have found that the dipole component plays an important role in the surface energy with respect to the adhesion between the metal and the organic substance, and the substance having a dipole component of 4 dyn / cm or more. It was found that by inserting the compound between the organic substance and the cathode, the adhesion between the organic substance and the cathode was improved, and uniform light emission was achieved. That is, the present invention relates to an organic electroluminescence device having an adhesion improving layer between a cathode and an organic layer, wherein the dipole component of the surface energy of the adhesion improving layer is 4 dyn / cm.
The present invention provides an organic electroluminescence device characterized by the above.

【0004】本発明の有機EL素子には、通常の素子構
成を基本として陰極と有機層(発光層,電子注入層等)
との間に接着改善層が存在する。このような素子構成と
しては、例えば 陽極/発光層/接着改善層/陰極 陽極/正孔注入層/発光層/接着改善層/陰極 陽極/発光層/電子注入層/接着改善層/陰極 陽極/正孔注入層/発光層/電子注入層/接着改善
層/陰極 などが挙げられる。上記の構成のうち、または、特
にの構成が好ましい。ここで、正孔注入層とは正孔の
注入性,輸送性,電子の障壁性のいずれか少なくとも一
つの能力を有する層であり、電子注入層とは電子の注入
性,輸送性,正孔の障壁性のいずれか少なくとも一つの
能力を有する層である。これらの正孔注入層、電子注入
層はそれぞれ一層であっても二層からなっていてもよ
い。なお、有機層としては、正孔注入材料と発光材料,
発光材料と電子注入材料または正孔注入材料と発光材料
と電子注入材料、を混合してなる複数の機能を有する層
を用いてもよい。本発明者らは鋭意研究の結果、電子注
入層として優れた性能は有するが陰極との接着性に劣る
ため性能の悪い素子に、本発明の如く接着改善層を設け
ることにより発光の均一性、寿命の改善が図れることを
見出した。この接着改善層は、表面エネルギーの双極子
成分が4dyn/cm以上であればよく、好ましくは4
〜20dyn/cm、特に好ましくは5〜10dyn/
cmである。ここで、表面エネルギーが4dyn/cm
未満の場合は、陰極(金属)と接着改善層との付着性が
悪くなり、20dyn/cmを超えると発光層,電子注
入層を形成する有機層と接着改善層との付着性が悪くな
る場合がある。このような接着改善層の接着改善材料と
しては種々のものが用いられるが、好ましい例を以下に
示す。先ず、一般式(I)
In the organic EL device of the present invention, a cathode and an organic layer (a light emitting layer, an electron injection layer, etc.) are formed on the basis of the usual device structure.
There is an adhesion improving layer between and. Examples of such a device structure include: anode / light-emitting layer / adhesion improving layer / cathode anode / hole injection layer / light-emitting layer / adhesion improving layer / cathode anode / light-emitting layer / electron injection layer / adhesion improving layer / cathode anode / Examples include hole injection layer / light emitting layer / electron injection layer / adhesion improving layer / cathode. Of the above configurations, or particularly the configuration is preferable. Here, the hole injection layer is a layer having at least one of hole injection property, transport property, and electron barrier property, and the electron injection layer is an electron injection property, transport property, hole Is a layer having at least one of the barrier properties. The hole injecting layer and the electron injecting layer may each be composed of one layer or two layers. The organic layer includes a hole injection material and a light emitting material,
A layer having a plurality of functions, which is formed by mixing a light emitting material and an electron injecting material, or a hole injecting material, a light emitting material, and an electron injecting material, may be used. As a result of intensive studies by the present inventors, the element having poor performance because it has excellent performance as an electron injecting layer but poor adhesion to the cathode, uniformity of light emission by providing an adhesion improving layer as in the present invention, It has been found that the life can be improved. The adhesion improving layer may have a dipole component of surface energy of 4 dyn / cm or more, preferably 4
˜20 dyn / cm, particularly preferably 5 to 10 dyn /
cm. Here, the surface energy is 4 dyn / cm
If it is less than 20%, the adhesion between the cathode (metal) and the adhesion improving layer deteriorates, and if it exceeds 20 dyn / cm, the adhesion between the organic layer forming the light emitting layer and the electron injection layer and the adhesion improving layer deteriorates. There is. Various materials are used as the adhesion improving material for such an adhesion improving layer, but preferred examples are shown below. First, the general formula (I)

【0005】[0005]

【化6】 [Chemical 6]

【0006】(式中、k,l,m,nはそれぞれ0〜5
の整数を示す。但し、k=l=m=n=0の場合を除
く。また、Arは、
(Where, k, l, m and n are 0 to 5 respectively)
Indicates an integer. However, the case of k = 1 = m = n = 0 is excluded. Also, Ar is

【0007】[0007]

【化7】 [Chemical 7]

【0008】(式中、R1 は炭素数1〜6のアルキル基
またはハロゲンを示し、R2 ,R3 はそれぞれ水素,炭
素数1〜6のアルキル基またはハロゲンを示す。また、
pは1〜4の整数を示し、q,rはそれぞれ0〜4の整
数を示す。但し、R1 ,R2 ,R3 はそれぞれ同じでも
異なっていてもよい。))で表されるシアノ基を有する
化合物が挙げられる。次に、一般式(II)
(In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms or halogen, and R 2 and R 3 each represent hydrogen, an alkyl group having 1 to 6 carbon atoms or halogen.
p represents an integer of 1 to 4, q and r each represent an integer of 0 to 4. However, R 1 , R 2 and R 3 may be the same or different. )) And a compound having a cyano group. Next, general formula (II)

【0009】[0009]

【化8】 [Chemical 8]

【0010】(式中、Z1 ,Z2 はそれぞれ独立に無置
換または置換芳香族基を示す。ここで、置換基は炭素数
1〜5のアルキル基,炭素数1〜5のアルコキシ基,シ
アノ基,塩素,臭素またはフッ素を示す。また、Y1
2 はそれぞれ独立に無置換または炭素数1〜5のアル
キル基を有する芳香族基を示す。Qは−O−,−CH2
−,−CH2 −CH2 −または−C(CH3 2 −を示
し、Xは−O−または−S−を示す。)で表されるオキ
サジアゾール環を有する化合物が挙げられる。また、一
般式(III)
(In the formula, Z 1 and Z 2 each independently represent an unsubstituted or substituted aromatic group. Here, the substituent is an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Represents a cyano group, chlorine, bromine or fluorine, and Y 1 ,
Y 2's each independently represent an unsubstituted or aromatic group having an alkyl group having 1 to 5 carbon atoms. Q is -O-, -CH 2
-, - CH 2 -CH 2 - or -C (CH 3) 2 - indicates, X is shows a -O- or -S-. ) And a compound having an oxadiazole ring. In addition, the general formula (III)

【0011】[0011]

【化9】 [Chemical 9]

【0012】(式中、Aは単結合,−O−,−SO
2 −,−S−,−CH=CH−,−CO−,
(In the formula, A is a single bond, --O--, --SO.
2- , -S-, -CH = CH-, -CO-,

【0013】[0013]

【化10】 [Chemical 10]

【0014】(式中、sは1〜8の整数を示す。)を示
す。B1 ,B2 はそれぞれ独立に水素,炭素数1〜6の
アルキル基,無置換または置換基を有する炭素数6〜1
8のアリール基または無置換または置換基を有する炭素
数3〜12の複素環残基を示す。ここで、置換基はニト
ロ基,アミノ基,シアノ基,水酸基,カルボキシル基,
メチルチオ基,エチルチオ基,ハロゲン,炭素数1〜6
のアルコキシ基,炭素数1〜6のアルコキシカルボニル
基,炭素数2〜8のジアルキルアミノ基,炭素数2〜8
のジアルキレンオキシ基,炭素数1〜6のアルキレンジ
オキシ基あるいは炭素数1〜6のアルキレンオキシ基を
示す。また、B1 ,B2 は同じでも異なってもよい。)
で表されるキノキサリン環を有する化合物が挙げられ
る。上記一般式(I)で表される化合物の具体例として
は、
(In the formula, s represents an integer of 1 to 8). B 1 and B 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, unsubstituted or having 6 to 1 carbon atoms having a substituent.
8 represents an aryl group of 8 or an unsubstituted or substituted heterocyclic residue having 3 to 12 carbon atoms. Here, the substituents are nitro group, amino group, cyano group, hydroxyl group, carboxyl group,
Methylthio group, ethylthio group, halogen, carbon number 1-6
Alkoxy group, C1-6 alkoxycarbonyl group, C2-8 dialkylamino group, C2-8
And a C 1-6 alkylenedioxy group or a C 1-6 alkyleneoxy group. B 1 and B 2 may be the same or different. )
And a compound having a quinoxaline ring. Specific examples of the compound represented by the above general formula (I) include:

【0015】[0015]

【化11】 [Chemical 11]

【0016】[0016]

【化12】 [Chemical 12]

【0017】[0017]

【化13】 [Chemical 13]

【0018】[0018]

【化14】 [Chemical 14]

【0019】などを挙げることができる。また、一般式
(II)で表される化合物の具体例としては、
And the like. In addition, specific examples of the compound represented by the general formula (II) include:

【0020】[0020]

【化15】 [Chemical 15]

【0021】[0021]

【化16】 [Chemical 16]

【0022】[0022]

【化17】 [Chemical 17]

【0023】[0023]

【化18】 [Chemical 18]

【0024】[0024]

【化19】 [Chemical 19]

【0025】[0025]

【化20】 [Chemical 20]

【0026】などを挙げることができる。一般式(III)
で表される化合物の具体例としては、
And the like. General formula (III)
Specific examples of the compound represented by

【0027】[0027]

【化21】 [Chemical 21]

【0028】[0028]

【化22】 [Chemical formula 22]

【0029】[0029]

【化23】 [Chemical formula 23]

【0030】などを挙げることができる。上記接着改善
材料は、前記の構成において、特に有効に本発明の効
果を発現することができる。
And the like. The above-mentioned adhesion improving material can exhibit the effect of the present invention particularly effectively in the above-mentioned constitution.

