[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4778320B2 - Electrosynthesis of perchloric acid compounds - Google Patents

Electrosynthesis of perchloric acid compounds Download PDF

Info

Publication number
JP4778320B2
JP4778320B2 JP2006015201A JP2006015201A JP4778320B2 JP 4778320 B2 JP4778320 B2 JP 4778320B2 JP 2006015201 A JP2006015201 A JP 2006015201A JP 2006015201 A JP2006015201 A JP 2006015201A JP 4778320 B2 JP4778320 B2 JP 4778320B2
Authority
JP
Japan
Prior art keywords
cathode
anode
perchloric acid
electrode
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006015201A
Other languages
Japanese (ja)
Other versions
JP2007197740A (en
Inventor
雅晴 宇野
美和子 奈良
善則 錦
常人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2006015201A priority Critical patent/JP4778320B2/en
Priority to US11/657,071 priority patent/US20070170070A1/en
Publication of JP2007197740A publication Critical patent/JP2007197740A/en
Application granted granted Critical
Publication of JP4778320B2 publication Critical patent/JP4778320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

本発明は、産業上重要な酸化剤であり、火薬原料、反応合成試薬として利用される過塩素酸化合物を効率良く高純度の生成物として得ることを目的とした製造方法に関するものである。
The present invention is an industrially important oxidant, to a manufacturing method for the purpose of obtaining explosive material, perchloric acid compounds utilized as the reaction synthesis reagents as efficiently highly pure product.

過塩素酸や過塩素酸塩は、ロケット燃料、火薬、反応触媒用として、有用な電解合成素材品の1つである。過塩素酸ナトリウムは塩素酸ナトリウムを電解酸化し、濃縮して結晶化させて得られる。過塩素酸は過塩素酸ナトリウムを硫酸とともに加熱分解蒸留して合成され、爆発の危険性から、60〜70%の水溶液として市販、輸送される。過塩素酸カリウムは電解により合成した溶液に、塩化カリウムを添加し、複分解させ、冷却後、結晶として分離し、合成する。   Perchloric acid and perchlorate are one of the useful electrolytic synthetic materials for rocket fuel, explosives, and reaction catalysts. Sodium perchlorate is obtained by electrolytic oxidation of sodium chlorate, concentration and crystallization. Perchloric acid is synthesized by pyrolytic distillation of sodium perchlorate together with sulfuric acid, and is commercially available and transported as a 60-70% aqueous solution because of the risk of explosion. Potassium perchlorate is synthesized by adding potassium chloride to a solution synthesized by electrolysis, causing metathesis, cooling and separating as crystals.

過塩素酸塩の電解合成では白金箔をTi基材表面に形成した電極を使用しているが、原料の塩素酸化合物(クロレート)濃度を0.1M以下にすると、電極材料の劣化、電極劣化が加速し、0.01Mが下限となっていた。白金材料は、このような電解条件において、しだいにその表面に酸化被膜が形成され、電流のオン・オフにより性能が不安定化し、またフッ素イオンなどの添加剤により消耗が加速されるためと考えられる。代替材料としての酸化鉛は分解特性が優れており、有用であるが、スラッジを生成し、製品純度を低下させ、電極自体の性能が安定しないため管理しにくいなどの欠点があった。これらを解決する代替電極材料の探索が課題であった。
ダイアモンドは熱伝導性、光学的透過性、高温かつ酸化に対しての耐久性に優れており、特にドーピングにより電気導電性の制御も可能であることから、次世代及び特殊な半導体デバイス、エネルギー変換素子として有望とされている。優れた機械的、化学的安定性に加えて、ドーピングにより良好な電気伝導性を付与された導電性ダイアモンド電極は、電気化学分野への応用研究が最近になって活発に検討されている。
Electrolysis of perchlorate uses an electrode with a platinum foil formed on the surface of a Ti substrate. However, if the chloric acid compound (chlorate) concentration of the raw material is 0.1 M or less, electrode material deterioration and electrode deterioration may occur. Accelerated, 0.01M was the lower limit. It is considered that platinum materials gradually form an oxide film on the surface under such electrolysis conditions, the performance becomes unstable due to current on / off, and consumption is accelerated by additives such as fluorine ions. It is done. Lead oxide as an alternative material has excellent decomposition characteristics and is useful, but has disadvantages such as generation of sludge, lowering product purity, and unstable performance due to unstable performance of the electrode itself. The search for an alternative electrode material that solves these problems has been a problem.
Diamond is excellent in thermal conductivity, optical transparency, high temperature and oxidation resistance, and can control electrical conductivity, especially by doping, so next generation and special semiconductor devices, energy conversion Promising as an element. Conductive diamond electrodes imparted with good electrical conductivity by doping in addition to excellent mechanical and chemical stability have recently been actively studied in application to the electrochemical field.

以下に関連する特許文献を列記する。
米国特許明細書第5399247号:ダイアモンドを陽極材料に用いて有機廃水が分解できることが開示されている。
特開平9−268395号公報:ダイアモンドが機能水(オゾン含む)用電極として有用であることが開示されている。
特開2001−192874号公報:導電性ダイアモンドが過硫酸合成用電極として有用であることを開示している。
The following patent documents are listed.
US Pat. No. 5,399,247 discloses that organic wastewater can be decomposed using diamond as the anode material.
JP-A-9-268395: It is disclosed that diamond is useful as an electrode for functional water (including ozone).
JP 2001-192874 A discloses that conductive diamond is useful as an electrode for persulfuric acid synthesis.

特開2004−211182号公報:導電性ダイアモンドが過炭酸合成用電極として有用であることを開示している。
特開2004−202283号公報:導電性ダイアモンド電極を使用して、有機塩素化合物を含む排水を電解的に処理する際に、イオン交換膜を使用すると、陰イオンの両室間での移動が阻止され、これにより陰極で遊離した塩素イオン(陰イオン)が陽極側に移動するのを阻止でき、該塩素イオンが陽極側で次亜塩素酸イオンから過塩素酸イオンにまでに酸化されて有機化合物の分解効率を低下させるのを防止することが開示されている(段落0023)。
しかしながら、これらの特許文献では、工業電解合成を目的として、過塩素酸化合物の電流効率や純度の改善を目的とした検討はなされていない。
JP-A-2004-211182 discloses that conductive diamond is useful as an electrode for percarbonate synthesis.
JP 2004-202283 A: When an ion exchange membrane is used when electrolytically treating wastewater containing an organic chlorine compound using a conductive diamond electrode, the movement of anions between both chambers is prevented. Thus, chlorine ions (anions) liberated at the cathode can be prevented from moving to the anode side, and the chlorine ions are oxidized from hypochlorite ions to perchlorate ions on the anode side to form organic compounds. It is disclosed to prevent degradation of the decomposition efficiency (paragraph 0023).
However, in these patent documents, for the purpose of industrial electrolytic synthesis, no examination has been made for the purpose of improving the current efficiency and purity of perchloric acid compounds.

