WO2013125798A1 - Method for manufacturing cathode active material for lithium secondary battery - Google Patents
Method for manufacturing cathode active material for lithium secondary battery Download PDFInfo
- Publication number
- WO2013125798A1 WO2013125798A1 PCT/KR2013/000715 KR2013000715W WO2013125798A1 WO 2013125798 A1 WO2013125798 A1 WO 2013125798A1 KR 2013000715 W KR2013000715 W KR 2013000715W WO 2013125798 A1 WO2013125798 A1 WO 2013125798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- manganese
- active material
- secondary battery
- lithium secondary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1228—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a method for preparing excellent capacity characteristics and relates to a manufacturing method of the charge-discharge efficiency is possible i cathode active material for a lithium secondary battery, and more particularly, manganese and vanadium or niobium, such as by reducing precipitation with a cathode active material for a lithium secondary battery It is about.
- Lithium secondary batteries which are currently in commercial use, have a mean discharge potential of 3.7 V, or 4 V, which is the heart of the digital age that is rapidly being applied to portable phones, notebook computers, camcorders, etc., which are referred to as 3C.
- LiCo0 2 exhibits good electrical conductivity, high battery voltage, and excellent electrode characteristics, and is a representative cathode active material currently commercialized and sold by SONY, etc., but has a disadvantage of being expensive.
- LiNi0 2 is the least expensive of the above-mentioned cathode active materials, and exhibits the highest discharge capacity of the battery, but has a disadvantage in that it is difficult to synthesize.
- LiCo3 ⁇ 4 is used and a lot of efforts are being made to replace LiCo0 2 . Accordingly, studies on Mn-based cathode active materials such as LiMn 2 O 4 , LiMn0 2 , which are easy to synthesize, relatively inexpensive, and which have little pollution to the environment, are actively conducted. However, LiMn 2 O 4 and LiMnO 2 have a problem in that the capacity is small and the layer discharge efficiency is poor depending on repeated use.
- the present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery containing a lithium manganese-based composite " oxide having improved capacity and excellent layer discharge efficiency through a reduced precipitation method such as manganese and vanadium or niobium.
- a cathode active material for a lithium secondary battery prepared by the above method is to provide.
- the present invention also provides a lithium secondary battery including the cathode active material.
- the present invention comprises the steps of producing a manganese complex precipitate by reducing precipitation of manganese and dissimilar metal elements from a mixed solution comprising a manganese compound and a dissimilar metal compound including at least one dissimilar metal element selected from the group consisting of V and Nb; It provides a method for producing a positive electrode active material for a lithium secondary battery comprising a; and mixing the manganese composite precipitate and the lithium compound, and calcining under conditions of 300 to 800 ° C to produce a lithium manganese composite oxide represented by the following formula (1) .
- a is 0 ⁇ a ⁇ l / 3
- b is 0 ⁇ b ⁇ 0.5
- M is at least one metal element selected from the group consisting of V and Nb.
- the present invention also provides a cathode active material for a lithium secondary battery produced by the above method.
- the present invention also provides a lithium secondary battery comprising the cathode active material.
- lithium secondary battery refers to one that can continuously perform layer charge and discharge.
- This lithium secondary battery has a feature of a medium for storing electrical energy.
- the lithium secondary battery (a cathode active material for a lithium secondary battery) should have structural stability because it must escape in the form of silver upon desorption, and is manufactured in a part where a transition metal material having such structural stability should be mainly used. There are limited disadvantages of the process and materials.
- the present invention provides a cathode active material by reducing and precipitating manganese and vanadium, thereby improving capacity when used in a lithium secondary battery, excellent layer discharge efficiency, and excellent in low-temperature firing process in which production cost is reduced compared to LiCo0 2 . Process improvement effect can be obtained.
- Mn 4 is the most stable form, structural collapse does not occur easily.
- current cathode active material suitable for HEV or EV requires a high output, Mn 4 must be driven at 4.4V or higher in order to be activated, and when activated is possible to use a high voltage of 4.8 ⁇ 5V.
- Mn is a mixed valency having an oxidation number between tetravalent and trivalent and tetravalent through doping with a heterovalent hetero element such as vanadium or niobium, thereby enabling activation even at 4.4 V or less. It is possible to increase or maintain the capacity by improving the collapse of the structure.
- the positive electrode active material of the present invention has a half composition of Li 2 Mn3 ⁇ 4 when preparing Ni [Ni x Co y Mn z ] 0 2 having a Ni-rich composition, thereby providing initial charge / discharge.
- Li 2 Mn0 3 lithium In order to use Li 2 Mn0 3 lithium at the time of capacity expression, production and electrochemical properties are measured and are in a funny situation.
- a method of manufacturing a cathode active material for a lithium secondary battery in which the manganese, vanadium (V), niobium (Nb), and the like are reduced and precipitated together by optimizing the process conditions of a predetermined step.
- manganese and dissimilar metal elements are reduced-precipitated by using a mixed solution containing a heterometal compound and a manganese compound containing at least one heterometal element selected from the group consisting of V and Nb.
- the indexes of a and b are 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.5, preferably 0 ⁇ a ⁇ l / 3, in the case of vanadium (V) doped lithium manganese composite oxide.
- 0 ⁇ b ⁇ 0.3 ( more preferably 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.2), and in the case of a niobium (Nb) doped lithium manganese composite oxide, 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.3, preferably 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.25, more preferably 0 ⁇ a ⁇ l / 3 ( can be 0 ⁇ b ⁇ 0.2)
- the lithium manganese composite oxide may be represented by the following formula (2).
- X is 0 ⁇ x ⁇ 0.5, preferably 0 ⁇ x ⁇ 0.3, more preferably
- M is at least one metal element selected from the group consisting of V and Nb.
- lithium manganese composite oxide is Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2, L i 4/3 (Mn 0. 9 Vo. L) 2 / 3O2, L i 4/3 (Mn 0 .85V0.15) 2 / 3O2 , L i 4/3 (Mn 0. 95 Nbo .05) 2 / 3O2, Li 4 /3(Mno.9Nbo.i)2/302, Li 4/3 ( Mn 0. 995 Nb 0. 05 ) can be given alone or in combination of two or more, such as 02 2/3. .
- the manganese composite precipitate which is a precursor of the lithium manganese composite oxide is produced by reduction precipitation of manganese (Mn), vanadium (V), niobium (Nb), etc., and vanadium together with manganese (Mn). It includes one or more metal elements selected from the group consisting of (V) and niobium (Nb) simultaneously.
- the manganese composite precipitate of the present invention is characterized by exhibiting an amorphous phase.
- the precursor of the lithium composite oxide is formed in the crystal phase form of hydroxide (NiCoMn- ⁇ ) or an oxide compound by coprecipitation method.
- hydroxide NiCoMn- ⁇
- oxide compound by coprecipitation method.
- the step of reducing precipitation of manganese (Mn) and vanadium (V) or niobium (Nb) to produce a manganese complex precipitate is pH 9 to 13, preferably pH 9.5 to 12.5, more preferably pH 10 to It can carry out under the conditions of 12.
- the pH range is a value corresponding to a mixed solution in which both dissimilar metal compounds and manganese compounds containing sub-metallic elements such as vanadium (V) and niobium (Nb) are dissolved.
- the pH value may be 9 or more, and the pH value in terms of precipitation and composition change This can be 13 or less.
- the pH value may be adjusted using a reducing agent in the mixed solution, and as the reducing agent, one or two or more selected from the group consisting of KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 , and LiAl3 ⁇ 4 may be used.
- the reducing agent is preferably NaBH 4 , KBH 4 and the like in terms of preparing the precipitate in the amorphous form.
- an acid or a basic compound in addition to the reducing agent may be used to adjust the pH value to the optimum range or to prevent the sudden rise of the pH value.
- Such acidic compounds include HCl, HC10 4 , H 2 S0 4 , HBr, and the like
- basic compounds include ammonia, KOH, LiOH, NaOH, NH 4 0H, CH 3 COOH, and HCN.
- Mn manganese
- V vanadium
- Nb niobium
- the dissimilar metal compound is pH 13 to 13, preferably pH 10 to 12, more preferably pH After dissolving in the basic solvent of 10-11, it can manufacture by dissolving a manganese compound here.
- the manganese compound may be added after adjusting the manganese compound to pH 2-6, preferably pH 3-5, more preferably pH 4-5 of the solution containing the dissimilar metal compound according to the pH range. Can be.
- manganese compound manganese sulfate, manganese nitrate, manganese acetate, Manganese Acet Manganese chloride, manganese dioxide, manganese trioxide, and one or more selected from the group consisting of manganese tetraoxide can be used. Among them, it is more preferable to use manganese sulfate, manganese nitrate, or manganese acetate in terms of dissolution of manganese raw materials.
- At least one selected from the group consisting of sodium and potassium metavanadate, lithium chloride, niobium oxide (Nb Nb0 2 , Nb 2 0 5 ), niobium chloride, and niobium phosphide may be used.
- the molar ratio of the dissimilar metal elements such as vanadium and niobium to manganese may be 0.01 to 0.50 mol, preferably 0.02 to 0.20 mol, more preferably 0.05 to 0.15 ⁇ ) 1.
- the molar ratio of the vanadium to manganese in terms of the minimum substitution amount of the dissimilar metal elements may be 0.01 mol or more, and the molar ratio of the vanadium to manganese in the maximum substitution amount of the dissimilar metal elements may be 0.50 mol or less.
- the present invention may further include the step of drying the lithium manganese composite oxide precursor generated from the reduction precipitation step.
- the drying step may be carried out under 40 to 150 ° C, preferably 80 to 130 ° C, more preferably 100 to 120 ° C conditions.
- the manganese composite precipitate obtained after drying is mixed with a lithium compound, lithium manganese through a heat treatment step of firing under conditions of 300 to 800 V, preferably 350 to 700 ° C, more preferably 400 to 620 ° C Can be converted to complex oxides.
- This firing process may be performed by a two-step heat treatment process including a first heat treatment and a second heat treatment.
- the first heat treatment for 7 to 15 hours at a temperature of 300 to 700 ° C, preferably for 9 to 14 hours at a temperature of 350 to 600 ° C, more preferably at a temperature of 400 to 550 ° C It may be carried out by heating for 10 to 13 hours.
- the secondary heat treatment for 10 to 20 hours at a temperature of 300 to 800 ° C after the first heat treatment may be carried out by heating for 14 to 18 hours at a temperature of 700 ° C. more preferably for 15 to 17 hours at a temperature of 440 to 620 ° C.
- the lithium compound may be at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium oxide and lithium chloride.
- lithium hydroxide, lithium carbonate, etc. can be used.
- the molar ratio of lithium to manganese may be reacted to be 1.60 to 1.80 mol, preferably 1.65 to 1.78 mol, more preferably 1/70 to 1.75 mol.
- the molar ratio of lithium to manganese may be 1.60 mol or more, and the molar ratio of lithium to manganese may be 1.80 mol or less in terms of controlling the intensity ratio of each surface index. have.
- a cathode active material for a lithium secondary battery manufactured by the method as described above.
- the cathode active material for a lithium secondary battery may include a lithium manganese composite oxide represented by Formula 1 below.
- the index of a, b is vanadium (V) doped lithium manganese composite oxide ⁇ 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.5, preferably 0 ⁇ a ⁇ l / 3 , 0 ⁇ b ⁇ 0.3, more preferably 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.2, and 0 ⁇ a ⁇ l / 3 for niobium (Nb) doped lithium manganese composite oxide , 0 ⁇ b ⁇ 0.3, preferably 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.25, more preferably 0 ⁇ a ⁇ l / 3, 0 ⁇ b ⁇ 0.2.
- V vanadium
- the lithium manganese composite oxide may be represented by the following formula (2). [Formula 2]
- x may be 0 ⁇ x ⁇ 0.5, preferably 0 ⁇ x ⁇ 0..3, more preferably 0 ⁇ ⁇ ⁇ 0.2; ⁇ is at least one metal element selected from the group consisting of V and Nb.
- the lithium manganese composite oxide as the Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2, Li4 / 3 (Mno.gV 0 .1) 2/302, L i 4/3 (Mno. ssVo.15) 2/302, L i 4/3 (Mno. 95 Nbo .05) 2 / 3O2,
- the positive electrode active material for a lithium secondary battery manufactured according to the present invention has a discharge capacity of 140 mAhg "" 1 or more at two or more cycles measured according to the method evaluated by using a case of SUS product as a test cell for electrode evaluation. 140 to 220 mAhg "1, preferably from 170 to 210 mAhg" 1, more preferably 180 to 200 mAhg _1 7> may be.
- a lithium secondary battery comprising the positive electrode active material for the lithium secondary battery.
- the lithium secondary battery is characterized by improving the electrochemical properties of the existing material by using a cathode active material prepared by reducing precipitation of manganese and vanadium to produce a single-phase lithium manganese composite oxide. .
- the lithium secondary battery of the present invention includes a cathode including a cathode active material; An anode including an anode active material; And a separator between the anode and the cathode.
- the lithium secondary battery of the present invention may include various negative electrode active materials having a wide range of characteristics.
- a capacity can be improved, and a cathode active material for a lithium secondary battery of LiMnO 2 system having excellent layer discharge efficiency can be manufactured.
- production of a cathode active material for a lithium secondary battery according to the present invention reduces production costs, improves capacity, and has excellent charge and discharge efficiency. There is an effect to manufacture a secondary battery.
- Example 1 is a photograph showing the SEM measurement results for the precursor (precursor), that is, manganese composite precipitate obtained by co-reduction of manganese and vanadium according to Example 1 of the present invention.
- Example 2 is a precursor obtained by co-reduction of manganese and vanadium according to Example 1 of the present invention, namely; It is a graph showing the XRD measurement result (intensity in 2theta degree: intensity, a.u.) for manganese composite precipitate.
- Figure 3 is a graph showing the V doped ryangbyeol XRD measurement results with respect to the lithium-manganese composite oxide prepared by the reduction precipitation method according to the embodiment 1-6 of the present invention
- Example 1 Li 4/3 (Mn 0 95 V 0 05) 2/3 0 2 example 2:. Li 4/3 ( Mno.9Vo 1) 2/30 2, example 3:.. Li 4/3 (Mn 0.85 V 0 15) 2/3 0 2 example 4: Li 4/3 (Mn 0 95 Nb 0 05..) 2/3 0 2, example 5: Li 4/3 (.