【0031】本発明の有機EL素子の他の構成材料は特
に制限されることなく、公知の材料を用いることができ
る。例えば、発光層に用いられる発光材料は、従来公知
の化合物の中から任意のものを選択して用いることがで
きる。この発光材料としては、例えば多環縮合芳香族化
合物、ベンゾオキサゾール系,ベンゾチアゾール系,ベ
ンゾイミダゾール系などの蛍光増白剤、金属キレート化
オキサノイド化合物、ジスチリルベンゼン系化合物など
薄膜形成性の良い化合物が用いられる。ここで、上記多
環縮合芳香族化合物としては、例えばアントラセン,ナ
フタレン,フェナントレン,ピレン,クリセン,ペリレ
ン骨格を含む縮合環発光物質等が挙げられる。
The other constituent materials of the organic EL device of the present invention are not particularly limited, and known materials can be used. For example, as the light emitting material used for the light emitting layer, any one of conventionally known compounds can be selected and used. Examples of the light-emitting material include polycyclic condensed aromatic compounds, benzoxazole-based, benzothiazole-based, benzimidazole-based optical brighteners, metal chelated oxanoide compounds, distyrylbenzene-based compounds, and other thin-film-forming compounds. Is used. Here, examples of the above-mentioned polycyclic fused aromatic compound include condensed ring luminescent substances containing anthracene, naphthalene, phenanthrene, pyrene, chrysene, and perylene skeletons.

【0032】上記ベンゾオキサゾール系,ベンゾチアゾ
ール系,ベンゾイミダゾール系などの蛍光増白剤として
は、例えば特開昭59−194393号公報に記載され
ているものを用いることができ、その代表例としては、
2,5−ビス(5,7−ジ−t−ペンチル−2−ベンゾ
オキサゾリル)−1,3,4−チアジアゾール;4,
4’−ビス(5,7−t−ペンチル−2−ベンゾオキサ
ゾリル)スチルベン;4,4’−ビス(5,7−ジ−
(2−メチル−2−ブチル)−2−ベンゾオキサゾリ
ル)スチルベン;2,5−ビス(5,7−ジ−t−ペン
チル−2−ベンゾオキサゾリル)チオフェン;2,5−
ビス(5−(α,α,−ジメチルベンジル)−2−ベン
ゾオキサゾリル)チオフェン;2,5−ビス(5,7−
ジ−(2−メチル−2−ブチル)−2−ベンゾオキサゾ
リル)−3,4−ジフェニルチオフェン;2,5−ビス
(5−メチル−2−ベンゾオキサゾリル)チオフェン;
4,4’−ビス(2−ベンゾオキサゾリル)ビフェニ
ル;5−メチル−2−(2−(4−(5−メチル−2−
ベンゾオキサゾリル)フェニル)ビニル)ベンゾオキサ
ゾール;2−(2−(4−クロロフェニル)ビニル)ナ
フト(1,2−d)オキサゾールなどのベンゾオキサゾ
ール系、2,2’−(p−フェニレンジビニレン)−ビ
スベンゾチアゾールなどのベンゾチアゾール系、2−
(2−(4−(2−ベンゾイミダゾリル)フェニル)ビ
ニル)ベンゾイミダゾール;2−(2−(4−カルボキ
シフェニル)ビニル)ベンゾイミダゾールなどのベンゾ
イミダゾール系などの蛍光増白剤が挙げられる。さら
に、他の有用な化合物としてはケミストリー・オブ・シ
ンセティック・ダイズ1971,628〜637頁およ
び640頁に列挙されているものを用いることができ
る。
As the above-mentioned fluorescent whitening agents of benzoxazole type, benzothiazole type, benzimidazole type and the like, for example, those described in JP-A-59-194393 can be used, and typical examples thereof are ,
2,5-bis (5,7-di-t-pentyl-2-benzoxazolyl) -1,3,4-thiadiazole; 4,
4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene; 4,4'-bis (5,7-di-
(2-Methyl-2-butyl) -2-benzoxazolyl) stilbene; 2,5-bis (5,7-di-t-pentyl-2-benzoxazolyl) thiophene; 2,5-
Bis (5- (α, α, -dimethylbenzyl) -2-benzoxazolyl) thiophene; 2,5-bis (5,7-
Di- (2-methyl-2-butyl) -2-benzoxazolyl) -3,4-diphenylthiophene; 2,5-bis (5-methyl-2-benzoxazolyl) thiophene;
4,4'-bis (2-benzoxazolyl) biphenyl; 5-methyl-2- (2- (4- (5-methyl-2-
Benzoxazolyl) phenyl) vinyl) benzoxazole; benzoxazoles such as 2- (2- (4-chlorophenyl) vinyl) naphtho (1,2-d) oxazole, 2,2 ′-(p-phenylenedivinylene) ) -Bisbenzothiazole and other benzothiazoles, 2-
Examples thereof include (2- (4- (2-benzimidazolyl) phenyl) vinyl) benzimidazole; 2- (2- (4-carboxyphenyl) vinyl) benzimidazole, and other fluorescent whitening agents such as benzimidazole compounds. Further, as other useful compounds, those listed in Chemistry of Synthetic Soybean 1971, 628 to 637 and 640 can be used.

【0033】また、上記金属キレート化オキサノイド化
合物としては、例えば特開昭63−295695号公報
に記載されているものを用いることができる。その代表
例としては、トリス(8−キノリノール)アルミニウ
ム,ビス(8−キノリノール)マグネシウム,ビス(ベ
ンゾ(f)−8−キノリノール)亜鉛,ビス(2−メチ
ル−8−キノリノラート)アルミニウムオキシド,トリ
ス(8−キノリノール)インジウム,トリス(5−メチ
ル−8−キノリノール)アルミニウム,8−キノリノー
ルリチウム,トリス(5−クロロ−8−キノリノール)
ガリウム,ビス(5−クロロ−8−キノリノール)カル
シウム,ポリ(亜鉛(II)−ビス(8−ヒドロキシ−5
−キノリノニル)メタン)などの8−ヒドロキシキノリ
ン系金属錯体やジリチウムエピントリジオンなどが挙げ
られる。
As the metal chelated oxanoide compound, for example, those described in JP-A-63-295695 can be used. As typical examples thereof, tris (8-quinolinol) aluminum, bis (8-quinolinol) magnesium, bis (benzo (f) -8-quinolinol) zinc, bis (2-methyl-8-quinolinolato) aluminum oxide, tris ( 8-quinolinol) indium, tris (5-methyl-8-quinolinol) aluminum, 8-quinolinol lithium, tris (5-chloro-8-quinolinol)
Gallium, bis (5-chloro-8-quinolinol) calcium, poly (zinc (II) -bis (8-hydroxy-5)
Examples include 8-hydroxyquinoline-based metal complexes such as -quinolinonyl) methane) and dilithium epinetridione.

【0034】他には、欧州特許第0319881号明細
書または欧州特許第0373582号明細書に記載のジ
スチリルベンゼン誘導体が挙げられ、このジスチリルベ
ンゼン誘導体の具体例としては、1,4−ビス(2−メ
チルスチリル)ベンゼン;1,4−ビス(3−メチルス
チリル)ベンゼン;1,4−ビス(4−メチルスチリ
ル)ベンゼン;ジスチリルベンゼン;1,4−ビス(2
−エチルスチリル)ベンゼン;1,4−ビス(3−エチ
ルスチリル)ベンゼン;1,4−ビス(2−メチルスチ
リル)−2−ベンゼン;1,4−ビス(2−メチルスチ
リル)−2−エチルベンゼンなどが挙げられる。また、
特開平2−252793号公報のジスチリルピラジン誘
導体も用いることができ、その具体例として2,5−ビ
ス(4−メチルスチリル)ピラジン;2,5−ビス(4
−エチルスチリル)ピラジン;2,5−ビス(2−(1
−ナフチル)ビニル)ピラジン;2,5−ビス(4−メ
トキシスチリル)ピラジン;2,5−ビス(2−(4−
ビフェニル)ビニル)ピラジン;2,5−ビス(2−
(1−ピレニル)ビニル)ピラジンなどが挙げられる。
その他、欧州特許第0388768号明細書および特開
平2−231970号公報に記載のジメチリデン誘導
体、特開平2−191694号公報記載のクマリン誘導
体、特開平2−196885号公報記載のペリレン誘導
体、特開平2−255789号公報記載のナフタレン誘
導体、特開平2−289676号公報及び同2−886
89号公報記載のフタロペリノン誘導体、特開平2−2
50292号公報記載のスチリルアミン誘導体及び同2
−289675号公報記載のシクロペンタジエン誘導体
など、目的とする発光色及び性能などから適宜選択する
ことができる。
Other examples include distyrylbenzene derivatives described in European Patent No. 0319881 or European Patent No. 0373582, and specific examples of the distyrylbenzene derivative include 1,4-bis ( 2-Methylstyryl) benzene; 1,4-bis (3-methylstyryl) benzene; 1,4-bis (4-methylstyryl) benzene; distyrylbenzene; 1,4-bis (2
-Ethylstyryl) benzene; 1,4-bis (3-ethylstyryl) benzene; 1,4-bis (2-methylstyryl) -2-benzene; 1,4-bis (2-methylstyryl) -2-ethylbenzene And so on. Also,
The distyrylpyrazine derivative described in JP-A-2-252793 can also be used, and specific examples thereof include 2,5-bis (4-methylstyryl) pyrazine; 2,5-bis (4
-Ethylstyryl) pyrazine; 2,5-bis (2- (1
-Naphthyl) vinyl) pyrazine; 2,5-bis (4-methoxystyryl) pyrazine; 2,5-bis (2- (4-
Biphenyl) vinyl) pyrazine; 2,5-bis (2-
(1-pyrenyl) vinyl) pyrazine and the like.
In addition, the dimethylidene derivative described in European Patent No. 0388768 and JP-A-2-231970, the coumarin derivative described in JP-A-2-191946, the perylene derivative described in JP-A-2-196885, and JP-A-2 Naphthalene derivatives described in JP-A-255789, JP-A-2-289676 and JP-A-2-886.
Phthaloperinone derivatives described in JP-A No. 89, JP-A 2-2
And a styrylamine derivative disclosed in Japanese Patent No. 50292.
The cyclopentadiene derivative described in JP-A-289675 and the like can be appropriately selected depending on the desired emission color and performance.

