[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4781693B2 - Method for reducing nano scratch on magnetic disk substrate - Google Patents

Method for reducing nano scratch on magnetic disk substrate Download PDF

Info

Publication number
JP4781693B2
JP4781693B2 JP2005064748A JP2005064748A JP4781693B2 JP 4781693 B2 JP4781693 B2 JP 4781693B2 JP 2005064748 A JP2005064748 A JP 2005064748A JP 2005064748 A JP2005064748 A JP 2005064748A JP 4781693 B2 JP4781693 B2 JP 4781693B2
Authority
JP
Japan
Prior art keywords
polishing
colloidal silica
substrate
polishing composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064748A
Other languages
Japanese (ja)
Other versions
JP2006026885A (en
Inventor
宏之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005064748A priority Critical patent/JP4781693B2/en
Publication of JP2006026885A publication Critical patent/JP2006026885A/en
Application granted granted Critical
Publication of JP4781693B2 publication Critical patent/JP4781693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、研磨液組成物、研磨液組成物の製造方法、該研磨液組成物を用いる基板のナノスクラッチの低減方法及び基板の製造方法に関する。   The present invention relates to a polishing liquid composition, a method for producing a polishing liquid composition, a method for reducing nanoscratches in a substrate using the polishing liquid composition, and a method for producing a substrate.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、磁気ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に対応して、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. As a result, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and the surface roughness, micro-waviness, roll-off and protrusions have been reduced in response to the low flying height of the magnetic head. Corresponding to the decrease in unit recording area, the allowable number of scratches per substrate surface is small, and its size and depth are getting smaller.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。   Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of the photoresist becomes shallow, and further surface smoothness is desired.

他方、年々、基板の生産効率の向上も要求され、表面平滑性に優れ、且つ基板を短時間に研磨できることも望まれている。   On the other hand, improvement in substrate production efficiency is required year by year, and it is also desired that the substrate has excellent surface smoothness and can be polished in a short time.

このような要求に対して、研磨材にアルコキシシラン法によって製造したコロイダルシリカを用いることで、基板の表面平滑性を向上させた研磨液組成物が特許文献1に記載されているが、高記録密度用の基板に対しては十分とは言えない。
特開2001−269857号公報
In response to such demands, Patent Document 1 discloses a polishing composition that improves the surface smoothness of a substrate by using colloidal silica produced by an alkoxysilane method as an abrasive. It is not enough for a substrate for density.
JP 2001-269857 A

即ち、本発明の目的は、研磨後の被研磨物の表面粗さが小さく、且つナノスクラッチを顕著に低減できる研磨液組成物、研磨液組成物の製造方法、該研磨液組成物を用いる基板のナノスクラッチの低減方法、並びに表面粗さが小さく、且つナノスクラッチが顕著に低減した基板の製造方法を提供することにある。   That is, an object of the present invention is to provide a polishing liquid composition capable of reducing the surface roughness of the polished object after polishing and remarkably reducing nanoscratches, a method for producing the polishing liquid composition, and a substrate using the polishing liquid composition. Another object of the present invention is to provide a method for reducing nanoscratches, and a method for producing a substrate having a small surface roughness and significantly reduced nanoscratches.

そこで、本発明者らは、メモリーハードディスク基板や半導体基板等の精密部品基板の高密度化又は高集積化に必要な表面平滑性を達成するための要件について、鋭意検討したところ、これまで検出できなかった「ナノスクラッチ」(深さが10nm以上、100nm未満、幅が5nm以上500nm未満、長さが100μm以上の基板表面の微細な傷)の発生がメモリーハードディスク基板では高密度化、また半導体基板では高集積化を阻害していることを初めて見出した。更に、前記ナノスクラッチを低減するには、珪酸ソーダ等の珪酸塩を用いて製造したコロイダルシリカを用い、且つそのコロイダルシリカ表面に存在するシラノール基密度を特定の範囲に制御することで達成できることを初めて見出し、本発明を完成させた。   Accordingly, the present inventors have made extensive studies on the requirements for achieving the surface smoothness necessary for high density or high integration of precision component substrates such as memory hard disk substrates and semiconductor substrates, and have been able to detect them so far. “Nano scratches” (depth scratches of 10 nm or more, less than 100 nm, widths of 5 nm or more and less than 500 nm, and fine scratches on the substrate surface with a length of 100 μm or more) are increased in the density of memory hard disk substrates, and semiconductor substrates Then, for the first time, it was found that high integration was inhibited. Furthermore, the nano-scratch can be reduced by using colloidal silica produced by using a silicate such as sodium silicate and controlling the density of silanol groups present on the surface of the colloidal silica within a specific range. For the first time, the present invention was completed.

即ち、本発明の要旨は、
〔1〕 珪酸塩を用いて製造され、一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有する研磨液組成物であって、該コロイダルシリカ表面のシラノール基密度がコロイダルシリカ1g当たり0.06〜0.3mmolである研磨液組成物、
〔2〕 以下の工程を有する、前記〔1〕記載の研磨液組成物の製造方法:
工程1:一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有するシリカ分散液のpHを10〜14に調整する工程、及び
工程2:工程1で得られたシリカ分散液のpHを1〜6に再調整し研磨液組成物を得る工程、
〔3〕 前記〔1〕記載の研磨液組成物を用いて被研磨基板を研磨する工程を有する基板のナノスクラッチの低減方法、
〔4〕 前記〔1〕記載の研磨液組成物を用いて被研磨基板を研磨する工程を有する基板の製造方法、
に関する。
That is, the gist of the present invention is as follows.
[1] A polishing composition comprising colloidal silica produced using silicate and having an average primary particle diameter of 1 nm or more and less than 40 nm and water, wherein the silanol group density on the surface of the colloidal silica is colloidal. A polishing composition that is 0.06 to 0.3 mmol per gram of silica;
[2] A method for producing a polishing composition according to [1], comprising the following steps:
Step 1: Adjusting the pH of the silica dispersion containing colloidal silica having an average primary particle size of 1 nm or more and less than 40 nm and water to 10 to 14, and Step 2: Silica dispersion obtained in Step 1 A step of re-adjusting the pH of the liquid to 1 to 6 to obtain a polishing liquid composition;
[3] A method for reducing nano-scratch on a substrate, comprising a step of polishing a substrate to be polished using the polishing composition according to [1]
[4] A method for producing a substrate comprising a step of polishing a substrate to be polished using the polishing composition according to [1],
About.

本発明の研磨液組成物を、例えば、高密度化又は高集積化用の精密部品基板の研磨工程で用いることにより、研磨後基板の表面平滑性が優れ、且つ従来では検出できなかった微細なナノスクラッチを顕著に低減できるため、表面性状に優れた高品質のメモリーハードディスク基板及び半導体基板等の精密部品基板を効率良く製造することができるという効果が奏される。   By using the polishing composition of the present invention, for example, in a polishing step of a precision component substrate for densification or high integration, the surface smoothness of the substrate after polishing is excellent, and the fineness that could not be detected conventionally is used. Since nano-scratches can be significantly reduced, there is an effect that high-quality memory hard disk substrates having excellent surface properties and precision component substrates such as semiconductor substrates can be efficiently manufactured.