本発明では高純度かつ電力効率良く、過塩素酸などの過塩素酸化合物を合成できる電解合成方法を見出すことを目的とする。
In the present invention high purity and good power efficiency, and to consider Ru electrolytic synthesis method can synthesize perchlorate compounds such as perchloric acid.

本発明は、0.1M以上の原料濃度の塩素酸化合物を含有する原料溶液を、導電性ダイアモンドを陽極物質として有する陽極、及び陰極を使用して,前記原料濃度が0.01M以下に低減するまで電解し、過塩素酸化合物を合成することを特徴とする過塩素酸化合物の電解合成方法である。
According to the present invention, a raw material solution containing a chloric acid compound having a raw material concentration of 0.1 M or higher is electrolyzed using an anode having a conductive diamond as an anode material and a cathode until the raw material concentration is reduced to 0.01 M or lower. And a method for electrolytic synthesis of a perchloric acid compound, characterized in that a perchloric acid compound is synthesized .

以下本発明を詳細に説明する。
本発明の目的生成物である過塩素酸化合物は、塩素酸化合物を導電性ダイアモンド電極を使用して電解することにより高効率で合成できる。なお本発明における過塩素酸化合物には、過塩素酸塩、過塩素酸及び過塩素酸イオンが含まれ、塩素酸化合物には、塩素酸塩、塩素酸及び塩素酸イオンが含まれる。過塩素酸塩、過塩素酸、過塩素酸イオン、塩素酸塩、塩素酸及び塩素酸イオンを特定する際にはそれぞれの用語が使用される。
The present invention will be described in detail below.
Perchloric acid compound is a target product of the present invention can be synthesized with high efficiency by electrolysis using a conductive diamond electrode salts periodate compound. Note perchloric acid compound in the present invention, perchlorates, include perchloric acid and perchlorate ions, the salt periodate compounds, chlorates, include perchloric acid and chlorate ions. Perchlorate, perchloric acid, perchlorate ions, salts periodate, each term in identifying chlorate and chlorate ion Ru is used.

塩素酸化合物から過塩素酸化合物を電解合成する際に、導電性ダイアモンドを陽極物質として有する陽極を使用すると、従来の陽極を使用する場合よりも高収率で高純度の目的化合物を得ることができる。
When electrolytic synthesis perchlorate compounds from chlorate compound, using an anode having conductive diamond as an anode material, to obtain a high-purity target compound at high yield than when using a conventional anode it can.

更に、カチオン交換膜などの隔膜で陽極室と陰極室を区画すると、塩素酸イオンの透過を防止でき、効率と純度の向上に寄与がある。
陰極として酸素ガスの還元に適するガス電極を用いると、セル電圧として0.5V以上の電力原単位を低減できる。
Furthermore, when partitioning the anode compartment and a cathode compartment by a diaphragm, such as a cation exchange membrane, can be prevented the permeation of salt periodate ions, there is a contribution to the improvement of the efficiency and purity.
With the gas electrode suitable for the reduction of oxygen gas as the cathode, Ru can be reduced more than 0.5V power consumption rate as the cell voltage.

本発明は、産業上重要な酸化剤である過塩素酸化合物を高純度で合成するための方法に関する発明であり、具体的には0.1M以上の原料濃度の塩素酸化合物を含む溶液を原料電解液とし、この電解液を、前記原料濃度が0.01M以下まで低減するまで、導電性ダイアモンドを陽極物質として有する陽極を使用して電解し、目的とする過塩素酸化合物を電解合成するものである。

The present invention is an invention relating to how to synthesize a industrially important oxidant perchlorate compound in high purity, specifically the raw material solution containing chlorate compound of the raw material concentration above 0.1M The electrolyte is electrolyzed using an anode having a conductive diamond as an anode material until the concentration of the raw material is reduced to 0.01 M or less, and the target perchloric acid compound is electrolytically synthesized. is there.

塩素酸化合物を原料とすると、従来の陽極を使用する場合よりも高収率で高純度の目的化合物を得ることができる。この手法は、従来の電解セルで合成された0.1M以下の塩素酸が残留する電解液をダイアモンド電極を有する電解セルに導入し電解をすることで、製品品質を高めることに適用でき、産業上有効な方法といえる。
When a chloric acid compound is used as a raw material, a high-purity target compound can be obtained in a higher yield than when a conventional anode is used. This technique can be applied to improve product quality by introducing an electrolytic solution containing 0.1M or less of chloric acid, which is synthesized in a conventional electrolytic cell, into an electrolytic cell having a diamond electrode. it can be said that an effective way.

本発明でイオン交換膜を用いて電解セルを陽極室と陰極室に区画すると、各極室内のイオンなどが他の極室に移動することが防止されて、更に高純度の目的化合物を得ることが可能になる。
又陰極として酸素ガスの還元に適するガス電極を用いると、セル電圧を低減して低コストで目的化合物を得ることができる。
他の公知の化学的合成方法では、硫酸などの薬剤の分離が必須であるのに対して、本発明は高純度の過塩素酸が簡便に合成できる点が有利であり、産業上の安全面、環境面の貢献がある。
When an electrolytic cell is partitioned into an anode chamber and a cathode chamber using an ion exchange membrane in the present invention, ions in each electrode chamber are prevented from moving to other electrode chambers, and a higher-purity target compound is obtained. Is possible.
When a gas electrode suitable for reduction of oxygen gas is used as the cathode, the cell voltage can be reduced and the target compound can be obtained at low cost.
In other known chemical synthesis methods, separation of a drug such as sulfuric acid is essential, whereas the present invention is advantageous in that high-purity perchloric acid can be easily synthesized. There is an environmental contribution.