【0035】上記の発光材料からなる発光層は、所望に
応じて2層以上の積層構造でもよく、米国特許第4,7
69,292号明細書に開示されているように蛍光物質
を加えて形成してもよい。この場合上記有機化合物は薄
膜状の層であり、発光領域の機能の注入機能及び発光機
能の一部を受持ち、一方、蛍光物質はその有機化合物の
層の中に微量(数モル%以下)存在させ、電子と正孔の
再結合に応答して発光するといった発光機能の一部を担
っている。さらに、発光領域に用いる有機化合物は薄膜
性を有していない化合物であってもよく、このような化
合物の例としては、12−フタロペリノン;1,4−ジ
フェニル−1,3−ブタジエン;1,1,4,4−テト
ラフェニル−1,3−ブタジエン;テトラフェニルシク
ロペンタジエン;ナフタルイミド誘導体(特開平2−3
05886号公報);ペリレン誘導体(特開平2−18
9890号公報);オキサジアゾール誘導体(特開平2
−216791号公報または第38回応用物理学関係連
合講演会で浜田らによって開示されたオキサジアゾール
誘導体);アルダジン誘導体(特開平2−220393
号公報);ピラジリン誘導体(特開平2−220394
号公報);シクロペンタジエン誘導体(特開平2−28
9675号公報);ピロロピロール誘導体(特開平2−
296891号公報);スチリルアミン誘導体(App
l.Phys.Lett.,第56巻,L799(19
90年);クマリン系化合物(特開平2−191694
号公報);国際公報WO90/13148またはApp
l.Phys.Lett.,第58巻,L8,P198
2(1991年)に記載されている高分子化合物などが
挙げられる。しかし、これらの薄膜性を有しない材料
は、素子の寿命が短い欠点を有する。以上の発光材料に
おいては、特に芳香族ジメチリデン系化合物を用いるこ
とが好ましく、この具体例としては1,4−フェニレン
ジメチリデン;4,4’−フェニレンジメチリデン;
2,5−キシリレンジメチリデン;2,6−ナフチレン
ジメチリデン;1,4−ビフェニレンジメチリデン;
1,4−p−テレフェニレンジメチリデン;9,10−
アントラセンジイルメチリデン;4,4’−ビス(2,
2−ジ−t−ブチルフェニルビニル)ビフェニル;4,
4’−ビス(2,2−ジフェニルビニル)ビフェニルな
ど、またはそれらの誘導体が挙げられる。この発光層
は、これらの有機または無機化合物からなる発光材料一
種または二種以上からなる一層で構成されてもよいし、
あるいは、前記発光層とは別種の化合物からなる発光層
を積層したものであってもよい。
The light emitting layer made of the above light emitting material may have a laminated structure of two or more layers, if desired.
It may be formed by adding a fluorescent substance as disclosed in Japanese Patent No. 69,292. In this case, the organic compound is a thin film-like layer and has a part of the injection function and the light emitting function of the function of the light emitting region, while the fluorescent substance is present in the organic compound layer in a trace amount (several mol% or less). It plays a part of a light emitting function of emitting light in response to recombination of electrons and holes. Further, the organic compound used in the light emitting region may be a compound having no thin film property, and examples of such a compound include 12-phthaloperinone; 1,4-diphenyl-1,3-butadiene; 1,4,4-Tetraphenyl-1,3-butadiene; Tetraphenylcyclopentadiene; Naphthalimide derivative (JP-A-2-3
No. 05886); perylene derivative (JP-A-2-18)
9890); oxadiazole derivatives (JP-A-2
-216791 or the oxadiazole derivative disclosed by Hamada et al. In the 38th Joint Lecture on Applied Physics; aldazine derivative (JP-A-2-220393).
Gazette); Pyrazillin derivative (JP-A-2-220394)
Gazette); cyclopentadiene derivative (JP-A-2-28
9675); Pyrrolopyrrole derivative (JP-A-2-
296891); styrylamine derivatives (App
l. Phys. Lett. , Volume 56, L799 (19
90 years); Coumarin compounds (Japanese Patent Laid-Open No. 191694/1990)
Publication); International Publication WO90 / 13148 or App
l. Phys. Lett. , Volume 58, L8, P198
2 (1991). However, these materials that do not have a thin film property have a shortcoming that the life of the device is short. In the above light emitting material, it is particularly preferable to use an aromatic dimethylidene-based compound, and specific examples thereof include 1,4-phenylenedimethylidene; 4,4′-phenylenedimethylidene;
2,5-xylylene dimethylidene; 2,6-naphthylene dimethylidene; 1,4-biphenylene dimethylidene;
1,4-p-Telephenylenedimethylidene; 9,10-
Anthracene diyl methylidene; 4,4'-bis (2,
2-di-t-butylphenylvinyl) biphenyl; 4,
4′-bis (2,2-diphenylvinyl) biphenyl and the like, or derivatives thereof. This light emitting layer may be composed of a single or two or more light emitting materials composed of these organic or inorganic compounds,
Alternatively, a light emitting layer made of a compound different from the light emitting layer may be laminated.

【0036】次に、正孔注入層は、正孔伝達化合物から
成るものであって、陽極より注入された正孔を発光層に
伝達する機能を有する。この正孔注入層を陽極と発光層
の間に介在させることにより、より低い電界で多くの正
孔が発光層に注入され、そのうえ、発光層に陰極又は電
子注入層より注入された電子は、発光層と正孔注入層の
界面に存在する電子の障壁により、発光層内の界面に累
積され発光効率が向上するなど発光性能の優れた素子と
することができる。このような正孔注入層に用いられる
正孔伝達化合物は、電界を与えられた2個の電極間に配
置されて陽極から正孔が注入された場合、正孔を適切に
発光層へ伝達しうるものであり、例えば104 −106
V/cmの電界印加時に少なくとも10-6cm2 /V・
秒の正孔移動度を有するものが好適である。この正孔伝
達化合物については、前記の好ましい性質を有するもの
であれば特に制限はなく、従来、光導伝材料において、
正孔の電荷注入輸送材料として慣用されているものや有
機EL素子の正孔注入層に使用される公知のものの中か
ら任意のものを選択して用いることができる。
Next, the hole injecting layer is made of a hole transferring compound and has a function of transferring the holes injected from the anode to the light emitting layer. By interposing this hole injection layer between the anode and the light emitting layer, many holes are injected into the light emitting layer at a lower electric field, and moreover, the electrons injected from the cathode or the electron injection layer into the light emitting layer are: Due to the barrier of electrons existing at the interface between the light emitting layer and the hole injecting layer, the device is excellent in light emitting performance, such as being accumulated at the interface in the light emitting layer and improving the light emitting efficiency. The hole transporting compound used in the hole injecting layer is disposed between two electrodes to which an electric field is applied, and when the hole is injected from the anode, the hole is appropriately transferred to the light emitting layer. Is possible, for example 10 4 -10 6
At least 10 -6 cm 2 / V · when an electric field of V / cm is applied
Those having a hole mobility of seconds are suitable. The hole transfer compound is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally, in the optical transmission material,
Any material can be selected and used from materials commonly used as charge injection / transport materials for holes and known materials used for hole injection layers of organic EL devices.

【0037】上記正孔伝達化合物としては、例えば前記
一般式(I)で表されるキノキサリン化合物,トリアゾ
ール誘導体(米国特許第3,112,197 号明細書),オキサ
ジアゾール誘導体(米国特許第3,189,447 号明細書),
イミダゾール誘導体(特公昭37−16096号公
報),ポリアリールアルカン誘導体(米国特許第3,615,
402 号明細書,米国特許第3,820,989 号明細書,米国特
許第3,542,544 号明細書,特公昭45−555号公報,
特公昭51−10983号公報,特公昭51−9322
4号公報,特公昭55−17105号公報,特公昭56
−4148号公報,特公昭55−108667号公報,
特公昭55−156953号公報,特公昭56−366
56号公報),ピラゾリン誘導体及びピラゾロン誘導体
(米国特許第3,180,729 号明細書,米国特許第4,278,74
6 号明細書,特開昭55−88064号公報,特開昭5
5−88065号公報,特開昭49−105537号公
報,特開昭55−51086号公報,特開昭56−80
051号公報,特開昭56−88141号公報,特開昭
57−45545号公報,特開昭54−112637号
公報,特開昭55−74546号公報),フェニレンジ
アミン誘導体(米国特許第3,615,404 号明細書,特公昭
51−10105号公報,特公昭46−3712号公
報,特公昭47−25336号公報,特開昭54−53
435号公報,特開昭54−110536号公報,特開
昭54−119925号公報),アリールアミン誘導体
(米国特許第3,567,450 号明細書,米国特許第3,180,70
3 号明細書,米国特許第3,240,597 号明細書,米国特許
第3,658,520 号明細書,米国特許第4,232,103 号明細
書,米国特許第4,175,961 号明細書,米国特許第4,012,
376 号明細書,特公昭49−35702号公報,特公昭
39−27577号公報,特開昭55−144250号
公報,特開昭56−119132号公報,特開昭56−
22437号公報,西独特許第1,110,518 号明細書),
アミノ置換カルコン誘導体(米国特許第3,526,501 号明
細書),オキサゾール誘導体(米国特許第3,257,203 号
明細書),スチリルアントラセン誘導体(特開昭56−
46234号公報),フルオレノン誘導体(特開昭54
−110837号公報),ヒドラゾン誘導体(米国特許
第3,717,462 号明細書,特開昭54−59143号公
報,特開昭55−52063号公報,特開昭55−52
064号公報,特開昭55−46760号公報,特開昭
55−85495号公報,特開昭57−11350号公
報,特開昭57−148749号公報,特開平2−31
1591号公報),スチルベン誘導体(特開昭61−2
10363号公報,特開昭61−228451号公報,
特開昭61−14642号公報,特開昭61−7225
5号公報,特開昭62−47646号公報,特開昭62
−36674号公報,特開昭62−10652号公報,
特開昭62−30255号公報,特開昭60−9344
5号公報,特開昭60−94462号公報,特開昭60
−174749号公報,特開昭60−175052号公
報),シラザン誘導体(米国特許第4,950,950 号明細
書),ポリシラン系(特開平2−204996号公
報),アニリン系共重合体(特開平2−282263号
公報),導電性高分子オリゴマー(特開平1−2113
99号公報、特にチオフェンオリゴマーなど)などを挙
げることができる。
Examples of the hole transfer compound include quinoxaline compounds represented by the general formula (I), triazole derivatives (US Pat. No. 3,112,197), oxadiazole derivatives (US Pat. No. 3,189,447). ,
Imidazole derivative (JP-B-37-16096), polyarylalkane derivative (US Pat. No. 3,615,
402, U.S. Pat. No. 3,820,989, U.S. Pat. No. 3,542,544, JP-B-45-555,
Japanese Patent Publication No. 51-10983, Japanese Patent Publication No. 51-9322
4, Japanese Patent Publication No. 55-17105, Japanese Patent Publication No. 56
-4148 gazette, Japanese Patent Publication No. 55-108667 gazette,
Japanese Patent Publication No. 55-156953, Japanese Patent Publication No. 56-366
56), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, US Pat. No. 4,278,74).
6 specification, JP-A-55-88064, JP-A-5
JP-A-5-88065, JP-A-49-105537, JP-A-55-51086, and JP-A-56-80.
No. 051, JP-A-56-88141, JP-A-57-45545, JP-A-54-112637, JP-A-55-74546) and phenylenediamine derivatives (US Pat. No. 3,615,404). Description, JP-B-51-10105, JP-B-46-3712, JP-B-47-25336, JP-A-54-53
435, JP-A-54-110536, JP-A-54-119925), arylamine derivatives (US Pat. No. 3,567,450, US Pat. No. 3,180,70).
No. 3, U.S. Pat.No. 3,240,597, U.S. Pat.No. 3,658,520, U.S. Pat.No. 4,232,103, U.S. Pat.No. 4,175,961, U.S. Pat.
376, JP-B-49-35702, JP-B-39-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-
22437, West German Patent 1,110,518),
Amino-substituted chalcone derivative (US Pat. No. 3,526,501), oxazole derivative (US Pat. No. 3,257,203), styrylanthracene derivative (JP-A-56-
46234), fluorenone derivatives (JP-A-54)
-110837), hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-59143, JP-A-55-52063, JP-A-55-52).
064, JP-A-55-46760, JP-A-55-85495, JP-A-57-11350, JP-A-57-148749, and JP-A-2-31.
1591), stilbene derivatives (JP-A-61-2)
10363, JP-A-61-228451,
JP 61-14642 A, JP 61-7225 A
5, JP-A-62-47646, JP-A-62.
-36674, JP-A-62-10652,
JP-A-62-30255, JP-A-60-9344
5, JP-A-60-94462, JP-A-60-
-174749, JP60-175052), silazane derivatives (US Pat. No. 4,950,950), polysilane-based (JP-A-2-204996), aniline-based copolymers (JP-A-2-282632). No.), a conductive polymer oligomer (JP-A 1-2113)
99, especially thiophene oligomers and the like).