本発明の研磨液組成物は、珪酸塩を用いて製造され、一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有する研磨液組成物であって、該コロイダルシリカ表面のシラノール基密度が0.06〜0.3mmol/gであることに特徴があり、かかる特徴を有することで、優れた表面性状を達成し、欠陥の原因となるナノスクラッチを顕著に低減することが可能である。このナノスクラッチは、特に、メモリーハードディスク基板又は半導体基板において、高密度化又は高集積化に重要になる物性である。従って、本発明の研磨液組成物を用いることで、表面性状に優れた高品質のメモリーハードディスク基板又は半導体基板を製造することができる。   The polishing liquid composition of the present invention is a polishing liquid composition produced using silicate and containing colloidal silica having an average primary particle diameter of 1 nm or more and less than 40 nm and water, the surface of the colloidal silica The silanol group density is characterized by 0.06-0.3 mmol / g, and by having such characteristics, excellent surface properties can be achieved, and nano scratches that cause defects can be significantly reduced. Is possible. This nano-scratch is a physical property that is important for high density or high integration especially in a memory hard disk substrate or a semiconductor substrate. Therefore, by using the polishing composition of the present invention, a high-quality memory hard disk substrate or semiconductor substrate having excellent surface properties can be produced.

前記ナノスクラッチの低減機構は明らかではないが、コロイダルシリカの表面にあるシラノール基密度を特定の範囲に調節することで、コロイダルシリカ同士の凝集が抑制され、ナノスクラッチが低減すると推定される。   Although the reduction mechanism of the nano scratch is not clear, it is presumed that the aggregation of colloidal silica is suppressed and the nano scratch is reduced by adjusting the silanol group density on the surface of the colloidal silica to a specific range.

本発明の研磨液組成物に含有されるコロイダルシリカは珪酸ナトリウムや珪酸カリウム等の珪酸塩を原料とする、所謂珪酸塩法により製造されたコロイダルシリカであり、その態様は特に限定しないが、例えば、ゾル又はゲル状態である。
珪酸塩法としては、珪酸塩を原料とし、縮合反応させシリカ粒子を生成させる方法(水ガラス法)等が挙げられる。
本発明においては、かかる珪酸塩法により製造されたコロイダルシリカを用いることで、従来のアルコキシシラン法で得られるコロイダルシリカや乾式法で得られるヒュームドシリカを使用する場合に比べて、ナノスクラッチを顕著に低減することができるという利点がある。
Colloidal silica contained in the polishing composition of the present invention is colloidal silica produced by a so-called silicate method using a silicate such as sodium silicate or potassium silicate as a raw material, and its mode is not particularly limited. Sol or gel state.
Examples of the silicate method include a method (water glass method) in which silicate is used as a raw material and a condensation reaction is performed to produce silica particles.
In the present invention, by using colloidal silica produced by such a silicate method, compared to the case of using colloidal silica obtained by a conventional alkoxysilane method or fumed silica obtained by a dry method, nanoscratches are reduced. There is an advantage that it can be remarkably reduced.

前記コロイダルシリカの一次粒子の平均粒径は、コロイダルシリカが一種以上混合されているかどうかに関係なく、1nm以上40nm未満であり、研磨速度を向上させる観点から、好ましくは3nm以上、より好ましくは5nm以上、また、表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、好ましくは35nm以下、より好ましくは30nm以下、更に好ましくは25nm以下、更に好ましくは20nm以下である。従って、経済的に表面粗さを低減する観点から該一次粒子の平均粒径は、好ましくは1〜35nm、より好ましくは3〜30nm、更に好ましくは5〜25nm、更に好ましくは5〜20nmである。更に、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは5〜150nm、より好ましくは5〜100nm、更に好ましくは5〜80nm、更に好ましくは5〜50nm、更に好ましくは5〜30nmである。   The average particle size of the primary particles of the colloidal silica is 1 nm or more and less than 40 nm regardless of whether or not one or more colloidal silicas are mixed. From the viewpoint of improving the polishing rate, it is preferably 3 nm or more, more preferably 5 nm. From the viewpoint of reducing the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax), it is preferably 35 nm or less, more preferably 30 nm or less, still more preferably 25 nm or less, and even more preferably 20 nm. It is as follows. Therefore, from the viewpoint of economically reducing the surface roughness, the average particle size of the primary particles is preferably 1 to 35 nm, more preferably 3 to 30 nm, still more preferably 5 to 25 nm, and still more preferably 5 to 20 nm. . Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is preferably from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate. Is 5 to 150 nm, more preferably 5 to 100 nm, still more preferably 5 to 80 nm, still more preferably 5 to 50 nm, still more preferably 5 to 30 nm.

また、前記コロイダルシリカの一次粒子の平均粒径は、コロイダルシリカが一種以上混合されているかどうかに関係なく、透過型電子顕微鏡で観察した画像を使い、一次粒子の小粒径側からの累積体積頻度が50%となる粒径(D50)を求め、この値を一次粒子の平均粒径とする。また、二次粒子の平均粒径はレーザー光散乱法を用いて体積平均粒径として測定することができる。   In addition, the average particle size of the primary particles of the colloidal silica is an accumulated volume from the small particle size side of the primary particles using an image observed with a transmission electron microscope regardless of whether or not one or more colloidal silicas are mixed. The particle diameter (D50) at which the frequency is 50% is obtained, and this value is taken as the average particle diameter of the primary particles. The average particle diameter of the secondary particles can be measured as a volume average particle diameter using a laser light scattering method.

更に、コロイダルシリカの粒径分布としては、コロイダルシリカが一種以上混合されているかどうかに関係なく、ナノスクラッチの低減、表面粗さの低減及び高い研磨速度を達成する観点から、D90/D50が、好ましくは1〜3、より好ましくは1.3〜3である。尚、D90とは、透過型電子顕微鏡で観察した画像を使い、一次粒子の小粒径側からの累積体積頻度が90%となる粒径をいう。   Furthermore, as for the particle size distribution of colloidal silica, D90 / D50, from the viewpoint of achieving reduction of nanoscratches, reduction of surface roughness and high polishing rate, regardless of whether or not one or more colloidal silicas are mixed. Preferably it is 1-3, More preferably, it is 1.3-3. Note that D90 is a particle size at which the cumulative volume frequency from the small particle size side of the primary particles becomes 90% using an image observed with a transmission electron microscope.

研磨液組成物中におけるコロイダルシリカの含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、更に好ましくは3重量%以上、更に好ましくは5重量%以上であり、また、表面性状を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、更に好ましくは13重量%以下、更に好ましくは10重量%以下である。すなわち、経済的に表面性状を向上させる観点から、該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、更に好ましくは3〜13重量%、更に好ましくは5〜10重量%である。   The content of colloidal silica in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 3% by weight or more, and further preferably 5% from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface properties, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and further preferably 10% by weight or less. That is, from the viewpoint of economically improving surface properties, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and still more preferably 5%. -10% by weight.

本発明において、コロイダルシリカ表面のシラノール基密度は、0.06〜0.3mmol/gであり、ナノスクラッチの低減の観点から、0.08〜0.3mmol/gが好ましく、0.1〜0.3mmol/gがより好ましく、0.15〜0.3mmol/gが更に好ましい。
なお、該シラノール基密度は、後述の方法により測定することができる。
In the present invention, the silanol group density on the colloidal silica surface is 0.06 to 0.3 mmol / g, and from the viewpoint of reducing nanoscratches, 0.08 to 0.3 mmol / g is preferable, and 0.1 to 0 0.3 mmol / g is more preferable, and 0.15-0.3 mmol / g is still more preferable.
The silanol group density can be measured by the method described later.

本発明でいうコロイダルシリカ表面のシラノール基とは、前記研磨液組成物中のコロイダルシリカの表面に存在し、コロイダルシリカのケイ素原子に直接結合したヒドロキシル基をいい、立体配置又は立体配位については特に限定しない。また、シラノール基の生成条件等も問わない。   The silanol group on the surface of the colloidal silica referred to in the present invention means a hydroxyl group that is present on the surface of the colloidal silica in the polishing liquid composition and directly bonded to the silicon atom of the colloidal silica. There is no particular limitation. Moreover, the production | generation conditions of a silanol group etc. are not ask | required.

本発明でいうシラノール基密度の測定方法は、電位差滴定装置を用いて塩酸で研磨液組成物を直接滴定し、その滴定曲線を微分した曲線の変曲点から求めたシラノール基数(単位:ミリモル)を滴定に用いた研磨液組成物中に含有するコロイダルシリカ重量(単位:g)で除することで、コロイダルシリカ1g当たりのシラノール基密度(単位:ミリモル/g)を求めることができる。尚、研磨液組成物のpHが6以上14以下を示す場合には塩酸で滴定を行いシラノール基数の定量を行うことが可能である。他方、研磨液組成物のpHが6未満の場合は水酸化ナトリウム等の強塩基の水溶液によってpHを9にした後、電位差滴定装置を用いて塩酸で滴定を行う。   In the present invention, the silanol group density is measured by directly titrating a polishing composition with hydrochloric acid using a potentiometric titrator, and the number of silanol groups (unit: mmol) determined from the inflection point of the differentiated curve. Is divided by the weight (unit: g) of colloidal silica contained in the polishing composition used for titration, the silanol group density (unit: mmol / g) per 1 g of colloidal silica can be determined. When the pH of the polishing composition is 6 or more and 14 or less, titration with hydrochloric acid can be performed to determine the number of silanol groups. On the other hand, when the pH of the polishing composition is less than 6, the pH is adjusted to 9 with an aqueous solution of a strong base such as sodium hydroxide and titrated with hydrochloric acid using a potentiometric titrator.

研磨液組成物中の金属元素含有量は、作用機構は明らかではないが、ナノスクラッチ低減のためには特定の含有量であることが好ましく、例えば、0.001〜2重量%、より好ましくは0.001〜1重量%、更に好ましくは0.01〜1重量%、更に好ましくは0.01〜0.5重量%、更に好ましくは0.01〜0.1重量%である。   Although the mechanism of action of the metal element content in the polishing composition is not clear, it is preferably a specific content for reducing nanoscratches, for example, 0.001 to 2% by weight, more preferably It is 0.001 to 1 weight%, More preferably, it is 0.01 to 1 weight%, More preferably, it is 0.01 to 0.5 weight%, More preferably, it is 0.01 to 0.1 weight%.

金属元素としては、Na、K等のアルカリ金属及びMg、Ca等のアルカリ土類金属等が挙げられる。これら金属元素は、コロイダルシリカの製造に由来する場合(コロイダルシリカ表面をアルミニウム等で変性させる場合も含む)が多く、その場合、研磨液組成物中の、コロイダルシリカ由来の金属元素含有量は、例えば、0.001〜0.2重量%が好ましく、ナノスクラッチの低減の観点から、より好ましくは0.001〜0.1重量%、更に好ましくは0.005〜0.1重量%、更に好ましくは0.005〜0.05重量%である。
なお、コロイダルシリカ由来の金属元素含有量には、本発明におけるシリカ分散液のpH調整に関わる金属元素は含まれない。
また、前記のようにコロイダルシリカ由来の金属元素含有量を特定の範囲に調整するためには、例えば、コロイダルシリカ製造時の珪酸塩の濃度によって調整できる。
Examples of the metal element include alkali metals such as Na and K and alkaline earth metals such as Mg and Ca. In many cases, these metal elements are derived from the production of colloidal silica (including the case where the colloidal silica surface is modified with aluminum or the like). In that case, the content of the metal element derived from colloidal silica in the polishing composition is For example, 0.001 to 0.2% by weight is preferable, and from the viewpoint of reducing nanoscratches, more preferably 0.001 to 0.1% by weight, still more preferably 0.005 to 0.1% by weight, and still more preferably. Is 0.005 to 0.05% by weight.
The metal element content derived from colloidal silica does not include metal elements involved in pH adjustment of the silica dispersion in the present invention.
Moreover, in order to adjust metal element content derived from colloidal silica to a specific range as mentioned above, it can adjust with the density | concentration of the silicate at the time of colloidal silica manufacture, for example.

中でも、金属元素がNa又はKである場合、これらの合計量についても上記と同様に、ナノスクラッチの低減の観点から、0.001〜0.2重量%が好ましく、より好ましくは0.001〜0.1重量%、更に好ましくは0.005〜0.1重量%、更に好ましくは0.005〜0.05重量%である。   Among these, when the metal element is Na or K, 0.001 to 0.2% by weight is preferable, and more preferably 0.001 to 0.2% by weight, from the viewpoint of reducing nanoscratches, as in the above case. It is 0.1% by weight, more preferably 0.005 to 0.1% by weight, and still more preferably 0.005 to 0.05% by weight.

本発明の研磨液組成物中の媒体には水が使用される。水にはイオン交換水、蒸留水、超純水等が挙げられる。また、本発明においては、水に加えて、水溶性有機溶剤も媒体として使用することができる。水溶性有機溶剤としては一級〜三級アルコール、グリコール等が挙げられる。これらの媒体の含有量は、研磨液組成物中、69〜99重量%が好ましく、79〜98重量%がより好ましい。   Water is used as the medium in the polishing composition of the present invention. Examples of water include ion exchange water, distilled water, and ultrapure water. In the present invention, in addition to water, a water-soluble organic solvent can also be used as a medium. Examples of the water-soluble organic solvent include primary to tertiary alcohols and glycols. The content of these media is preferably 69 to 99% by weight, more preferably 79 to 98% by weight in the polishing composition.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。例えば、前記コロイダルシリカを除く研磨用に一般的に使用されている酸化アルミニウム、酸化セリウム等の研磨材;無機酸又は有機酸;アンモニア水、水酸化ナトリウム、水酸化カリウム等の無機塩基又は有機塩基;酸性塩、中性塩又は塩基性塩;界面活性剤;過酸化水素等の酸化剤;ラジカル捕捉剤;包接化合物;防錆剤;並びに消泡剤及び抗菌剤が挙げられる。中でも、研磨速度向上及び基板の表面粗さ低減の観点から、無機酸又は有機酸、酸性塩、過酸化水素等の酸化剤が好ましい。これらの他の成分の含有量としては、研磨液組成物中、研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、0〜10重量%が好ましく、0〜5重量%がより好ましい。   Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. For example, abrasives such as aluminum oxide and cerium oxide generally used for polishing excluding the colloidal silica; inorganic acid or organic acid; inorganic base or organic base such as ammonia water, sodium hydroxide, potassium hydroxide, etc. Acidic salts, neutral salts or basic salts; surfactants; oxidizing agents such as hydrogen peroxide; radical scavengers; clathrate compounds; rust inhibitors; and antifoaming agents and antibacterial agents. Among these, from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate, an oxidizing agent such as an inorganic or organic acid, an acidic salt, or hydrogen peroxide is preferable. The content of these other components is preferably 0 to 10% by weight and more preferably 0 to 5% by weight from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate in the polishing composition. preferable.

本発明の研磨液組成物は、前記成分を適宜混合することにより、調製することができる。   The polishing composition of the present invention can be prepared by appropriately mixing the above components.