次に、本発明の格要素に関し、詳細に説明する。   Next, the case elements of the present invention will be described in detail.

[陽極反応]
本発明の電解セルでの陽極反応は、塩酸を原料とする場合(酸性域)は、式(1)で表され、これにより過塩素酸イオンが生成する。
Cl + HO = ClO + 8H + 8e (1)
更に式(1)の直接の電解酸化プロセス以外に、副反応として式(2)の反応が進行し、生成する塩素が水と反応し、式(3)に従って過塩素酸イオンが生成する。
2Cl = Cl + 2e (2)
Cl + 8HO = 2ClO + 16H + 14e (3)
[Anode reaction]
The anodic reaction in the electrolytic cell of the present invention is represented by the formula (1) when hydrochloric acid is used as a raw material (acidic region), thereby generating perchlorate ions.
Cl + H 2 O = ClO 4 + 8H + + 8e (1)
Further, in addition to the direct electrolytic oxidation process of formula (1), the reaction of formula (2) proceeds as a side reaction, the generated chlorine reacts with water, and perchlorate ions are generated according to formula (3).
2Cl = Cl 2 + 2e (2)
Cl 2 + 8H 2 O = 2ClO 4 + 16H + + 14e (3)

更に式(4)に従って塩素酸イオンが副生し、この塩素酸イオンが式(5)に従って水と反応し、目的とする過塩素酸化合物(過塩素酸イオン)が合成される。
Cl + 3HO = ClO + 6H + 6e (4)
ClO + HO = ClO + 2H + 2e (5)
他の副反応としては式(6)に示す水電解がある。
2HO = O+ 4H + 4e (6)
この反応の素過程として、OHラジカルの生成が考えられ、このラジカルと塩素イオンが反応し、目的生成物である過塩素酸化合物が生成する経路もある。
Further, chlorate ions are by-produced according to the formula (4), and the chlorate ions react with water according to the formula (5) to synthesize the target perchlorate compound (perchlorate ion).
Cl + 3H 2 O = ClO 3 + 6H + + 6e (4)
ClO 3 + H 2 O = ClO 4 + 2H + + 2e (5)
Another side reaction is water electrolysis represented by the formula (6).
2H 2 O = O 2 + 4H + + 4e (6)
As an elementary process of this reaction, generation of OH radicals can be considered, and there is also a pathway in which this radical and chlorine ions react to generate a perchloric acid compound that is a target product.

[陰極反応]
陰極反応は酸素供給の有無により反応が異なってくる。
酸素を供給しない場合は式(7)に従って水素が発生する。
2H + 2e = H(7)
酸素を供給する場合は式(8)に従って水が合成されるか、式(9)に従って過酸化水素が合成される。
+ 4H + 4e = 2HO (8)
+ 2H + 2e = H (9)
[Cathode reaction]
The cathodic reaction varies depending on whether oxygen is supplied or not.
When oxygen is not supplied, hydrogen is generated according to equation (7).
2H + + 2e = H 2 (7)
When oxygen is supplied, water is synthesized according to formula (8) or hydrogen peroxide is synthesized according to formula (9).
O 2 + 4H + + 4e = 2H 2 O (8)
O 2 + 2H + + 2e = H 2 O 2 (9)

[ダイアモンド電極の電極基材]
電極基材は、熱膨張率の整合性、水素雰囲気などの合成条件下での安定性(例えば水素吸蔵による脆性)などの化学的安定性の観点から、Siを基材として用いることが一般的である。但し半導性の材料であるためにホウ素などをドープし、良電導性とする必要がある。表面は機械的強度を高めるために凹凸を有することが好ましい。ダイアモンドの析出を促進させるために、ダイアモンド粒子による研磨及び核付けを行うことが望ましい。基材としてはSiのみならず、Nb、Ta、Zr、Ti(弁金属)や、Mo、W、黒鉛、各種カーバイドも使用可能である。
[Electrode substrate of diamond electrode]
From the viewpoint of chemical stability such as consistency of thermal expansion coefficient and stability under synthetic conditions such as hydrogen atmosphere (for example, brittleness due to hydrogen absorption), the electrode substrate is generally used as a substrate. It is. However, since it is a semiconductive material, it is necessary to dope boron or the like to make it highly conductive. The surface preferably has irregularities in order to increase the mechanical strength. In order to promote the precipitation of diamond, it is desirable to perform polishing and nucleation with diamond particles. As the substrate, not only Si but also Nb, Ta, Zr, Ti (valve metal), Mo, W, graphite, and various carbides can be used.

[ダイアモンド電極]
導電性ダイアモンド電極は、通常、熱フィラメントCVD法或いはマイクロ波プラズマCVD法により、電極基材上に導電性ダイアモンド層を形成することにより製造される。1〜100kPaの圧力下で水素、炭素、ホウ素(或いは窒素)原料から成る適切な組成の混合ガスをホットフィラメント上(1800〜2600℃)で活性化し、炭素、水素ラジカル種を発生させる。水素と炭素ガス原料の体積比率は0.05〜0.1程度に制御される。メタン、ジボランなどのガス原料を通常使用するが、炭素、ホウ素原料としてはアルコール類、酸化ホウ素を用いることは製造現場での安全性の点から好ましい。基体温度を600〜900℃に保つことにより、その表面で炭素ラジカルの析出反応が開始される。このとき非ダイアモンド成分は水素ラジカルでエッチングされるため、ほぼダイアモンド層のみが成長する。析出速度0.1〜5μm/Hである。析出条件下で基材上に生成する安定なカーバイト層が接合強度の向上に寄与していると推定される。ドープ量は100ppmから10000ppmでありその抵抗率はドープ量にほぼ反比例して増減する(10〜0.01Ωcm)。電極耐性(基材の保護)、製造コストから、厚さは1〜10μmが最適である。
[Diamond electrode]
A conductive diamond electrode is usually manufactured by forming a conductive diamond layer on an electrode substrate by a hot filament CVD method or a microwave plasma CVD method. Under a pressure of 1 to 100 kPa, a mixed gas having an appropriate composition made of hydrogen, carbon and boron (or nitrogen) raw materials is activated on a hot filament (1800 to 2600 ° C.) to generate carbon and hydrogen radical species. The volume ratio of hydrogen and carbon gas raw material is controlled to about 0.05 to 0.1. Although gas raw materials such as methane and diborane are usually used, it is preferable from the viewpoint of safety at the production site to use alcohols and boron oxide as carbon and boron raw materials. By maintaining the substrate temperature at 600 to 900 ° C., a carbon radical precipitation reaction is initiated on the surface thereof. At this time, since the non-diamond component is etched by the hydrogen radical, only the diamond layer grows. The deposition rate is 0.1-5 μm / H. It is presumed that a stable carbide layer formed on the substrate under the deposition conditions contributes to the improvement of the bonding strength. The doping amount is from 100 ppm to 10000 ppm, and the resistivity increases or decreases in inverse proportion to the doping amount (10 to 0.01 Ωcm). From the electrode resistance (protection of the substrate) and the manufacturing cost, the thickness is optimally 1 to 10 μm.