- Example 9 is a graph showing the life characteristics measurement results for the lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 1 to 3 of the present invention and the lithium manganese composite oxide prepared by the dry method according to Comparative Example 1-4
- discharge capacity per cycle example 1: Li 4/3 (Mn 0 95 V 0 05..) 2/3 0 2 Wet process
- example 2 Li 4/3 (Mn 0 .9Vo.i) 2/30 Wet process
- example 3 Li 4 /3(Mno.85Vo.i5)2/30 2 Wet process
- Comparative example 1 Li 4/3 (. .
- Example 12 is an XRD measurement measured after heat treatment at a high temperature for a lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 2 and 3 of the present invention and a lithium manganese composite oxide prepared by the dry method according to Comparative Example 2.
- the result is a graph showing [example 2: Li 4/3 (Mno 9 Vo.i.) 2/302 Wet process, example 3: Li 4/3 (. . Mn 0 85 V 0 15) 2/3 0 2 Wet process, Comparative Example 2: Li 4/3 (Mno. 9 Vo.i) 2/30 2 Solid process].
- Example 1
- a reducing agent (KBH 4 ) solvent was added to a solution in which both the vanadium compound and the manganese compound were dissolved, and then raised to pH 10-12, thereby obtaining a complex compound in which vanadium and manganese were precipitated together as a dark brown precipitate.
- HC1 was used to suppress a sharp increase in pH
- ammonia water was used to raise the desired pH to 11.5 because pH 9 was the limit of the reducing agent alone.
- the vanadium manganese composite precipitate thus produced was washed with water to remove impurities, and then dried at 80 ° C. for at least 8 hours.
- the obtained semi-manganese composite precipitate was completely amorphous by XRD analysis (see FIG. 2).
- the dried vanadium manganese composite precipitate was mixed with a lithium compound (Li 2 CO 3 , 98%) and a molar ratio (Li / Mn ratio) of 1. group. Thereafter, a uniform mixture was obtained by planetary ball milling using a 10 mm ball.
- the lithium manganese vanadium composite mixture powder was put into a tube furnace, and the temperature was raised at a rate of 3 ° C. per minute to raise the temperature to 400-550 ° C. (Celsius), followed by oxygen gas for 12 hours.
- the primary heat treatment was performed while maintaining while adding. Thereafter, the temperature was raised at a rate of 3 ° C. per minute to further increase the temperature of about 40 to 70 ° C compared to the first heat treatment, that is, to raise the temperature to 440 ⁇ 620 ° C, and then in this state for 16 hours
- the secondary heat treatment was performed while maintaining while adding oxygen gas. Dark red color of the lithium-manganese composite oxide according to the present invention by carrying out the process to produce a Formula Li 4/3 (Mn 0.95 V 0. 05) 2/3 0 2] was prepared in the cathode active material for a lithium secondary battery.
- the powder obtained by the heat treatment was examined for particle size and structure using SEM and XRD. As a result of analysis, the synthesized powder was uniform in particle size and phase. A single crystalline phase was shown.
- Li 4/3 Li 4/3 (Mno. GVo. ⁇ / Sod) was prepared and the particle size and structure was confirmed by using the SEM, XRD in the same manner.
- V vanadium compound
- MnS0 4 ⁇ 53 ⁇ 40 manganese compound
- Vanadium compound (V 2 0 5) instead of the niobium compound (Nb 2 0 5) in Example 1, and, for a lithium secondary battery positive electrode active material in the same manner except that the amorphous phase is prepared by using the reduction precipitate [Li 4/3 (Mno. 95 Nb 0. 05 ) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure.
- a cathode active material [L ⁇ Mno.sNbo.i) ⁇ for a lithium secondary battery was prepared, and the particle size and structure were confirmed using SEM and XRD in the same manner.
- Niobium compound (Nb 2 0 5) and the molar ratio of the content of a manganese compound (MnS0 4 .53 ⁇ 40) metal Mn: Nb 0.85: Example 4, except that the amorphous phase is reduced to prepare a precipitate by changing to 0.157 ⁇ to prepare a cathode active material for a lithium secondary battery [Li 4/3 (Mno. 85 Nb 0. 15) 2/3 0 2] in the same manner as in the same way using a SEM, XRD was confirmed the particle size and structure. Comparative Example 1
- wet process (wet process; solution-based precipi tat ion) ° 1 solid process (solid-state react ion) in the same composition as in Example 1 lithium secondary battery positive electrode active material [Li 4/3 (Mn 0 . 95 V 0. 05) 2/3 0 2] was prepared.
- a lithium compound (Li 2 CO 3 ), a vanadium compound (V 2 0 5 ), and a manganese compound (Mn 2 0 3 ) were mixed.
- the molar ratio (Li / Metal ratio) of lithium to manganese was set to 2.04, and vanadium 0.05 ⁇ ) 1 was mixed.
- a 10 mm ball. Planetary ball milling was used to obtain a uniform lithium manganese vanadium complex mixture.
- the obtained lithium manganese vanadium composite mixture was placed in a tube furnace, heated up at a rate of 3 ° C. per minute to raise the temperature to 650 ° C., and then maintained in this state while applying oxygen gas for 20 hours.
- This process the black red cathode active material for a lithium secondary battery in accordance with the invention by carrying out [Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2] After producing the dry process, as in Example 1, In the same manner, the particle size and structure were confirmed using SEM and XRD.
- a battery positive electrode active material [L Mno.gVo ⁇ O] was prepared and the particle size and structure were confirmed using SEM and XRD in the same manner.
- Vanadium compound (V 2 0 5) instead of the niobium compound (Nb 2 0 5), and a is, in Comparative Example 1 and a lithium secondary battery positive electrode active material in the same way except that [Li 4/3 (Mn 0. 95 Nb 0. 05 ) 2/3 0 2 ] were prepared and the particle size and structure were confirmed by using the SEM, XRD in the same manner.
- Lithium secondary in the same manner as in Comparative Example 4 except that the content of niobium compound (Nb 2 0 5 ) and manganese compound (Mn 2 0 3 ) was changed such that the molar ratio of the metal component was Mn: Nb 0.85: 0.15 battery positive electrode active material [Li 4/3 (Mn 0. 85 Nb 0. 15) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure.
- the positive electrode active material powders prepared according to Examples 1 to 6 and Comparative Examples 1 to 6 were classified so as to have an average particle diameter of 20.
- a slurry was prepared using 80 wt% of the positive electrode material, 10 wt% of acetylene black as the conductive agent, and 10% PVdF as the binder, using NMP as the solvent.
- the slurry was applied to an aluminum foil (Al foil) having a thickness of 20 / ⁇ , dried and compacted by a press, and dried for 16 hours at 120 ° C. in a vacuum to prepare a positive electrode in the form of a disc having a diameter of 16 mm.
- the cathode was a lithium metal foil punched to 16 mm in diameter, and a PP film was used as the separator.
- As an electrolyte solution a mixed solution of EC / EMC 1: 2 v / v of 1 M LiPF 6 was used. After impregnating the electrolyte into the separator, insert the separator between the positive electrode and the negative electrode, and then replace the case of stainless steel (SUS) product. A test cell for covering the electrode, that is, a lithium secondary battery half cell was manufactured. b) battery performance evaluation
- the lithium secondary battery including the positive electrode active material of Examples 1 to 3 prepared using the reduced precipitated precursor has a high discharge efficiency. To be used as an excellent sole cathode material. It was confirmed that there was no problem at all. In particular, in the case of the lithium secondary battery according to Examples 1 to 3, it can be seen that the result of the remarkably improved retention of the maximum discharge capacity according to the increase in the amount of vanadium doping.
- the lithium secondary battery including the cathode active material of Comparative Examples 1 to 4 prepared in the discharge capacity measurement results in the progress of life as in the past did not satisfy these characteristics.
- the lithium secondary batteries according to Comparative Examples 2 and 4 have a significant drop in the discharge capacity due to the increase in the vanadium composition, resulting in a change in the manganese oxide number with the progress of a long life, and thus, a problem in maintaining the crystal structure.
- the lithium secondary batteries according to Comparative Examples 3 and 4 are not good at improving the discharge capacity of the electrochemical characteristic measurement results according to the niobium composition change, and thus there is a limit to using them alone.
- each of the lithium-manganese composite oxide prepared by the dry process according to the reduction precipitation method, and Comparative Example 2 according to the second embodiment of the present invention [Li 4/3 (Mn 0. 90 V 0. 10) 2/3 0 2]
- the SEM measurement results measured after further heat treatment at a high temperature are shown in FIG. 11 [(A) Example 2, (B) Comparative Example 2].
- the heat treatment was performed at 900 ° C for 10 hours.
- Example 2 prepared by the reduction precipitation method according to the present invention does not have large particle sizes even at 900 ° C. heat treatment. It can be seen.
- Comparative Example 2 prepared by the dry method is 900 ° at C heat-treating step of the grain growth confirmed that substantially takes place, and thus when the average particle diameter is too increased to inside the metal oxide particles followed by lithium diffusion ⁇ As the distance increases, there may be a problem that the speed characteristic is degraded.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The present invention relates to a method for manufacturing a cathode active material for a lithium secondary battery and, more particularly, to a method for manufacturing a cathode active material for a lithium secondary battery, comprising: generating manganese complex deposit by restoring and depositing manganese and heterogeneous metal elements from a mixed solution containing a manganese compound and a heterogeneous metal element compound; and generating lithium manganese complex oxide by mixing the manganese complex deposit with a lithium-contained metal compound and firing the mixture at 400 to 750 ºC. According to the present invention, a cathode active material for a lithium secondary battery in which vanadium is effectively doped into lithium manganese complex oxide can be manufactured, and the use thereof enables the production of a lithium secondary battery having improved capacity and remarkably improved charging and discharging efficiency.
Description
【명세서】 【Specification】
【발명의 명칭】 [Name of invention]
리튬 이차전지용 양극 활물질의 제조 방법 Manufacturing method of positive electrode active material for lithium secondary battery
[기술분야] [Technical Field]
본 발명은 우수한 용량 특성과 충방전 효율이 가능한ᅵ 리튬 이차전지용 양극 활물질의 제조 방법에 관한 것으로, 더욱 상세하게는 망간과 바나듐이나 니오븀 등을 함께 환원 침전시켜 리튬 이차전지용 양극 활물질을 제조하는 방법에 관한 것이다. The present invention provides a method for preparing excellent capacity characteristics and relates to a manufacturing method of the charge-discharge efficiency is possible i cathode active material for a lithium secondary battery, and more particularly, manganese and vanadium or niobium, such as by reducing precipitation with a cathode active material for a lithium secondary battery It is about.
【배경기술】 Background Art
현재 상업화되어 사용 중인 리튬 이차전지는 평균 방전 전위가 3.7 V, 즉 4 V 대의 전지로서 3C라 일컬어지는 휴대용전화, 노트북 컴퓨터, 캠코더 등에 급속도로 적용되고 있는 디지털 시대의 심장에 해당하는 요소이다. Lithium secondary batteries, which are currently in commercial use, have a mean discharge potential of 3.7 V, or 4 V, which is the heart of the digital age that is rapidly being applied to portable phones, notebook computers, camcorders, etc., which are referred to as 3C.
이러한 리튬이차전지의 양극 활물질로는 LiCo02, LiMn204, LiNi02, LiNii Cox02> LiMn02 등의 복합산화물이 사용되고 있다. LiCo02는 양호한 전기 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이며, 현재 SONY사 등에서 상업화되어 시판되고 있는 대표적인 양극 활물질이나, 가격이 비싸다는 단점이 있다. LiNi02는 위에서 언급한 양극 활물질 중 가장 값이 싸며, 가장 높은 방전용량의 전지 특성을 나타내고 있으나 합성하기가 어려운 단점이 있다. As a cathode active material of such a lithium secondary battery, a composite oxide such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , LiNii Co x 0 2> LiMn0 2, or the like is used. LiCo0 2 exhibits good electrical conductivity, high battery voltage, and excellent electrode characteristics, and is a representative cathode active material currently commercialized and sold by SONY, etc., but has a disadvantage of being expensive. LiNi0 2 is the least expensive of the above-mentioned cathode active materials, and exhibits the highest discharge capacity of the battery, but has a disadvantage in that it is difficult to synthesize.
현재 전 세계에 유통되고 있는 전지의 95% 이상이 고 가격의 More than 95% of the batteries currently in circulation around the world
LiCo¾를 사용하고 있으며, 이러한 LiCo02를 대체하고자 하는 노력들이 많이 진행되고 있다. 이에 따라, 합성하기도 쉽고, 값이 비교적 싸며, 환경에 대한 오염도도 적은 LiMn204, LiMn02 등의 Mn-계 양극 활물질에 대한 연구가 활발하다. 하지만, 이러한 LiMn204, LiMn02 등은 용량이 작고 반복 사용에 따론 층방전 효율이 좋지 않은 문제점이 있다. LiCo¾ is used and a lot of efforts are being made to replace LiCo0 2 . Accordingly, studies on Mn-based cathode active materials such as LiMn 2 O 4 , LiMn0 2 , which are easy to synthesize, relatively inexpensive, and which have little pollution to the environment, are actively conducted. However, LiMn 2 O 4 and LiMnO 2 have a problem in that the capacity is small and the layer discharge efficiency is poor depending on repeated use.
따라서, 리튬 이차 전지에 사용시 용량이 개선되고, 층방전 효율이 우수하며, LiCo02에 비해 생산 비용이 절감되는 리튬 이차전지용 양극 활물질 소재 및 공정 개발에 대한 연구가 필요하다. Therefore, there is a need for research on development of a cathode active material and process for lithium secondary batteries that have improved capacity when used in lithium secondary batteries, excellent layer discharge efficiency, and reduced production cost compared to LiCo0 2 .
【발명의 내용】 [Content of invention]
【해결하려는 과제】
본 발명은 망간과 바나듐이나 니오붐 등의 환원 침전법올 통해 용량이 개선되고 층방전 효율이 우수한 리튬 망간계 복 " 산화물을 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공하고자 한다. 본 발명은 또한, 상기 방법으로 제조된 리튬 이차전지용 양극 활물질을 제공하고자 한다. [Problem to solve] The present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery containing a lithium manganese-based composite " oxide having improved capacity and excellent layer discharge efficiency through a reduced precipitation method such as manganese and vanadium or niobium. To provide a cathode active material for a lithium secondary battery prepared by the above method.