【0038】本発明で用いる有機EL素子においては、
上記の正孔伝達化合物または電荷注入輸送材料を正孔注
入材料として使用することができるが、次に示すポルフ
ィリン化合物(特開昭63−2956965号公報など
に記載のもの)及び芳香族第三級アミン化合物及びスチ
リルアミン化合物(米国特許第4,127,412 号明細書,特
開昭53−27033号公報,同54−58445号公
報,同54−149634号公報,同54−64299
号公報,同55−79450号公報,同55−1442
50号公報,同56−119132号公報,同61−2
95558号公報,同61−98353号公報,同63
−295695号公報など参照),特に該芳香族第三級
アミン化合物を用いることが好ましい。該ポルフィリン
化合物の代表例としては、ポルフィン,1,10,1
5,20−テトラフェニル−21H,23H−ポルフィ
ン銅(II);1,10,15,20−テトラフェニル2
1H,23H−ポルフィン亜銅(II);5,10,1
5,20−テトラキス(ペンタフルオロフェニル)−2
1H,23H−ポルフィン;シリコンフタロシアニンオ
キシド;アルミニウムフタロシアニンクロリド;フタロ
シアニン(無金属);ジリチウムフタロシアニン;銅テ
トラメチルフタロシアニン;銅フタロシアニン;クロム
フタロシアニン;亜鉛フタロシアニン;鉛フタロシアニ
ン;チタニウムフタロシアニンオキシド;マグネシウム
フタロシアニン;銅オクタメチルフタロシアニンなどが
挙げられる。
In the organic EL device used in the present invention,
The above hole transporting compound or charge injecting / transporting material can be used as the hole injecting material, and the following porphyrin compounds (as described in JP-A-63-295965) and aromatic tertiary compounds. Amine compounds and styrylamine compounds (U.S. Pat. No. 4,127,412, JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, and JP-A-54-64299)
No. 55-79450, No. 55-1442.
No. 50, No. 56-119132, No. 61-2.
95558, 61-98353, 63.
It is preferable to use the aromatic tertiary amine compound. Typical examples of the porphyrin compound include porphine, 1,10,1
5,20-Tetraphenyl-21H, 23H-porphine copper (II); 1,10,15,20-tetraphenyl 2
1H, 23H-porphine cuprous (II); 5,10,1
5,20-Tetrakis (pentafluorophenyl) -2
1H, 23H-porphine; Silicon phthalocyanine oxide; Aluminum phthalocyanine chloride; Phthalocyanine (no metal); Dilithium phthalocyanine; Copper tetramethylphthalocyanine; Copper phthalocyanine; Chromium phthalocyanine; Zinc phthalocyanine; Lead phthalocyanine; Titanium phthalocyanine oxide; Magnesium phthalocyanine; Examples include methyl phthalocyanine.

【0039】また、該芳香族第三級アミン化合物及びス
チリルアミン化合物の代表例としては、N,N,N’,
N’−テトラフェニル−4,4’−ジアミノフェニル;
N,N’−ジフェニル−N,N’−ジ(3−メチルフェ
ニル)−4,4’−ジアミノビフェニル(TPDA);
2,2−ビス(4−ジ−p−トリルアミノフェニル)プ
ロパン;1,1−ビス(4−ジ−p−トリルアミノフェ
ニル)シクロヘキサン;N,N,N’,N’−テトラ−
p−トリル−4,4’−ジアミノビフェニル;1,1−
ビス(4−ジ−p−トリルアミノフェニル)−4−フェ
ニルシクロヘキサン;ビス(4−ジメチルアミノ−2−
メチルフェニル)フェニルメタン;ビス(4−ジ−p−
トリルアミノフェニル)フェニルメタン;N,N’−ジ
フェニル−N,N’−ジ(4−メトキシフェニル)−
4,4’−ジアミノビフェニル;N,N,N’,N’−
テトラフェニル−4,4’−ジアミノジフェニルエーテ
ル;4,4’−ビス(ジフェニルアミノ)クオードリフ
ェニル;N,N,N−トリ(p−トリル)アミン;4−
(ジ−p−トリルアミノ)−4’−〔4(ジ−p−トリ
ルアミノ)スチリル〕スチルベン;4−N,N−ジフェ
ニルアミノ−(2−ジフェニルビニル)ベンゼン;3−
メトキシ−4’−N,N−ジフェニルアミノスチルベン
ゼン;N−フェニルカルバゾールなどが挙げられる。ま
た、Si,SiC,CdSなどの無機物半導体の結晶,
非晶材料も用いることができる。さらに無機物であるp
型−Si,p型−SiCによる正孔注入材料も用いるこ
とができる。例えば、国際公開WO90/05998号
公報に開示されている無機半導体などが挙げられる。本
発明の正孔注入層は、これらの正孔注入材料一種又は二
種以上からなる一層で構成されてもよいし、あるいは、
正孔注入層に別種の化合物からなる正孔注入層を積層し
たものであってもよい。
Typical examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ',
N'-tetraphenyl-4,4'-diaminophenyl;
N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diaminobiphenyl (TPDA);
2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-
p-tolyl-4,4'-diaminobiphenyl; 1,1-
Bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-
Methylphenyl) phenylmethane; bis (4-di-p-
Trilylaminophenyl) phenylmethane; N, N'-diphenyl-N, N'-di (4-methoxyphenyl)-
4,4'-diaminobiphenyl; N, N, N ', N'-
Tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4-
(Di-p-tolylamino) -4 '-[4 (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-
Methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole and the like. In addition, crystals of inorganic semiconductors such as Si, SiC, CdS,
Amorphous materials can also be used. Furthermore, it is an inorganic substance, p
A hole injecting material of type-Si or p-type-SiC can also be used. For example, an inorganic semiconductor disclosed in International Publication WO90 / 05998 may be used. The hole injection layer of the present invention may be composed of a single layer composed of one or more of these hole injection materials, or
The hole injection layer may be formed by laminating a hole injection layer made of a different kind of compound on the hole injection layer.

【0040】また、電子注入層は、電子注入材料から成
るものであって、陰極より注入された電子を発光層に伝
達する機能を有している。この電子注入材料について特
に制限されることはなく、従来公知の化合物の中から任
意のものを選択して用いることができる。この具体例と
しては、ニトロ置換フルオレノン誘導体,アントラキノ
ジメタン誘導体(特開昭57−149259号公報,特
開昭58−55450号公報,特開昭63−10406
1号公報),ジフェニルキノン誘導体(Polyme
r,Preprints,Japan 37巻,No.
3(1988)p.681),チオピランジオキシド誘
導体,ナフタレンペリレンなどの複素環テトラカルボン
酸無水物,カルボジイミド,フルオレニリデンメタン誘
導体(Japanease Journal of A
pplied Physics,27巻,L269(1
988)),アントラキノジメタン誘導体(特開昭61
−225151号公報,特開昭61−233750号公
報),アントロン誘導体(特開昭61−225151号
公報,特開昭61−233750号公報),オキサジア
ゾール誘導体(Appl.Phys.Lett.,5
5,l5,1489や前記浜田らによって開示されたも
の),電子伝達性化合物(特開昭59−194393号
公報)などを挙げることができる。さらに、トリス(8
−キノリノール)アルミニウム,トリス(5,7−ジク
ロロ−8−キノリノール)アルミニウム,トリス(5,
7−ジブロモ−8−キノリノール)アルミニウム,トリ
ス(2−メチル−8−キノリノール)アルミニウムなど
の8−キノリノール誘導体の金属錯体、または8−キノ
リノール誘導体の中心金属がアルミニウムからIn,M
g,Cu,Ca,Sn,Pbに置き代わった金属錯体,
メタルフリーあるいはメタルフタロシアニン,メタルフ
リーあるいはメタルフタロシアニンの末端がアルキル基
やスルホン基などで置換されているもの,前記発光層の
材料であるジスチリルピラジン誘導体も電子注入材料に
用いることができる。さらに無機物であるn型α−S
i,n型α−SiCによる電子注入材料を電子注入材料
として用いることができる。例えば、国際公開WO90
/05998号公報に開示されている無機半導体などが
挙げられる。本発明の電子注入層は、これらの電子注入
材料の一種又は二種以上からなる一層で構成されてもよ
いし、あるいは、前記層とは別種の化合物からなる電子
注入層を積層したものであってもよい。
The electron injection layer is made of an electron injection material and has a function of transmitting the electrons injected from the cathode to the light emitting layer. The electron injecting material is not particularly limited, and any one of conventionally known compounds can be selected and used. Specific examples thereof include nitro-substituted fluorenone derivatives and anthraquinodimethane derivatives (JP-A-57-149259, JP-A-58-55450, JP-A-63-10406).
No. 1), diphenylquinone derivative (Polyme)
r, Preprints, Japan 37, No.
3 (1988) p. 681), a thiopyran dioxide derivative, a heterocyclic tetracarboxylic acid anhydride such as naphthaleneperylene, a carbodiimide, a fluorenylidenemethane derivative (Japanease Journal of A).
Applied Physics, Volume 27, L269 (1
988)), an anthraquinodimethane derivative (JP-A-61-61)
-225151, JP 61-233750), anthrone derivative (JP 61-225151, JP 61-233750), oxadiazole derivative (Appl. Phys. Lett., 5).
5, 15, 1489 and those disclosed by Hamada et al.), Electron-transporting compounds (JP-A-59-194393), and the like. In addition, Tris (8
-Quinolinol) aluminum, tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5
A metal complex of an 8-quinolinol derivative such as 7-dibromo-8-quinolinol) aluminum or tris (2-methyl-8-quinolinol) aluminum, or a central metal of the 8-quinolinol derivative is aluminum to In, M
a metal complex replacing g, Cu, Ca, Sn, Pb,
A metal-free or metal phthalocyanine, a metal-free or metal phthalocyanine whose terminal is substituted with an alkyl group or a sulfone group, and a distyrylpyrazine derivative which is a material of the light emitting layer can also be used as the electron injection material. Furthermore, n-type α-S which is an inorganic substance
An electron injection material made of i, n-type α-SiC can be used as the electron injection material. For example, international publication WO90
Inorganic semiconductors and the like disclosed in / 05998 are cited. The electron injection layer of the present invention may be composed of a single layer composed of one or two or more of these electron injection materials, or is a stack of electron injection layers composed of a compound different from the layer. May be.