SIMS分析では供給ガスと生成層のB/C比率はほぼ同等となることが確認されている。CVD法により形成した被覆層がダイアモンドであることはラマンスペクトルにより確認される。SEM写真では粒子径0.1〜10μm程度の多結晶の析出状態が観察される。
本発明に用いる電極としては、CVD法による電極には限定されず、粉末粒子を電極基材に固着したものでもよい。
It has been confirmed by SIMS analysis that the B / C ratios of the supply gas and the generation layer are substantially equal. It is confirmed by Raman spectrum that the coating layer formed by the CVD method is diamond. In the SEM photograph, a polycrystalline precipitation state with a particle size of about 0.1 to 10 μm is observed.
The electrode used in the present invention is not limited to an electrode formed by the CVD method, and may be one in which powder particles are fixed to an electrode substrate.

[陰極]
式(7)の水素発生を伴う陰極反応で、塩素酸が原料の場合は、陰極は酸性雰囲気で使用されるため、化学的耐久性が要求される。黒鉛、ジルコニウムなどの基材が適している。電圧を低減するために表面に触媒活性の優れた成分(白金族金属、その酸化物)を被覆することが好ましい。
塩化物が原料の場合は、陰極はアルカリ雰囲気で使用されるため、黒鉛、ステンレス、ニッケルなどの基材が適している。電圧を低減するために表面に触媒活性の優れた成分(白金族金属、その酸化物)を被覆することが好ましい。
陰極にダイアモンド電極を用いる事は化学的安定を有するため好適といえる。
[cathode]
In the cathode reaction involving hydrogen generation of formula (7), when chloric acid is a raw material, the cathode is used in an acidic atmosphere, and thus chemical durability is required. Base materials such as graphite and zirconium are suitable. In order to reduce the voltage, it is preferable to coat the surface with a component having excellent catalytic activity (platinum group metal, oxide thereof).
When chloride is a raw material, since the cathode is used in an alkaline atmosphere, a substrate such as graphite, stainless steel or nickel is suitable. In order to reduce the voltage, it is preferable to coat the surface with a component having excellent catalytic activity (platinum group metal, oxide thereof).
The use of a diamond electrode for the cathode is preferable because it has chemical stability.

一方酸素を供給すると陰極反応として(8)式の酸素ガスの還元反応を進行させることができ、セル電圧を低減できる。特殊な触媒を使用すると、陰極反応として酸素ガスの還元反応が優先的に進行し、(9)式の過酸化水素を生成できる。この場合はアルカリ水溶液の雰囲気で効率良く得られるため、原料として塩化物を使用するのが一般的である。
過酸化水素に適する酸素ガス陰極の触媒としては、白金族金属、貴金属或いはそれらの酸化物、硫化物又は黒鉛や導電性ダイアモンドなどのカーボンが好ましい。それらの触媒はそのまま板状として用いるか、ステンレス、カーボンなどの耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合めっきなどにより1〜1000g/m2となるように形成させる。
On the other hand, when oxygen is supplied, the reduction reaction of the oxygen gas of formula (8) can proceed as a cathode reaction, and the cell voltage can be reduced. When a special catalyst is used, the oxygen gas reduction reaction preferentially proceeds as a cathode reaction, and hydrogen peroxide of formula (9) can be generated. In this case, since it can be efficiently obtained in an atmosphere of an alkaline aqueous solution, chloride is generally used as a raw material.
As an oxygen gas cathode catalyst suitable for hydrogen peroxide, platinum group metals, noble metals or oxides thereof, sulfides, or carbon such as graphite or conductive diamond are preferable. These catalysts can be used as they are in the form of plates, or on a corrosion-resistant plate such as stainless steel or carbon, a wire mesh, a powder sintered body, or a metal fiber sintered body by a thermal decomposition method, a resin fixing method, composite plating, or the like. It forms so that it may become -1000g / m < 2 >.

陰極給電体としてはカーボン、ニッケル、ステンレスなどの金属、その合金や酸化が望ましい。反応生成ガス、液の供給、除去を速やかに行うために疎水性や親水性の材料を分散担持するのが好ましい。疎水性のシートを陽極と反対側の陰極裏面に形成すると反応面へのガス供給が制御でき効果的である。
酸素の供給量は理論値の1.1〜10倍程度が良い。原料である酸素ガスとしては空気、これを分離濃縮した酸素を用いたり、市販のボンベを利用しても良い。酸素は電極裏面のガス室がある場合にはそこに供給するが、処理水に前もって吹き込み吸収させておいても良い。
As the cathode power supply body, metals such as carbon, nickel and stainless steel, alloys thereof and oxidation are desirable. In order to quickly supply and remove the reaction product gas and liquid, it is preferable to disperse and carry a hydrophobic or hydrophilic material. Forming a hydrophobic sheet on the back surface of the cathode opposite to the anode is effective in controlling the gas supply to the reaction surface.
The supply amount of oxygen is preferably about 1.1 to 10 times the theoretical value. As the oxygen gas that is a raw material, air, oxygen obtained by separating and concentrating it, or a commercially available cylinder may be used. If there is a gas chamber on the back of the electrode, oxygen is supplied to the oxygen, but it may be blown into the treated water and absorbed beforehand.