본 발명은 또한, 상기 양극 활물질을 포함하는 리튬 이차전지를 제공하고자 한다. The present invention also provides a lithium secondary battery including the cathode active material.
【과제의 해결 수단】 [Measures of problem]
본 발명은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 이종 금속 원소를 포함하는 이종 금속 화합물과 망간 화합물을 포함하는 흔합 용액으로부터, 망간과 이종 금속 원소를 환원 침전시켜 망간 복합 침전물을 생성시키는 단계; 및 상기 망간 복합 침전물과 리튬 화합물을 흔합하고, 300 내지 800 °C의 조건 하에서 소성시켜 하기 화학식 1로 표시되는 리튬 망간 복합 산화물 생성시키는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. The present invention comprises the steps of producing a manganese complex precipitate by reducing precipitation of manganese and dissimilar metal elements from a mixed solution comprising a manganese compound and a dissimilar metal compound including at least one dissimilar metal element selected from the group consisting of V and Nb; It provides a method for producing a positive electrode active material for a lithium secondary battery comprising a; and mixing the manganese composite precipitate and the lithium compound, and calcining under conditions of 300 to 800 ° C to produce a lithium manganese composite oxide represented by the following formula (1) .
[화학식 1] [Formula 1]
Lii+a Mni-bMb)^ Lii + a Mni-bMb) ^
식 중, a는 0<a<l/3이며, b는 0<b<0.5이고, M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소이다. In the formula, a is 0 <a <l / 3, b is 0 <b <0.5, and M is at least one metal element selected from the group consisting of V and Nb.
본 발명은 또한, 상기 방법으로 제조된 리튬 이차전지용 양극 활물질을 제공한다. The present invention also provides a cathode active material for a lithium secondary battery produced by the above method.
본 발명은 또한, 상기 양극 활물질을 포함하는 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery comprising the cathode active material.
이하, 발명의 구체적인 구현예에 따른 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 따라 제조되는 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지에 대하여 상세하게 설명하기로 한다. 다만, 이는 발명에 대한 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다. Hereinafter, a method of manufacturing a cathode active material for a lithium secondary battery according to a specific embodiment of the present invention, a cathode active material for a lithium secondary battery manufactured according to this, and a lithium secondary battery including the same will be described in detail. However, this is presented as an example of the invention, whereby the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라
함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. Unless otherwise stated throughout this specification, "including" or "containing" The term "comprising" includes any component (or component) without limitation and should not be construed to exclude the addition of other components (or components).
본 발명에서 "리튬 이차전지"라 함은 층전과 방전을 지속적으로 수행 할 수 있는 것을 말하는 것이다. 이러한 리튬 이차전지는 전기에너지를 저장하는 매개체 특징을 갖는다. 다만, 전술한 바와 같이, 리튬 이차전지 (리튬 이차전지용 양극활물질)는 탈리 시에 이은의 형태로 빠져 나와야 하기 때문에 구조적 안정성을 가져야 하며, 이러한 구조적 안정성을 갖는 전이금속 소재를 주로 사용해야 하는 부분에서 제조 공정과 소재의 제한적인 단점이 있다. In the present invention, "lithium secondary battery" refers to one that can continuously perform layer charge and discharge. This lithium secondary battery has a feature of a medium for storing electrical energy. However, as described above, the lithium secondary battery (a cathode active material for a lithium secondary battery) should have structural stability because it must escape in the form of silver upon desorption, and is manufactured in a part where a transition metal material having such structural stability should be mainly used. There are limited disadvantages of the process and materials.
이에 따라, 본 발명은 망간과 바나듐을 환원 침전시켜 양극 활물질을 제조함으로써, 리튬 이차 전지에 사용시 용량이 개선되고, 층방전 효율이 우수하며, LiCo02에 비해 생산 비용이 절감되는 저온 소성 공정으로 우수한 공정 개선 효과를 얻을 수 있다. Accordingly, the present invention provides a cathode active material by reducing and precipitating manganese and vanadium, thereby improving capacity when used in a lithium secondary battery, excellent layer discharge efficiency, and excellent in low-temperature firing process in which production cost is reduced compared to LiCo0 2 . Process improvement effect can be obtained.
특히, 본 발명자들의 실험 결과, 환원 침전 및 도핑을 통한 방법으로 양극 활물질을 제조하여 리튬 이차전지에 적용함에 따라, 일정한 방전용량을 유지할 수 있는 우수한 특성을 확보할 수 있음이 밝혀졌다. 일반적으로 Li2Mn03 활물질은 Li이 풍부하기 때문에 단독으로 사용할 경우 큰 용량 구현을 할 수 있으며, Mn은 활물질 내에서 4가의 가장 안정한 형태를 취하고 있기 때문에 LiMn204에서 발생하는 Mn 용출에 의한 안정성 문제를 갖고 있지 않다. 그리고, 대부분의 스피넬 또는 층상 구조의 양극 활물질은 리튬의 삽입과'탈리를 반복적으로 거치게 될 경우 부피 변화가 일어나게 되고, 이로 인해 일부의 구조가 붕괴하여 용량 감소를 일으키게 된다. 하지만, Mn 4가의 경우는 가장 안정한 형태를 취하고 있기 때문에 구조 붕괴가 쉽게 일어나지 않는다. 또한, 현재 HEV또는 EV에 적합한 양극 활물질은 고출력을 요구하고 있고, Mn 4가는 활성화가 되기 위해서 4.4V 이상에서 구동이 되어야 하며, 활성화가 이루어지면 4.8~5V의 고전압으로 사용이 가능하다. In particular, the experimental results of the present inventors, it was found that by producing a positive electrode active material by the method of reduction precipitation and doping and applied to a lithium secondary battery, it is possible to secure excellent characteristics that can maintain a constant discharge capacity. In general, Li 2 Mn0 3 active material is rich in Li can realize a large capacity when used alone, Mn is due to the Mn elution generated in LiMn 2 0 4 because Mn takes the most stable form of tetravalent in the active material There is no stability problem. In addition, most spinel or layered positive electrode active materials undergo a volume change when lithium is repeatedly inserted and ' desorbed, thereby causing some structures to collapse, causing capacity reduction. However, since Mn 4 is the most stable form, structural collapse does not occur easily. In addition, current cathode active material suitable for HEV or EV requires a high output, Mn 4 must be driven at 4.4V or higher in order to be activated, and when activated is possible to use a high voltage of 4.8 ~ 5V.
기존에 알려진 양극 활물질의 단점은 첫 방전 용량은 크지만 사이클이 진행할수록 용량이 감소하는 경향을 보이고 있다. 이것은 지속된
사이클 중에 Li20를 생성하게 되고, 이로 인해 구조내 산소를 계속 잃어버리게 되어 Mn이 4가를 유지하지 못하기 때문이다. 이에 따라, 본 발명에서는 바나듐이나 니오븀 등의 5가의 이종원소 도핑을 통해 Mn이 4가 및 3가와 4가 사이의 산화수를 갖는 흔합 산화수 (mixed valency)를 유도하여, 4.4 V 이하에서도 활성화를 띄게 하며, 구조가 붕괴되는 것을 개선하여 용량을 증가 혹은 유지할 수 있다. 현재, 본 발명의 양극 활물질은 Ni 풍부 (Ni-rich)한 조성의 Li[NixCoyMnz]02를 제조할 때 하프 (half) 조성의 Li2Mn¾가 존재하도록 하여 초기 충 /방전 용량 발현시 Li2Mn03의 리튬을 이용하려는 목적으로 생산 및 전기화학 특성 측정 등을 진행하고밌는 상황에 있다. A disadvantage of the known cathode active material is that the first discharge capacity is large, but the capacity tends to decrease as the cycle progresses. This lasted This is because Li 2 O is generated during the cycle, which causes the oxygen in the structure to continue to be lost, thereby preventing Mn from maintaining tetravalent. Accordingly, in the present invention, Mn is a mixed valency having an oxidation number between tetravalent and trivalent and tetravalent through doping with a heterovalent hetero element such as vanadium or niobium, thereby enabling activation even at 4.4 V or less. It is possible to increase or maintain the capacity by improving the collapse of the structure. At present, the positive electrode active material of the present invention has a half composition of Li 2 Mn¾ when preparing Ni [Ni x Co y Mn z ] 0 2 having a Ni-rich composition, thereby providing initial charge / discharge. In order to use Li 2 Mn0 3 lithium at the time of capacity expression, production and electrochemical properties are measured and are in a funny situation.
이에 발명의 일 구현예에 따라, 소정 단계의 공정 조건을 최적화하여 망간과 바나듐 (V)이나 니오븀 (Nb) 등을 함께 환원 침전시키는 리튬 이차전지용 양극 활물질의 제조 방법이 제공된다. Accordingly, according to one embodiment of the present invention, there is provided a method of manufacturing a cathode active material for a lithium secondary battery in which the manganese, vanadium (V), niobium (Nb), and the like are reduced and precipitated together by optimizing the process conditions of a predetermined step.
이러한 리튬 이차전지용 양극 활물질의 제조 방법은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 이종 금속 원소를 포함하는 이종 금속 화합물과 망간 화합물을 포함하는 흔합 용액을 사용하여 망간과 이종 금속 원소를 환원 침전시켜 망간 복합 침전물을 생성시키는 단계; 및 상기 망간 복합 침전물과 리튬 화합물을 흔합한 후에, 300 내지 800 °C의 조건 하에서 소성시켜ᅳ 하기 화학식 1로 표시되는 리튬 망간 복합 산화물 생성시키는 단계 ;를 포함한다. In the method of manufacturing a cathode active material for a lithium secondary battery, manganese and dissimilar metal elements are reduced-precipitated by using a mixed solution containing a heterometal compound and a manganese compound containing at least one heterometal element selected from the group consisting of V and Nb. Producing a manganese composite precipitate; And mixing the manganese composite precipitate and the lithium compound, followed by baking under conditions of 300 to 800 ° C. to produce a lithium manganese composite oxide represented by the following Formula 1.
[화학식 1] [Formula 1]
Lii+aCMni-bMb)!^ Lii + aCMni-bMb)! ^
식 중, a는 0<a<l/3일 수 있으며; b는 0<b<0.5, 바람직하게는 0<b<0.3, 좀더 바람직하게는 0<b<0.2일 수 있으며; M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소가 될 수 있다. Wherein a may be 0 <a <l / 3; b may be 0 <b <0.5, preferably 0 <b <0.3, more preferably 0 <b <0.2; M may be one or more metal elements selected from the group consisting of V and Nb.
특히, 상기 화학식 1에서 a, b의 지수는 바나듐 (V) 도핑된 리튬 망간 복합 산화물인 경우에는 0≤a≤l/3, 0<b<0.5, 바람직하게는 0≤a≤l/3, 0<b<0.3( 좀더 바람직하게는 0<a<l/3, 0<b<0.2가 될 수 있으며, 니오붐 (Nb) 도핑된 리튬 망간 복합 산화물인 경우에는 0≤a≤l/3, 0<b<0.3, 바람직하게는 0≤a≤l/3, 0<b<0.25, 좀더 바람직하게는
0<a<l/3( 0<b<0.2가 될 수 있다. In particular, in the formula (1), the indexes of a and b are 0 ≦ a ≦ l / 3, 0 <b <0.5, preferably 0 ≦ a ≦ l / 3, in the case of vanadium (V) doped lithium manganese composite oxide. 0 <b <0.3 ( more preferably 0 <a <l / 3, 0 <b <0.2), and in the case of a niobium (Nb) doped lithium manganese composite oxide, 0 ≦ a ≦ l / 3, 0 <b <0.3, preferably 0 ≦ a ≦ l / 3, 0 <b <0.25, more preferably 0 <a <l / 3 ( can be 0 <b <0.2)
상기 리튬 망간 복합산화물은 하기 화학식 2로 표시될 수 있다. The lithium manganese composite oxide may be represented by the following formula (2).
[화학식 2] [Formula 2]
Li4/3(Mni-xMx)2302 Li 4/3 (Mni- x M x) 2 302
식 중, X는 0≤x≤0.5, 바람직하게는 0≤x≤0.3, 좀더 바람직하게는 Wherein X is 0 ≦ x ≦ 0.5, preferably 0 ≦ x ≦ 0.3, more preferably
0≤x≤0.2일 수 있으며; M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소이다. 0 ≦ x ≦ 0.2; M is at least one metal element selected from the group consisting of V and Nb.
이러한 리튬 망간 복합 산화물로는 Li4/3(Mn0.95V0.05 ) 2/302, L i 4/3 (Mn0.9Vo . l ) 2/3O2, L i 4/3 (Mn0.85V0.15 ) 2/3O2, L i 4/3 ( Mn0.95Nbo .05 ) 2/3O2, Li4/3(Mno.9Nbo.i)2/302, Li4/3(Mn0.995Nb0.05)2/302 등의 1종 또는 2종 이상을 들 수 있다. . In the lithium manganese composite oxide is Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2, L i 4/3 (Mn 0. 9 Vo. L) 2 / 3O2, L i 4/3 (Mn 0 .85V0.15) 2 / 3O2 , L i 4/3 (Mn 0. 95 Nbo .05) 2 / 3O2, Li 4 /3(Mno.9Nbo.i)2/302, Li 4/3 ( Mn 0. 995 Nb 0. 05 ) can be given alone or in combination of two or more, such as 02 2/3. .
본 발명에서 상기 리튬 망간 복합 산화물의 전구체 (precursor)가 되는 망간 복합 침전물은 망간 (Mn)과 바나듐 (V)이나 니오븀 (Nb) 등이 함께 환원 침전되어 생성되는 것으로, 망간 (Mn)과 함께 바나듐 (V) 및 니오븀 (Nb)으로 이루어진 군에서 선택된 1종 이상의 금속 원소를 동시에 포함하는 것이다. 본 발명의 망간 복합 침전물은 비정질상을 나타내는 것을 특징으로 한다. 또한, 이러한 비정질 결정상의 높은 엔탈피 에너지로 인하여, 800 V 이상의 높은 온도로 열처리 공정을 수반하는 건식법 (solid process; solid-state react ion)에 비해 현저히 낮은 열처리 공정 (500~600 °C)을 통해서도 목적하는 최종 Li2Mn03 등의 단일 결정상을 얻을 수 있으며, 열처리 온도가 낮기 때문에 입자 크기 또한 목적하는 바에 따라 제어가 가능하다. In the present invention, the manganese composite precipitate which is a precursor of the lithium manganese composite oxide is produced by reduction precipitation of manganese (Mn), vanadium (V), niobium (Nb), etc., and vanadium together with manganese (Mn). It includes one or more metal elements selected from the group consisting of (V) and niobium (Nb) simultaneously. The manganese composite precipitate of the present invention is characterized by exhibiting an amorphous phase. In addition, due to the high enthalpy energy of these amorphous crystalline phases, it is also possible to use a heat treatment process (500-600 ° C.) which is significantly lower than a solid process (solid-state react ion) involving a heat treatment process at a high temperature of 800 V or higher. It is possible to obtain a single crystal phase such as the final Li 2 Mn0 3, and because the heat treatment temperature is low, the particle size can also be controlled as desired.