【0041】次に、本発明で用いるEL素子を作製方法
の好適な例を説明する。例として、前記の陽極/正孔注
入層/発光層/電子注入層/接着改善層/陰極からなる
EL素子の作製方法について説明する。先ず柱状の透明
基板上に、所望の電極物質、例えば陽極用物質からなる
薄膜を、1μm以下、好ましくは10〜200nmの範
囲の膜厚になるように、蒸着やスパッタリングなどの方
法により形成させ、陽極を作製する。次に、この上に素
子材料である正孔注入層,発光層,電子注入層,接着改
善層の材料の順に薄膜を形成させる。薄膜を作製する方
法としては、前記の如くスピンコート法,キャスト法,
蒸着法などがあるが、均質な膜が得られやすく、かつピ
ンホールが生成しにくいなどの点から、真空蒸着法が好
ましい。この薄膜化に、この蒸着法を採用する場合、そ
の蒸着条件は、使用する化合物の種類,分子堆積膜の目
的とする結晶構造,会合構造などにより異なるが、一般
にボート加熱温度50〜450℃,真空度10 -5〜10
-3Pa,蒸着速度0.01〜50nm/秒,基板温度−5
0〜300℃,膜厚5nm〜5μmの範囲で適宜選ぶこ
とが望ましい。これらの層の形成後、その上に陰極用物
質からなる薄膜を、1μm以下好ましくは50〜200
nmの範囲の膜厚になるように、例えば蒸着やスパッタ
リングなどの方法により形成させ、陰極を設けることに
より、所望のEL素子が得られる。なお、このEL素子
の作製においては、作製順序を逆にして、陰極,接着改
善層,電子注入層,発光層,正孔注入層,陽極の順に作
製することも可能である。また、一対の電極間に正孔注
入層,発光層,電子注入層を混合させた形(混合層)で
挟持させた陽極/混合層/接着改善層/陰極からなる素
子の作製方法としては、例えば適当な基板の上に、陽極
用物質からなる薄膜を形成し、正孔注入材料,発光材
料,電子注入材料,ポリビニルカルバゾール,ポリカー
ボネート,ポリアリレート,ポリエステル,ポリエーテ
ルなどの結着剤などからなる溶液を塗布するか、又はこ
の溶液から浸漬塗工法により薄膜を形成させ発光層と
し、その上に上記接着改善層,陰極を形成させるものが
ある。
Next, a method for manufacturing the EL element used in the present invention
A preferred example of will be described. As an example, the above-mentioned anode / hole injection
Consisting of injection layer / light emitting layer / electron injection layer / adhesion improving layer / cathode
A method for manufacturing an EL element will be described. First, columnar transparent
On the substrate, consists of the desired electrode material, for example the anode material
The thin film should have a thickness of 1 μm or less, preferably 10 to 200 nm.
Those who use evaporation or sputtering to achieve the
Then, the anode is formed by the method. Then leave this on
Hole injection layer, light-emitting layer, electron injection layer, adhesion improvement
A thin film is formed in order of the material of the good layer. Those who make thin films
As the method, spin coating, casting,
Although there are vapor deposition methods, it is easy to obtain a uniform film and
The vacuum deposition method is preferred because it does not easily generate holes.
Good If this vapor deposition method is used for this thinning,
The vapor deposition conditions are: type of compound used, molecular deposition film
Depending on the target crystal structure, association structure, etc.,
Boat heating temperature 50-450 ℃, vacuum degree 10 -Five-10
-3Pa, evaporation rate 0.01 to 50 nm / sec, substrate temperature -5
Select appropriately in the range of 0 ~ 300 ℃, film thickness 5nm ~ 5μm.
And is desirable. After forming these layers, cathode materials
A thin film of a quality of 1 μm or less, preferably 50 to 200
For example, vapor deposition or sputtering to obtain a film thickness in the range of nm.
Formed by a method such as a ring and provided with a cathode
As a result, a desired EL element can be obtained. In addition, this EL element
In order to fabricate the
Good layer, electron injection layer, light emitting layer, hole injection layer, anode
It is also possible to manufacture. In addition, holes are injected between the pair of electrodes.
In the form of mixed injection layer, emission layer and electron injection layer (mixed layer)
Element consisting of sandwiched anode / mixed layer / adhesion improving layer / cathode
As a method of manufacturing the child, for example, an anode is formed on a suitable substrate.
A thin film made of a substance for use in forming a hole injection material, a light emitting material
Materials, electron injection materials, polyvinylcarbazole, polycarbonate
Bonate, Polyarylate, Polyester, Polyete
Solution such as a binder, or
A thin film is formed from the solution of
However, the one on which the above-mentioned adhesion improving layer and the cathode are formed is
is there.

【0042】このようにして得られた有機EL素子に、
直流電圧を印加する場合には、陽極を+,陰極を−の極
性として電圧5〜40V程度を印加すると、発光が観測
できる。また、逆の極性で電圧を印加しても電流は流れ
ずに発光は全く生じない。さらに、交流電圧を印加する
場合には、正極が+,負極が−の状態になったときのみ
発光する。なお、印加する交流の波形は任意でよい。
In the organic EL device thus obtained,
When a DC voltage is applied, light emission can be observed by applying a voltage of about 5 to 40 V with the anode having a positive polarity and the cathode having a negative polarity. Moreover, even if a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when an AC voltage is applied, light is emitted only when the positive electrode is in the + state and the negative electrode is in the − state. The waveform of the alternating current applied may be arbitrary.

【0043】[0043]

【実施例】本発明を実施例および比較例を用いて、さら
に具体的に説明する。表面エネルギーの測定方法 表面エネルギーは、接触角測定法による。この接触角測
定法は、一般の測定法として用いられるものであり、例
えばD.H.KAELBLE,JOURNALOF A
PPLIED POLYMER SCIENCE Vo
l.18.PP.1869−1889(1974)に記
載されているものが挙げられる。具体的な方法について
添付図を用いて以下に説明する。先ず接触改善材料2の
蒸着膜の上に表面エネルギーが既知の液体1を一滴垂ら
すと、液体1は蒸着膜の上に図1に示すように付着す
る。ここで、接触角をθとし、その他のパラメーターを
以下のように定義する。 γS :蒸着膜の表面エネルギー(界面張力) γL :液体の表面エネルギー(表面張力) αS :蒸着膜の表面エネルギーの分散力成分の平方根 αL :液体の表面エネルギーの分散力成分の平方根 βS :蒸着膜の表面エネルギーの双極子相互作用成分の
平方根 βL :液体の表面エネルギーの双極子相互作用成分の平
方根 γS =αS 2 +βS 2 γL =αL 2 +βL 2 上記より、次の関係式が成立する。 (1+cosθ)γL =2(αL αS +βL βS ) この式は (1+cosθ)γL /2αL =αS +(βL /αL )βS ・・・(A) と変形することができる。従って、γL ,αL ,βL
既知の液体を何種類か用いてθを測定し、図2に示すよ
うに、横軸をβL /αL ,縦軸を(1+cosθ)γL
/2αL としてプロットすると直線が得られる。この直
線の傾きがβS であり縦軸との切片がαSとなる。ここ
で、表面エネルギーの双極子成分はβS 2 で表される。
測定に用いた既知の液体のγL ,2αL ,βL /αL
値は各々第1表に示す。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples. Surface energy measuring method Surface energy is measured by a contact angle measuring method. This contact angle measuring method is used as a general measuring method. H. KAELBLE, JOURNAL OF A
PPLIED POLYMER SCIENCE Vo
l. 18. PP. 1869-1889 (1974) is mentioned. A specific method will be described below with reference to the accompanying drawings. First, when a drop of the liquid 1 having a known surface energy is dropped on the vapor deposition film of the contact improving material 2, the liquid 1 adheres on the vapor deposition film as shown in FIG. Here, the contact angle is θ, and other parameters are defined as follows. γ S : Surface energy of the deposited film (interfacial tension) γ L : Surface energy of the liquid (surface tension) α S : Square root of the dispersive component of the surface energy of the deposited film α L : Square root of the dispersive component of the surface energy of the liquid β S : Square root of dipole interaction component of surface energy of deposited film β L : Square root of dipole interaction component of liquid surface energy γ S = α S 2 + β S 2 γ L = α L 2 + β L 2 Above Therefore, the following relational expression holds. (1 + cos θ) γ L = 2 (α L α S + β L β S ) This formula is transformed into (1 + cos θ) γ L / 2α L = α S + (β L / α L ) β S (A) be able to. Therefore, θ is measured using several kinds of liquids with known γ L , α L , and β L , and as shown in FIG. 2, the horizontal axis is β L / α L and the vertical axis is (1 + cos θ) γ L
A straight line is obtained when plotted as / 2α L. The slope of this straight line is β S and the intercept with the vertical axis is α S. Here, the dipole component of the surface energy is represented by β S 2 .
The values of γ L , 2α L , and β L / α L of known liquids used for the measurement are shown in Table 1, respectively.

【0044】接触角の測定 25mm×20mm×1.1mmのガラス基板を市販の真
空蒸着装置(日本真空技術(株)製)の基本ホルダーに
固定し、モリブデン製抵抗加熱用ボートに前記例示化合
物1を200mg入れ320℃に加熱し、蒸着速度0.1
〜0.3nm/秒で基板上に堆積させ膜厚30nmの蒸着
膜を作成した。ここで、基板温度は室温であった。次い
で、得られた蒸着膜を蒸着装置から取り出し接触角測定
装置(エルモ光学(株)製)に取り付けた。そして、第
1表に示した表面エネルギーが既知の液体を一滴滴下
し、接触角を測定した。各々の測定値を上記式(A)に
代入し、直線の傾きとy軸の切片からαS ,βS を求め
た。図2に示すグラフより、傾き(βS )が2.8(dy
n/cm)1/2 ,Y切片(αS )が5.8(dyn/c
m)1/2 と求められ、表面エネルギーの双極子成分(β
S 2 が7.8dym/cm,分散力成分(αS 2 が3
3.6dyn/cmと計算された。上記方法により、以下
の実施例および比較例における表面エネルギーの測定を
行った。
Measurement of Contact Angle A glass substrate having a size of 25 mm × 20 mm × 1.1 mm was fixed to a basic holder of a commercially available vacuum deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and the molybdenum resistance heating boat was charged with the above-mentioned Compound 1 200mg was added and heated to 320 ℃, vapor deposition rate 0.1
A vapor deposition film having a film thickness of 30 nm was prepared by depositing it on the substrate at a rate of up to 0.3 nm / sec. Here, the substrate temperature was room temperature. Then, the obtained vapor deposition film was taken out from the vapor deposition device and attached to a contact angle measuring device (manufactured by Elmo Optical Co., Ltd.). Then, one drop of the liquid having a known surface energy shown in Table 1 was dropped, and the contact angle was measured. Each measured value was substituted into the above formula (A), and α S and β S were obtained from the slope of the straight line and the intercept of the y-axis. From the graph shown in FIG. 2, the slope (β S ) is 2.8 (dy
n / cm) 1/2 , Y intercept (α S ) is 5.8 (dyn / c)
m) 1/2, which is the dipole component of the surface energy (β
S ) 2 is 7.8 dyms / cm, and the dispersion force component (α S ) 2 is 3
The calculated value was 3.6 dyn / cm. The surface energy in the following examples and comparative examples was measured by the above method.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例1 25mm×75mm×1.1mmのガラス基板上にITO
電極を100nmの厚さで製膜したものを透明支持基板
とした。この透明支持基板をイソプロピルアルコールで
5分間超音波洗浄した後、純水で5分間洗浄し再びイソ
プロピルアルコールで5分間超音波洗浄した。次いで、
この透明支持基板を市販の真空蒸着装置(日本真空技術
(株)製)の基本ホルダーに固定し、モリブデン製抵抗
加熱用ボートにN,N’−ジフェニルエーテル−N,
N’−ビス(3−メチルフェニル)−(1,1’−ビフ
ェニル)−4,4’−ジアミン(TPD)を200mg
入れ、他のモリブデン製抵抗加熱用ボートに4,4’−
ビス(2,2’−ジフェニルビニル)ビフェニル(DP
VBi)を200mg入れて真空チャンバー内を1×1
-4Paまで減圧した。その後、TPD入りのボートを
215〜220℃まで加熱し、TPDを蒸着速度0.1〜
0.3nm/秒で基板上に堆積させ、膜厚60nmの正孔
注入層を製膜した。このときの基板温度は室温であっ
た。得られた正孔注入層を真空チャンバーより取り出す
ことなく、この上にDPVBiをボート温度250℃,
蒸着速度0.1〜0.2nm/秒で基板上に堆積させ、膜厚
40nmの発光層を製膜した。このときの基板温度は室
温であった。さらに、モリブデン製抵抗加熱用ボートに
トリス(8−キノリノール)アルミニウム(Alq)を
200mg入れ、真空チャンバー内を2×10-4Paま
で減圧した。Alq入りのボートを280℃まで加熱
し、Alqを蒸着速度0.3nm/秒で基板上に堆積さ
せ、膜厚20nmの電子注入層を製膜した。電子注入層
を製膜した後、得られた蒸着物を真空チャンバーより取
り出し、発光層の上にステンレススチール製のマスクを
設置し、再度基板ホルダーに固定した。次いで、モリブ
デン製抵抗加熱ボートに前記例示化合物1を200mg
入れて真空槽に装着した。また、タングステン製バスケ
ットにAgワイヤーを0.5g入れ、別のモリブデン製抵
抗加熱ボートにMgリボンを1g入れた。真空チャンバ
ー内を1×10-4Paまで減圧して、化合物1を蒸着速
度0.1nm/秒で堆積させ、膜厚10nmの接着改善層
を製膜した。その上に、Mgを蒸着速度1.8nm/秒,
同時にAgを蒸着速度0.1nm/秒で蒸着して陰極を作
製した。得られた素子は、青色発光した。また、素子の
接着改善層の表面エネルギーの双極子エネルギーおよび
発光状態を第2表に示す。
Example 1 ITO was formed on a 25 mm × 75 mm × 1.1 mm glass substrate.
The transparent support substrate was prepared by forming an electrode with a thickness of 100 nm. The transparent supporting substrate was ultrasonically cleaned with isopropyl alcohol for 5 minutes, then with pure water for 5 minutes, and again with isopropyl alcohol for 5 minutes. Then
This transparent support substrate was fixed to a basic holder of a commercially available vacuum deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and a molybdenum resistance heating boat was fitted with N, N'-diphenylether-N,
200 mg of N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD)
Put it in another molybdenum resistance heating boat for 4,4'-
Bis (2,2'-diphenylvinyl) biphenyl (DP
Put 200 mg of VBi) into the vacuum chamber 1 × 1
The pressure was reduced to 0 -4 Pa. After that, the boat containing TPD is heated to 215 to 220 ° C. to deposit TPD at a deposition rate of 0.1 to
It was deposited on the substrate at 0.3 nm / sec to form a hole injection layer having a film thickness of 60 nm. The substrate temperature at this time was room temperature. Without removing the obtained hole injection layer from the vacuum chamber, DPVBi was placed on the hole injection layer at a boat temperature of 250 ° C.
It was deposited on the substrate at a vapor deposition rate of 0.1 to 0.2 nm / sec to form a light emitting layer having a film thickness of 40 nm. The substrate temperature at this time was room temperature. Further, 200 mg of tris (8-quinolinol) aluminum (Alq) was put in a resistance heating boat made of molybdenum, and the pressure in the vacuum chamber was reduced to 2 × 10 −4 Pa. A boat containing Alq was heated to 280 ° C., Alq was deposited on the substrate at a vapor deposition rate of 0.3 nm / sec, and an electron injection layer having a film thickness of 20 nm was formed. After forming the electron injection layer, the obtained deposit was taken out of the vacuum chamber, a stainless steel mask was placed on the light emitting layer, and the substrate was fixed again on the substrate holder. Then, 200 mg of the exemplified compound 1 was placed in a molybdenum resistance heating boat.
It was put in and attached to a vacuum chamber. Also, 0.5 g of Ag wire was placed in a tungsten basket, and 1 g of Mg ribbon was placed in another molybdenum resistance heating boat. The pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa, Compound 1 was deposited at a vapor deposition rate of 0.1 nm / sec, and an adhesion improving layer having a film thickness of 10 nm was formed. On top of that, Mg deposition rate 1.8 nm / sec,
At the same time, Ag was vapor-deposited at a vapor deposition rate of 0.1 nm / sec to prepare a cathode. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0047】実施例2 接着層の材料として化合物14を用いた以外は、実施例
1と同様にして素子を作成した。得られた素子は、青色
発光した。また、素子の接着改善層の表面エネルギーの
双極子エネルギーおよび発光状態を第2表に示す。
Example 2 A device was prepared in the same manner as in Example 1 except that Compound 14 was used as the material for the adhesive layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0048】実施例3 接着層の材料として前記例示化合物17を用いた以外
は、実施例1と同様にして素子を作成した。得られた素
子は、青色発光した。また、素子の接着改善層の表面エ
ネルギーの双極子エネルギーおよび発光状態を第2表に
示す。
Example 3 A device was prepared in the same manner as in Example 1 except that the exemplified compound 17 was used as the material for the adhesive layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0049】実施例4 接着層の材料として前記例示化合物21を用いた以外
は、実施例1と同様にして素子を作成した。得られた素
子は、青色発光した。また、素子の接着改善層の表面エ
ネルギーの双極子エネルギーおよび発光状態を第2表に
示す。
Example 4 A device was prepared in the same manner as in Example 1 except that the exemplified compound 21 was used as the material for the adhesive layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0050】実施例5 接着層の材料として前記例示化合物64を用いた以外
は、実施例1と同様にして素子を作成した。得られた素
子は、青色発光した。また、素子の接着改善層の表面エ
ネルギーの双極子エネルギーおよび発光状態を第2表に
示す。
Example 5 A device was prepared in the same manner as in Example 1 except that the exemplified compound 64 was used as the material for the adhesive layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0051】実施例6 接着層の材料として前記例示化合物74を用いた以外
は、実施例1と同様にして素子を作成した。得られた素
子は、青色発光した。また、素子の接着改善層の表面エ
ネルギーの双極子エネルギーおよび発光状態を第2表に
示す。
Example 6 A device was prepared in the same manner as in Example 1 except that the exemplified compound 74 was used as the material for the adhesive layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0052】実施例7 25mm×75mm×1.1mmのガラス基板上にITO
電極を100nmの厚さで製膜したものを透明支持基板
とした。この透明支持基板をイソプロピルアルコールで
5分間超音波洗浄した後、純水で5分間洗浄し再びイソ
プロピルアルコールで5分間超音波洗浄した。次いで、
この透明支持基板を市販の真空蒸着装置(日本真空技術
(株)製)の基本ホルダーに固定し、モリブデン製抵抗
加熱用ボートにN,N’−ジフェニルエーテル−N,
N’−ビス(3−メチルフェニル)−(1,1’−ビフ
ェニル)−4,4’−ジアミン(TPD)を200mg
入れ、他のモリブデン製抵抗加熱用ボートに4,4’−
ビス(2,2’−ジフェニルビニル)ビフェニル(DP
VBi)を200mg入れ、更に別のモリブデン製抵抗
加熱用ボートに2,3−ビス(2,2−ジフェニルビニ
ル)キノキサリン(DPVQ)を100mg入れて真空
チャンバー内を1×10-4Paまで減圧した。その後、
TPD入りのボートを215〜220℃まで加熱し、T
PDを蒸着速度0.1〜0.3nm/秒で基板上に堆積さ
せ、膜厚60nmの正孔注入層を製膜した。このときの
基板温度は室温であった。得られた正孔注入層を真空チ
ャンバーより取り出すことなく、この上にDPVBiを
ボート温度250℃,蒸着速度0.1〜0.2nm/秒で基
板上に堆積させ、膜厚40nmの発光層を製膜した。こ
のときの基板温度は室温であった。更にDPVQを蒸着
速度0.1〜0.2nm/秒で基板上に堆積させ、膜厚10
nmの電子注入層を製膜した。次に、モリブデン製抵抗
加熱用ボートに前記例示化合物(74)を200mg入
れ、真空槽に装着した後、真空チャンバー内を2×10
-4Paまで減圧して、上記化合物(74)の入ったボー
トを300℃まで通電加熱し、化合物(74)を蒸着速
度0.3nm/秒で基板上に膜厚10nmで堆積させた。
最後に、得られた蒸着物を真空チャンバーより取り出
し、上記発光層の上にステンレススチール製のマスクを
設置し、再度基板ホルダーに固定した。次いで、タング
ステン製バスケットにAgワイヤーを0.5g入れ、別の
モリブデン製抵抗加熱ボートにMgリボンを1g入れ
た。真空チャンバー内を1×10-4Paまで減圧して、
Mgを蒸着速度1.8nm/秒,同時にAgを蒸着速度0.
1nm/秒で蒸着して陰極を作製した。得られた素子
は、青色の均一発光した。
Example 7 ITO on a glass substrate of 25 mm × 75 mm × 1.1 mm
The transparent support substrate was prepared by forming an electrode with a thickness of 100 nm. The transparent supporting substrate was ultrasonically cleaned with isopropyl alcohol for 5 minutes, then with pure water for 5 minutes, and again with isopropyl alcohol for 5 minutes. Then
This transparent support substrate was fixed to a basic holder of a commercially available vacuum deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and a molybdenum resistance heating boat was fitted with N, N'-diphenylether-N,
200 mg of N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD)
Put it in another molybdenum resistance heating boat for 4,4'-
Bis (2,2'-diphenylvinyl) biphenyl (DP
VBi) was added in an amount of 200 mg, and another molybdenum resistance heating boat was charged with 100 mg of 2,3-bis (2,2-diphenylvinyl) quinoxaline (DPVQ) to reduce the pressure in the vacuum chamber to 1 × 10 −4 Pa. . afterwards,
Heat the boat with TPD to 215-220 ° C
PD was deposited on the substrate at a vapor deposition rate of 0.1 to 0.3 nm / sec to form a hole injection layer having a film thickness of 60 nm. The substrate temperature at this time was room temperature. Without removing the obtained hole injection layer from the vacuum chamber, DPVBi was deposited on the substrate at a boat temperature of 250 ° C. and a vapor deposition rate of 0.1 to 0.2 nm / sec to form a light emitting layer having a thickness of 40 nm. The film was formed. The substrate temperature at this time was room temperature. Further, DPVQ is deposited on the substrate at a vapor deposition rate of 0.1 to 0.2 nm / sec to obtain a film thickness of 10
An electron injection layer of nm was formed. Next, 200 mg of the exemplified compound (74) was put into a resistance heating boat made of molybdenum, and the boat was mounted in a vacuum chamber.
The pressure was reduced to −4 Pa, the boat containing the compound (74) was electrically heated to 300 ° C., and the compound (74) was deposited on the substrate at a vapor deposition rate of 0.3 nm / sec to a film thickness of 10 nm.
Finally, the obtained deposit was taken out of the vacuum chamber, a stainless steel mask was placed on the light emitting layer, and it was fixed again to the substrate holder. Next, 0.5 g of Ag wire was placed in a tungsten basket, and 1 g of Mg ribbon was placed in another molybdenum resistance heating boat. Reduce the pressure in the vacuum chamber to 1 × 10 -4 Pa,
Deposition rate of Mg is 1.8 nm / sec, and deposition rate of Ag is 0.
A cathode was produced by vapor deposition at 1 nm / sec. The obtained device emitted blue light uniformly.

【0053】実施例8 電子注入層のDPVQに代えて4,4’−ビス〔2−
(4−フェニルキノリル)〕ビフェニルを使用した以外
は実施例7と同様にして素子を作製した。素子は青色の
均一発光した。初期100cd/m2 で乾燥窒素中で連
続駆動したところ半減寿命が100時間であった。
Example 8 Instead of DPVQ in the electron injection layer, 4,4'-bis [2-
A device was produced in the same manner as in Example 7 except that (4-phenylquinolyl)] biphenyl was used. The device emitted uniform blue light. When it was continuously driven in dry nitrogen at an initial stage of 100 cd / m 2 , the half life was 100 hours.

【0054】比較例1 実施例1と同様にしてDPVBiからなる発光層まで作
成した。次いで、これを真空チャンバーから取り出し、
上記発光層の上にステンレススチール製のマスクを設置
し、再び基板ホルダーに固定した。次いで、タングステ
ンバスケットにAgワイヤーを0.5g入れ、モリブデン
製ボートにMgリボンを1g入れ、真空槽を1×10-4
Paまで減圧し、Mg(蒸着速度1.8nm/秒)とAg
(蒸着速度0.1nm/秒)を同時に蒸着し、陰電極を作
製した。得られた素子は、青色発光したが、不均一なド
ーナツ形状の発光であった。また、素子の陰電極と接し
ている層の表面エネルギーの双極子エネルギーおよび発
光状態を第2表に示す。
Comparative Example 1 A light emitting layer made of DPVBi was prepared in the same manner as in Example 1. Then remove it from the vacuum chamber,
A stainless steel mask was placed on the light emitting layer and fixed again on the substrate holder. Next, put 0.5 g of Ag wire in the tungsten basket, put 1 g of Mg ribbon in the molybdenum boat, and put the vacuum chamber in 1 × 10 -4.
Reduced pressure to Pa, Mg (deposition rate 1.8 nm / sec) and Ag
(Vapor deposition rate of 0.1 nm / sec) was simultaneously vapor-deposited to prepare a negative electrode. The device thus obtained emitted blue light, but had nonuniform donut-shaped light emission. Table 2 shows the dipole energy of the surface energy and the light emitting state of the layer in contact with the negative electrode of the device.

【0055】比較例2 接着改善層の材料として1,4−ビス(2−メチルスチ
リル)ベンゼン(DSB)を用いた以外は、実施例1と
同様にして素子を作製した。得られた素子は青色発光し
た。また、素子の接着改善層の表面エネルギーの双極子
エネルギーおよび発光状態を第2表に示す。
Comparative Example 2 A device was prepared in the same manner as in Example 1 except that 1,4-bis (2-methylstyryl) benzene (DSB) was used as the material for the adhesion improving layer. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0056】比較例3 接着改善槽の材料として下記化合物Comparative Example 3 The following compounds were used as materials for the adhesion improving tank.

【0057】[0057]

【化24】 [Chemical formula 24]

【0058】を用いた以外は、実施例1と同様にして素
子を作製した。得られた素子のMg:Ag電極の表面は
灰色であった。得られた素子は青色発光した。また、素
子の接着改善層の表面エネルギーの双極子エネルギーお
よび発光状態を第2表に示す。
An element was manufactured in the same manner as in Example 1 except that was used. The surface of the Mg: Ag electrode of the obtained device was gray. The obtained device emitted blue light. Table 2 shows the dipole energy of the surface energy and the light emitting state of the adhesion improving layer of the device.

【0059】[0059]

【表2】 [Table 2]

【0060】比較例4 接着改善層(前記例示化合物74)を設けなかった以外
は実施例8と同様にして素子を作製した。素子は青色発
光したが、細かい多数のダークスポットが発生し不均一
発光であった。また、初期100cd/m2 で乾燥窒素
中で連続駆動すると半減寿命が10時間以下であった。
また、4,4’−ビス〔2−(4−フェニルキノリ
ル)〕ビフェニルのβs 2 は2.8dyn/cmであっ
た。
Comparative Example 4 A device was prepared in the same manner as in Example 8 except that the adhesion improving layer (Exemplified Compound 74) was not provided. The device emitted blue light, but non-uniform light emission occurred due to the generation of many small dark spots. Further, the half-life was 10 hours or less when continuously driven in dry nitrogen at an initial stage of 100 cd / m 2 .
In addition, β s 2 of 4,4′-bis [2- (4-phenylquinolyl)] biphenyl was 2.8 dyn / cm.

【0061】[0061]

【発明の効果】本発明の有機素子は、双極子成分が4d
yn/cm以上の接着改善層を有機層と陰極の間に挿入
することにより、有機物と陰極の付着性が向上し、均一
発光を可能とした。従って、本発明の有機EL素子は各
種表示素子および発光素子として有効に利用することが
できる。
The organic element of the present invention has a dipole component of 4d.
By inserting an adhesion improving layer of yn / cm or more between the organic layer and the cathode, the adhesion between the organic substance and the cathode was improved, and uniform light emission was made possible. Therefore, the organic EL device of the present invention can be effectively used as various display devices and light emitting devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】接触角θの測定方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method of measuring a contact angle θ.

【図2】表面エネルギーを求めるため、式(A)におけ
るβL /αL と(1+cos θ)γL /2αL の関係を示
すグラフ図である。
FIG. 2 is a graph showing the relationship between β L / α L and (1 + cos θ) γ L / 2α L in the formula (A) for obtaining the surface energy.

【符号の説明】[Explanation of symbols]

1:液体 2:接触改善材料 1: Liquid 2: Contact improvement material

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 陰極と有機層の間に接着改善層を有する
有機エレクトロルミネッセンス素子において、該接着改
善層の表面エネルギーの双極子成分が4dyn/cm以
上であることを特徴とする有機エレクトロルミネッセン
ス素子。
1. An organic electroluminescence device having an adhesion improving layer between a cathode and an organic layer, wherein the dipole component of the surface energy of the adhesion improving layer is 4 dyn / cm or more. .
【請求項2】 接着改善層が一般式(I) 【化1】 (式中、k,l,m,nはそれぞれ0〜5の整数を示
す。但し、k=l=m=n=0の場合を除く。また、A
rは、 【化2】 (式中、R1 は炭素数1〜6のアルキル基またはハロゲ
ンを示し、R2 ,R3 はそれぞれ水素,炭素数1〜6の
アルキル基またはハロゲンを示す。また、pは1〜4の
整数を示し、q,rはそれぞれ0〜4の整数を示す。但
し、R1 ,R2 ,R3 はそれぞれ同じでも異なっていて
もよい。))で表される化合物からなる請求項1記載の
有機エレクトロルミネッセンス素子。
2. The adhesion improving layer has the general formula (I): (In the formula, k, l, m, and n each represent an integer of 0 to 5. However, the case where k = l = m = n = 0 is excluded.
r is (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms or halogen, R 2 and R 3 each represent hydrogen, an alkyl group having 1 to 6 carbon atoms or halogen, and p represents 1 to 4 An integer, q and r each represent an integer of 0 to 4, provided that R 1 , R 2 and R 3 may be the same or different from each other)). Organic electroluminescent device.
【請求項3】 接着改善層が一般式(II) 【化3】 (式中、Z1 ,Z2 はそれぞれ独立に無置換または置換
芳香族基を示す。ここで、置換基は炭素数1〜5のアル
キル基,炭素数1〜5のアルコキシ基,シアノ基,塩
素,臭素またはフッ素を示す。また、Y1 ,Y2 はそれ
ぞれ独立に無置換または炭素数1〜5のアルキル基を有
する芳香族基を示す。Qは−O−,−CH2−,−CH
2 −CH2 −または−C(CH3 2 −を示し、Xは−
O−または−S−を示す。)で表される化合物からなる
請求項1記載の有機エレクトロルミネッセンス素子。
3. The adhesion improving layer has the general formula (II): (In the formula, Z 1 and Z 2 each independently represent an unsubstituted or substituted aromatic group. Here, the substituent is an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a cyano group, Represents chlorine, bromine, or fluorine, Y 1 and Y 2 each independently represents an unsubstituted or aromatic group having an alkyl group having 1 to 5 carbon atoms, and Q represents —O—, —CH 2 —, — CH
2- CH 2 — or —C (CH 3 ) 2 — and X is —
Indicates O- or -S-. The organic electroluminescent element of Claim 1 which consists of a compound represented by these.
【請求項4】 接着改善層が一般式(III) 【化4】 (式中、Aは単結合,−O−,−SO2 −,−S−,−
CH=CH−,−CO−, 【化5】 (式中、sは1〜3の整数を示す。)を示す。B1 ,B
2 はそれぞれ独立に水素,炭素数1〜6のアルキル基,
無置換または置換基を有する炭素数6〜18のアリール
基または無置換または置換基を有する炭素数3〜12の
複素環残基を示す。ここで、置換基はニトロ基,アミノ
基,シアノ基,水酸基,カルボキシル基,メチルチオ
基,エチルチオ基,ハロゲン,炭素数1〜6のアルコキ
シ基,炭素数1〜6のアルコキシカルボニル基,炭素数
2〜8のジアルキルアミノ基,炭素数2〜8のジアルキ
レンオキシ基,炭素数1〜6のアルキレンジオキシ基あ
るいは炭素数1〜6のアルキレンオキシ基を示す。ま
た、B1 ,B2 は同じでも異なってもよい。)で表され
る化合物からなる請求項1記載の有機エレクトロルミネ
ッセンス素子。
4. The adhesion improving layer has the general formula (III): (In the formula, A is a single bond, -O -, - SO 2 - , - S -, -
CH = CH-, -CO-, (In the formula, s represents an integer of 1 to 3). B 1 , B
2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms,
It represents an unsubstituted or substituted aryl group having 6 to 18 carbon atoms or an unsubstituted or substituted heterocyclic residue having 3 to 12 carbon atoms. Here, the substituents are nitro group, amino group, cyano group, hydroxyl group, carboxyl group, methylthio group, ethylthio group, halogen, alkoxy group having 1 to 6 carbon atoms, alkoxycarbonyl group having 1 to 6 carbon atoms, and 2 carbon atoms. A dialkylamino group having 8 to 8 carbon atoms, a dialkyleneoxy group having 2 to 8 carbon atoms, an alkylenedioxy group having 1 to 6 carbon atoms, or an alkyleneoxy group having 1 to 6 carbon atoms. B 1 and B 2 may be the same or different. The organic electroluminescent element of Claim 1 which consists of a compound represented by these.
【請求項5】 陰極と電子注入層の間に接着改善層を有
する有機エレクトロルミネッセンス素子であって、該接
着改善層の表面エネルギーの双極子成分が4dyn/c
m以上であることを特徴とする有機エレクトロルミネッ
センス素子。
5. An organic electroluminescent device having an adhesion improving layer between a cathode and an electron injection layer, wherein the dipole component of the surface energy of the adhesion improving layer is 4 dyn / c.
An organic electroluminescence device having a thickness of at least m.
【請求項6】 陽極/正孔注入層/発光層/電子注入層
/接着改善層/陰極がこの順に積層された請求項1記載
の有機エレクトロルミネッセンス素子。
6. The organic electroluminescence device according to claim 1, wherein an anode / hole injection layer / light emitting layer / electron injection layer / adhesion improving layer / cathode are laminated in this order.
【請求項7】 接着改善層が請求項2記載の一般式
(I)で表される化合物からなる請求項6記載の有機エ
レクトロルミネッセンス素子。
7. The organic electroluminescence device according to claim 6, wherein the adhesion improving layer comprises the compound represented by the general formula (I) according to claim 2.
【請求項8】 接着改善層が請求項3記載の一般式(I
I)で表される化合物からなる請求項6記載の有機エレ
クトロルミネッセンス素子。
8. The adhesion-improving layer has the general formula (I) as defined in claim 3.
The organic electroluminescence device according to claim 6, comprising the compound represented by I).
【請求項9】 接着改善層が請求項4記載の一般式(II
I)で表される化合物からなる請求項6記載の有機エレク
トロルミネッセンス素子。
9. The adhesion-improving layer has the general formula (II) according to claim 4.
The organic electroluminescence device according to claim 6, comprising the compound represented by I).
JP6051526A 1993-03-24 1994-03-23 Organic electroluminescent element Pending JPH06330034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6051526A JPH06330034A (en) 1993-03-24 1994-03-23 Organic electroluminescent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6532393 1993-03-24
JP5-65323 1993-03-24
JP6051526A JPH06330034A (en) 1993-03-24 1994-03-23 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JPH06330034A true JPH06330034A (en) 1994-11-29

Family

ID=26392074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6051526A Pending JPH06330034A (en) 1993-03-24 1994-03-23 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JPH06330034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007028A1 (en) * 1997-07-31 1999-02-11 Ecole Polytechnique Federale De Lausanne Electroluminescent device
JP2000208264A (en) * 1999-01-19 2000-07-28 Idemitsu Kosan Co Ltd Organic electroluminescent element and manufacture thereof
JP2006059791A (en) * 2004-07-20 2006-03-02 Sharp Corp Organic device and organic electroluminescent device
JP2006169506A (en) * 2004-12-15 2006-06-29 General Electric Co <Ge> Adhesion promotor, electroactive layer, electroactive element containing the same and its method
JP2007177252A (en) * 1998-12-25 2007-07-12 Konica Minolta Holdings Inc Electroluminescent material, electroluminescent element, and color conversion filter
WO2011114886A1 (en) * 2010-03-15 2011-09-22 富士フイルム株式会社 Method for producing organic electroluminescence element
CN110857287A (en) * 2018-08-23 2020-03-03 祥德科技股份有限公司 Quinoxaline dimer-containing electron transport materials as organic light emitting elements

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007028A1 (en) * 1997-07-31 1999-02-11 Ecole Polytechnique Federale De Lausanne Electroluminescent device
JP2007177252A (en) * 1998-12-25 2007-07-12 Konica Minolta Holdings Inc Electroluminescent material, electroluminescent element, and color conversion filter
JP2000208264A (en) * 1999-01-19 2000-07-28 Idemitsu Kosan Co Ltd Organic electroluminescent element and manufacture thereof
JP2006059791A (en) * 2004-07-20 2006-03-02 Sharp Corp Organic device and organic electroluminescent device
JP2006169506A (en) * 2004-12-15 2006-06-29 General Electric Co <Ge> Adhesion promotor, electroactive layer, electroactive element containing the same and its method
WO2011114886A1 (en) * 2010-03-15 2011-09-22 富士フイルム株式会社 Method for producing organic electroluminescence element
JP2011192524A (en) * 2010-03-15 2011-09-29 Fujifilm Corp Method for producing organic electroluminescence element
CN102792777A (en) * 2010-03-15 2012-11-21 富士胶片株式会社 Method for producing organic electroluminescence element
US9273000B2 (en) 2010-03-15 2016-03-01 UDC Ireland Method for producing organic electroluminescence element
CN110857287A (en) * 2018-08-23 2020-03-03 祥德科技股份有限公司 Quinoxaline dimer-containing electron transport materials as organic light emitting elements

Similar Documents

Publication Publication Date Title
JP2793383B2 (en) Organic electroluminescence device
JP2846571B2 (en) Organic electroluminescence device
JP3170542B2 (en) Organic EL device
JP3093796B2 (en) Charge injection auxiliary material and organic electroluminescence device containing the same
JP3306735B2 (en) Organic electroluminescent device and organic thin film
EP0805143B1 (en) Organic electroluminescent element, organic thin film, and triamine compounds
JP2793373B2 (en) Method for patterning organic electroluminescent device
JP4140986B2 (en) Organic electroluminescence device
JPH04230997A (en) Thin film electrode for element, electroluminescence element with it, and manufacture thereof
US8304096B2 (en) Fused polycyclic aromatic compound and organic light emitting device using the compound
JPH05101884A (en) Sealing method and patterning method of organic electroluminescent element
JPH08248276A (en) Structure for coupling optical fiber and organic element
JPH06338392A (en) Organic thin film el element
JPH05159882A (en) Manufacture of electron injectable electrode and manufacture of organic electroluminescence element therewith
JP2895868B2 (en) Organic electroluminescence device
US5500568A (en) Organic El device
JPH06330034A (en) Organic electroluminescent element
JPH0726255A (en) Organic el element
JPH09296166A (en) Organic electroluminescet element containing porphyrin derivative
JP2000044824A (en) Color converting film and organic electroluminescent element
JP3983405B2 (en) Organic electroluminescence device and method for manufacturing the same
JPH09255949A (en) Organic electroluminescence element
JP4024327B2 (en) Organic EL light emitting device
JPH06313168A (en) Organic electroluminescent element
JPH04298596A (en) Organic electroluminescent element