[イオン交換膜]
本発明で使用される隔膜としてカチオン交換膜を用い、陽極室、陰極室の2室型セルとすると、塩化物イオン、塩素酸イオンの透過を防止でき、合成効率の向上に寄与する。また、電解液の濃度が小さくなる場合に、イオン伝導度を維持するために不可欠な材料である。
イオン交換膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、耐食性の面で前者が好ましい。化学的耐性の優れた樹脂として、イオン交換基としてスルホン基を有するフッ素化樹脂(デュポン社製市販品としてはNafion)を挙げることができる。Nafionはテトラフルオロエチレンとペルフルオロ[2−(フルオロスルホニルエトキシ)−プロピル]ビニルエーテルのコポリマーから製造される。
[Ion exchange membrane]
When a cation exchange membrane is used as the diaphragm used in the present invention and a two-chamber cell of an anode chamber and a cathode chamber is used, permeation of chloride ions and chlorate ions can be prevented, which contributes to improvement in synthesis efficiency. Moreover, it is an indispensable material for maintaining the ionic conductivity when the concentration of the electrolytic solution is reduced.
The ion exchange membrane may be either a fluororesin or a hydrocarbon resin, but the former is preferred in terms of corrosion resistance. Examples of the resin having excellent chemical resistance include a fluorinated resin having a sulfone group as an ion exchange group (Nafion as a commercial product manufactured by DuPont). Nafion is made from a copolymer of tetrafluoroethylene and perfluoro [2- (fluorosulfonylethoxy) -propyl] vinyl ether.

[セル構造]
電解セルの材料としては安定性の観点から、ガラスライニング材料、カーボン、耐食性の優れたチタンやステンレス、PTFE樹脂などが好ましい。
上記各材料を用いて電解セルを構築する。後述する2枚の多孔性電極(陽極及び水素陰極)を有する無隔膜セル(図1)、図1のセルの陽極及び水素陰極間に隔膜を挟んだ2室セル、及び多孔性陽極と酸素ガス陰極、及びその間に隔膜を挟んだ2室セル(図2)などの使用が可能である。
2室セルでは、抵抗損失を低下させるために、電極間距離はなるべく小さくすべきであるが、水を供給する際のポンプの圧力損失を小さくしかつ圧力分布を均一に保つため、密着状態から2mmにするのが好ましい。
[Cell structure]
From the viewpoint of stability, the material of the electrolytic cell is preferably a glass lining material, carbon, titanium, stainless steel or PTFE resin having excellent corrosion resistance.
An electrolytic cell is constructed using the above materials. A diaphragm cell (FIG. 1) having two porous electrodes (anode and hydrogen cathode) to be described later, a two-chamber cell with a diaphragm sandwiched between the anode and hydrogen cathode of the cell of FIG. 1, and a porous anode and oxygen gas A two-chamber cell (FIG. 2) having a cathode and a diaphragm sandwiched between them can be used.
In the two-chamber cell, the distance between the electrodes should be as small as possible in order to reduce the resistance loss, but in order to reduce the pressure loss of the pump when supplying water and keep the pressure distribution uniform, 2 mm is preferable.

[運転条件]
原料である塩酸、他の塩化物及び塩素酸又は塩素酸塩の初期濃度は、0.1M以上とする。塩酸や他の塩化物を原料とする場合、電解することで塩素酸イオンが一旦中間体として生成するが、その後塩素酸イオン濃度は減少し、過塩素酸イオン濃度が増加する。電解を継続することで、原料濃度を0.01M以下にする。極限としては、原料すべてを分解できるが、その場合、電流効率が低下し、過剰な電力を必要とするので、適切な濃度まで減少した後は、他の分離方法にて分離することが好ましい。
電解条件のうちの温度は高い方が反応速度は増加し短時間で平衡値に達するが、分解速度も増大するために適正な温度範囲として、大気圧下では、室温より高く、100℃より小さく制御することが好ましい。電流密度は1〜100A/dm2が好ましい。
塩酸を原料とする場合、塩素は(7)式のように過塩素酸合成の中間体でもあり、電流効率を高めるには、なるべく溶解度を高め目的の反応を進行させることが好ましい。従って圧力は大きい方が好ましく、0.1〜1MPaが好適である。
塩素ガスが残留する場合は、脱気操作により分離除去可能である。
[Operating conditions]
The initial concentration of the raw material hydrochloric acid, other chlorides and chloric acid or chlorate shall be 0.1M or more. When hydrochloric acid or other chlorides are used as raw materials, chlorate ions are once generated as an intermediate by electrolysis, but thereafter the chlorate ion concentration decreases and the perchlorate ion concentration increases. By continuing the electrolysis, the raw material concentration is set to 0.01M or less. In the limit, all the raw materials can be decomposed. In that case, however, the current efficiency is lowered and excessive power is required. Therefore, after the concentration is reduced to an appropriate level, it is preferably separated by another separation method.
The higher the electrolysis conditions, the higher the reaction rate and the equilibrium value is reached in a short time, but the decomposition rate also increases, so that the appropriate temperature range is higher than room temperature and lower than 100 ° C under atmospheric pressure. It is preferable to control. Current density is preferably 1~100A / dm 2.
When hydrochloric acid is used as a raw material, chlorine is also an intermediate for perchloric acid synthesis as shown in formula (7), and in order to increase current efficiency, it is preferable to increase the solubility as much as possible to allow the target reaction to proceed. Therefore, a larger pressure is preferable, and 0.1 to 1 MPa is preferable.
When chlorine gas remains, it can be separated and removed by a deaeration operation.

図1及び2は、本発明に係わる過塩素酸化合物の合成用電解セルを示すもので、図1は陽極及び陰極ともガス発生型電極を使用した無隔膜型電解セルの例であり、図2は陽極としてガス発生型電極を、陰極として酸素ガス電極を使用した隔膜型電解セルの例である。   1 and 2 show an electrolytic cell for synthesizing a perchloric acid compound according to the present invention, and FIG. 1 shows an example of a diaphragm type electrolytic cell using gas generating electrodes for both the anode and the cathode. Is an example of a diaphragm type electrolytic cell using a gas generating electrode as an anode and an oxygen gas electrode as a cathode.

図1に示す電解セル1は、隔膜を使用しないタイプで、この電解セル1には、シリコン等の基材上に導電性ダイアモンドが被覆された多孔性陽極2と、ニッケルなどの基材に白金や白金族金属酸化物などの陰極物質が被覆された多孔性陰極3が、間隔をあけて設置されている。
4及び5は電解セルの底面に形成された原料水導入口、6及び7は電解セルの上面に形成された生成ガス取出し口である。
この電解セル1に塩酸や塩化ナトリウムなどの塩化物水溶液又は塩素酸ナトリウムなどの塩素酸化合物水溶液を供給しながら両極間に通電すると、前述の式(1)、(3)及び(5)などに従って過塩素酸イオンが電解合成される。
The electrolytic cell 1 shown in FIG. 1 is a type that does not use a diaphragm. The electrolytic cell 1 includes a porous anode 2 in which a conductive diamond is coated on a base material such as silicon, and a platinum base material such as nickel. A porous cathode 3 coated with a cathode material such as platinum group metal oxide is disposed at intervals.
4 and 5 are raw water inlets formed on the bottom surface of the electrolysis cell, and 6 and 7 are product gas outlets formed on the top surface of the electrolysis cell.
When the electrolytic cell 1 is energized between both electrodes while supplying a chloride aqueous solution such as hydrochloric acid or sodium chloride or a chloric acid compound aqueous solution such as sodium chlorate, according to the above formulas (1), (3) and (5), etc. Perchlorate ions are electrolytically synthesized.

図2に示す電解セル11は、パーフルオロスルホン酸系の陽イオン交換膜12により、陽極室13と陰極ガス室14に区画されている。陽イオン交換膜12の陽極室13側には、基材上に導電性ダイアモンドが被覆された多孔性陽極15が密着し、陽イオン交換膜12の陰極ガス室14側にはガス拡散陰極16が密着し、このガス拡散陰極16には給電及び補強用の多孔性陰極給電体17が密着状態で接続されている。
18は電解セルの陽極室底面に形成された陽極液導入口、19は電解セルの陰極ガス室底面に形成された陰極ガス導入口、20は電解セルの上面に形成された陽極ガス取出し口、21は電解セルの上面に形成された陰極ガス取出し口である。
この電解セル11の陽極室13に塩酸や塩化ナトリウムなどの塩化物水溶液又は塩素酸ナトリウムなどの塩素酸化合物水溶液を供給し、かつ陰極ガス室14に酸素含有ガスを供給しながら両極間に通電すると、図1の電解セルの場合と同様に過塩素酸イオンが電解合成される。
The electrolytic cell 11 shown in FIG. 2 is partitioned into an anode chamber 13 and a cathode gas chamber 14 by a perfluorosulfonic acid cation exchange membrane 12. A porous anode 15 coated with conductive diamond on a base material is in close contact with the anode chamber 13 side of the cation exchange membrane 12, and a gas diffusion cathode 16 is provided on the cathode gas chamber 14 side of the cation exchange membrane 12. The gas diffusion cathode 16 is in close contact with a porous cathode power supply 17 for power supply and reinforcement, in close contact.
18 is an anolyte inlet formed on the bottom of the anode chamber of the electrolytic cell, 19 is a cathode gas inlet formed on the bottom of the cathode gas chamber of the electrolytic cell, 20 is an anode gas outlet formed on the top of the electrolytic cell, 21 is a cathode gas outlet formed on the upper surface of the electrolytic cell.
When an aqueous chloride solution such as hydrochloric acid or sodium chloride or a chloric acid compound aqueous solution such as sodium chlorate is supplied to the anode chamber 13 of the electrolytic cell 11, and an oxygen-containing gas is supplied to the cathode gas chamber 14, current flows between both electrodes. As in the case of the electrolytic cell of FIG. 1, perchlorate ions are electrolytically synthesized.

次に本発明に係る過塩素酸化合物の電解合成に関する実施例及び比較例を記載するが、本発明はこれらに限定されるものではない。   Next, although the Example and comparative example regarding the electrosynthesis of the perchloric acid compound concerning this invention are described, this invention is not limited to these.

[実施例1]
基材として1mm厚の導電性シリコン上に、5000ppmのホウ素をドープさせた導電性ダイアモンドを厚さが5μmとなるように形成させたものを陽極として用いた。陰極としては、厚さ1mmの白金めっきチタン板を用いた。電極面積はそれぞれ20cmとした。
図1に示した無隔膜セル(容積1000ml)の中に、これらの電極を極間1cmになるように向かい合わせて配置した。セルに0.02M塩素酸ナトリウム水溶液を500ml満たし攪拌しながら水温は35℃とし、1Aの電流(電流密度:0.05A/cm)で1時間電解した。
分析はイオンクロマト装置にて行い、濃度から過塩素酸イオン生成の電流効率を算出した。次亜塩素酸ナトリウムはKI滴定でも測定した。過塩素酸イオン生成の電流効率が20%であることを確認した。
更に電解を4時間継続したところ、原料である塩素酸ナトリウムは2mMまで低下し、副生した次亜塩素イオンは0.1mMまで低減した。
[Example 1]
A substrate formed by forming conductive diamond doped with 5000 ppm boron on a 1 mm thick conductive silicon so as to have a thickness of 5 μm was used as an anode. As the cathode, a platinum-plated titanium plate having a thickness of 1 mm was used. The electrode area was 20 cm 2 each.
In the non-diaphragm cell (volume 1000 ml) shown in FIG. 1, these electrodes were arranged facing each other so that the distance between them was 1 cm. The cell was charged with 500 ml of 0.02M sodium chlorate aqueous solution and stirred at a water temperature of 35 ° C. for 1 hour at a current of 1 A (current density: 0.05 A / cm 2 ).
The analysis was performed with an ion chromatograph, and the current efficiency of perchlorate ion generation was calculated from the concentration. Sodium hypochlorite was also measured by KI titration. It was confirmed that the current efficiency of perchlorate ion generation was 20%.
When electrolysis was further continued for 4 hours, sodium chlorate as a raw material was reduced to 2 mM, and by-product hypochlorite ions were reduced to 0.1 mM.