특히, 기존의 습식 공정의 경우 공침법으로 리튬 복합산화물의 전구체가 수산화물 (NiCoMn-ΟΗ) 또는 옥사이드 화합물로 결정상 형태로 생성되어, 단일상 결정 형태의 최종 리튬 복합 산화물를 제조하기 위해서는 소성 열처리 단계를 고온으로 수행해야 하는 문제가 있다. 그러나, 본 발명의 경우에는 비정질상의 리튬 망간 복합 산화물 전구체를 생성할 수 있어, 기존의 습식 공정 등과 같이 현저히 낮은 온도로 소성 공정을 수행한다고 하여도 우수한 결정성의 단일상 결정 형태의 최종 리튬 망간 복합산화물을 얻을 수 있는 장점이 있다.
본 발명에서 망간 (Mn)과 바나듐 (V)이나 니오븀 (Nb) 등을 환원 침전시켜 망간 복합 침전물을 생성시키는 단계는 pH 9 내지 13, 바람직하게는 pH 9.5 내지 12.5, 좀더 바람직하게는 pH 10 내지 12의 조건 하에서 행할 수 있다. 상기 pH 범위는 바나듐 (V)이나 니오븀 (Nb) 등의 아종 금속 원소를 포함하는 이종 금속 화합물과 망간 화합물이 모두 용해된 흔합 용액에 해당하는 값이다. 상기 흔합 용액에서 망간 (Mn)과 함께 바나듐 (V)이나 니오븀 (Nb) 등의 이종 금속 원소가 동시에 환원 침전되기 위해서는 상기 pH값이 9 이상이 될 수 있고, 침전량 및 조성 변경 측면에서 상기 PH값이 13 이하가 될 수 있다. In particular, in the conventional wet process, the precursor of the lithium composite oxide is formed in the crystal phase form of hydroxide (NiCoMn-ΟΗ) or an oxide compound by coprecipitation method. There is a problem that needs to be done. However, in the case of the present invention, it is possible to produce an amorphous lithium manganese composite oxide precursor, the final lithium manganese composite oxide in the form of a single crystalline crystal of excellent crystallinity even if the firing process at a significantly lower temperature, such as conventional wet process There is an advantage to get it. In the present invention, the step of reducing precipitation of manganese (Mn) and vanadium (V) or niobium (Nb) to produce a manganese complex precipitate is pH 9 to 13, preferably pH 9.5 to 12.5, more preferably pH 10 to It can carry out under the conditions of 12. The pH range is a value corresponding to a mixed solution in which both dissimilar metal compounds and manganese compounds containing sub-metallic elements such as vanadium (V) and niobium (Nb) are dissolved. In order to reduce and precipitate heterogeneous metal elements such as vanadium (V) and niobium (Nb) together with manganese (Mn) in the mixed solution, the pH value may be 9 or more, and the pH value in terms of precipitation and composition change This can be 13 or less.
이러한 pH 값은 상기 흔합 용액에 환원제를 이용하여 조절할 수 있으며, 이러한 환원제로는 KBH4, LiBH4, NaBH4, NaAlH4, 및 LiAl¾로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 상기 환원제로는 비정질 형태의 침전물 제조 측면에서 NaBH4, KBH4 등이 바람직하다. 또한, 상기 환원제와 함께 추가로 산이나 염기성 화합물을 투입하여 pH 값을 최적 범위로 조절하거나 pH 값의 급격한 상승을 방지하는 데 사용할 수 있다. 이러한 산성 화합물로는 HCl, HC104, H2S04, HBr 등올 들 수 있으며, 염기성 화합물로는 암모니아, KOH, LiOH, NaOH, NH40H, CH3COOH, HCN둥을 들 수 있다. 다만, 상술한 바와 같은 환원제 없이 염기성 화합물을 단독으로 투입하였올 경우에는 망간 (Mn)과 바나듐 (V)이나 니오븀 (Nb) 등이 동시에 침전되지 않고 예컨대 Mn304만이 침전되어 바람직하지 못할 수도 있다. The pH value may be adjusted using a reducing agent in the mixed solution, and as the reducing agent, one or two or more selected from the group consisting of KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 , and LiAl¾ may be used. The reducing agent is preferably NaBH 4 , KBH 4 and the like in terms of preparing the precipitate in the amorphous form. In addition, by adding an acid or a basic compound in addition to the reducing agent may be used to adjust the pH value to the optimum range or to prevent the sudden rise of the pH value. Such acidic compounds include HCl, HC10 4 , H 2 S0 4 , HBr, and the like, and basic compounds include ammonia, KOH, LiOH, NaOH, NH 4 0H, CH 3 COOH, and HCN. However, when the basic compound is added alone without the reducing agent as described above, manganese (Mn), vanadium (V), niobium (Nb), and the like may not be precipitated at the same time, for example, only Mn 3 0 4 may precipitate, which may be undesirable. have.
한편, 망간 화합물과 바나듐, 니오븀 등의 이종 금속 원소를 포함하는 금속 화합물을 모두 포함하는 흔합 용액은, 먼저 상기 이종 금속 화합물을 pH 9 내 13, 바람직하게는 pH 10 내지 12, 좀더 바람직하게는 pH 10 내지 11의 염기성 용매에 용해시킨 후에, 여기에 망간 화합물을 용해시켜 제조할 수 있다. 다만, 망간 화합물을 pH 범위에 따라, 상기 이종 금속 화합물을 포함하는 용액의 pH 2 내지 6, 바람직하게는 pH 3 내지 5, 좀더 바람직하게는 pH 4 내지 5로 조절한 후에 상기 망간 화합물을 첨가할 수 있다. On the other hand, the mixed solution containing both a manganese compound and a metal compound containing a dissimilar metal element such as vanadium, niobium, etc. First, the dissimilar metal compound is pH 13 to 13, preferably pH 10 to 12, more preferably pH After dissolving in the basic solvent of 10-11, it can manufacture by dissolving a manganese compound here. However, the manganese compound may be added after adjusting the manganese compound to pH 2-6, preferably pH 3-5, more preferably pH 4-5 of the solution containing the dissimilar metal compound according to the pH range. Can be.
여기서, 상기 망간 화합물로는 황산망간, 질산망간, 초산망간,
망간아세트^ 염화망간, 이산화망간, 삼산화망간, 및 사산화망간으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 이 중에서 망간 원료의 용해 측면에서 황산망간, 질산망간, 초산망간을 사용하는 것이 좀더 바람직하다. 또한, 상기 바나듐 화합물로는 바나듐 금속, 산화바나듐 (V205, V204) V203, V3O4), 옥시염화바나듐, 사염화바나듬, 삼염화바나듐, 메타바나듐산암모늄, 메타바나듐산나트륨 및 메타바나듐산칼륨, 염화리튬, 산화니오븀 (Nb으 Nb02, Nb205), 염화니오붐, 인화니오븀으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 이 중에서 이종 금속 원소 원료의 용해 측면에서 산화바나듐, 메타바나듐산나트륨, 산화니오붐 등을 사용하는 것이 좀더 바람직하다 . Here, as the manganese compound, manganese sulfate, manganese nitrate, manganese acetate, Manganese Acet Manganese chloride, manganese dioxide, manganese trioxide, and one or more selected from the group consisting of manganese tetraoxide can be used. Among them, it is more preferable to use manganese sulfate, manganese nitrate, or manganese acetate in terms of dissolution of manganese raw materials. In addition, the vanadium compound, vanadium metal, vanadium oxide (V 2 0 5 , V 2 O 4) V 2 0 3 , V 3 O 4) , vanadium oxychloride, vanadium tetrachloride, vanadium trichloride, ammonium metavanadate, metavanadium acid At least one selected from the group consisting of sodium and potassium metavanadate, lithium chloride, niobium oxide (Nb Nb0 2 , Nb 2 0 5 ), niobium chloride, and niobium phosphide may be used. Among them, it is more preferable to use vanadium oxide, sodium metavanadate, niobium oxide, or the like in terms of dissolution of the dissimilar metal element raw material.
또한, 상기 바나듐이나 니오븀 등의 이종 금속 원소의 망간에 대한 몰수비는 0.01 내지 0.50 mol, 바람직하게는 0.02 내지 0.20 mol, 좀더 바람직하게는 0.05 내지 0.15 η )1가 되도록 반웅시킬 수 있다. 이종 금속 원소의 최소 치환량 측면에서 상기 바나듐의 망간에 대한 몰수비는 0.01 mol 이상이 될 수 있고, 이종 금속 원소의 최대 치환량 측면에서 상기 바나듐의 망간에 대한 몰수비는 0.50 mol 이하가 될 수 있다. In addition, the molar ratio of the dissimilar metal elements such as vanadium and niobium to manganese may be 0.01 to 0.50 mol, preferably 0.02 to 0.20 mol, more preferably 0.05 to 0.15 η) 1. The molar ratio of the vanadium to manganese in terms of the minimum substitution amount of the dissimilar metal elements may be 0.01 mol or more, and the molar ratio of the vanadium to manganese in the maximum substitution amount of the dissimilar metal elements may be 0.50 mol or less.
본 발명에서는 상기 환원 침전 단계로부터 생성된 리튬 망간 복합 산화물 전구체를 건조시키는 단계를 추가로 포함할 수 있다. 상기 건조 단계는 40 내지 150 °C, 바람직하게는 80 내지 130 °C, 좀더 바람직하게는 100 내지 120 °C 조건 하에서 수행할 수 있다. The present invention may further include the step of drying the lithium manganese composite oxide precursor generated from the reduction precipitation step. The drying step may be carried out under 40 to 150 ° C, preferably 80 to 130 ° C, more preferably 100 to 120 ° C conditions.
한편, 이렇게 건조후 얻어진 망간 복합 침전물은 리륨 화합물과 흔합한 후에, 300 내지 800 V, 바람직하게는 350 내지 700 °C, 좀더 바람직하게는 400 내지 620 °C 조건 하에서 소성시키는 열처리 공정을 통해 리튬 망간 복합 산화물로 전환시킬 수 있다. 이러한 소성 공정은 1차 열처리 및 2차 열처리를 포함하는 2단계의 열처리 과정으로 수행할 수 있다. 여기서, 상기 1차 열처리는 300 내지 700 °C의 온도에서 7 내지 15 시간 동안, 바람직하게는 350 내지 600 °C의 온도에서 9 내지 14 시간 동안, 좀더 바람직하게는 400 내지 550 °C의 온도에서 10 내지 13 시간 동안 가열하여 수행할 수 있다. 또한, 2차 열처리는 상기 1차 열처리를 한 후 300 내지 800 °C의 온도에서 10 내지 20 시간 동안, 바람직하게는 400 내지
700 °C의 온도에서 14 내지 18 시간 동안 좀더 바람직하게는 440 내지 620 °C의 온도에서 15 내지 17 시간 동안 가열하여 수행할수 있다. On the other hand, the manganese composite precipitate obtained after drying is mixed with a lithium compound, lithium manganese through a heat treatment step of firing under conditions of 300 to 800 V, preferably 350 to 700 ° C, more preferably 400 to 620 ° C Can be converted to complex oxides. This firing process may be performed by a two-step heat treatment process including a first heat treatment and a second heat treatment. Here, the first heat treatment for 7 to 15 hours at a temperature of 300 to 700 ° C, preferably for 9 to 14 hours at a temperature of 350 to 600 ° C, more preferably at a temperature of 400 to 550 ° C It may be carried out by heating for 10 to 13 hours. In addition, the secondary heat treatment for 10 to 20 hours at a temperature of 300 to 800 ° C after the first heat treatment, preferably 400 to It may be carried out by heating for 14 to 18 hours at a temperature of 700 ° C. more preferably for 15 to 17 hours at a temperature of 440 to 620 ° C.
본 발명에서 상기 리튬 화합물로는 탄산리튬, 수산화리튬, 초산리튬, 황산리튬, 아황산리튬, 플루오르화리튬, 질산리튬, 브롬화리튬, 옥화리튬 및 염화리튬으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 수산화리튬, 탄산리튬 등을 사용할 수 있다. In the present invention, the lithium compound may be at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium oxide and lithium chloride. Preferably, lithium hydroxide, lithium carbonate, etc. can be used.
상기 리튬의 망간에 대한 몰수비는 1.60 내지 1.80 mol, 바람직하게는 1.65 내지 1.78 mol, 좀더 바람직하게는 1/70 내지 1.75 mol가 되도록 반응시킬 수 있다. 단일상 제조 측면에서 상기 리튬의 망간에 대한 몰수비는 1.60 mol 이상이 될 수 있고, 각 면지수의 강도 비율 (intensity ratio) 조절 측면에서 상기 리튬의 망간에 대한 몰수비는 1.80 mol 이하가 될 수 있다. The molar ratio of lithium to manganese may be reacted to be 1.60 to 1.80 mol, preferably 1.65 to 1.78 mol, more preferably 1/70 to 1.75 mol. In terms of single phase production, the molar ratio of lithium to manganese may be 1.60 mol or more, and the molar ratio of lithium to manganese may be 1.80 mol or less in terms of controlling the intensity ratio of each surface index. have.
한편, 본 발명의 다른 구현예에 따라, 상술한 바와 같은 방법으로 제조된 리튬 이차전지용 양극 활물질이 제공된다. 상기 리튬 이차전지용 양극 활물질은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 포함할 수 있다. On the other hand, according to another embodiment of the present invention, there is provided a cathode active material for a lithium secondary battery manufactured by the method as described above. The cathode active material for a lithium secondary battery may include a lithium manganese composite oxide represented by Formula 1 below.
[화학식 1] [Formula 1]
Lii+a(Mni-Mb)i-a02 Lii + a (Mni-Mb) i-a02
식 중, a는 0<a<l/3일 수 있으며; b는 0<b<0.5, 바람직하게는 0<b<0.3, 좀더 바람직하게는 0≤b≤0.2일 수 있으며; M은 Ϋ 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소가 될 수 있다. Wherein a may be 0 <a <l / 3; b may be 0 <b <0.5, preferably 0 <b <0.3, more preferably 0 ≦ b ≦ 0.2; M may be one or more metal elements selected from the group consisting of X and Nb.
특히, 상기 화학식 1에서 a, b의 지수는 바나듐 (V) 도핑된 리튬 망간 복합 산화물인 경우에는■ 0≤a≤l/3, 0<b<0.5, 바람직하게는 0<a≤l/3, 0<b<0.3, 좀더 바람직하게는 0<a<l/3, 0<b<0.2가 될 수 있으며, 니오붐 (Nb) 도핑된 리튬 망간 복합 산화물인 경우에는 0≤a≤l/3, 0<b<0.3, 바람직하게는 0≤a≤l/3, 0<b<0.25, 좀더 바람직하게는 0<a<l/3, 0<b<0.2가 될 수 있다. In particular, in the formula (1), the index of a, b is vanadium (V) doped lithium manganese composite oxide ■ 0 ≦ a ≦ l / 3, 0 <b <0.5, preferably 0 <a ≦ l / 3 , 0 <b <0.3, more preferably 0 <a <l / 3, 0 <b <0.2, and 0 ≦ a ≦ l / 3 for niobium (Nb) doped lithium manganese composite oxide , 0 <b <0.3, preferably 0 ≦ a ≦ l / 3, 0 <b <0.25, more preferably 0 <a <l / 3, 0 <b <0.2.
상기 리튬 망간 복합산화물은 하기 화학식 2로 표시될 수 있다. [화학식 2] The lithium manganese composite oxide may be represented by the following formula (2). [Formula 2]
Li43(Mni-xMx)2/302
식 중, x는 0≤x≤0.5, 바람직하게는 0≤x≤0..3, 좀더 바람직하게는 0≤χ≤0.2일 수 있으며; Μ은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소이다. Li 4 3 (Mni- x M x ) 2/302 Wherein x may be 0 ≦ x ≦ 0.5, preferably 0 ≦ x ≦ 0..3, more preferably 0 ≦ χ ≦ 0.2; Μ is at least one metal element selected from the group consisting of V and Nb.
이러한 리튬 망간 복합 산화물로는 Li4/3(Mn0.95V0.05)2/302, Li4/3(Mno.gV0.1)2/302, L i 4/3 (Mno.ssVo.15 )2/302, L i 4/3 ( Mno .95Nbo .05 ) 2/3O2 ,The lithium manganese composite oxide as the Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2, Li4 / 3 (Mno.gV 0 .1) 2/302, L i 4/3 (Mno. ssVo.15) 2/302, L i 4/3 (Mno. 95 Nbo .05) 2 / 3O2,
Li4/3(Mno.9Nbo.i)2/302, Li4/3(Mn0.995Nb0.05 ) 2/302 등의 1종 또는 2종 이상을 들 수 있다. . 본 발명에 따라 제조된 리튬 이차전지용 양극 활물질은 SUS 제품의 케이스를 전극 평가용 시험 셀로 하여 평가한 방법에 따라 측정한 사이클 횟수 2회 이상에서 방전용량 (discharge capacity)이 140 mAhg""1 이상 또는 140 내지 220 mAhg"1, 바람직하게는 170 내지 210 mAhg"1, 좀더 바람직하게는 180 내지 200 mAhg_17> 될 수 있다. Li 4 /3(Mno.9Nbo.i) there may be mentioned 2/302, Li 4/3 (Mn 0. 995 Nb 0. 05) 1 alone or in combination of two or more, such as 02 2/3. . The positive electrode active material for a lithium secondary battery manufactured according to the present invention has a discharge capacity of 140 mAhg "" 1 or more at two or more cycles measured according to the method evaluated by using a case of SUS product as a test cell for electrode evaluation. 140 to 220 mAhg "1, preferably from 170 to 210 mAhg" 1, more preferably 180 to 200 mAhg _1 7> may be.
한편, 본 발명의 또 다른 구현예에 따라, 상기 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지가 제공된다. 상기 리튬 이차전지는 망간과 바나듐을 환원 침전시켜 제조하여 단일상의 리튬 망간 복합 산화물을 제조한 양극 활물질을 사용함으로써 기존 물질의 전기화학 특성을 개선하는 것을 특징으로 한다. . On the other hand, according to another embodiment of the present invention, there is provided a lithium secondary battery comprising the positive electrode active material for the lithium secondary battery. The lithium secondary battery is characterized by improving the electrochemical properties of the existing material by using a cathode active material prepared by reducing precipitation of manganese and vanadium to produce a single-phase lithium manganese composite oxide. .
특히, 본 발명의 리튬 이차전지는 양극 활물질을 포함하는 양극 (cathode); 음극 활물질을 포함하는 음극 (anode); 및 양극 및 음극 사이의 분리막 (separator)을 포함하는 것이 될 수 있다. In particular, the lithium secondary battery of the present invention includes a cathode including a cathode active material; An anode including an anode active material; And a separator between the anode and the cathode.
본 발명의 리튬 이차전지는 광범위한 특징의 다양한 음극 활물질을 포함할 수 있다. The lithium secondary battery of the present invention may include various negative electrode active materials having a wide range of characteristics.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다. In the present invention, matters other than those described above can be added or subtracted as necessary, and therefore the present invention is not particularly limited.
【발명의 효과】 【Effects of the Invention】
본 발명에 따르면, 망간과 바나듐이나 니오븀 등을 함께 환원 침전시켜 용량이 개선되고, 층방전 효율이 우수한 LiMn02 계통의 리튬 이차전지용 양극 활물질을 제조할 수 있다. According to the present invention, by reducing and precipitating together manganese, vanadium, niobium, etc., a capacity can be improved, and a cathode active material for a lithium secondary battery of LiMnO 2 system having excellent layer discharge efficiency can be manufactured.
또한, 본 발명에 따른 리튬 이차전지용 양극 활물질을 생산하게 되면 생산 비용이 절감되고 용량이 개선되며, 충방전 효율이 우수한 리튬
이차전지를 제조할 수 있는 효과가 있다. In addition, production of a cathode active material for a lithium secondary battery according to the present invention reduces production costs, improves capacity, and has excellent charge and discharge efficiency. There is an effect to manufacture a secondary battery.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 실시예 1에 따라 망간과 바나듐을 동시 환원 침전시켜 얻어진 전구체 (precursor), 즉, 망간 복합 침전물에 대한 SEM 측정 결과를 나타낸 사진이다. 1 is a photograph showing the SEM measurement results for the precursor (precursor), that is, manganese composite precipitate obtained by co-reduction of manganese and vanadium according to Example 1 of the present invention.
도 2는 본 발명의 실시예 1에 따라 망간과 바나듐을 동시 환원 침전시켜 얻어진 전구체 (precursor), 즉; 망간 복합 침전물에 대한 XRD 측정 결과 (2theta degree 범위에서 강도: intensity, a.u.)를 나타낸 그래프이다. 2 is a precursor obtained by co-reduction of manganese and vanadium according to Example 1 of the present invention, namely; It is a graph showing the XRD measurement result (intensity in 2theta degree: intensity, a.u.) for manganese composite precipitate.
도 3은 본 발명의 실시예 1~6에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물에 대하여 V 도핑량별 XRD 측정 결과를 나타낸 그래프이다 [실시예 1: Li4/3(Mn0.95V0.05)2/302, 실시예 2: Li4/3(Mno.9Vo.1)2/302, 실시예 3: Li4/3(Mn0.85V0.15)2/302, 실시예 4: Li4/3(Mn0.95Nb0.05)2/302, 실시예 5: Li4/3(Mn0.9Nbo.i)2/302, 실시예 6: Li4/3(Mno.85Nbo.i5)2/3C)2, 대조군: Li4/3Mn2/302] . 도 4는 본 발명의 실시예 1~3에 따른 환원 침전법으로 제조된 리튬 망간 복합. 산화물에 대하여 V 도핑량별 SEM 측정 결과를 나타낸 사진이다 (실시예 1: M=V, b<0.05, 실시예 2: M=V, b<0.10, 실시예 3: M=V b<0.15). Figure 3 is a graph showing the V doped ryangbyeol XRD measurement results with respect to the lithium-manganese composite oxide prepared by the reduction precipitation method according to the embodiment 1-6 of the present invention Example 1:. Li 4/3 (Mn 0 95 V 0 05) 2/3 0 2 example 2:. Li 4/3 ( Mno.9Vo 1) 2/30 2, example 3:.. Li 4/3 (Mn 0.85 V 0 15) 2/3 0 2 example 4: Li 4/3 (Mn 0 95 Nb 0 05..) 2/3 0 2, example 5: Li 4/3 (. Mn 0 9 Nbo.i) 2/30 2, example 6: Li 4/3 (Mno 85 Nbo.i5.) 2 / 3C) 2, the control group: Li 4/3 Mn2 / 3 02]. 4 is a lithium manganese composite prepared by the reduction precipitation method according to Examples 1 to 3 of the present invention. It is a photograph which shows the SEM measurement result by V doping amount with respect to an oxide (Example 1: M = V, b <0.05, Example 2: M = V, b <0.10, Example 3: M = V b <0.15).
도 5는 본 발명의 비교예 1~6에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 V 도핑량별 XRD 측정 결과를 나타낸 그래프이다 [비교예 1: Li4/3(Mno.95V0.05)2/302, 비교예 2: Li4/3(Mno.9Vo.i)2/302) 비교예 3: Li4/3(Mn0.95Nb0.05 ) 2/302, 비교예 4: Li4/3(Mn0.9Nb0. )2/302, 비교예 5: Li4/3(Mno.85Vo.i5)2/302, 비교예 6: Li4/3(Mno.85Nb0.15)2/302, 대조군: Li4/3Mn2/302] . 도 6은 본 발명의 비교예 1~4에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 V도핑량별 SEM측정 결과를 나타낸 사진이다 (비교예 1: M=V, b<0.05, 비교예 2: M=V, b<0.10, 비교예 3: M=Nb, b<0.05, 비교예 4: M=Nb, b<0.10). 5 is a graph showing the XRD measurement results by V doping amount for the lithium manganese composite oxide prepared by the dry method according to Comparative Examples 1 to 6 of the present invention [Comparative Example 1: Li 4/3 (Mno. 95 V 0. 05 ) 2/3 0 2, Comparative example 2: Li 4 /3(Mno.9Vo.i) 2/ 302) Comparative example 3:. Li 4/3 (Mn 0 95 Nb 0.05) 2/3 0 2, Comparative example 4: Li 4/3 (Mn 0 9 Nb 0..) 2/302, Comparative example 5: Li 4/3 (Mno 85 Vo.i 5.) 2/30 2, Comparative example 6: Li 4/3 ( . Mno.85Nb 0 15) 2/3 0 2, the control group: Li 4/3 Mn 2/ 3 0 2]. Figure 6 is a photograph showing the SEM measurement results by V doping amount for the lithium manganese composite oxide prepared by the dry method according to Comparative Examples 1 to 4 of the present invention (Comparative Example 1: M = V, b <0.05, Comparative Example 2: M = V, b <0.10, Comparative Example 3: M = Nb, b <0.05, Comparative Example 4: M = Nb, b <0.10).
도 7은 본 발명의 실시예 1~3에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물에 대하여 전기화학 특성 측정 결과를 나타낸 그래프이다 [실시예 1: M=V, b≤0.05(습식), 실시예 2: M=V, b≤0.10(습식),
실시예 3: M=V, b≤0.15(습식 )] . 7 is a graph showing the results of measuring the electrochemical characteristics of the lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 1 to 3 of the present invention [Example 1: M = V, b≤0.05 (wet), Example 2: M = V, b ≦ 0.10 (wet), Example 3: M = V, b≤0.15 (wet)].
도 8은 본 발명의 비교예 1~4에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 전기화학 특성 측정 결과를 나타낸 그래프이다 [비교예 1: M=V, b<0.05(건식), 비교예 2: M=V, b≤0.10(건식), 비교예 3: M=Nb, b<0.05(건식), 비교예 4: M=Nb, b<0.10(건식 )]. 8 is a graph showing the results of measuring the electrochemical characteristics of the lithium manganese composite oxide prepared by the dry method according to Comparative Examples 1 to 4 of the present invention [Comparative Example 1: M = V, b <0.05 (dry), Comparative Example 2: M = V, b≤0.10 (dry), Comparative Example 3: M = Nb, b <0.05 (dry), Comparative Example 4: M = Nb, b <0.10 (dry)].
도 9는 본 발명의 실시예 1~3에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물 및 비교예 1-4에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 수명 특성 측정 결과를 나타낸 그래프이다 [사이클당 방전 용량, 실시예 1: Li4/3(Mn0.95V0.05 ) 2/302 Wet process, 실시예 2: Li4/3(Mn0.9Vo.i)2/302 Wet process, 실시예 3: Li4/3(Mno.85Vo.i5)2/302 Wet process, 비교예 1: Li4/3(Mn0.95V0.05)2/302302 Solid process, 비교예 2: Li4/3(Mn0.9V0.i)2/302 Solid process, 비교예 3: L i 4/3 (Mn0. gsNbo .05 )2/302 Solid process, 비교여 14: Li4/3(Mno.gNbo.1)2/302 Sol id process] . 9 is a graph showing the life characteristics measurement results for the lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 1 to 3 of the present invention and the lithium manganese composite oxide prepared by the dry method according to Comparative Example 1-4 [ discharge capacity per cycle, example 1: Li 4/3 (Mn 0 95 V 0 05..) 2/3 0 2 Wet process, example 2: Li 4/3 (Mn 0 .9Vo.i) 2/30 Wet process 2, example 3: Li 4 /3(Mno.85Vo.i5)2/30 2 Wet process , Comparative example 1: Li 4/3 (. . Mn 0 95 V 0 05) 2/30 2 302 Solid process, Comparative example 2: Li 4/3 (Mn 0 9 V 0 .i.) 2/302 Solid process, Comparative example 3: L i 4/3 (. Mn 0 gsNbo .05) 2/302 Solid process, comparison 14: Li 4/3 (Mno.gNbo. 1) 2/302 Sol id process].
도 10은 본 발명의 실시예 3에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물 (Li4/3(Mno.85V0.15)2/302)에 대하여 U/M 비율 (ratio)에 따른 단일상 형성 XRD측정 결과를 나타낸 그래프이다. 10 is a U / M ratio (ratio) with respect to the present embodiment the lithium-manganese composite oxide prepared by the reduction precipitation method according to the example 3 of the invention (Li 4/3 (Mno. 85 V 0. 15) 2/3 0 2) A graph showing the results of XRD measurement of single phase formation.
도 11은 본 발명의 실시예 2에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물 및 비교예 2에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 추가로 고온에서 열처리한 후에 측정한 SEM 측정 결과를 나타낸 사진이다 [(A) 실시예 2, (B) 비교예 2L 11 is a SEM measurement results measured after further heat treatment at a high temperature for the lithium manganese composite oxide prepared by the reduction precipitation method according to Example 2 of the present invention and the lithium manganese composite oxide prepared by the dry method according to Comparative Example 2 (A) Example 2, (B) Comparative Example 2L
도 12는 본 발명의 실시예 2, 3에 따른 환원 침전법으로 제조된 리튬 망간 복합 산화물 및 비교예 2에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여 추가로 고온에서 열처리한 후에 측정한 XRD 측정 결과를 나타낸 그래프이다 [실시예 2: Li4/3(Mno.9Vo.i)2/302 Wet process, 실시예 3: Li4/3(Mn0.85V0.15)2/302 Wet process, 비교예 2: Li4/3(Mno.9Vo.i)2/302 Solid process] . 12 is an XRD measurement measured after heat treatment at a high temperature for a lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 2 and 3 of the present invention and a lithium manganese composite oxide prepared by the dry method according to Comparative Example 2. the result is a graph showing [example 2: Li 4/3 (Mno 9 Vo.i.) 2/302 Wet process, example 3: Li 4/3 (. . Mn 0 85 V 0 15) 2/3 0 2 Wet process, Comparative Example 2: Li 4/3 (Mno. 9 Vo.i) 2/30 2 Solid process].
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
실시예 1 Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples. Example 1
LiOH 3.05 g 및 KOH 2.84 g를 증류수 .500 mL에 용해하여 pH 10.5의 염기성 용매를 제조한 후에, 상기 염기성 용매에 바나듐 화합물 (V205, 98%)을 녹였다. 이렇게 V205를 용해시킨 염기성 용액은 묽은 HC1을 이용하여 pH 4까지 낮춘 후에, 망간 화합물 (MnS04 · 5¾0, 98%)을 용해시켜 별도의 침전물이 없는 투명한 연한 갈색을 띄는 용액을 얻었다. After dissolving 3.05 g of LiOH and 2.84 g of KOH in .500 mL of distilled water to prepare a basic solvent having a pH of 10.5, a vanadium compound (V 2 0 5 , 98%) was dissolved in the basic solvent. The basic solution in which V 2 0 5 was dissolved was lowered to pH 4 by using dilute HC1, and then dissolved in manganese compounds (MnS0 4 · 5¾0, 98%) to obtain a transparent light brown solution without a separate precipitate.
이렇게 바나듐 화합물과 망간 화합물을 모두 용해시킨 용액에 환원제 (KBH4) 용매를 투입하여 pH 10~12까지 상승시킨 후에 바나듐과 망간이 함께 침전된 복합 화합물을 검은 갈색의 침전물로 얻었다. 이때, pH 급격한 상승을 억제하기 위해 HC1을 사용하고, 환원제만으로는 pH 9가 한계이므로 원하는 pH 11.5까지 올리기 위해서 암모니아수를 사용하였다. 이렇게 생성된 바나듐 망간 복합 침전물을 수세하여 불순물을 제거한 후 80 °C에서 8 시간 이상 건조시켰다. 이렇게 얻어진 바나듬 망간 복합 침전물은 XRD분석 결과 완전한 비정질이었다 (도 2 참조). In this manner, a reducing agent (KBH 4 ) solvent was added to a solution in which both the vanadium compound and the manganese compound were dissolved, and then raised to pH 10-12, thereby obtaining a complex compound in which vanadium and manganese were precipitated together as a dark brown precipitate. At this time, HC1 was used to suppress a sharp increase in pH, and ammonia water was used to raise the desired pH to 11.5 because pH 9 was the limit of the reducing agent alone. The vanadium manganese composite precipitate thus produced was washed with water to remove impurities, and then dried at 80 ° C. for at least 8 hours. The obtained semi-manganese composite precipitate was completely amorphous by XRD analysis (see FIG. 2).
건조된 바나듐 망간 복합 침전물은 리튬 화합물 (Li2C03, 98%)과 몰수비 (Li/Mn ratio)가 1.기이 되도록 하여 흔합하였다. 그 후, 10 瞧 볼 (ball)을 이용하여 플래너터리 볼 밀링 (Planetary Ball Milling)으로 균일한 흔합물을 얻었다. The dried vanadium manganese composite precipitate was mixed with a lithium compound (Li 2 CO 3 , 98%) and a molar ratio (Li / Mn ratio) of 1. group. Thereafter, a uniform mixture was obtained by planetary ball milling using a 10 mm ball.
상기 리튬 망간 바나듐 복합 흔합물 분말을 튜브로 (tube furnace)에 넣고 분당 3 °C의 속도로 승온하여 400-550 °C (Celsius)까지 온도를 끌어올린 다음, 이 상태를 12 시간 동안 산소 가스를 가하면서 유지하여 1차 열처리를 실시하였다. 그 후 분당 3 °C의 속도로 승온하여 1차 열처리에 비해 약 40~70 °C의 온도를 추가로 상승시켜, 즉, 440~620 °C까지 온도를 끌어올린 다음, 이 상태에서 16 시간 동안 산소 가스를 가하면서 유지하여 2차 열처리를 실시하였다. 이러한 과정을 실시하여 본 발명에 따른 검은 적색의 리튬 망간 복합 산화물 [화학식 Li4/3(Mn0.95V0.05)2/302]을 생성시켜 리튬 이차전지용 양극 활물질을 제조하였다. The lithium manganese vanadium composite mixture powder was put into a tube furnace, and the temperature was raised at a rate of 3 ° C. per minute to raise the temperature to 400-550 ° C. (Celsius), followed by oxygen gas for 12 hours. The primary heat treatment was performed while maintaining while adding. Thereafter, the temperature was raised at a rate of 3 ° C. per minute to further increase the temperature of about 40 to 70 ° C compared to the first heat treatment, that is, to raise the temperature to 440 ~ 620 ° C, and then in this state for 16 hours The secondary heat treatment was performed while maintaining while adding oxygen gas. Dark red color of the lithium-manganese composite oxide according to the present invention by carrying out the process to produce a Formula Li 4/3 (Mn 0.95 V 0. 05) 2/3 0 2] was prepared in the cathode active material for a lithium secondary battery.
아렇게 열처리하여 얻은 분말을 SEM, XRD를 이용하여 입도와 구조를 확인하였다. 분석 결과 합성된 분말을 입도와 상이 균일하였으며, 불순물이
없는 단일 결정상을 나타내었다. The powder obtained by the heat treatment was examined for particle size and structure using SEM and XRD. As a result of analysis, the synthesized powder was uniform in particle size and phase. A single crystalline phase was shown.
실시예 2 Example 2
바나듐 화합물 (V205)과 망간화합물 (MnS04ᅳ 5¾0)의 함량을 금속 성분의 몰비가 Mn : V = 0.9 : 0.1가 되도록 달리하여 비정질상 환원 침전물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li 4/3 (Mno. gVo.^/sOd을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. Example 1, except that the amorphous reducing precipitate was prepared by varying the content of the vanadium compound (V 2 0 5 ) and the manganese compound (MnS0 4 ᅳ 5¾0) such that the molar ratio of the metal component was Mn: V = 0.9: 0.1. In the same manner as in the lithium secondary battery cathode active material [Li 4/3 (Mno. GVo. ^ / Sod) was prepared and the particle size and structure was confirmed by using the SEM, XRD in the same manner.
실시예 3 Example 3
바나듐 화합물 (V205)과 망간화합물 (MnS04 · 5¾0)의 함량을 금속 성분의 몰비가 Mn : V = 0.85 : 0.15가 되도록 달리하여 비정질상 환원 침전물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.85V0.15)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. Example 1, except that the amorphous reducing precipitate was prepared by varying the content of the vanadium compound (V 2 0 5 ) and the manganese compound (MnS0 4 · 5¾0) such that the molar ratio of the metal component was Mn: V = 0.85: 0.15. and a cathode active material for a lithium secondary battery in the same manner [Li 4/3 (Mn 0 . 85 V 0. 15) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure.
실시예 4 Example 4
바나듐 화합물 (V205) 대신에 니오븀 화합물 (Nb205)을 사용하여 비정질상 환원 침전물을 제조한 것을 제외하고는, 실시예 1과 '동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mno.95Nb0.05)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. Vanadium compound (V 2 0 5) instead of the niobium compound (Nb 2 0 5) in Example 1, and, for a lithium secondary battery positive electrode active material in the same manner except that the amorphous phase is prepared by using the reduction precipitate [Li 4/3 (Mno. 95 Nb 0. 05 ) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure.
실시예 5 Example 5
니오븀 화합물 (Nb205)과 망간화합물 (MnS04 · 5¾0)의 함량을 '금속 성분의 몰비가 Mn : Nb = 0.9 : 0.1가 되도톡 달리하여 비정질상 환원 침전물을 제조한 것을 제외하고는, 실시예 4와 동일한 방법으로 리튬 이차전지용 양극 활물질 [L ^Mno.sNbo.i)^^을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. The amount of niobium compound (Nb 2 0 5 ) and manganese compound (MnS0 4 · 5¾0) was changed to ' except that the amorphous reduced precipitate was prepared by varying the molar ratio of the metal component to Mn: Nb = 0.9: 0.1. In the same manner as in Example 4, a cathode active material [L ^ Mno.sNbo.i) ^^ for a lithium secondary battery was prepared, and the particle size and structure were confirmed using SEM and XRD in the same manner.
실시예 6 Example 6
니오븀 화합물 (Nb205)과 망간화합물 (MnS04.5¾0)의 함량을 금속 성분의 몰비가 Mn : Nb = 0.85 : 0.157} 되도록 달리하여 비정질상 환원 침전물을 제조한 것을 제외하고는, 실시예 4와 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mno.85Nb0.15)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다.
비교예 1 Niobium compound (Nb 2 0 5) and the molar ratio of the content of a manganese compound (MnS0 4 .5¾0) metal Mn: Nb = 0.85: Example 4, except that the amorphous phase is reduced to prepare a precipitate by changing to 0.157} to prepare a cathode active material for a lithium secondary battery [Li 4/3 (Mno. 85 Nb 0. 15) 2/3 0 2] in the same manner as in the same way using a SEM, XRD was confirmed the particle size and structure. Comparative Example 1
습식 공정 (wet process; solution-based precipi tat ion) °1 아닌 건식 공정 (solid process; solid-state react ion)으로 실시예 1과 동일한 조성의 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.95V0.05)2/302]을 제조하였다. Wet process (wet process; solution-based precipi tat ion) ° 1 solid process (solid-state react ion) in the same composition as in Example 1 lithium secondary battery positive electrode active material [Li 4/3 (Mn 0 . 95 V 0. 05) 2/3 0 2] was prepared.
먼저, 리튬 화합물 (Li2C03)과 바나듐 화합물 (V205), 망간화합물 (Mn203)를 흔합하였다. 이때, 망간에 대한 리튬의 몰수비 (Li/Metal ratio)가 2.04가 되도록 하였으며, 바나듐 0.05 η )1을 흔합하였다. 그후 10 mm 볼 (ball)을. 이용하여 플래너터리 볼 밀링 (planetary Ball Mil ling)을 하여 균일한 리튬 망간 바나듐 복합 흔합물을 얻었다. First, a lithium compound (Li 2 CO 3 ), a vanadium compound (V 2 0 5 ), and a manganese compound (Mn 2 0 3 ) were mixed. At this time, the molar ratio (Li / Metal ratio) of lithium to manganese was set to 2.04, and vanadium 0.05 η) 1 was mixed. Then a 10 mm ball. Planetary ball milling was used to obtain a uniform lithium manganese vanadium complex mixture.
얻어진 리튬 망간 바나듐 복합 흔합물을 튜브로 (tube furnace)에 넣고 분당 3 °C의 속도로 승온하여 650 °C까지 온도를 끌어올린 다음, 이 상태를 20 시간 동안 산소 가스를 가하면서 유지하여 열처리를 실시하였다. 이러한 과정을 실시하여 본 발명에 따른 검은 적색의 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.95V0.05)2/302]을 건식 공정으로 제조한 후에, 실시예 1과 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. The obtained lithium manganese vanadium composite mixture was placed in a tube furnace, heated up at a rate of 3 ° C. per minute to raise the temperature to 650 ° C., and then maintained in this state while applying oxygen gas for 20 hours. Was carried out. This process, the black red cathode active material for a lithium secondary battery in accordance with the invention by carrying out [Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 2] After producing the dry process, as in Example 1, In the same manner, the particle size and structure were confirmed using SEM and XRD.
비교예 2 Comparative Example 2
바나듐 화합물 (V205)과 망간화합물 (Mn203)의 함량올 금속 성분의 몰비가 Mn : V = 0.9 : 0.1가 되도록 달리한 것을 제외하고는, 비교예 1과 동일한 방법으로 리튬 이차전지용 양극 활물질 [L Mno.gVo ^O 을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. Content of Vanadium Compound (V 2 0 5 ) and Manganese Compound (Mn 2 0 3 ) Lithium secondary in the same manner as in Comparative Example 1, except that the molar ratio of all metal components is Mn: V = 0.9: 0.1 A battery positive electrode active material [L Mno.gVo ^ O] was prepared and the particle size and structure were confirmed using SEM and XRD in the same manner.
비교예 3 Comparative Example 3
바나듐 화합물 (V205) 대신에 니오븀 화합물 (Nb205)을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.95Nb0.05)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. Vanadium compound (V 2 0 5) instead of the niobium compound (Nb 2 0 5), and a is, in Comparative Example 1 and a lithium secondary battery positive electrode active material in the same way except that [Li 4/3 (Mn 0. 95 Nb 0. 05 ) 2/3 0 2 ] were prepared and the particle size and structure were confirmed by using the SEM, XRD in the same manner.
비교예 4 Comparative Example 4
니오븀 화합물 (Nb205)과 망간화 물 (Mn203)의 함량을 금속 성분의 몰비가 Mn : Nb = 0.9 : 0.1가 되도록 달리한 것을 제외하고는, 비교예 4와 동일한 방법으로 라튬 이차전지용 양극 활물질 [L /^Mno.gNbo.^/sOs]을
제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. 비교예 5 Lathium in the same manner as in Comparative Example 4 except that the content of niobium compound (Nb 2 0 5 ) and manganese (Mn 2 0 3 ) was changed so that the molar ratio of the metal component was Mn: Nb = 0.9: 0.1 Positive electrode active material for secondary batteries [L /^Mno.gNbo.^/sOs] Prepared and confirmed the particle size and structure using SEM, XRD in the same manner. Comparative Example 5
바나듐 화합물 (V205)과 망간화합물 (Mn203)의 함량올 금속 성분의 몰비가 Mn : V = 0.85 : 0.15가 되도록 달리한 것을 제외하고는, 비교예 1과 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.85V0.15)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. 다만, 이렇게 제조된 양극 활물질은 불순물이 존재하기 때문에 전기화학 특성 측정은 진행하지 않았다. Contents of the vanadium compound (V 2 0 5 ) and the manganese compound (Mn 2 0 3 ) A lithium secondary in the same manner as in Comparative Example 1, except that the molar ratio of all metal components was Mn: V = 0.85: 0.15 battery positive electrode active material [Li 4/3 (Mn 0 . 85 V 0. 15) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure. However, the cathode active material prepared as described above did not proceed to measure electrochemical properties because of impurities.
비교예 6 Comparative Example 6
니오븀 화합물 (Nb205)과 망간화합물 (Mn203)의 함량을 금속 성분의 몰비가 Mn : Nb = 0.85 : 0.15가 되도록 달리한 것을 제외하고는, 비교예 4와 동일한 방법으로 리튬 이차전지용 양극 활물질 [Li4/3(Mn0.85Nb0.15)2/302]을 제조하고 동일한 방법으로 SEM, XRD를 이용하여 입도와 구조를 확인하였다. 시험예 Lithium secondary in the same manner as in Comparative Example 4 except that the content of niobium compound (Nb 2 0 5 ) and manganese compound (Mn 2 0 3 ) was changed such that the molar ratio of the metal component was Mn: Nb = 0.85: 0.15 battery positive electrode active material [Li 4/3 (Mn 0. 85 Nb 0. 15) 2/3 0 2] for manufacturing and using the SEM, XRD in the same manner was confirmed to particle size and structure. Test Example
실시예 1 내지 6 및 비교예 1 내지 6에 따라 제조된 양극 활물질을 사용하여 다음과 같은 방법으로 하프셀 리튬 이차전지를 제조한 후에 , 이에 대한 전지 성능 평가를 수행하였다. a) 리튬 이차전지 제조 After producing the half-cell lithium secondary battery using the positive electrode active material prepared according to Examples 1 to 6 and Comparative Examples 1 to 6 in the following manner, battery performance evaluation was performed. a) lithium secondary battery manufacturing
실시예 1~6 및 비교예 1~6에 따라 제조된 양극 활물질 분말을 평균 입경이 20 가 되도록 분급하였다. 양극 물질 80 wt%, 도전제로 아세틸렌 블랙 10 wt%, 결착제로서 PVdF 10 %로 하여, NMP를 용매로 하여 슬러리를 제조하였다. 이 슬러리를 두께 20 /ΛΠ의 알루미늄 박막 (Al foil)에 도포하여 건조 후 프레스로 압밀화시켜, 진공 상에서 120 °C로 16 시간 건조하여 직경 16 mm의 원판 형태로 양극을 제조하였다. The positive electrode active material powders prepared according to Examples 1 to 6 and Comparative Examples 1 to 6 were classified so as to have an average particle diameter of 20. A slurry was prepared using 80 wt% of the positive electrode material, 10 wt% of acetylene black as the conductive agent, and 10% PVdF as the binder, using NMP as the solvent. The slurry was applied to an aluminum foil (Al foil) having a thickness of 20 / ΛΠ, dried and compacted by a press, and dried for 16 hours at 120 ° C. in a vacuum to prepare a positive electrode in the form of a disc having a diameter of 16 mm.
음극은 직경 16 mm로 펀칭 (punching)을 한 리튬 금속박을 사용하고, 분리막으로는 PP 필름을 사용하였다. 전해액으로는 1M의 LiPF6의 EC/EMC 1:2 v/v의 흔합 용액을 사용하였다. 전해액을 분리막에 함침시킨 후, 이 분리막을 양극과 음극 사이에 끼운 후 스테인레스강 (SUS) 제품의 케이스를
씌워 전극 평가용 시험 셀, 즉, 리튬 이차전지 반쪽 셀을 제조하였다. b) 전지 성능 평가 The cathode was a lithium metal foil punched to 16 mm in diameter, and a PP film was used as the separator. As an electrolyte solution, a mixed solution of EC / EMC 1: 2 v / v of 1 M LiPF 6 was used. After impregnating the electrolyte into the separator, insert the separator between the positive electrode and the negative electrode, and then replace the case of stainless steel (SUS) product. A test cell for covering the electrode, that is, a lithium secondary battery half cell was manufactured. b) battery performance evaluation
상술한 바와 같은 방법으로, 실시예 1~6 및 비교예 1~6에 따른 양극 5 활물질을 사용하여 제조된 하프셀 리튬 이차전지에 대하며, 이의 용량 및 반복된 층방전 사용에 따른 효율을 분석하는 실험을 진행하였다. 즉, 충방전기를 이용하여 10 mAg1의 전류를 가하여 1·5~4.8 V까지 실시하였다. 그리하여 상기 리튬 이차전지를 완전히 충방전이 되도록 반복적으로 사용한 후, 반복사용 횟수에 따른 용량을 비교 분석하는 실험을 진행하였다. 또한, 실시예 1~3 및 비교예 1~4에 따른 양극 활 질을 사용한 리튬 이차전지에 대하여 수명 특성 측정 결과는 하기의 표 1에 나타낸 바와 같다. By the method as described above, for a half-cell lithium secondary battery prepared using the positive electrode 5 active material according to Examples 1 to 6 and Comparative Examples 1 to 6, to analyze the capacity and efficiency of repeated use of layer discharge The experiment was conducted. In other words, a current of 10 mAg 1 was applied using a charger and discharger to 1 · 5 to 4.8 V. Thus, after repeatedly using the lithium secondary battery to fully charge and discharge, an experiment was conducted to compare and analyze the capacity according to the number of repeated use. In addition, the life characteristics measurement results for the lithium secondary battery using the positive electrode active according to Examples 1 to 3 and Comparative Examples 1 to 4 are as shown in Table 1 below.
【표 1】 Table 1
15 상기 표 1에서 보는 것과 같이, 환원 침전한 전구체를 이용하여 제조한 실시예 1~3의 양극활물질을 포함한 리튬 이차전지는 방전 효율이
우수하고 단독 양극활물질로 활용하는 데. 전혀 문제가 없는 것이 확인되었다. 특히, 실시예 1~3에 따른 리튬 이차전지의 경우, 바나듐 도핑량의 증가에 따른 최대 방전 용량의 유지율이 현저히 향상된 결과를 얻을 수 있음을 알수 있다. As shown in Table 1, the lithium secondary battery including the positive electrode active material of Examples 1 to 3 prepared using the reduced precipitated precursor has a high discharge efficiency. To be used as an excellent sole cathode material. It was confirmed that there was no problem at all. In particular, in the case of the lithium secondary battery according to Examples 1 to 3, it can be seen that the result of the remarkably improved retention of the maximum discharge capacity according to the increase in the amount of vanadium doping.
반면에, 기존과 같이 수명 진행에 있어 방전 용량 측정 결과에 있어 제조한 비교예 1~4의 양극활물질을 포함한 리튬 이차전지는 이러한 특성을 층족하지 못함이 확인되었다. 특히, 비교예 2 및 4에 따른 리튬 이차 전지는 바나듐 조성 증가에 따른 방전 용량이 현저히 떨어져, 장기 수명 진행에 따른 망간 산화수의 변화를 초래하여 결정 구조의 유지에 문제가 있음을 알 수 있다. 또한, 비교예 3 및 4에 따른 리튬 이차 전지는 니오븀 조성 변화에 따른 전기화학 특성 측정 결과가 방전 용량 개선에 있어 좋지 않아, 단독으로 사용하는 데 한계가 있음을 알 수 있다. 한편, 본 발명의 실시예 2에 따른 환원 침전법 및 비교예 2에 따른 건식법으로 제조된 각각의 리튬 망간 복합 산화물 [Li4/3(Mn0.90V0.10)2/302]에 대하여, 추가로 고온에서 열처리한 후에 측정한 SEM 측정 결과를 도 11에 나타내었다 [(A) 실시예 2, (B) 비교예 2]. 여기서, 열처리는 900 °C에서 10 시간 동안 수행하였다. 도 11의 고온 열처리 후의 SEM 측정 결과를, 열처리 전의 SEM 측정 결과인 도 4와 비교했을 때, 본 발명에 따라 환원 침전법에 의해 제조된 실시예 2는 900 °C 열처리시에도 입자의 크기가 크지 않음올 알 수 있다. 그러나, 건식법에 의해 제조된 비교예 2의 경우는 900 °C의 열처리 공정에서 입자 성장이 상당히 일어난 것을 확인할 수 있으며, 이와 같이 평균 입경이 너무 증가하게 되면 리튬 이은이 금속 산화물 입자 내부로■ 확산되는 거리가 증가하게 되어 속도 특성이 저하되는 문제점이 있을 수ᅳ있다. On the other hand, it was confirmed that the lithium secondary battery including the cathode active material of Comparative Examples 1 to 4 prepared in the discharge capacity measurement results in the progress of life as in the past did not satisfy these characteristics. In particular, it can be seen that the lithium secondary batteries according to Comparative Examples 2 and 4 have a significant drop in the discharge capacity due to the increase in the vanadium composition, resulting in a change in the manganese oxide number with the progress of a long life, and thus, a problem in maintaining the crystal structure. In addition, it can be seen that the lithium secondary batteries according to Comparative Examples 3 and 4 are not good at improving the discharge capacity of the electrochemical characteristic measurement results according to the niobium composition change, and thus there is a limit to using them alone. On the other hand, each of the lithium-manganese composite oxide prepared by the dry process according to the reduction precipitation method, and Comparative Example 2 according to the second embodiment of the present invention [Li 4/3 (Mn 0. 90 V 0. 10) 2/3 0 2] The SEM measurement results measured after further heat treatment at a high temperature are shown in FIG. 11 [(A) Example 2, (B) Comparative Example 2]. Here, the heat treatment was performed at 900 ° C for 10 hours. When the SEM measurement result after the high temperature heat treatment of FIG. 11 is compared with FIG. 4, the SEM measurement result before the heat treatment, Example 2 prepared by the reduction precipitation method according to the present invention does not have large particle sizes even at 900 ° C. heat treatment. It can be seen. However, in the case of Comparative Example 2 prepared by the dry method is 900 ° at C heat-treating step of the grain growth confirmed that substantially takes place, and thus when the average particle diameter is too increased to inside the metal oxide particles followed by lithium diffusion ■ As the distance increases, there may be a problem that the speed characteristic is degraded.
또한, 본 발명의 실시예 2 및 3에 따라 환원 침전법으로 제조된 리튬 망간 복합 산화물과 비교예 2에 따라 건식법으로 제조된 리튬 망간 복합 산화물에 대하여, 추가로 고온에서 열처리한 후에 측정한 XRD 측정 결과를 도 12에 나타내었다. 여기서, 열처리는 900 °C에서 10 시간 동안 수행하였다. 도 12의 XRD 측정 결과 그래프로부터, 900 °C에서
열처리하였을 경우, V 도핑에 있어서 건식법에 따른 비교예 2는 불순물이 형성되지만 V 도핑에 있어서 실시예 2, 3의 환원 침전법을 적용하면 불순물이 생성되지 않는 것을 알 수 있다. 즉, 용해도가 습식법 (wet process; solution-based precipitation)에서 더 좋아진다는 것을 확인할 수 있다.
In addition, the XRD measurement after the heat treatment at a high temperature for the lithium manganese composite oxide prepared by the reduction precipitation method according to Examples 2 and 3 of the present invention and the lithium manganese composite oxide prepared by the dry method according to Comparative Example 2 The results are shown in FIG. Here, the heat treatment was performed at 900 ° C for 10 hours. From the XRD measurement results graph of Figure 12, at 900 ° C In the case of heat treatment, in Comparative Example 2 according to the dry method in V doping, impurities are formed, but it can be seen that impurities are not produced when the reduction precipitation method of Examples 2 and 3 is applied in V doping. That is, it can be seen that the solubility is better in the wet process (solution-based precipitation).
Claims
[화학식 1] [Formula 1]
Lii+aCMn!-bMb)^ Lii + aCMn! -BMb) ^
식 중, a는 0<a<l/3이며, b는 0<b<0.5이고, M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소임. Wherein a is 0 <a <l / 3, b is 0 <b <0.5, and M is at least one metal element selected from the group consisting of V and Nb.
[청구항 2】 [Claim 2 ]
제 1항에 있어서, The method of claim 1,
상기 리륨 화합물은 탄산리튬, 수산화리튬, 초산리튬, 황산리튬, 아황산리튬, 플루오르화리튬, 질산리튬, 브름화리륨, 옥화리튬 및 염화리튬으로 이루어진 군에서 선택된 1종 이상인 리륨이차전지용 양극 활물질의 제조 방법 . The lithium compound may be at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium acetate, lithium sulfate, lithium sulfite, lithium fluoride, lithium nitrate, lithium bromide, lithium oxide, and lithium chloride. Way .
【청구항 3】 [Claim 3]
제 1항에 있어서, The method of claim 1,
상기 망간 화합물은 황산망간, 질산망간, 초산망간, 망간아세트산, 염화망간, 이산화망간, 삼산화망간, 및 사산화망간으로 이루어진 군에서 선택된 1종 이상인 리튬 이차전지용 양극 활물질의 제조 방법. The manganese compound is a method for producing a positive electrode active material for a lithium secondary battery is at least one selected from the group consisting of manganese sulfate, manganese nitrate, manganese acetate, manganese acetate, manganese chloride, manganese dioxide, manganese trioxide, and manganese tetraoxide.
【청구항 4】 [Claim 4]
제 1항에 있어서, The method of claim 1,
상기 이종 금속 화합물은 바나듐 금속, 산화바나듐, 옥시염화바나듐, 사염화바나듐, 삼염화바나듬, 메타바나듐산암모늄, 메타바나듐산나트륨 및 메타바나듐산칼륨, 염화리튬, 산화니오븀, 염화니오븀, 및 인화니오븀으로
이루어진 군에서 선택된 1종 이상인 리튬 이차전지용 양극 활물질의 제조 방법 . The dissimilar metal compound is vanadium metal, vanadium oxide, vanadium oxychloride, vanadium tetrachloride, vanadium trichloride, ammonium metavanadate, sodium metavanadate and potassium metavanadate, lithium chloride, niobium oxide, niobium chloride, and niobium phosphide Method for producing a positive electrode active material for lithium secondary batteries selected from the group consisting of.
【청구항 5】 [Claim 5]
게 1항에 있어서, According to claim 1,
상기 환원 침전 단계는 pH 9 내지 pH 13의 조건 하에서 수행하는 리튬 이차전지용 양극 활물질의 제조 방법. The reduction precipitation step is a method for producing a cathode active material for a lithium secondary battery performed under the conditions of pH 9 to pH 13.
【청구항 6】 [Claim 6]
제 1항에 있어서, The method of claim 1,
상기 환원 침전 단계는 상기 흔합 용액에 KBH4, LiBH4, NaBH4, NaAlH4, 및 LiAlH4로 이루어진 군에선 선택된 1종 이상의 환원제를 첨가하여 수행하는 리튬 이차전지용 양극 활물질의 제조 방법. The reduction precipitation step is performed by adding at least one reducing agent selected from the group consisting of KBH 4 , LiBH 4 , NaBH 4 , NaAlH 4 , and LiAlH 4 to the mixed solution.
【청구항 7】 [Claim 7]
계 1항에 있어서, According to claim 1,
상기 환원 침전 단계로부터 생성되는 망간 복합 침전물은 비정질상인 리튬 이차전지용 양극 활물질의 제조 방법. The manganese composite precipitate produced from the reduction precipitation step is an amorphous phase of the positive electrode active material for a lithium secondary battery.
【청구항 8】 [Claim 8]
제 1항에 있어서, The method of claim 1,
상기 리튬의 망간에 대한 몰수비는 1.60 내지 1.80 rrol가 되도록 반응시키는 리튬 이차전지용 양극 활물질의 제조 방법. Method of producing a cathode active material for a lithium secondary battery to react so that the molar ratio of lithium to manganese is 1.60 to 1.80 rrol.
[청구항 9】 [Claim 9]
제 1항에 있어서, The method of claim 1,
상기 이종 금속 원소의 망간에 대한 몰수비는 0.01 내지 0.50 m이가 되도록 반웅시키는 리튬 이차전지용 양극 활물질의 쎄조 방법. A method of washing the lithium secondary battery positive electrode active material to react so that the molar ratio of the dissimilar metal element to manganese is 0.01 to 0.50 m.
【청구항 10】 [Claim 10]
게 1항에 있어서,— According to claim 1, —
상기 소성 단계는 1차 열처리 및 2차 열처리를 포함하는 2단계의 열처리 과정으로 수행하는 리튬 이차전지용 양극 활물질의 제조 방법. The firing step is a method of manufacturing a positive electrode active material for a lithium secondary battery performed by a two-step heat treatment process including a first heat treatment and a second heat treatment.
【청구항 11】 [Claim 11]
제 10항에 있어서, The method of claim 10,
상기 1차 열처리는 300 내지 700 °C의 온도에서 7 내지 15 시간 동안
가열하여 수행하며, 2차 열처리는 상기 1차 열처리를 한 후 300 내지 800 °C의 온도에서 10 내지 20 시간 동안 가열하여 수행하는 리튬 이차전지용 양극 활물질의 제조 방법. The first heat treatment is carried out for 7 to 15 hours at a temperature of 300 to 700 ° C. Performing by heating, the secondary heat treatment is a method of manufacturing a positive electrode active material for a lithium secondary battery is carried out by heating for 10 to 20 hours at a temperature of 300 to 800 ° C after the first heat treatment.
【청구항 12] [Claim 12]
제 1항에 있어서, The method of claim 1,
상기 이종 금속 화합물을 pH 9 내지 13의 염기성 용매에 용해시키고 pH 2 내지 6으로 조절한 후에 망간 화합물을 용해시켜 흔합 용액을 제조하는 단계를 추가로 포함하는 리튬 이차전지용 양극 활물질의 제조 방법 . And dissolving the dissimilar metal compound in a basic solvent having a pH of 9 to 13, adjusting the pH to 2 to 6, and then dissolving a manganese compound to prepare a mixed solution.
【청구항 13】 [Claim 13]
제 1항에 있어서, The method of claim 1,
상기 환원 침전 단계로부터 생성된 망간 복합 침전물을 40 내지 150 °C의 조건 하에서 건조시키는 단계를 추가로 포함하는 리튬 이차전지용 양극 활물질의 제조 방법 . Method of producing a positive electrode active material for a lithium secondary battery further comprising the step of drying the manganese composite precipitate produced from the reduction precipitation step under the conditions of 40 to 150 ° C.
【청구항 14】 [Claim 14]
제 1항 내지 제 13항 중 어느 한 항에 따른 방법으로 제조된 리튬 이차전지용 양극 활물질. A cathode active material for a lithium secondary battery manufactured by the method according to any one of claims 1 to 13.
【청구항 15】 [Claim 15]
제 14항에 있어서, The method of claim 14,
하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 포함하는 리튬 이차전지용 양극 활물질: A cathode active material for a lithium secondary battery including a lithium manganese composite oxide represented by Formula 1 below:
[화학식 1] [Formula 1]
Lii+a(fci— bMb^-aCfe Lii + a (fci— bMb ^ -aCfe
식 중, a는 0<a<l/3이며, b는 0<b<0.5이고, M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소임. Wherein a is 0 <a <l / 3, b is 0 <b <0.5, and M is at least one metal element selected from the group consisting of V and Nb.
【청구항 16】 [Claim 16]
제 15항에 있어서, The method of claim 15,
상기 리튬 망간 복합 산화물은 하기 화학식 2로 표시되는 것인 리튬 이차전지용 양극 활물질: The lithium manganese composite oxide is a cathode active material for a lithium secondary battery that is represented by the following formula (2):
. [화학식 2]
Li4/3(Mni-xMx)2/302 . [Formula 2] Li 4/3 (Mni- x M x) 2/30 2
식 중, x는 0≤x≤0.5이며, M은 V 및 Nb로 이루어진 군에서 선택된 1종 이상의 금속 원소임 . Wherein x is 0 ≦ x ≦ 0.5 and M is at least one metal element selected from the group consisting of V and Nb.
【청구항 17] [Claim 17]
제 16항에 있어서, The method of claim 16,
상기 리튬 망간 복합 산화물은 Li4/3(Mn0.95V0.05)2/30^ L i 4/3 (Mn0.9Vo .1)2/302, L i 4/3 (Mn0.85V0.15)2/302 , L i 4/3 (Mn0. g5Nb0.05 ) 2/3O2 ,The lithium manganese composite oxide is Li 4/3 (Mn 0. 95 V 0. 05) 2/3 0 ^ L i 4/3 (Mn 0. 9 Vo .1) 2/302, L i 4/3 (Mn 0. 85 V 0 .15) 2/302 , L i 4/3 (Mn 0. g 5 Nb 0 .05) 2 / 3O2,
Li^ tno.gNbo.^/sO^ 및 Li4/3(Mn0.995Nb0.05 ) 2/302로 이루어진 군에서 선택된 1종 이상인 리튬 이차전지용 양극 활물질 . Li tno.gNbo ^. ^ / ^ SO and Li 4/3 (Mn 0. 995 Nb 0. 05) 2/3 0 2 is selected from the group consisting of at least one member for a lithium secondary battery positive electrode active material.
【청구항 18】 [Claim 18]
제 14항에 있어서, The method of claim 14,
사이클 횟수 2회 이상에서 방전용량 (di scharge capaci ty)이 140 mAhg"1 이상인 리튬 이차전지용 양극 활물질 . A cathode active material for a lithium secondary battery having a discharge capacity of at least two cycles of 140 mAhg "1 or more.
【청구항 19】 [Claim 19]
제 14항에 따른 양극 활물질을 포함하는 리튬 이차전지 . A lithium secondary battery comprising the cathode active material according to claim 14.
【청구항 20】 [Claim 20]
제 19항에 있어서, The method of claim 19,
양극 활물질을 포함하는 양극 (cathode) ; A cathode including a cathode active material;
음극 활물질을 포함하는 음극 (anode) ; 및 An anode including a negative electrode active material; And
양극 및 음극 사이의 분리 막 (separator) Separator between anode and cathode
을 포함하는 리튬 이차전지 .
Lithium secondary battery comprising a.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0017124 | 2012-02-20 | ||
KR1020120017124A KR101418060B1 (en) | 2012-02-20 | 2012-02-20 | Preparation method of a positive active for a lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125798A1 true WO2013125798A1 (en) | 2013-08-29 |
Family
ID=49005940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/000715 WO2013125798A1 (en) | 2012-02-20 | 2013-01-29 | Method for manufacturing cathode active material for lithium secondary battery |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101418060B1 (en) |
WO (1) | WO2013125798A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969209A (en) * | 2020-08-26 | 2020-11-20 | 江苏超电新能源科技发展有限公司 | Long-life lithium ion power battery and preparation method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101601917B1 (en) | 2014-02-11 | 2016-03-09 | 울산과학기술원 | Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same |
KR102358438B1 (en) | 2014-12-30 | 2022-02-04 | 삼성전자주식회사 | Composite positive active material, preparing method thereof, positive electrode including the same, and lithium secondary battery including the positive electrode |
KR102368975B1 (en) | 2015-08-24 | 2022-03-03 | 삼성전자주식회사 | Cathode active material, cathode and lithium secondary battery including the same, and method of preparing the cathode active material |
KR20180071714A (en) * | 2016-12-20 | 2018-06-28 | 주식회사 포스코 | Positive electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072443A (en) * | 1998-08-26 | 2000-03-07 | Ube Ind Ltd | Production of lithium manganese multiple oxide and its use |
JP2003142096A (en) * | 1996-07-11 | 2003-05-16 | Telecordia Technologies Inc | Nonaqueous secondary battery |
KR100814881B1 (en) * | 2006-11-24 | 2008-03-18 | 삼성에스디아이 주식회사 | Active material for battery, and electrode and battery comprising same |
KR20100064631A (en) * | 2008-12-05 | 2010-06-15 | 삼성에스디아이 주식회사 | Cathode active material, and cathode and lithium battery comprising same |
-
2012
- 2012-02-20 KR KR1020120017124A patent/KR101418060B1/en active IP Right Grant
-
2013
- 2013-01-29 WO PCT/KR2013/000715 patent/WO2013125798A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003142096A (en) * | 1996-07-11 | 2003-05-16 | Telecordia Technologies Inc | Nonaqueous secondary battery |
JP2000072443A (en) * | 1998-08-26 | 2000-03-07 | Ube Ind Ltd | Production of lithium manganese multiple oxide and its use |
KR100814881B1 (en) * | 2006-11-24 | 2008-03-18 | 삼성에스디아이 주식회사 | Active material for battery, and electrode and battery comprising same |
KR20100064631A (en) * | 2008-12-05 | 2010-06-15 | 삼성에스디아이 주식회사 | Cathode active material, and cathode and lithium battery comprising same |
Non-Patent Citations (1)
Title |
---|
L. HERNAN ET AL.: "Sol-gel derived Li-V-Mn-O spinels as cathodes for rechargeable lithium batteries", SOLID STATE IONICS, vol. 133, 2000, pages 179 - 188, XP004212233 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969209A (en) * | 2020-08-26 | 2020-11-20 | 江苏超电新能源科技发展有限公司 | Long-life lithium ion power battery and preparation method thereof |
CN111969209B (en) * | 2020-08-26 | 2022-01-07 | 江苏超电新能源科技发展有限公司 | Long-life lithium ion power battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20130095572A (en) | 2013-08-28 |
KR101418060B1 (en) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6462250B2 (en) | Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery including the same | |
JP6440289B2 (en) | Positive electrode active material, method for producing the same, and lithium secondary battery including the same | |
US9324994B2 (en) | Positive electrode active material with high capacity and lithium secondary battery including the same | |
KR101601917B1 (en) | Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same | |
JP5325888B2 (en) | Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery | |
CN103872311B (en) | Lithium rechargeable battery positive active material, positive pole and lithium rechargeable battery | |
JP4096754B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery | |
US20130266868A1 (en) | Method of preparing positive active material for rechargeable lithium battery, positive active material for rechargeable lithium battery prepared by using the method, and rechargeable lithium battery including the same | |
CN105140492A (en) | Cobalt-nickel lithium manganate composite positive electrode material with surface wrapped by lithium zirconate and preparation method | |
US20130260249A1 (en) | Lithium ion secondary battery and method for preparing the same | |
Hou et al. | Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping | |
CN104703921A (en) | Li-ni complex oxide particle powder and non-aqueous electrolyte secondary battery | |
CN107492643A (en) | A kind of titanium phosphate lithium coats LiNi1/3Co1/3Mn1/3O2Positive electrode and preparation method thereof | |
CN107834050A (en) | A kind of lithium-enriched cathodic material of lithium ion battery and its improved method | |
CN111771301A (en) | Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same | |
JP4458232B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP7257475B2 (en) | Lithium composite oxide and method for producing the same | |
CN111771302A (en) | Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery | |
JP2011165372A (en) | Negative electrode material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery | |
WO2013125798A1 (en) | Method for manufacturing cathode active material for lithium secondary battery | |
JP2003157844A (en) | Positive electrode active material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery | |
JP6191351B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP7142301B2 (en) | POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME | |
KR20050049746A (en) | Cathode active material for lithium secondary batteries, method for manufacturing the same and lithium secondary batteries containing the same | |
WO2014115973A1 (en) | Fluorine compound-coated cathode active material for lithium secondary battery and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751473 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13751473 Country of ref document: EP Kind code of ref document: A1 |