本発明においては、シラノール基密度を所望の範囲にまで高め且つナノスクラッチを低減する観点から、研磨液組成物の原料であるシリカ分散液のpHを一旦高める工程(工程1)、続いてpHを下げる工程(工程2)を経て研磨液組成物を製造することが好ましい。より詳しくは、工程1は、一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有するシリカ分散液(コロイダルシリカスラリーともいう)のpHを10〜14、シラノール基を増加させる観点から、好ましくは10〜13、より好ましくは10〜12に調整する工程である。工程2は、工程1で得られたシリカ分散液のpHを1〜6、シラノール基を増加させる観点から、好ましくは1〜4、より好ましくは1〜2に再調整し研磨液組成物を得る工程である。   In the present invention, from the viewpoint of increasing the silanol group density to a desired range and reducing nanoscratches, a step of temporarily increasing the pH of the silica dispersion that is the raw material of the polishing composition (step 1), and subsequently the pH It is preferable to manufacture a polishing liquid composition through a lowering step (step 2). More specifically, in Step 1, the pH of the silica dispersion (also referred to as colloidal silica slurry) containing colloidal silica having an average primary particle size of 1 nm or more and less than 40 nm and water is increased by 10 to 14, and the silanol group is increased. From the point of view, it is a step of adjusting to preferably 10 to 13, more preferably 10 to 12. In step 2, the pH of the silica dispersion obtained in step 1 is adjusted to 1 to 6, preferably from 1 to 4, and more preferably 1 to 2, and more preferably 1 to 2 to obtain a polishing composition. It is a process.

また、シラノール基を低減させる方法としては、例えば、NaCl、CaCl、MgCl、AlCl等の金属塩をシリカ分散液に添加したり、シリカ分散液を加熱する方法が挙げられる。 As a method for reducing the silanol group, e.g., NaCl, or by adding a metal salt such as CaCl 2, MgCl 2, AlCl 3 to silica dispersion, a method of heating the silica dispersion.

前記のような方法により調製された研磨液組成物は、特にナノスクラッチの低減効果に優れるという利点がある。   The polishing composition prepared by the method as described above has an advantage that the effect of reducing nanoscratch is particularly excellent.

工程1に使用されるpH調整剤は、アンモニア水、水酸化ナトリウム、水酸化カリウム、ヒドロキシルアミン等の無機塩基、有機塩基を使用することができる。これらのうちで、ナノスクラッチの低減の観点から、好ましくは無機塩基であり、より好ましくはアンモニア水、水酸化ナトリウム、水酸化カリウム、更に好ましくは水酸化ナトリウム、水酸化カリウムである。   As the pH adjuster used in step 1, an inorganic base such as aqueous ammonia, sodium hydroxide, potassium hydroxide, hydroxylamine, or an organic base can be used. Among these, from the viewpoint of reducing nanoscratches, preferably an inorganic base, more preferably aqueous ammonia, sodium hydroxide, potassium hydroxide, and still more preferably sodium hydroxide, potassium hydroxide.

また、工程2に使用されるpH調整剤は、無機酸、有機酸を使用することができる。これらのうちで、ナノスクラッチの低減の観点から、好ましくは塩酸、硝酸、硫酸、リン酸、ポリリン酸、グリコール酸、シュウ酸、クエン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンスルホン酸)であり、より好ましくは塩酸、硝酸、硫酸、リン酸、クエン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸である。   Moreover, the pH adjuster used for the process 2 can use an inorganic acid and an organic acid. Among these, from the viewpoint of reducing nanoscratches, preferably hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, oxalic acid, citric acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri ( Methylenephosphonic acid) and ethylenediaminetetra (methylenesulfonic acid), more preferably hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, and 1-hydroxyethylidene-1,1-diphosphonic acid.

本発明の工程1のpH調整方法としては、pHの上昇で起こり得るコロイダルシリカのゲル化を抑制するために、シリカ分散液を攪拌しながら、pH調整剤をシリカ分散液に添加することが好ましい。攪拌速度やpH調整剤の添加速度等の操作条件は適宜コロイダルシリカのゲル化を抑制するように調整すればよい。工程1のpH調整済みのシリカ分散液は、効果的にシラノール基を形成させナノスクラッチを低減させる観点から、できる限りすみやかに工程2に使用することが好ましい。   As the pH adjustment method of step 1 of the present invention, it is preferable to add a pH adjuster to the silica dispersion while stirring the silica dispersion in order to suppress gelation of colloidal silica that may occur due to an increase in pH. . The operating conditions such as the stirring speed and the addition speed of the pH adjuster may be adjusted as appropriate so as to suppress the gelation of colloidal silica. The pH-adjusted silica dispersion in Step 1 is preferably used in Step 2 as soon as possible from the viewpoint of effectively forming silanol groups and reducing nanoscratches.

工程2のpH調整剤の添加は、所定のpHに達した後、しばらく撹拌を続け、たとえば1時間後にpH変化がないことを確認して終了とすることが好ましい。pH変動が確認されれば、更にpH調整剤を添加し前記操作を繰り返す。   The addition of the pH adjusting agent in step 2 is preferably continued after stirring for a while after reaching a predetermined pH, for example, after confirming that there is no pH change after 1 hour. If pH fluctuation is confirmed, a pH adjuster is further added and the above operation is repeated.

尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

本発明の研磨液組成物のpHは、研磨速度を向上させる観点及びナノスクラッチの低減の観点から、例えば、7以下が好ましく、より好ましくは5以下、更に好ましくは4以下、更に好ましくは3以下、更に好ましくは2.5以下、更に好ましくは2以下である。   The pH of the polishing composition of the present invention is, for example, preferably 7 or less, more preferably 5 or less, still more preferably 4 or less, and still more preferably 3 or less, from the viewpoint of improving the polishing rate and reducing nanoscratches. More preferably, it is 2.5 or less, more preferably 2 or less.

かかる構成を有する研磨液組成物を用いることで、ナノスクラッチが極めて少ない表面性状に優れた精密部品基板を得ることができる。   By using the polishing composition having such a configuration, it is possible to obtain a precision component substrate having excellent surface properties with very few nanoscratches.

本発明におけるナノスクラッチとは、深さが10nm以上、100nm 未満、幅が5nm以上、500nm未満、長さが100μm以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置である「MicroMax」による測定でスクラッチ本数として定量評価できる。   The nano-scratch in the present invention is a fine scratch on the substrate surface having a depth of 10 nm or more, less than 100 nm, a width of 5 nm or more, less than 500 nm, and a length of 100 μm or more, and is detected by an atomic force microscope (AFM). It can be quantitatively evaluated as the number of scratches by measurement with “MicroMax” which is a visual inspection apparatus described in the examples described later.

また、表面平滑性の尺度である表面粗さは、評価方法は限られないが、本発明では、AFMにおける波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さ(AFM−Ra)として表す。具体的には後述の実施例に記載の方法で得られる。   Further, the evaluation method for the surface roughness, which is a measure of surface smoothness, is not limited, but in the present invention, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in AFM, and the centerline average roughness ( AFM-Ra). Specifically, it can be obtained by the method described in Examples below.

本発明において好適に使用される被研磨基板の材質としては、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨基板に好適である。例えば、Ni-Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni-Pメッキされたアルミニウム合金基板が更に適している。   Examples of the material of the substrate to be polished that are preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resins. Among these, it is suitable for a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, and an alloy containing these metals as a main component. For example, an aluminum alloy substrate plated with Ni—P or a glass substrate such as crystallized glass or tempered glass is more suitable, and an aluminum alloy substrate plated with Ni—P is more suitable.

被研磨基板の形状は特に制限は無く、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の研磨液組成物を用いた研磨の対象となる。その中でも、ディスク状の被研磨基板の研磨に特に優れている。   The shape of the substrate to be polished is not particularly limited. For example, a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens can be used for the polishing liquid composition of the present invention. It becomes the object of polishing used. Among these, it is particularly excellent for polishing a disk-shaped substrate.

本発明の研磨液組成物は、精密部品基板の研磨に好適に用いられる。例えば、メモリーハードディスク基板等の磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。中でも、本発明の研磨液組成物は、高密度化、高集積化において重要なナノスクラッチを顕著に低減し得るものであるため、メモリーハードディスク基板等の磁気ディスクや半導体基板の研磨により好適であり、磁気ディスク基板の研磨に特に適している。   The polishing composition of the present invention is suitably used for polishing precision component substrates. For example, it is suitable for polishing a magnetic disk medium such as a memory hard disk substrate, a magnetic recording medium substrate such as an optical disk and a magneto-optical disk, a precision component substrate such as a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. Among them, the polishing composition of the present invention can remarkably reduce nano scratches that are important for high density and high integration, and is therefore suitable for polishing magnetic disks such as memory hard disk substrates and semiconductor substrates. Particularly suitable for polishing magnetic disk substrates.

メモリーハードディスク基板や半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み金属配線の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において行われる。   The polishing of the memory hard disk substrate and the semiconductor substrate is performed in a polishing process of a silicon wafer (bare wafer), a formation process of an embedded metal wiring, a planarization process of an interlayer insulating film, a formation process of an embedded metal wiring, an embedded capacitor formation process, and the like.

上記のように本発明の研磨液組成物を用いることで基板のナノスクラッチを有意に低減することができる。従って、本発明は、前記研磨液組成物を用いる基板のナノスクラッチの低減方法及び基板の製造方法に関する。   As described above, by using the polishing composition of the present invention, the nano-scratch of the substrate can be significantly reduced. Accordingly, the present invention relates to a method for reducing nanoscratches on a substrate using the polishing composition, and a method for producing a substrate.

本発明の基板のナノスクラッチの低減方法又は基板の製造方法は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を有する方法である。この研磨工程としては、具体的には、不織布状の有機高分子系研磨布等を貼り付けた研磨盤で基板を挟み込み、本発明の研磨液組成物を基板表面に供給し、一定荷重を加えながら研磨盤や基板を動かすことにより研磨する方法等が挙げられる。なお、研磨液組成物の供給速度、研磨荷重、研磨盤や基板を動かす回転速度等の条件は、公知の範囲であればよい。   The method for reducing substrate nanoscratches or the method for producing a substrate of the present invention is a method comprising a step of polishing a substrate to be polished using the polishing composition of the present invention. Specifically, as the polishing step, the substrate is sandwiched between polishing plates with a non-woven organic polymer polishing cloth or the like attached thereto, the polishing composition of the present invention is supplied to the substrate surface, and a constant load is applied. For example, a method of polishing by moving a polishing board or a substrate may be used. The conditions such as the supply speed of the polishing composition, the polishing load, and the rotational speed for moving the polishing disk and the substrate may be within a known range.

本発明の研磨液組成物を用いた研磨工程に供する前の基板の表面性状は特に限定しないが、例えば、中心線平均粗さ(Ra)が1nm以下の表面性状を有する基板が適する。   The surface property of the substrate before being subjected to the polishing step using the polishing composition of the present invention is not particularly limited. For example, a substrate having a surface property with a center line average roughness (Ra) of 1 nm or less is suitable.

前記研磨工程は、複数研磨工程の中でも2工程目以降に行われるのが好ましく、最終研磨工程に行われるのが更に好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、各段階毎に基板を洗浄することが好ましい。なお、研磨機としては、特に限定はない。   The polishing step is preferably performed after the second step among the plurality of polishing steps, and more preferably performed in the final polishing step. At that time, in order to avoid mixing of the polishing material or polishing liquid composition in the previous process, different polishing machines may be used, and in the case of using different polishing machines, the substrate is removed at each stage. It is preferable to wash. The polishing machine is not particularly limited.

本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。   The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.

以上のようにして本発明の研磨液組成物又は本発明の基板の製造方法を用いて製造された基板は、表面平滑性に優れ、例えば、中心線平均粗さ(AFM−Ra)が0.3nm以下、好ましくは0.2nm以下、より好ましくは0.15nm以下、更に好ましくは0.13nm以下のものが得られる。   The substrate manufactured by using the polishing composition of the present invention or the substrate manufacturing method of the present invention as described above is excellent in surface smoothness, for example, the center line average roughness (AFM-Ra) is 0.00. 3 nm or less, Preferably it is 0.2 nm or less, More preferably, it is 0.15 nm or less, More preferably, the thing of 0.13 nm or less is obtained.

また、製造された基板はナノスクラッチが極めて少ないものであり、磁気ディスク基板や半導体基板に適する。例えば、メモリーハードディスク基板である場合には、記録密度120G/inch、更には160G/inchのものにも適する。また、半導体基板である場合には、配線幅65nm、更には45nmのものにも好適に用いることができる。 Further, the manufactured substrate has very few nano scratches and is suitable for a magnetic disk substrate or a semiconductor substrate. For example, in the case of a memory hard disk substrate, it is also suitable for a recording density of 120 G / inch 2 and further 160 G / inch 2 . Further, in the case of a semiconductor substrate, it can be suitably used for a wiring width of 65 nm and further 45 nm.

被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、中心線平均粗さ(AFM−Ra)を1nmとした、厚さ1.27mmの外周95mmφで内周25mmφのアルミニウム合金基板を用いて研磨評価を行った。   As a substrate to be polished, a Ni-P plated substrate was previously roughly polished with a polishing liquid containing an alumina abrasive, and the center line average roughness (AFM-Ra) was 1 nm, and the outer periphery was 95 mmφ with a thickness of 1.27 mm. Then, polishing evaluation was performed using an aluminum alloy substrate having an inner circumference of 25 mmφ.

実施例1〜9及び比較例1〜4(但し、実施例1〜9は参考例)
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーA(デュポン製、シリカ濃度40重量%の水分散液、D90/D50=1.3)、
B(デュポン製、シリカ濃度40重量%の水分散液、D90/D50=1.4)、
C(デュポン製、シリカ濃度40重量%の水分散液、D90/D50=1.4)、
D(触媒化成工業製、シリカ濃度40重量%の水分散液、D90/D50=1.1)、
E(デュポン製、シリカ濃度40重量%の水分散液、D90/D50=1.2)、
F(扶桑化学工業製、シリカ濃度13重量%の水分散液、D90/D50=1.1)、
G(デュポン製、シリカ濃度50重量%の水分散液、D90/D50=2.5)を、
60重量%の1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)水溶液、98重量%の硫酸、及び/又はクエン酸を、またその他成分としては35重量%の過酸化水素水溶液を用いて研磨液組成物を調製した。尚、残部はイオン交換水である。
Examples 1 to 9 and Comparative Examples 1 to 4 (Examples 1 to 9 are reference examples)
As shown in Table 1, as colloidal silica, colloidal silica slurry A (manufactured by DuPont, aqueous dispersion having a silica concentration of 40% by weight, D90 / D50 = 1.3),
B (manufactured by DuPont, an aqueous dispersion having a silica concentration of 40% by weight, D90 / D50 = 1.4),
C (manufactured by DuPont, an aqueous dispersion having a silica concentration of 40% by weight, D90 / D50 = 1.4),
D (manufactured by Catalyst Kasei Kogyo, an aqueous dispersion having a silica concentration of 40% by weight, D90 / D50 = 1.1),
E (manufactured by DuPont, an aqueous dispersion having a silica concentration of 40% by weight, D90 / D50 = 1.2),
F (manufactured by Fuso Chemical Industries, an aqueous dispersion having a silica concentration of 13% by weight, D90 / D50 = 1.1),
G (manufactured by DuPont, an aqueous dispersion having a silica concentration of 50% by weight, D90 / D50 = 2.5),
Polishing with 60% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) aqueous solution, 98% by weight of sulfuric acid and / or citric acid, and 35% by weight of hydrogen peroxide aqueous solution as other components A liquid composition was prepared. The balance is ion exchange water.

一方、表1に示すように、ヒュームドシリカとしてはヒュームドシリカスラリーA(日本アエロジル製、D90/D50=1.1)、60重量%のHEDP水溶液を用いて研磨液組成物を調製した。なお、残部はイオン交換水である。   On the other hand, as shown in Table 1, as the fumed silica, a polishing liquid composition was prepared using fumed silica slurry A (manufactured by Nippon Aerosil Co., Ltd., D90 / D50 = 1.1) and a 60 wt% HEDP aqueous solution. The balance is ion exchange water.

なお、コロイダルシリカスラリーA〜E、及びGは珪酸塩法を用いて得られたものであり、コロイダルシリカスラリーFはアルコキシシラン法を用いて得られたものであり、ヒュームドシリカスラリーAは乾式法を用いて得られたものである。   The colloidal silica slurries A to E and G are obtained using a silicate method, the colloidal silica slurry F is obtained using an alkoxysilane method, and the fumed silica slurry A is a dry type. It was obtained using the method.

実施例1〜9及び比較例1、3、4における各成分を混合する順番は、HEDPと硫酸又はクエン酸とを水で希釈した水溶液に過酸化水素水溶液を加え、次いで残りの成分を添加、混合後、それを撹拌下のコロイダルシリカスラリーに少しずつ加え、調製した。   The order of mixing each component in Examples 1 to 9 and Comparative Examples 1, 3, and 4 is that an aqueous hydrogen peroxide solution is added to an aqueous solution obtained by diluting HEDP and sulfuric acid or citric acid with water, and then the remaining components are added. After mixing, it was added in portions to the stirred colloidal silica slurry to prepare.

一方、比較例2の各成分を混合する順番は、60重量%のHEDP水溶液を残部のイオン交換水の半分量で更に希釈した水溶液を、残り半分量のイオン交換水で分散させた攪拌下のヒュームドシリカスラリーAに少しずつ加え、調製した。   On the other hand, the order of mixing each component of Comparative Example 2 was as follows: an aqueous solution obtained by further diluting 60% by weight of HEDP aqueous solution with the remaining half of the ion-exchanged water was dispersed with the remaining half of the ion-exchanged water. It added little by little to the fumed silica slurry A, and prepared.

実施例10
攪拌中のコロイダルシリカスラリーBに、1規定の水酸化ナトリウム水溶液(シグマアルドリッチジャパン製、ファクター0.999)をコロイダルシリカのゲル化を起こさないように滴下して、pH10.0のシリカ分散液を調製した(工程1)。このシリカ分散液を撹拌しながら、表1に示す所定量の、60重量%のHEDP水溶液と98重量%の硫酸とイオン交換水との混合物を添加し、pH1.5の研磨液組成物を得た(工程2)。
Example 10
A 1N aqueous sodium hydroxide solution (manufactured by Sigma-Aldrich Japan, Factor 0.999) was dropped into the stirring colloidal silica slurry B so as not to cause gelation of the colloidal silica, and a silica dispersion having a pH of 10.0 was prepared. Prepared (step 1). While stirring this silica dispersion, a predetermined amount of a 60% by weight HEDP aqueous solution, 98% by weight sulfuric acid and ion-exchanged water as shown in Table 1 was added to obtain a polishing liquid composition having a pH of 1.5. (Step 2).

実施例11
実施例10において、シリカ分散液のpHを12.0に調整した以外は実施例10と同じ方法で研磨液組成物を得た。
Example 11
In Example 10, a polishing composition was obtained in the same manner as in Example 10 except that the pH of the silica dispersion was adjusted to 12.0.

実施例12
実施例10において、コロイダルシリカスラリーBに替えてコロイダルシリカスラリーGを用いた以外は実施例10と同じ方法で研磨液組成物を得た。
Example 12
In Example 10, it replaced with the colloidal silica slurry B, and obtained the polishing composition by the same method as Example 10 except having used the colloidal silica slurry G.

実施例13
実施例10において、コロイダルシリカスラリーBに替えてコロイダルシリカスラリーGを用い、シリカ分散液のpHを12.0に調整した以外は実施例10と同じ方法で研磨液組成物を得た。
Example 13
In Example 10, it replaced with the colloidal silica slurry B, and used the colloidal silica slurry G, and obtained the polishing liquid composition by the same method as Example 10 except having adjusted the pH of the silica dispersion liquid to 12.0.

実施例1〜13及び比較例1〜4で得られた研磨液組成物について、シラノール基密度、研磨速度、ナノスクラッチ及びAFM−Raを以下の方法に基づいて測定・評価した。得られた結果を表2に示す。また、コロイダルシリカ由来の金属元素含有量、シリカの一次粒子の平均粒径、研磨液組成物中の金属元素含有量も表2に示す。   For the polishing liquid compositions obtained in Examples 1 to 13 and Comparative Examples 1 to 4, silanol group density, polishing rate, nano scratch and AFM-Ra were measured and evaluated based on the following methods. The obtained results are shown in Table 2. Table 2 also shows the metal element content derived from colloidal silica, the average particle diameter of primary particles of silica, and the metal element content in the polishing composition.

1.シラノール基密度の測定条件
・電位差測定装置:京都電子社製、電位差自動滴定装置「AT−310J」
・滴定試薬:0.01N塩酸水溶液
・滴定試薬の滴下速度:0.03ml/分
・測定試料:実施例1〜13又は比較例1〜4の研磨液組成物を0.2重量%のシリカ濃度となるようにイオン交換水で希釈したものを測定試料として用いた。
1. Silanol group density measurement conditions / potential difference measuring device: manufactured by Kyoto Electronics Co., Ltd., automatic potentiometric titrator “AT-310J”
-Titration reagent: 0.01N hydrochloric acid aqueous solution-Titration reagent dropping speed: 0.03 ml / min-Measurement sample: 0.2% by weight silica concentration of the polishing composition of Examples 1 to 13 or Comparative Examples 1 to 4 A sample diluted with ion-exchanged water was used as a measurement sample.

2.研磨条件
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨布:フジボウ社製、研磨用パッド(厚さ0.9mm、開孔径30μm)
・研磨盤回転速度:32.5r/min
・研磨液組成物供給速度:100mL/min
・研磨時間:4分
・研磨荷重:7.8kPa
・投入した基板の枚数:10枚
2. Polishing conditions / polishing tester: Speedfam, double-sided 9B polishing machine / polishing cloth: manufactured by Fujibow, polishing pad (thickness 0.9 mm, opening diameter 30 μm)
・ Rotating speed of polishing machine: 32.5 r / min
Polishing liquid composition supply rate: 100 mL / min
Polishing time: 4 minutes Polishing load: 7.8 kPa
・ Number of loaded substrates: 10

3.研磨速度の測定条件
研磨試験前後の基板の重量差(g)をNi−Pの密度(8.4g/cm)、基板の表面積(131.9cm)及び研磨時間で除することにより、単位時間当りの基板の両面研磨量を算出して研磨速度を得た。
3. Measurement conditions of polishing rate Unit by dividing weight difference (g) of substrate before and after polishing test by Ni-P density (8.4 g / cm 3 ), substrate surface area (131.9 cm 2 ) and polishing time. The polishing rate was obtained by calculating the amount of double-side polishing of the substrate per hour.

4.ナノスクラッチの測定条件
・測定機器:VISION PSYTEC製、「MicroMax VMX−2100CSP」
・光源:2Sλ(250W)及び3Pλ(250W)共に100%
・チルト角:−6°
・倍率:最大(視野範囲:全面積の120分の1)
・観察領域:全面積(外周95mmφで内周25mmφの基板)
・アイリス:notch
・評価:研磨試験機に投入した10枚の基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数(本/面)を算出した。また、表に記載したナノスクラッチの評価は比較例1のナノスクラッチ数(240本/面)に対する相対評価で行った。
4). Nano scratch measurement conditions / measurement equipment: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
-Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
-Tilt angle: -6 °
・ Magnification: Maximum (Field range: 1/120 of the total area)
・ Observation area: total area (substrate with outer circumference 95mmφ and inner circumference 25mmφ)
・ Iris: notch
・ Evaluation: Of the 10 substrates put into the polishing tester, 4 were selected at random, and the total number of nano scratches on each side of the 4 substrates was divided by 8. The number of nano scratches per substrate surface (lines / surface) was calculated. Moreover, the evaluation of the nano scratch described in the table was performed by relative evaluation with respect to the number of nano scratches of Comparative Example 1 (240 / surface).

5.AFM−Raの測定条件
・測定機器:Veeco製、「TM−M5E」
・Mode:non−contact
・Scanrate:1.0Hz
・Scanarea:10×10μm
・評価:内周と外周間の中心を120°毎に3点測定し、これを基板の両面について行い、計6点の平均値を求めた。
5. AFM-Ra measurement conditions and measurement equipment: “TM-M5E” manufactured by Veeco
・ Mode: non-contact
・ Scanrate: 1.0 Hz
・ Scanarea: 10 × 10 μm
Evaluation: The center between the inner periphery and the outer periphery was measured at 120 points every 120 °, and this was performed on both sides of the substrate to obtain an average value of a total of 6 points.

6.金属元素含有量の測定
研磨液組成物、シリカスラリー又はシリカを加熱、灰化した後フッ化水素酸水溶液を加え更に加熱分解した。その結果できた残渣を水に溶解し、ICP(高周波誘導結合プラズマ)発光分光分析法により金属元素を定量した。
6). Measurement of metal element content The polishing composition, silica slurry or silica was heated and incinerated, and then an aqueous hydrofluoric acid solution was added and further decomposed by heating. The resulting residue was dissolved in water, and the metal element was quantified by ICP (radio frequency inductively coupled plasma) emission spectroscopy.

7.シリカの一次粒子の平均粒径
研磨液組成物を調製するのに使用したスラリー状のシリカ粒子を試料として用い、日本電子製透過型電子顕微鏡「JEM−2000FX」(80kV、1〜5万倍)により、当該顕微鏡のメーカーが添付する説明書に従って試料を観察し、TEM像を写真撮影した。当該写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1個1個のシリカ粒子の円相当径を求め、それを直径とし、2500個以上のシリカ粒子データを解析した後、それをもとに表計算ソフト「EXCEL」(マイクロソフト社製)にて粒子直径からその直径を有する球として粒子体積に換算した。
7). Average particle diameter of primary particles of silica Using the slurry-like silica particles used to prepare the polishing composition as a sample, JEOL transmission electron microscope “JEM-2000FX” (80 kV, 1 to 50,000 times) The sample was observed according to the instructions attached by the manufacturer of the microscope, and a TEM image was taken. The photograph is taken into a personal computer as image data by a scanner, and an analysis software “WinROOF” (distributor: Mitani Corp.) is used to determine the equivalent circle diameter of each silica particle. After analyzing the silica particle data, it was converted from the particle diameter to a particle volume as a sphere having the diameter using spreadsheet software “EXCEL” (manufactured by Microsoft Corporation).

このようにして得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒径の粒子の割合(体積基準%)を小粒径側からの累積頻度として表し、累積体積頻度(%)を得、この値が50%となる粒径(D50)を求め、この値を一次粒子の平均粒径とした。ここで、ひとつの一次粒子の粒径は、2軸平均(長径と短径の平均)粒径を用いた。   Based on the particle size distribution data of the silica particles obtained in this manner, the ratio of particles having a certain particle size (volume basis%) in all particles is expressed as the cumulative frequency from the small particle size side, and the cumulative volume frequency (% ) Was obtained, and the particle size (D50) at which this value was 50% was determined, and this value was taken as the average particle size of the primary particles. Here, the particle diameter of one primary particle was a biaxial average (average of major axis and minor axis).

Figure 0004781693
Figure 0004781693

Figure 0004781693
Figure 0004781693

表2に示した結果から、実施例1〜13の研磨液組成物を用いた研磨により得られた基板は、比較例1〜4のそれらに比べ、ナノスクラッチの発生が抑制されかつ表面粗さが低減されたものであることがわかる。   From the results shown in Table 2, in the substrates obtained by polishing using the polishing composition of Examples 1 to 13, the generation of nanoscratches was suppressed and the surface roughness was higher than those of Comparative Examples 1 to 4. It can be seen that is reduced.

本発明の研磨液組成物は、精密部品基板、例えば、磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に好適に使用される。   The polishing composition of the present invention is a precision component substrate, for example, a precision component such as a magnetic recording medium substrate such as a magnetic disk, an optical disk, or a magneto-optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, or a semiconductor substrate. It is suitably used for polishing a substrate.

Claims (6)

珪酸塩を用いて製造される一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有し、該コロイダルシリカ表面のシラノール基密度がコロイダルシリカ1g当たり0.06〜0.3mmolであり、
工程1:一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有するシリカ分散液のpHを高めてpH10〜14に調整する工程、及び
工程2:工程1で得られたシリカ分散液のpHを1〜6に再調整し研磨液組成物を得る工程、
を有することを特徴とする製造方法により得られる、pHが1〜6の磁気ディスク基板用研磨液組成物を用いて、Ni−Pメッキされた基板を研磨する工程を有する磁気ディスク基板のナノスクラッチの低減方法
The colloidal silica whose average particle diameter of the primary particle manufactured using a silicate is 1 nm or more and less than 40 nm contains water, and the silanol group density on the surface of the colloidal silica is 0.06 to 0.3 mmol per 1 g of colloidal silica. And
Step 1: A step of increasing the pH of a silica dispersion containing colloidal silica having an average primary particle size of 1 nm or more and less than 40 nm and water to adjust to pH 10 to 14 and Step 2: obtained in Step 1 Re-adjusting the pH of the silica dispersion to 1 to 6 to obtain a polishing composition;
Nano-scratch of magnetic disk substrate having a step of polishing a Ni-P plated substrate using a polishing composition for a magnetic disk substrate having a pH of 1 to 6 obtained by a production method comprising: Reduction method .
研磨液組成物中の金属元素含有量が0.001〜2重量%である請求項1記載の低減方法The reduction method according to claim 1, wherein the metal element content in the polishing composition is 0.001 to 2% by weight. 研磨液組成物中の、コロイダルシリカ由来の金属元素含有量が0.001〜0.2重量%である請求項1又は2記載の低減方法The reduction method according to claim 1 or 2, wherein the content of the metal element derived from colloidal silica in the polishing composition is 0.001 to 0.2% by weight. 珪酸塩を用いて製造される一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有し、該コロイダルシリカ表面のシラノール基密度がコロイダルシリカ1g当たり0.06〜0.3mmolであり、
工程1:一次粒子の平均粒径が1nm以上40nm未満であるコロイダルシリカと水とを含有するシリカ分散液のpHを高めてpH10〜14に調整する工程、及び
工程2:工程1で得られたシリカ分散液のpHを1〜6に再調整し研磨液組成物を得る工程、
を有することを特徴とする製造方法により得られる、pHが1〜6の磁気ディスク基板用研磨液組成物を用いて、Ni−Pメッキされた基板を研磨する工程を有する磁気ディスク基板の製造方法。
The colloidal silica whose average particle diameter of the primary particle manufactured using a silicate is 1 nm or more and less than 40 nm contains water, and the silanol group density on the surface of the colloidal silica is 0.06 to 0.3 mmol per 1 g of colloidal silica. And
Step 1: increasing the pH of a silica dispersion containing colloidal silica having an average primary particle size of 1 nm or more and less than 40 nm and water, and adjusting the pH to 10 to 14, and
Step 2: A step of readjusting the pH of the silica dispersion obtained in Step 1 to 1 to 6 to obtain a polishing composition,
A method for producing a magnetic disk substrate, comprising a step of polishing a Ni-P plated substrate using a polishing composition for a magnetic disk substrate having a pH of 1 to 6, obtained by a production method comprising: .
研磨液組成物中の金属元素含有量が0.001〜2重量%である請求項4記載の製造方法。The manufacturing method according to claim 4, wherein the metal element content in the polishing composition is 0.001 to 2% by weight. 研磨液組成物中の、コロイダルシリカ由来の金属元素含有量が0.001〜0.2重量%である請求項4又は5記載の製造方法。The production method according to claim 4 or 5, wherein the content of the metal element derived from colloidal silica in the polishing composition is 0.001 to 0.2% by weight.
JP2005064748A 2004-06-14 2005-03-09 Method for reducing nano scratch on magnetic disk substrate Active JP4781693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064748A JP4781693B2 (en) 2004-06-14 2005-03-09 Method for reducing nano scratch on magnetic disk substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004175562 2004-06-14
JP2004175562 2004-06-14
JP2005064748A JP4781693B2 (en) 2004-06-14 2005-03-09 Method for reducing nano scratch on magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2006026885A JP2006026885A (en) 2006-02-02
JP4781693B2 true JP4781693B2 (en) 2011-09-28

Family

ID=35893813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064748A Active JP4781693B2 (en) 2004-06-14 2005-03-09 Method for reducing nano scratch on magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP4781693B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000867A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Fine Technology Co Ltd Polishing liquid, its production method, and polishing method
JP4523935B2 (en) * 2006-12-27 2010-08-11 昭和電工株式会社 An aqueous polishing slurry for polishing a silicon carbide single crystal substrate and a polishing method.
JP5333743B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010041027A (en) * 2008-02-18 2010-02-18 Jsr Corp Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP5333741B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010016344A (en) * 2008-02-18 2010-01-21 Jsr Corp Aqueous dispersing element for chemical mechanical polishing, manufacturing method thereof, and chemical mechanical polishing method
WO2009104465A1 (en) * 2008-02-18 2009-08-27 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP5333740B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010028078A (en) * 2008-02-18 2010-02-04 Jsr Corp Aqueous dispersion for chemical mechanical polishing, manufacturing method of the same, and chemical mechanical polishing method
US20110081780A1 (en) * 2008-02-18 2011-04-07 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2010034497A (en) * 2008-02-18 2010-02-12 Jsr Corp Aqueous dispersion for chemo-mechanical polishing and manufacturing method thereof, and chemo-mechanical polishing method
JP2010028077A (en) * 2008-02-18 2010-02-04 Jsr Corp Aqueous dispersing element for chemical mechanical polishing and manufacturing method thereof, and chemical mechanical polishing method
JP2009224771A (en) * 2008-02-18 2009-10-01 Jsr Corp Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2009224767A (en) * 2008-02-18 2009-10-01 Jsr Corp Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP5333744B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion manufacturing method
JP5333739B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010028079A (en) * 2008-02-18 2010-02-04 Jsr Corp Aqueous dispersion for chemical mechanical polishing, manufacturing method of the same, and chemical mechanical polishing method
JP5333742B2 (en) * 2008-02-18 2013-11-06 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
CN105070657B (en) * 2009-08-19 2018-03-30 日立化成株式会社 CMP lapping liquids and its application, Ginding process
KR101976899B1 (en) * 2016-08-24 2019-05-09 삼성에스디아이 주식회사 Method for producing cmp slurry for oxide film
JP6730921B2 (en) * 2016-12-28 2020-07-29 花王株式会社 Method for producing polishing liquid composition
JP6924660B2 (en) * 2017-09-21 2021-08-25 株式会社フジミインコーポレーテッド Method for manufacturing polishing composition
JP7066480B2 (en) * 2018-03-29 2022-05-13 株式会社フジミインコーポレーテッド Abrasive grain dispersion liquid, polishing composition kit, and polishing method for magnetic disk substrates
WO2020196542A1 (en) * 2019-03-27 2020-10-01 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and method for producing substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3437900B2 (en) * 1995-11-10 2003-08-18 株式会社トクヤマ Abrasive
JP4189079B2 (en) * 1999-04-19 2008-12-03 株式会社トクヤマ Polishing method
JP4132432B2 (en) * 1999-07-02 2008-08-13 日産化学工業株式会社 Polishing composition
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
GB2359558B (en) * 2000-02-23 2002-01-23 Fujimi America Inc Polishing composition for a memory hard disk substrate
JP2001269857A (en) * 2000-03-24 2001-10-02 Fujitsu Ltd Polishing composition
JP2001294417A (en) * 2000-04-12 2001-10-23 Nippon Chem Ind Co Ltd Method of producing colloidal silica
JP2003197573A (en) * 2001-12-26 2003-07-11 Ekc Technology Kk Colloidal silica for polishing surface wherein metal film and insulation film coexist
JP4115722B2 (en) * 2002-03-15 2008-07-09 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
JP2004203638A (en) * 2002-12-24 2004-07-22 Ube Nitto Kasei Co Ltd Peanut-like twin colloidal silica particle, and production method therefor

Also Published As

Publication number Publication date
JP2006026885A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
US7575615B2 (en) Process for preparing a polishing composition
JP4231632B2 (en) Polishing liquid composition
JP5219886B2 (en) Polishing liquid composition
US20070167116A1 (en) Polishing composition
US7014534B2 (en) Method for manufacturing substrate
JP4451347B2 (en) Polishing liquid composition
JP3997152B2 (en) Polishing liquid composition
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP4286168B2 (en) How to reduce nanoscratches
JP4214093B2 (en) Polishing liquid composition
JP4414292B2 (en) Polishing speed improvement method
JP5461772B2 (en) Polishing liquid composition
JP2007320031A (en) Polishing liquid composition
JP4462599B2 (en) Polishing liquid composition
JP2007301721A (en) Polishing liquid composition
JP4104335B2 (en) Method for reducing microprojections
JP4267546B2 (en) Substrate manufacturing method
JP4373776B2 (en) Polishing liquid composition
JP2009181690A (en) Method of manufacturing substrate
JP3997153B2 (en) Polishing liquid composition
JP2008093819A (en) Polishing liquid composition for magnetic disk substrate
JP2019182987A (en) Polishing liquid composition for synthetic quartz glass substrate
JP6316680B2 (en) Polishing liquid composition for magnetic disk substrate
JP2006130638A (en) Encased abrasive material particle dispersed liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250