[比較例1]
ダイアモンド電極の代わりに、白金チタン板を用いたこと以外は実施例1と同様に、計5時間電解を行ったところ、過塩素酸イオンの生成は認められなかった。従来と異なる結果が得られたが、これは原料濃度や電流密度が小さかったため、過塩素酸イオンの生成が検出限界未満であったと推測できる。
[Comparative Example 1]
When electrolysis was performed for a total of 5 hours in the same manner as in Example 1 except that a platinum titanium plate was used instead of the diamond electrode, generation of perchlorate ions was not observed. Although results different from the conventional ones were obtained, it can be assumed that the production of perchlorate ions was less than the detection limit because the raw material concentration and current density were small.

[比較例2]
ダイアモンド電極の代わりに、酸化鉛を析出させたチタン板を用いたこと以外は実施例1と同様に、計5時間電解を行ったところ、過塩素酸イオン生成の電流効率は2%程度であった。
[Comparative Example 2]
When electrolysis was performed for a total of 5 hours in the same manner as in Example 1 except that a titanium plate on which lead oxide was deposited was used instead of the diamond electrode, the current efficiency of perchlorate ion generation was about 2%. It was.

[参考例1]
基材として元板厚さ2mmのニオブメッシュ上に、5000ppmのホウ素をドープさせた導電性ダイアモンドを形成させたものを陽極とし、陰極として元板厚さ1mmの白金めっきチタンメッシュを用いた。電極面積はそれぞれ20cm2とし、図1の無隔膜セルの陽極及び陰極間にイオン交換膜(117ナフィオン)を挟んだ2室セルを組み立てて(極間1mm)、陽、陰極室に0.5Mの塩酸溶液200mlを注入した。40℃、20A(電流密度:1A/cm2)で1時間電解したところ、過塩素酸イオンが電流効率12%で得られた。このときの塩酸濃度は0.05Mまで低減した。セル電圧は、5.5Vであった。残留している塩素ガスは脱気により除去できた。
[ Reference Example 1 ]
A substrate formed by forming conductive diamond doped with 5000 ppm of boron on a niobium mesh having a base plate thickness of 2 mm as a base material was used as an anode, and a platinum-plated titanium mesh having a base plate thickness of 1 mm was used as a cathode. The electrode area is 20 cm 2 each, and a two-chamber cell with an ion exchange membrane (117 Nafion) sandwiched between the anode and cathode of the diaphragm cell in FIG. 200 ml of hydrochloric acid solution was injected. When electrolysis was performed at 40 ° C. and 20 A (current density: 1 A / cm 2 ) for 1 hour, perchlorate ions were obtained with a current efficiency of 12%. The hydrochloric acid concentration at this time was reduced to 0.05M. The cell voltage was 5.5V. Residual chlorine gas could be removed by deaeration.

[比較例3]
陽極として元板厚さ1mmの白金めっきチタンメッシュを用いたこと以外は実施例2と同様に電解を行ったところ、過塩素酸イオン生成の電流効率は0.2%程度であった。
[Comparative Example 3]
When electrolysis was carried out in the same manner as in Example 2 except that a platinum-plated titanium mesh having a thickness of 1 mm was used as the anode, the current efficiency of perchlorate ion generation was about 0.2%.

[参考例2]
参考例1の陽極を用い、陰極としては、触媒である黒鉛粉末(東海カーボン製、TGP−2)をPTFE樹脂と混練し、芯材であるカーボンクロス(ゾルテック社製、PWB−3)上に塗布し330℃で焼成し2cm×2cm×0.5mm厚さのシートを作製して用いた。陰極給電支持体として白金めっきチタンメッシュを用い、図2のようなイオン交換膜(ナフィオン117)を挟んだ2室セルを組み、酸素を陰極室に供給しながら参考例1と同様に、60℃、20Aで1時間電解したところ、過塩素酸イオンが電流効率10%で得られた。このときの塩酸濃度は0.05Mまで低減した。セル電圧は4.7Vであった。
[ Reference Example 2 ]
The anode of Reference Example 1 was used, and as the cathode, graphite powder (manufactured by Tokai Carbon, TGP-2) as a catalyst was kneaded with PTFE resin, and the carbon cloth (manufactured by Zoltech, PWB-3) as the core material was mixed. It was applied and baked at 330 ° C. to prepare and use a 2 cm × 2 cm × 0.5 mm thick sheet. Using a platinum-plated titanium mesh as the cathode power supply support, a two-chamber cell with an ion exchange membrane (Nafion 117) as shown in FIG. 2 is assembled, and oxygen is supplied to the cathode chamber at 60 ° C. as in Reference Example 1. When electrolysis was performed at 20 A for 1 hour, perchlorate ions were obtained with a current efficiency of 10%. The hydrochloric acid concentration at this time was reduced to 0.05M. The cell voltage was 4.7V.

本発明に係わる過塩素酸化合物の合成用電解セルを例示する無隔膜型電解の概略縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic longitudinal cross-sectional view of the diaphragm type | mold electrolysis which illustrates the electrolytic cell for the synthesis | combination of the perchloric acid compound concerning this invention. 同じく隔膜型電解の概略縦断面図。The schematic longitudinal cross-sectional view of diaphragm type | mold electrolysis similarly.

符号の説明Explanation of symbols

1、11 電解セル
2、15 陽極
3、16 陰極
12 陽イオン交換膜
1,11 Electrolysis cell 2,15 Anode 3,16 Cathode
12 Cation exchange membrane

Claims (3)

0.1M以上の原料濃度の塩素酸化合物を含有する原料溶液を、導電性ダイアモンドを陽極物質として有する陽極、及び陰極を使用して,前記原料濃度が0.01M以下に低減するまで電解し、過塩素酸化合物を合成することを特徴とする過塩素酸化合物の電解合成方法。Electrolysis of a raw material solution containing a chloric acid compound having a raw material concentration of 0.1 M or more using an anode and a cathode having conductive diamond as an anode material until the raw material concentration is reduced to 0.01 M or less, and perchlorine A method for electrolytic synthesis of a perchloric acid compound, comprising synthesizing an acid compound. 陽極と陰極の間にイオン交換膜を設置して過塩素酸化合物を合成するようにした請求項1に記載の方法 The method according to claim 1, wherein an ion exchange membrane is installed between the anode and the cathode to synthesize a perchloric acid compound . ガス拡散陰極を使用して陰極で酸素を電解還元しながら過塩素酸化合物を合成するようにした請求項1又は2記載の方法 The method according to claim 1 or 2, wherein a perchloric acid compound is synthesized while electrolytically reducing oxygen at the cathode using a gas diffusion cathode.
JP2006015201A 2006-01-24 2006-01-24 Electrosynthesis of perchloric acid compounds Expired - Fee Related JP4778320B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006015201A JP4778320B2 (en) 2006-01-24 2006-01-24 Electrosynthesis of perchloric acid compounds
US11/657,071 US20070170070A1 (en) 2006-01-24 2007-01-24 Electrolysis cell for synthesizing perchloric acid compound and method for electrolytically synthesizing perchloric acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015201A JP4778320B2 (en) 2006-01-24 2006-01-24 Electrosynthesis of perchloric acid compounds

Publications (2)

Publication Number Publication Date
JP2007197740A JP2007197740A (en) 2007-08-09
JP4778320B2 true JP4778320B2 (en) 2011-09-21

Family

ID=38284459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015201A Expired - Fee Related JP4778320B2 (en) 2006-01-24 2006-01-24 Electrosynthesis of perchloric acid compounds

Country Status (2)

Country Link
US (1) US20070170070A1 (en)
JP (1) JP4778320B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2638115T3 (en) * 2006-09-05 2017-10-18 Element Six Technologies Limited Solid diamond electrode
JP4849420B2 (en) * 2007-06-20 2012-01-11 奥野製薬工業株式会社 Method for electrolytic treatment of etching solution
JP5123612B2 (en) * 2007-08-28 2013-01-23 ペルメレック電極株式会社 Method for producing conductive diamond electrode and electrolysis method using conductive diamond electrode
US9067810B2 (en) * 2009-03-02 2015-06-30 Chester J. Sohn Electrolytic apparatus for treating ballast water and treatment system using same
KR101386706B1 (en) 2009-03-26 2014-04-18 가부시키가이샤 아이에이치아이 Manufacturing method and manufacturing device for perchlorate
JP5387250B2 (en) * 2009-09-09 2014-01-15 株式会社Ihi Method and apparatus for producing perchlorate
JP5459162B2 (en) * 2010-09-24 2014-04-02 株式会社Ihi Apparatus and method for producing ammonium perchlorate
JP5459163B2 (en) * 2010-09-24 2014-04-02 株式会社Ihi Apparatus and method for producing ammonium perchlorate
BR112013017819A2 (en) * 2011-01-14 2016-10-11 Wet Trust water purification
JP5927840B2 (en) * 2011-10-26 2016-06-01 株式会社Ihi Perchlorate production apparatus and production method
US8940151B1 (en) 2011-10-31 2015-01-27 Advanced Hydrogen Products, LLC Water electrolysis systems and methods
JP2013231240A (en) * 2013-08-19 2013-11-14 Ihi Corp Method and device for producing perchlorate
FR3053363B1 (en) * 2016-06-30 2021-04-09 Herakles ELECTROLYTIC SYSTEM FOR THE SYNTHESIS OF SODIUM PERCHLORATE WITH ANODE WITH EXTERNAL SURFACE IN DIAMOND DOPED WITH BORON
CN114517299B (en) * 2022-03-16 2023-08-22 常熟理工学院 Cement block water-based dissolving agent and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2638766B1 (en) * 1988-11-09 1990-12-14 Atochem CONTINUOUS PROCESS FOR THE MANUFACTURE OF ALKALINE METAL PERCHLORATE
US5064514A (en) * 1990-03-30 1991-11-12 Olin Corporation Apparatus for the production of chloric acid
US5399247A (en) * 1993-12-22 1995-03-21 Eastman Kodak Company Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater
JP3334996B2 (en) * 1994-03-11 2002-10-15 クロリンエンジニアズ株式会社 Reduction-suppressed cathode and method for producing the same
JP3625633B2 (en) * 1997-12-08 2005-03-02 ペルメレック電極株式会社 Gas diffusion electrode structure and manufacturing method thereof
JP3913923B2 (en) * 1999-03-15 2007-05-09 ペルメレック電極株式会社 Water treatment method and water treatment apparatus
TW200306954A (en) * 2002-04-23 2003-12-01 Kurita Water Ind Ltd Methods and apparatuses for treating wastewater containing organic compounds
JP2004202283A (en) * 2002-12-20 2004-07-22 Kurita Water Ind Ltd Method and apparatus for treating organic compound-containing water

Also Published As

Publication number Publication date
JP2007197740A (en) 2007-08-09
US20070170070A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4778320B2 (en) Electrosynthesis of perchloric acid compounds
EP0785294B1 (en) Improved method for the electrolysis of aqueous solutions of hydrochloric acid
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
US4135995A (en) Method of electrolysis, and electrode for the electrolysis
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US20100051469A1 (en) Electrolysis Cell for the Conversion of Cuprous Chloride in Hydrochloric Acid to Cupric Chloride and Hydrogen Gas
US9556527B2 (en) Undivided electrolytic cell and use of the same
WO2003016592A2 (en) Electrolytic cell and electrodes for use in electrochemical processes
US20030136669A1 (en) Electrode for electrolysis in acidic media
JPH11269685A (en) Production of infusible metal electrode and electrolytic cell using that electrode
KR910001138B1 (en) Combined process for production of clorine dioxine and sodium hydroxide
ES2397508T3 (en) Procedure for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride
AU3710001A (en) Process for the production of alkali metal-and ammonium peroxodisulfate
WO2000053826A1 (en) Electrolytic production of magnesium
JP2023504839A (en) Method for preparing periodate
CN111979558B (en) Method and apparatus for preparing hydrogen selenide by electrolytic process
JPH021917B2 (en)
WO2004055243A1 (en) Process for the electrolytic production of inorganic peroxy compounds
JP2004099914A (en) Method for producing peroxodisulfate
JP3538271B2 (en) Hydrochloric acid electrolyzer
WO1993012034A1 (en) Process for producing lithium perchlorate
JP3844303B2 (en) Method for electrolytic synthesis of percarbonate compound and electrolytic synthesis cell
CA3115138C (en) Selective cathode for use in electrolytic chlorate process
JP4387734B2 (en) Method for producing hydrogen peroxide
Kim et al. Renaissance of Chlorine Evolution Reaction: Emerging Theory and Catalytic Materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees