[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4769166B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4769166B2
JP4769166B2 JP2006300995A JP2006300995A JP4769166B2 JP 4769166 B2 JP4769166 B2 JP 4769166B2 JP 2006300995 A JP2006300995 A JP 2006300995A JP 2006300995 A JP2006300995 A JP 2006300995A JP 4769166 B2 JP4769166 B2 JP 4769166B2
Authority
JP
Japan
Prior art keywords
fuel
air
value
oil
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006300995A
Other languages
English (en)
Other versions
JP2008115805A (ja
Inventor
智行 榎本
達也 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006300995A priority Critical patent/JP4769166B2/ja
Publication of JP2008115805A publication Critical patent/JP2008115805A/ja
Application granted granted Critical
Publication of JP4769166B2 publication Critical patent/JP4769166B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

この発明は内燃機関の制御装置に関し、より詳しくはフレキシブル・フューエル・ビークル(Flexible Fuel Vehicle)、即ち、ガソリン燃料でも、エタノール燃料でも、あるいはガソリンとエタノールの混合燃料でも運転可能な車両用の内燃機関の制御装置に関する。
下記の特許文献1には、ブローバイガスを吸気系に還流させるようにしたフレキシブル・フューエル・ビークル(以下「FFV」という)用の内燃機関において、機関温度がアルコールの沸点を基準として規定される所定の温度範囲にあるとき、空燃比に応じた燃料供給量に対する補正範囲の下限値を増加させ、アルコール蒸気が大量に還流される場合に燃料噴射量の減少補正量を増加するようにした技術が開示される。
特開平4−308336号公報
アルコール蒸気の影響は主として燃料噴射量の少ない低負荷領域で大きく、燃料噴射量が大きい高負荷領域では少ない。しかしながら、上記した従来技術のように、アルコール蒸気が大量に還流される場合に空燃比に応じたフィードバック制御の補正係数を減少させると、低負荷状態では補正係数が小さな値になる。その後に急加速を行って高負荷になると、吸入空気量と基本燃料噴射量は急増するが、補正係数は急には増加させられないため、吸入空気量に対する総燃料噴射量が減少し、空燃比はリーンとなる。
従って、この発明の目的は上記した課題を解決し、発進性能とアイドル安定性を確保するようにした内燃機関の制御装置を提供することにある。
上記の目的を解決するために、請求項1にあっては、排気中の空燃比を検出する空燃比検出手段と、前記検出された空燃比と目標空燃比との偏差に応じて燃料噴射量の空燃比補正係数を算出する空燃比補正係数算出手段と、前記空燃比補正係数をなまして学習値を算出する学習値算出手段と、少なくとも前記算出される空燃比補正係数と前記学習値に基づいて前記燃料噴射量を算出する燃料噴射量算出手段と、クランクケース内のブローバイガスを吸気系に還流させるブローバイガス還流装置と、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあるか否か判定するオイル混入燃料蒸発判定手段と、前記オイル混入燃料蒸発判定手段の判定結果に従ってオイル混入燃料減算項を算出して前記燃料噴射量から減算する噴射燃料量減算手段とを備える内燃機関の制御装置において、前記噴射燃料量減算手段は、前記クランクケース内のオイルに混入した燃料が蒸発していると判定されると共に、前記空燃比補正係数が前記学習値から所定値を減算して得た値よりも小さいとき、前記オイル混入燃料減算項の値を増加する如く構成した。
請求項2に係る内燃機関の制御装置にあっては、さらに、前記内燃機関の機関負荷を検出する機関負荷検出手段と、前記燃料のアルコール濃度が既定値より高いか否か判定するアルコール濃度判定手段と、前記内燃機関の暖機が完了したか否か判定する暖機完了判定手段と、前記暖機が完了していず、前記燃料のアルコール濃度が前記既定値より高いと共に、前記燃料噴射量が所定噴射量より多いと判定される度に増加するようにオイル内混入燃料量推定値を算出するオイル内混入燃料量推定値算出手段とを備え、前記オイル混入燃料蒸発判定手段は、前記オイル内混入燃料量推定値が所定値より大きいと共に、前記機関負荷が所定負荷より小さいとき、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあると判定する如く構成した。
請求項1にあっては、オイル混入燃料蒸発判定手段の判定結果に従ってオイル混入燃料減算項を算出して空燃比補正係数から算出される燃料噴射量から減算することで、オイル混入燃料が蒸発しているときでも、空燃比補正係数を然らざる場合に収束する値に収束させておくことができ、急加速によって吸入空気量と基本燃料噴射量が増加しても、それに応じた燃料噴射量を噴射することができ、よって発進性能およびアイドル安定性を確保することができる。また、空燃比補正係数が空燃比補正係数をなまして得た学習値から所定値を減算して得た値よりも小さいとき、即ち、燃料を減少させる側に変化したときにオイル混入燃料補正項を増加させるので、不要なオイル混入燃料補正量の増加を防ぐことができ、空燃比補正係数を安定して収束させることができる。
請求項2に係る内燃機関の制御装置にあっては、上記した効果をより一層得ることができる。
以下、添付図面に即してこの発明に係る内燃機関の制御装置を実施するための最良の形態について説明する。
図1は、この発明の実施例に係る内燃機関の制御装置を全体的に示す概略図である。
図1において、符号10は、FFV(図示せず)に搭載される、4気筒(シリンダ)4サイクルの内燃機関(1気筒のみ図示。以下「エンジン」という)を示す。エンジン10において、エアクリーナ12から吸入されて吸気管14を通る空気(吸気)はスロットルバルブ16で流量を調節されて吸気マニホルド18を流れ、2個の吸気バルブ(1個のみ図示)20が開弁されるとき、燃焼室に流入する。
スロットルバルブ16は、FFV運転席床面に配置されたアクセルペダル(図示せず)との機械的な接続を絶たれ、DCモータ(アクチュエータ)22に接続され、DCモータ22で駆動されて開閉する。このように、スロットルバルブ16の開度はDBW(Drive By Wire)方式で制御される。
吸気バルブ20の手前の吸気ポート付近には、メイン・インジェクタ24が配置される。メイン・インジェクタ24には、メイン燃料タンク26に貯留され、メイン燃料タンク26の内部に配置されたメイン燃料ポンプ28で汲み上げられる燃料がメイン燃料供給管30を介して圧送される。
メイン燃料タンク26に貯留される燃料としては、ガソリンとエタノール(エチルアルコール)の混合燃料、具体的にはガソリン78%とエタノール22%の混合燃料(E22)からガソリン0%とエタノール100%のエタノール燃料(E100)までの間のアルコール燃料が予定される。尚、アルコール燃料はガソリンに比して理論空燃比がリッチ側にずれると共に、そのずれはアルコール濃度の増加につれて拡大する。
吸気ポート付近においてメイン・インジェクタ24の上流側には、サブ・インジェクタ32が配置される。サブ・インジェクタ32には、サブ燃料タンク34に貯留されてサブ燃料ポンプ36で汲み上げられるサブ燃料がサブ燃料供給管38を介して圧送される。サブ燃料としては、ガソリン燃料、E22などが使用される。
メイン・インジェクタ24とサブ・インジェクタ32は、駆動回路(図示せず)を通じてECU(Electronic Control Unit。電子制御ユニット)40に電気的に接続され、ECU40から開弁時間を示す駆動信号が駆動回路を通じて供給されると開弁し、開弁時間に応じた燃料を吸気ポートに噴射する。噴射された燃料は、流入した空気と混合して混合気(予混合気)を形成し、吸気バルブ20が開弁されるとき、燃焼室に流入する。サブ燃料は、エンジン10の始動時にのみ使用される。
燃焼室には点火プラグ44が配置される。点火プラグ44はイグナイタなどからなる点火装置(図示せず)に接続される。点火装置はECU40から点火信号が供給されると、点火プラグ44の電極間に火花放電を生じさせる。混合気はそれによって着火されて燃焼し、ピストン46を下方に駆動する。
ピストン46を包み込むシリンダブロックの下部のクランクケース48の内部には、ピストン46に接続され、ピストン46の上下運動を回転運動に変換するクランクシャフト(図示せず。50はそれに取り付けられるパルサプレートを示す)が収容される。クランクケース48の下部は、オイル(潤滑油)を受けるオイルパンを構成する。
燃焼によって生じた排気(排ガス)は、2個の排気バルブ(図示せず)が開弁するとき、排気ポート52を通って排気管54に流れる。排気管54には、(2床の三元触媒からなる)触媒装置56が配置される。排気は、触媒装置56が活性状態にあるとき、HC,CO,NOxなどの有害成分を除去されてエンジン外の大気に放出される。
メイン燃料タンク26とサブ燃料タンク34の液面上方空間はチャージ通路58,60を介してキャニスタ62に接続されると共に、キャニスタ62はパージ通路64を介して吸気管14にスロットルバルブ16の配置位置の下流で接続される。パージ通路64には電磁バルブからなるパージ制御バルブ64aが設けられ、励磁されるとき、パージ通路64を開放する。
上記した構成において、メイン燃料タンク26とサブ燃料タンク34から蒸発した燃料蒸気はチャージ通路58,60を通ってキャニスタ62に流れ、その内部に収容された吸着材62aに吸着される。キャニスタ62の内部はパージ制御バルブ64aが励磁されるとき、吸気管14から負圧が作用し、吸着された燃料蒸気は大気開放孔62bから導入される新気と共に、パージ通路64を通って吸気系にパージされる。
クランクケース48の上部はPCV(Positive Crankcase Ventilation)用の孔が穿設され、吸気管14のスロットルバルブ16の配置位置の下流と還流通路68で接続される。還流通路68にはチェックバルブ68aが設けられ、クランクケース内のオイルに混入したアルコール蒸気は、所定圧以上となるとチェックバルブ68aを押し開き、還流通路68を通ってブローバイガスとして吸気系にパージ(還流)される。
シリンダブロックの上のシリンダヘッドには油圧で動作する動弁機構70が設けられ、吸気バルブ20のバルブタイミングとリフト量を高低2種の特性の間で変更する。
エンジン10のクランクシャフトの付近にはクランク角センサ72が配置され、前記したパルサプレート50の回転から気筒判別信号と、各気筒のTDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。
エアクリーナ12の付近には温度検出素子を備えたエアフローメータ74が配置され、エアクリーナ12から吸入される空気(吸気)量Qと吸気温TAに応じた信号を出力する。
吸気管14においてスロットルバルブ16の下流にはMAPセンサ76が配置され、吸気管内圧力PBAを絶対圧で示す信号を出力すると共に、スロットルバルブ16にはスロットル開度センサ78が配置され、スロットルバルブ16の位置(スロットル開度)THに応じた信号を出力する。
エンジン10の冷却水通路(図示せず)には水温センサ80が配置されてエンジン冷却水温TWに応じた信号を出力すると共に、シリンダブロックにはノックセンサ82が配置され、エンジン10に生じる振動に応じた信号を出力する。
排気系において触媒装置56の上流には広域空燃比センサ84が配置され、理論空燃比からリッチあるいはリーンに至るまでの広い範囲において排気中の酸素濃度に応じた信号を出力する。広域空燃比センサ84の出力に基づき、検出空燃比KACTが当量比で算出される。また、触媒装置56の触媒床の間にはOセンサ86が配置され、排気中の酸素濃度が理論空燃比からリッチあるいはリーンに変化するたびに反転する信号を出力する。
メイン燃料タンク26にはフューエルレベルセンサ88が配置され、燃料の液面高さに応じた信号を出力する。
アクセルペダルの付近にはアクセル開度センサ90が設けられ、運転者のアクセルペダル踏み込み量を示すアクセル位置(エンジン負荷を示す)APに応じた信号を出力する。ドライブシャフト(図示せず)の付近には車速センサ92が設けられ、ドライブシャフトの回転当たりにパルス信号を出力すると共に、FFVの適宜位置には大気圧センサ94が設けられ、大気圧PAに応じた信号を出力する。
上記したセンサ群の出力は、ECU40に入力される。ECU40はマイクロコンピュータからなり、CPU,ROM,RAM,A/D変換回路、入出力回路およびカウンタ(全て図示せず)を備える。ECU40は入力信号の内、クランク角度信号をカウントしてエンジン回転数NEを算出(検出)すると共に、車速センサ92の出力をカウントして車速VPを算出(検出)する。
ECU40は入力値と算出値に基づき、ROMに格納されている命令に従い、続いて述べるように、燃料噴射量などを算出すると共に、エンジン回転数NEと吸気管内絶対圧PBAとから吸気バルブ20のバルブタイミングとリフト量を高低2種の特性の間で変更する。
図2は、そのECU40の動作を機能的に説明するブロック図である。
符号40aは燃料噴射量算出ブロックを示し、そこにおいては検出された運転状態に応じてエンジン10に供給すべき燃料噴射量TOUTが算出される。
即ち、エンジン負荷に応じて基本燃料噴射量TIMが算出されると共に、検出された空燃比KACTを目標空燃比KCMD(より正確には目標空燃比補正係数KCMD)に制御する空燃比フィードバック制御においてそれらの偏差に応じて空燃比補正係数(空燃比フィードバック補正係数)KAFが算出され、さらにアルコール濃度補正係数KREFBSなど、その他の補正係数が算出されて基本燃料噴射量が補正されることで、燃料噴射量TOUTが算出される。
燃料噴射量算出ブロック40aでは、空燃比補正係数KAFの制限値が設定されると共に、アルコール濃度が学習されるときの制限値の変更の際、空燃比補正係数KAFが制限値に達したとき、制限値を変更する如く構成される。
算出された燃料噴射量TOUTに基づき、メイン・インジェクタ24が駆動される。尚、アルコール燃料はエンジン冷却水温TWが低いときに始動性が悪いことから、エンジン10の始動時にはメイン・インジェクタ24に加え、サブ・インジェクタ32を駆動してサブ燃料が噴射される。
符号40bはアルコール濃度学習ブロックを示し、そこにおいては空燃比補正係数KAFに基づいて燃料に含まれるアルコール濃度が学習される。即ち、空燃比補正係数KAFをなましてアルコール濃度学習値KREFXを算出し、それを前回のアルコール濃度補正係数KREFBSに乗算して補正することでアルコール濃度補正係数KREFBSが更新される。アルコール濃度補正係数KREFBSは、ブロック40aに送られる。
符号40cは点火時期算出ブロックを示し、そこにおいては検出された運転状態に応じてエンジン10に供給すべき点火時期が算出され、それに基づいて点火装置を介して点火プラグ44の点火が制御される。
符号40dはスロットル開度制御値算出ブロックを示し、そこにおいてはスロットル開度の制御値が算出され、それに基づいてDCモータ22が駆動される。
図3は燃料噴射量算出ブロック40aにおける処理を示すフロー・チャートである。図示のプログラムは、それぞれの気筒のTDC付近の所定クランク角度で実行される。
以下説明すると、S10において別ルーチンで算出される、始動時増量補正項KAST、加速度に応じて算出される加速補正項KACC、減速度に応じて算出される減速補正項KDECを乗算し、よって得た積をktotaltmpとする。
次いでS12に進み、同様に別ルーチンで算出される、吸気温TAに応じて算出される吸気温補正項KTA、大気圧PAに応じて算出される大気圧補正項KPA、エンジン冷却水温TWに応じて算出される水温補正項KTWを乗算し、よって得た積をktatwpaとする。
次いでS14に進み、S10とS12の処理で得られた2種の補正項を乗算し、よって得た値を乗算補正項積算値KTTLとする。
次いでS16に進み、エンジン10に供給すべき燃料噴射量TOUTを図示の式に従って算出する。
S16に示される式で、KREFBS:アルコール濃度補正係数、KAF:空燃比補正係数、KCMD:目標空燃比あるいは目標空燃比補正係数(検出空燃比KACTと同様に当量比で示されることから、空燃比の目標値と、燃料噴射量を補正する補正係数としても機能する)、KTTL:上記した乗算補正項積算値、TIM(暖機後の基本燃料噴射量で、予め設定された特性(マップ)をエンジン負荷Gair(エアフローメータ74の出力Qをエンジン回転数NEで除算して得られた1回の燃焼に使用される空気量)で検索することで算出される)、KEVACT:キャニスタパージ(吸気系に還流される燃料蒸気)による補正係数、KCTMFFV:アルコール蒸散補正係数(オイル(潤滑油)に混入したアルコール蒸気の補正係数)である。最終的な燃料噴射量TOUTを含め、燃料噴射量は全てメイン・インジェクタ24の開弁時間で規定される。
図4は、アルコール濃度学習ブロック40bにおける処理を示すフロー・チャートである。図示のプログラムも、それぞれの気筒のTDC付近の所定クランク角度で実行される。
以下説明すると、S100においてフラグF_PGDLYのビットが1にセットされているか否か判断する。このフラグは別ルーチンにおいてキャニスタパージが停止中のときそのビットが1にセットされることから、S100の判断はキャニスタパージが停止中か否か判断することを意味する。
S100で否定されるときは以降の処理をスキップすると共に、肯定されるときはS102に進み、エンジン回転数NEが所定高回転数NKREFXHを超えるか否か判断する。S102で肯定されるときは以降の処理をスキップすると共に、否定されるときはS104に進み、吸気温TAが所定高吸気温TAREFを超えるか否か判断する。
S104で肯定されるときは以降の処理をスキップすると共に、否定されるときはS106に進み、F_OCTMCNDのビットが1にあるか否か判断する。このフラグは別ルーチンにおいてオイルに混入したアルコール燃料の蒸散の影響が大きい領域にあるときそのビットが1にセットされることから、S106の判断はそのような領域にあるか否か判断することに相当する。
S106で否定されるときはS108に進み、吸気管内絶対圧PBAが所定低負荷値PBAREFXLを超えるか否か判断し、肯定されるときはS110に進み、吸気管内絶対圧PBAが所定高負荷値PBAREFXH未満か否か判断する。
また、S106で肯定されるときはS112に進み、吸気管内絶対圧PBAが所定低負荷値PBAREFXLFFVを超えるか否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS110に進む。
S110で否定されるときは以降の処理をスキップすると共に、肯定されるときはS114に進み、図示の如く、重み係数Cを用いて加重平均を行うことで、空燃比補正係数KAFをなましてアルコール濃度学習値KREFXを算出する。
このように、キャニスタパージが停止されると共に、エンジン10の運転状態が所定の運転領域にあるとき、空燃比補正係数KAFをなましてアルコール濃度学習値KREFXが算出される。
図5は、同様にアルコール濃度学習ブロック40bの処理を示すフロー・チャートである。図示のプログラムも、それぞれの気筒のTDC付近の所定クランク角度で実行される。
以下説明すると、S200においてフラグF_FSPAFFBのビットが1にセットされているか否か判断する。このフラグは別ルーチンにおいて広域空燃比センサ84が故障しているときそのビットが1にセットされていることから、S200の処理はそれを判断するに等しい。
S200で否定されるときはS202に進み、フラグF_FCFFVDNのビットが1にセットされているか否か判断する。
図6は、アルコール濃度学習を説明するタイム・チャートである。
S202のフラグは図6に示すF_FC(フューエルカット実行フラグ)とF_KALCOK(アルコール濃度補正係数準備完了フラグ)のビットが1にセットされるとき、別ルーチンにおいてそのビットが1にセットされる。
S202で肯定されるときはS204に進み、フラグF_KREFBSONのビットが1にセットされているか否か判断する。このフラグはアルコール濃度補正係数の更新、換言すればアルコール濃度の学習の実行が終了するときそのビットが1にセットされることから、S204の判断は通例否定されてS206に進み、図示の如く、アルコール濃度補正係数KREFBSにアルコール濃度学習値KREFXを乗じ、よって得た積をKREFBSTとする。
次いでS208に進み、KREFBSTがmax値を上回るか、min値を下回るときはそれに制限するリミット処理を行い、処理後の値をKREFBSとし、S210に進み、前記したフラグF_KREFBSONのビットを1にセットする。尚、S204で肯定されるときはS206からS210をスキップする。
他方、S202で否定されるときはS212に進み、フラグF_WOTのビットが1にセットされているか否か判断する。このフラグは別ルーチンにおいて触媒装置56を保護するために目標空燃比KCMD(目標空燃比補正係数KCMD)のリッチ化処理がなされたときそのビットが1にセットされることから、S212ではそれを判断する。
S212で肯定されるときはS214に進み、F_AFFBのビットが1にセットされているか否か判断する。このフラグは別ルーチンにおいて前記した空燃比フィードバック制御が実行されるときそのビットが1にセットされることから、S214ではそれを判断する。
S214で否定されるときはS216に進み、前記したアルコール濃度補正係数準備完了フラグF_KALCOKのビットが1にセットされているか否か判断する。S216で肯定されるときはS204に進むと共に、否定されるときはS218に進み、前記したフラグF_KREFBSONのビットを0にリセットする。S212で否定されるかS214で肯定されるときも同様である。尚、S200で肯定されるときはS220,S222に進み、アルコール濃度補正係数などの値を1.0(補正なし)とする。
図6を参照してアルコール濃度学習を説明すると、この実施例では空燃比補正係数KAFをなまして得たアルコール濃度学習値KREFXに基づいてアルコール濃度が学習(検出)される。燃料としてE100からE22までを予定するが、アルコール濃度補正係数KREFBSはその中間のE64に相当する値(1.0。補正なし)となるように初期値が設定される。
図6の左端に示す如く、E64使用時、給油により燃料がE100に切り替えられたとすると、それに応じて空燃比補正係数KAFとそれをなましたアルコール濃度学習値KREFXは変化し、アルコール濃度補正係数は1.2に修正される。
その後、末尾のフラグF_REFUELFFV(給油判定)から、アイドル中に給油により燃料がE22に切り替えられたとすると、空燃比補正係数KAFと学習値KREFXは反転し、アルコール濃度補正係数は0.8に修正される。
上記を前提としてこの実施例の特徴であるオイル混入燃料による燃料噴射量の減少補正について説明する。
図7はその処理の中のオイル混入アルコールによる蒸散(蒸発)の影響可能性判断処理を示すフロー・チャートである。図示のプログラムは、燃料噴射量算出ブロック0aにおいてそれぞれの気筒のTDC付近の所定クランク角度で実行される。
以下説明すると、S300においてエンジン冷却水温TWが暖機判定水温TWOCNTMFFV以上か否か判断し、否定されるときはエンジン10の暖機が完了していないと判断されることからS302に進み、今回エンジン10を始動してから現在までの総燃料噴射量USEDGASを積算し、積算値をUGSOCTMFFVに保持(記憶)する。
次いでS304に進み、算出されたアルコール濃度補正係数KREFBSが所定値KRBSOCTMFFV以上か否か、換言すれば燃料のアルコール濃度が高いか否か判断する。S304で肯定されるときはS306に進み、算出された燃料噴射量TOUTが所定値TOUTOCTMFFV以上か、即ち、アルコール噴射量が多いか否か判断する。
S306で肯定されるときはS308に進み、カウンタ値COCTMFFVに所定値DCTOCTMPを加算して増加補正する。次いでS310に進み、フラグF_OCTMCNDのビットを0にリセットする。このフラグは後述する。
S300からS310までの処理は、暖機される間、燃料がクランクケース48の下部に滴下する条件が発生した回数からオイル内に混入した燃料量を推定する処理であり、燃料噴射量から減算される蒸発分の算出の基礎を決定する作業である。S304あるいはS306で否定されるときにS308をスキップするのは、アルコール濃度が低いか、燃料噴射量が少ないときは、燃料がクランクケース48の下部に滴下する条件を満たさないためである。
他方、S300で肯定されるときは暖気完了と判断されるのでS312に進み、図示しない別ルーチンで積算された総燃料噴射量USEDGASから暖機完了前に保持された暖機完了前総燃料噴射量UGSOCTMFFVを減算し、よって得た差をDUGSOCTMFFVとする。この値DUGSOCTMFFVは、暖機完了後の総燃料噴射量を意味する。
次いでS314に進み、S312で算出された暖機完了後の総燃料噴射量が所定値DUGSOCTMFFVL以上か否か、換言すれば暖機後の総燃料噴射量(総発熱量)が所定値以上になり、オイル温度も所定値以上(オイル混入燃料が蒸発する温度以上)になったか否か判断し、肯定されるときはS316に進み、前記したカウンタ値COCTMFFVから所定値DCTOCTMMを減算して減少補正する。
次いでS318に進み、前記カウンタ値COCTMFFVが所定値CTOCTMFFVO以上か否か判断する。S318で肯定されるときはオイル内に混入した燃料量が多く、オイルから蒸発すると判断できることからS320に進み、吸入空気量GAIRが所定値GAIROCTMFFV以下か否か、換言すればエンジン10の負荷が低いか否か判断する。
S320で肯定されるときはオイル内の燃料が蒸発しており、かつ低負荷にあることから、オイル混入アルコールによる蒸散(蒸発)の影響が大きいと判断し、S322に進み、前記したフラグF_OCTMCNDのビットを1にセットする。
他方、S314,S318あるいはS320で否定されるときは、その影響は大きいと判断されないことからS324に進み、前記したフラグのビットを0にリセットする。このように、このフラグのビットを1にセットすることは、オイル混入アルコールによる蒸散(蒸発)の影響が大きいと判断されたことを意味する。
図8は、図7の処理と平行して実行されるオイル混入燃料減算項の算出処理を示すフロー・チャートである。図示のプログラムも、燃料噴射量算出ブロック40aにおいてそれぞれの気筒のTDC付近の所定クランク角度で実行される。
以下説明すると、S400において前記したフラグF_OCTMCNDのビットが1にセットされているか否か判断し、肯定されるときはS402に進み、アルコール濃度学習値KREFX(前記した空燃比補正係数KAFが収束すべき収束値)から所定値DKRFKCTMFFVを減算し、よって得た値をdkrfkctmffvとする。
次いでS404に進み、算出された空燃比補正係数KAFがこの値未満か否か判断する。S404で否定されるときは以降の処理をスキップすると共に、肯定されるときは空燃比補正係数KAFが収束値KREFXよりも所定値DKRFKCTMFFV以上小さい、即ち、所定値以上、燃料を減少させる側に変化したと判断されることから、S406に進み、オイル混入燃料減算項KCTMFFVにある値DKCTMFFVを加算して増加補正する。
次いでS408に進み、補正されたオイル混入燃料減算項KCTMFFVがmax値を超えるときはそれに制限するリミット処理を行う。この結果、S20においてオイル混入燃料減算項KCTMFFVで燃料噴射量TOUTが減算される。
尚、S400で否定されるときは、オイル混入アルコールによる蒸散(蒸発)の影響が大きいと判断されないことから、換言すればオイルに混入した燃料が影響を与えるほど蒸発していないと判断されることからS410に進み、オイル混入燃料減算項KCTMFFVを零に設定する。
この実施例は上記の如く、排気中の空燃比を検出する空燃比検出手段(広域空燃比センサ84)と、前記検出された空燃比KACTと目標空燃比KCMDとの偏差に応じて燃料噴射量TOUTの空燃比補正係数KAFを算出する空燃比補正係数算出手段(燃料噴射量算出ブロック40a)、前記空燃比補正係数KAFをなまして学習値(アルコール濃度学習値KREFX)を算出する学習値算出手段と、少なくとも前記算出される空燃比補正係数KAFと前記学習値(アルコール濃度学習値KREFX)に基づいて前記燃料噴射量TOUTを算出する燃料噴射量算出手段(燃料噴射量算出ブロック40a)と、クランクケース48内のブローバイガスを吸気系に還流させるブローバイガス還流装置(還流通路68)と、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあるか否か判定するオイル混入燃料蒸発判定手段(燃料噴射量算出ブロック40a,S300からS324,S400からS410)と、前記オイル混入燃料蒸発判定手段の判定結果に従ってオイル混入燃料減算項を算出して前記燃料噴射量から減算する噴射燃料量減算手段(燃料噴射量算出ブロック40a,S20,S400からS410)とを備える内燃機関(エンジン)10の制御装置において、前記噴射燃料量減算手段は、前記クランクケース内のオイルに混入した燃料が蒸発していると判定されたと共に、前記空燃比補正係数KAFが前記学習値(アルコール濃度学習値KREFX)から所定値DKRFKCTMFFVを減算して得た値よりも小さいとき、前記オイル混入燃料減算項の値を増加する(S400からS406)如く構成した。
このようにオイル混入燃料蒸発判定手段の判定結果に従ってオイル混入燃料減算項KCTMFFVを算出して空燃比補正係数KAFなどから算出される燃料噴射量TOUTから減算することで、オイル混入燃料が蒸発しているときでも、空燃比補正係数KAFを然らざる場合に収束する値(アルコール濃度学習値KREFX)に収束させておくことができ、急加速によって吸入空気量GAIRと基本燃料噴射量TIMが増加しても、それに応じた燃料噴射量を噴射することができ、よって発進性能およびアイドル安定性を確保することができる。また、空燃比補正係数KAFが空燃比補正係数をなまして得た学習値(アルコール濃度学習値KREFX)から所定値DKRFKCTMFFVを減算して得た値よりも小さいとき、即ち、燃料を減少させる側に変化したときにオイル混入燃料補正項KCTMFFVを増加させるので、不要なオイル混入燃料補正量の増加を防ぐことができ、空燃比補正係数KAFを安定して収束させることができる。
また、前記内燃機関の機関負荷を検出する機関負荷検出手段(エアフローメータ74)と、前記燃料のアルコール濃度が既定値より高いか否か判定するアルコール濃度判定手段(燃料噴射量算出ブロック40a,S304)と、前記内燃機関の暖機が完了したか否か判定する暖機完了判定手段(燃料噴射量算出ブロック40a,S300)と、前記暖機が完了していず、前記燃料のアルコール濃度が前記既定値より高いと共に、前記燃料噴射量が所定噴射量より多いと判定される度に増加するようにオイル内混入燃料量推定値(カウンタ値COCTMFFV)を算出するオイル内混入燃料量推定値算出手段(燃料噴射量算出ブロック40a,S300からS308)とを備え、前記オイル混入燃料蒸発判定手段は、前記オイル内混入燃料量推定値(カウンタ値COCTMFFV)が所定値CTOCTMFFVOより大きいと共に、前記機関負荷(吸入空気量GAIR)が所定負荷(所定値GAIROCTMFFV)より小さいとき、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあると判定する(S318からS322)如く構成した。
この発明の実施例に係る内燃機関の制御装置を全体的に示す概略図である。 図1に示す装置の動作、より具体的には図1に示す装置の中のECU(電子制御ユニット)の動作を説明するブロック図である。 図2に示す燃料噴射量算出ブロックの燃料噴射量TOUTの算出処理を示すフロー・チャートである。 図2のアルコール濃度学習ブロックの処理を示すフロー・チャートである。 同様に図2のアルコール濃度学習ブロックの処理を示すフロー・チャートである。 図2のアルコール濃度学習を説明するタイム・チャートである。 図2の燃料噴射量算出ブロックの処理の中のオイル混入アルコールによる蒸散(蒸発)の影響可能性判断処理を示すフロー・チャートである。 図7の処理と平行して実行される燃料噴射量算出ブロックの処理の中のオイル混入燃料減算項の算出処理を示すフロー・チャートである。
符号の説明
10 内燃機関(エンジン)、16 スロットルバルブ、22 DCモータ、24 メイン・インジェクタ、26 メイン燃料タンク、40 ECU(電子制御ユニット)、44 点火プラグ、56 触媒装置、62 キャニスタ、68 還流通路(ブローバイガス還流装置)、70 動弁機構、72 クランク角センサ、74 エアフローメータ、76 MAPセンサ、80 水温センサ、84 広域空燃比センサ、90 アクセル開度センサ、92 車速センサ、94 大気圧センサ

Claims (2)

  1. 排気中の空燃比を検出する空燃比検出手段と、前記検出された空燃比と目標空燃比との偏差に応じて燃料噴射量の空燃比補正係数を算出する空燃比補正係数算出手段と、前記空燃比補正係数をなまして学習値を算出する学習値算出手段と、少なくとも前記算出される空燃比補正係数と前記学習値に基づいて前記燃料噴射量を算出する燃料噴射量算出手段と、クランクケース内のブローバイガスを吸気系に還流させるブローバイガス還流装置と、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあるか否か判定するオイル混入燃料蒸発判定手段と、前記オイル混入燃料蒸発判定手段の判定結果に従ってオイル混入燃料減算項を算出して前記燃料噴射量から減算する噴射燃料量減算手段とを備える内燃機関の制御装置において、前記噴射燃料量減算手段は、前記クランクケース内のオイルに混入した燃料が蒸発していると判定されると共に、前記空燃比補正係数が前記学習値から所定値を減算して得た値よりも小さいとき、前記オイル混入燃料減算項の値を増加することを特徴とする内燃機関の制御装置。
  2. さらに、前記内燃機関の機関負荷を検出する機関負荷検出手段と、前記燃料のアルコール濃度が既定値より高いか否か判定するアルコール濃度判定手段と、前記内燃機関の暖機が完了したか否か判定する暖機完了判定手段と、前記暖機が完了していず、前記燃料のアルコール濃度が前記既定値より高いと共に、前記燃料噴射量が所定噴射量より多いと判定される度に増加するようにオイル内混入燃料量推定値を算出するオイル内混入燃料量推定値算出手段とを備え、前記オイル混入燃料蒸発判定手段は、前記オイル内混入燃料量推定値が所定値より大きいと共に、前記機関負荷が所定負荷より小さいとき、前記クランクケース内のオイルに混入した燃料の蒸発の影響が大きい領域にあると判定することを特徴とする請求項1記載の内燃機関の制御装置。
JP2006300995A 2006-11-06 2006-11-06 内燃機関の制御装置 Expired - Fee Related JP4769166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300995A JP4769166B2 (ja) 2006-11-06 2006-11-06 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300995A JP4769166B2 (ja) 2006-11-06 2006-11-06 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2008115805A JP2008115805A (ja) 2008-05-22
JP4769166B2 true JP4769166B2 (ja) 2011-09-07

Family

ID=39501945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300995A Expired - Fee Related JP4769166B2 (ja) 2006-11-06 2006-11-06 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4769166B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093510B2 (ja) * 2008-11-26 2012-12-12 三菱自動車工業株式会社 燃料のアルコール濃度推定装置
JP5057100B2 (ja) * 2008-11-26 2012-10-24 三菱自動車工業株式会社 燃料のアルコール濃度推定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860719B2 (ja) * 1991-04-02 1999-02-24 本田技研工業株式会社 空燃比制御装置
JP2004251136A (ja) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd 内燃機関の燃料性状推定装置
JP4348705B2 (ja) * 2004-11-17 2009-10-21 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2006177288A (ja) * 2004-12-24 2006-07-06 Denso Corp エンジンの燃料系異常検出装置

Also Published As

Publication number Publication date
JP2008115805A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
JP3496468B2 (ja) 内燃機関の蒸発燃料濃度判定装置
WO2008111689A1 (ja) 内燃機関の制御装置および制御方法
JP2004316544A (ja) 圧縮着火式内燃機関の燃料カット制御装置
JP4477249B2 (ja) 筒内噴射型内燃機関の制御装置
JP4778401B2 (ja) 内燃機関の制御装置
JP3666460B2 (ja) 内燃機関の蒸発燃料処理装置
KR19990014156A (ko) 성층 연소를 행하는 내연 기관의 제어 장치
JP4769167B2 (ja) 内燃機関の制御装置
WO2011129267A1 (ja) バイフューエルエンジンの空燃比学習制御装置
JP4769166B2 (ja) 内燃機関の制御装置
JP5586733B1 (ja) 内燃機関の燃料噴射量制御装置および内燃機関の燃料噴射量制御方法
JP3753166B2 (ja) 内燃機関の蒸発燃料処理装置
JPS63186955A (ja) 空燃比制御装置
JP2013113143A (ja) 内燃機関の蒸発燃料処理装置
JP4758866B2 (ja) 内燃機関の制御装置
JP3846481B2 (ja) 筒内噴射式内燃機関の制御装置
JP5077768B2 (ja) 内燃機関の燃料噴射制御装置
JP4729316B2 (ja) 内燃機関の制御装置
JP3677953B2 (ja) 内燃機関の燃料供給制御装置
JP2008115804A (ja) 内燃機関の制御装置
JP4819852B2 (ja) 内燃機関の制御装置
JP3835975B2 (ja) 筒内噴射式内燃機関の制御装置
JP4667783B2 (ja) 内燃機関の制御装置
US6273063B1 (en) Apparatus and method for controlling idle rotation speed of an internal combustion engine
JP7580889B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Ref document number: 4769166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees