[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4766501B2 - Carbon fiber processing method - Google Patents

Carbon fiber processing method Download PDF

Info

Publication number
JP4766501B2
JP4766501B2 JP2000382749A JP2000382749A JP4766501B2 JP 4766501 B2 JP4766501 B2 JP 4766501B2 JP 2000382749 A JP2000382749 A JP 2000382749A JP 2000382749 A JP2000382749 A JP 2000382749A JP 4766501 B2 JP4766501 B2 JP 4766501B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
sizing agent
fluid
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000382749A
Other languages
Japanese (ja)
Other versions
JP2002180369A (en
Inventor
誠司 刀禰
直樹 杉浦
幸一 藤江
裕之 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Toyohashi University of Technology NUC
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Toyohashi University of Technology NUC, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000382749A priority Critical patent/JP4766501B2/en
Publication of JP2002180369A publication Critical patent/JP2002180369A/en
Application granted granted Critical
Publication of JP4766501B2 publication Critical patent/JP4766501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は繊維強化樹脂の補強材として使用する炭素繊維の処理方法に関する。
【0002】
【従来の技術】
炭素繊維を補強材とする繊維強化樹脂は、軽量であり、かつ強度や弾性率に優れているため、スポーツ、レジャー用品の構成部品や、宇宙航空機の構成部品等の幅広い分野にわたって、その用途開発が進められている。
この炭素繊維は、一般的にトウと呼ばれる数千〜数万本のフィラメントからなる繊維束として使用されることが多い。例えば、トウを一方向に引き揃え、これに樹脂を含浸して一方向配向プリプレグ(UDプリプレグ)を製造し、ついでこれを成形することによって、繊維強化樹脂の成形体を製造できる。
このUDプリプレグの製造方法としては、溶剤法とホットメルト法が一般的であるが、最近では、生産性が優れるとともに、様々な炭素繊維目付のUDプリプレグが生産できることからホットメルト法が多く採用されている。
【0003】
ホットメルト法は、数百本の炭素繊維からなるトウを一方向かつ等間隔に引き揃え、離型紙に塗工した樹脂フィルムをラミネートした後加熱して、炭素繊維間に樹脂を含浸させる方法である。
このようなプリプレグ製造工程のうち、特に初期には、トウは摩擦によって毛羽が生じ易く、取り扱い性が悪くなる。そのため、通常、トウの表面をサイジング剤でコートし、繊維の集束性を高め、耐擦過性や取り扱い性を向上させる処理がなされている。
【0004】
一方、近年、超臨界及び亜臨界流体を用いたさまざまな研究が行われている。
例えば、特開平10−87872号公報には、繊維強化プラスチックを反応器内で超臨界水または亜臨界水と接触、反応させることにより、繊維を分離、回収し、再利用する繊維回収再利用方法や、分離、回収した繊維の表面を精製することが記載されている。
【0005】
【発明が解決しようとする課題】
サイジング剤が付着されていると収束性は高くなり、プリプレグ製造工程の初期における炭素繊維の耐擦過性や取扱い性が向上する。ところがその一方で、プリプレグ製造工程の中期に行う炭素繊維の開繊処理工程において、炭素繊維を十分に開繊できなくなるという問題があった。
また、炭素繊維と樹脂からなる繊維強化樹脂は、高温で使用されたり、電子部品に使用されるケースが増えている。サイジング剤は、通常有機物からなるため、これが繊維強化樹脂の熱劣化や汚染などを引き起こす場合があった。
【0006】
本発明はこのような現状に鑑みてなされたもので、サイジング剤を非常に高い割合で除去することによって、開繊性に優れ、高温で使用されたり、電子部品に使用されたりした場合でも、繊維強化樹脂の熱劣化や汚染などを引き起こさない、繊維強化樹脂の補強材に適した炭素繊維を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、超臨界または亜臨界流体を用いた処理が有効であることを見いだし、本発明を完成するに至った。本発明の炭素繊維の処理方法は、親水性高分子化合物からなるサイジング剤が付着した炭素繊維を350〜460℃の超臨界または亜臨界の水で処理して、サイジング剤を除去することを特徴とする
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で処理される炭素繊維は、炭素繊維前駆体を酸化雰囲気中で耐炎化処理し、ついで、この耐炎化繊維を不活性ガス雰囲気中、800〜2000℃程度で焼成し、さらに必要に応じてこれをより高温の不活性ガス中で焼成して得られた通常の炭素繊維であって、その表面にサイジング剤が付着されたものである。炭素繊維前駆体は、アクリロニトリル系重合体、ピッチなどを紡糸して得られた通常のものである。
サイジング剤は、通常、焼成後の炭素繊維にさらに、電解酸化処理、気相酸化処理などの表面処理をした後に付着される。
【0009】
サイジング剤は、通常、エポキシ系化合物や水溶性ポリマーなどの有機物からなる。本発明の処理法においては、これら有機物からなるサイジング剤であればいかなる種類のサイジング剤でも効果的に除去できるが、特に、単に繊維表面に付着するだけでなく、エポキシ系化合物のように炭素繊維の表面と化学反応することによって、繊維表面を覆う種類のサイジング剤に対して、優れた除去効果を発現する。
【0010】
次にこのようなサイジング剤が付着した炭素繊維を超臨界または亜臨界流体で処理する方法を具体的に説明する。
ここで、超臨界流体とは、流体に固有の臨界点よりも温度と圧力を上げることにより超臨界状態となった流体であり、亜臨界流体とは、臨界点よりも温度または圧力の少なくとも一方が低く、圧縮気体と圧縮液体が共存した流体である。
超臨界流体または亜臨界流体による処理の条件や方法は、使用する流体の種類はもちろんのこと、サイジング剤の種類及び付着量、炭素繊維の形態、太さ、本数などに応じて任意に設定できるが、例えば次のようにして行うことができる。
【0011】
まず、圧力センサーが備えられた回分式耐圧処理容器に、サイジング剤が付着した炭素繊維と水を投入して加熱する。水の臨界点は温度374.4℃、圧力22.1MPaであるので、通常300〜500℃、好ましくは350〜460℃に加熱して、圧力を通常15〜30MPa、好ましくは20〜25MPaとし、水を処理容器内で超臨界または亜臨界状態とする。ついで、この状態で10分〜3時間保持し、処理容器内の繊維を処理する。
ここで流体として水を使用する場合、加熱温度が300℃未満では、サイジング剤の除去が不十分となる場合がある。一方、500℃を超えると炭素繊維の強度が低下する傾向がある。また、圧力が15MPa未満ではサイジング剤の除去が不十分となる傾向があり、30MPaを超えると炭素繊維の強度が低下する傾向がある。また、流体が水の亜臨界流体である場合、保持時間は30分〜3時間が好ましく、流体が水の超臨界流体である場合には10分〜2時間が好ましい。さらに、保持時間が上記範囲未満ではサイジング剤の除去が不十分となる傾向があり、上記範囲を超えると炭素繊維の強度が低下する傾向がある。
こうしてサイジング剤が付着した炭素繊維を超臨界または亜臨界流体で処理した後、処理容器を冷却して常圧に戻し、処理後の炭素繊維を処理容器から取り出す。
【0012】
なお、このような処理においては、流体として、水以外に二酸化炭素、メタノールなどを使用でき、流体をその流体に応じた所定の温度及び圧力として、繊維を処理できるが、扱いやすく、低コストであり、さらに反応性に富んでいることから水を使用することが最も好ましい。
また、処理される繊維の形態には制限はなく、ボビンに巻き回された状態などであってもよい。また、あらかじめ流体が超臨界状態または亜臨界状態になっている容器内に繊維を導入してもよい。
処理容器の形態にも特に制限はないが、超臨界または亜臨界流体と直接接触する部分が、ハステロイ(Ni、Cr、Moなどからなる合金)やSUS等の耐腐食性材料から形成されたものを使用することが好ましい。
【0013】
このようにして処理することによって、炭素繊維表面のサイジング剤が流体中に溶解したり、または、加水分解や酸化反応により変性、分解することによって、炭素繊維表面のサイジング剤をほとんど除去することができる。
したがって、用途に応じて炭素繊維に付着したサイジング剤を容易に除去し、開繊性に優れ、かつ、高温で使用されたり、電子部品に使用されたりした場合でも、繊維強化樹脂の熱劣化や汚染などを引き起こさない、繊維強化樹脂の補強材に適した炭素繊維を提供することができる。
【0014】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
なお、処理装置と、得られた炭素繊維の各種物性測定方法を以下に示す。
1)処理装置
ハステロイからなる容積65.9mlの処理容器、撹拌翼付きのソルトバス(耐圧硝子株式会社製、TSC−B600型)、圧力センサー等から構成された回分式実験装置を使用した。
2)単繊維強度の試験
炭素繊維集合体を解繊し、任意の50本の単繊維を取り出し、各単繊維について試長25mmにて引張試験を行い、その平均強度を求めた。
3)表面元素スペクトルの測定
炭素繊維表面の元素の濃度は、X線光電子分光器(VG社製ESCALAB MK−II)で測定した。なお、サイジング剤由来のC1sピークは結合エネルギー286.2eV付近に出現するので、このピーク強度を炭素繊維を含めた全炭素由来のC1sピーク強度で除した値を表に示した。
【0015】
比較例A
ポリアクリロニトリル系炭素繊維パイロフィルTR50S(三菱レイヨン社製)を原糸として用いた。なお、これにはサイジング剤としてエポキシ系化合物が使用されている。処理容器に、上記原糸1g程度を10cm程度の長さとなるように切断して試料とし、圧力を考慮した量の純水とともに上記処理容器に仕込み、密閉した。処理容器の密閉後、処理容器を圧力センサーと接続して、あらかじめ350℃または450℃に加熱しておいた溶融塩槽に投入し、この時点を0分として、処理を開始した。60分後、槽内から処理容器を引き上げた後、処理容器全体を水中につけ、室温まで冷却した。その後、容器内の試料を回収した。処理後の炭素繊維を超純水で洗浄し、乾燥後、表面元素スペクトル、単繊維強度の測定及び開繊性の評価を行った。なお、開繊性は、目付けを目視により相対評価して判定した。結果を表1に示した。また、表中の略号はそれぞれ以下の内容を示す。
◎:開繊性に非常に優れていた。
○:開繊性は良好であった。
△:開繊性はあるが不十分であった。
【0016】
(比較例1)
比較例Aで用いた原糸の表面元素スペクトル、単繊維強度の測定及び開繊性の評価を行った。結果を比較例Aとともに表1に示した。
【0017】
実施例1
ポリアクリロニトリル系炭素繊維パイロフィルHR40(三菱レイヨン社製)を原糸として用いた以外は比較例Aと同様に処理を行い、評価した。結果を表2に示した。なお、これにはサイジング剤として親水性高分子化合物が使用されている。
【0018】
(比較例2)
実施例1で用いた原糸の表面元素スペクトル、単繊維強度の測定及び開繊性の評価を行った。結果を実施例1とともに表2に示した。
【0019】
【表1】

Figure 0004766501
【0020】
【表2】
Figure 0004766501
【0021】
表1及び表2から明らかなように、超臨界及び亜臨界状態にある水で処理された実施例1の炭素繊維をX線光電子分光法で測定したところ、サイジング剤に由来するC1sスペクトルが、全く確認されなかった。そして、この実施例の炭素繊維は、開繊性が非常に優れていた。
【0022】
【発明の効果】
以上説明したように本発明の処理方法によれば、サイジング剤が付着した炭素繊維を超臨界または亜臨界流体で処理することにより、サイジング剤を非常に高い割合で除去できる。
したがって、用途に応じて炭素繊維に付着したサイジング剤を容易に除去して、開繊性に優れ、かつ、高温で使用されたり、電子部品に使用されたりした場合でも、繊維強化樹脂の熱劣化や汚染などを引き起こさない、繊維強化樹脂の補強材に適した炭素繊維を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating carbon fiber used as a reinforcing material for fiber reinforced resin.
[0002]
[Prior art]
Fiber reinforced resin using carbon fiber as a reinforcing material is lightweight and has excellent strength and elastic modulus. Therefore, its application is developed in a wide range of fields such as components for sports and leisure goods and components for spacecraft. Is underway.
This carbon fiber is often used as a fiber bundle composed of thousands to tens of thousands of filaments generally called tow. For example, it is possible to produce a fiber-reinforced resin molding by aligning tows in one direction, impregnating the tow with resin to produce a unidirectionally oriented prepreg (UD prepreg), and then molding the unidirectionally oriented prepreg.
As a manufacturing method of this UD prepreg, a solvent method and a hot melt method are generally used, but recently, a hot melt method has been widely adopted because of its excellent productivity and production of various UD prepregs with a carbon fiber basis weight. ing.
[0003]
The hot melt method is a method in which tows made of several hundred carbon fibers are aligned in one direction and at equal intervals, and a resin film coated on a release paper is laminated and then heated to impregnate the resin between the carbon fibers. is there.
In such a prepreg manufacturing process, particularly in the initial stage, the tow is liable to be fluffed by friction, resulting in poor handling. For this reason, the tow surface is usually coated with a sizing agent to increase the fiber converging property and improve the scratch resistance and handling properties.
[0004]
On the other hand, in recent years, various studies using supercritical and subcritical fluids have been conducted.
For example, Japanese Patent Laid-Open No. 10-87872 discloses a fiber recovery and reuse method in which fibers are separated and recovered by contacting and reacting fiber reinforced plastic with supercritical water or subcritical water in a reactor. Further, it is described that the surface of the separated and recovered fiber is purified.
[0005]
[Problems to be solved by the invention]
When the sizing agent is attached, the convergence becomes high, and the scratch resistance and handling property of the carbon fiber in the initial stage of the prepreg manufacturing process are improved. However, on the other hand, there has been a problem that the carbon fiber cannot be sufficiently opened in the carbon fiber opening treatment process performed in the middle of the prepreg manufacturing process.
In addition, fiber reinforced resins made of carbon fiber and resin are used at high temperatures and are increasingly used for electronic components. Since the sizing agent is usually made of an organic substance, this may cause thermal deterioration or contamination of the fiber reinforced resin.
[0006]
The present invention has been made in view of such a current situation, and by removing the sizing agent at a very high rate, it is excellent in fiber opening, even when used at high temperatures or used in electronic components, It is an object of the present invention to provide a carbon fiber suitable for a reinforcing material of a fiber reinforced resin that does not cause thermal deterioration or contamination of the fiber reinforced resin.
[0007]
[Means for Solving the Problems]
The present inventors have found that treatment using a supercritical or subcritical fluid is effective, and have completed the present invention. The carbon fiber treatment method of the present invention is characterized in that the sizing agent is removed by treating the carbon fiber to which a sizing agent comprising a hydrophilic polymer compound is adhered with supercritical or subcritical water at 350 to 460 ° C. to.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The carbon fiber to be treated in the present invention is obtained by flame-treating a carbon fiber precursor in an oxidizing atmosphere, and then firing the flame-resistant fiber in an inert gas atmosphere at about 800 to 2000 ° C., and further if necessary. This is a normal carbon fiber obtained by firing this in a higher temperature inert gas, and a sizing agent is attached to the surface thereof. The carbon fiber precursor is a normal one obtained by spinning an acrylonitrile polymer, pitch or the like.
The sizing agent is usually attached to the baked carbon fiber after further surface treatment such as electrolytic oxidation treatment or vapor phase oxidation treatment.
[0009]
The sizing agent is usually composed of an organic substance such as an epoxy compound or a water-soluble polymer. In the treatment method of the present invention, any type of sizing agent can be effectively removed as long as it is a sizing agent composed of these organic substances. In particular, the sizing agent not only adheres to the fiber surface but also carbon fiber such as an epoxy compound. By chemically reacting with the surface, an excellent removal effect is expressed with respect to the type of sizing agent covering the fiber surface.
[0010]
Next, a method for treating the carbon fiber having such a sizing agent attached thereto with a supercritical or subcritical fluid will be specifically described.
Here, the supercritical fluid is a fluid that is in a supercritical state by raising the temperature and pressure from the critical point inherent to the fluid, and the subcritical fluid is at least one of temperature and pressure from the critical point. Is a fluid in which compressed gas and compressed liquid coexist.
The conditions and method of treatment with a supercritical fluid or subcritical fluid can be arbitrarily set depending on the type of fluid used, the type and amount of sizing agent, the form, thickness, and number of carbon fibers. However, it can be performed as follows, for example.
[0011]
First, carbon fiber and water with a sizing agent attached are put into a batch pressure-resistant treatment vessel equipped with a pressure sensor and heated. Since the critical point of water is a temperature of 374.4 ° C. and a pressure of 22.1 MPa, it is usually heated to 300 to 500 ° C., preferably 350 to 460 ° C., and the pressure is usually 15 to 30 MPa, preferably 20 to 25 MPa. Water is brought into a supercritical or subcritical state in the processing vessel. Subsequently, it hold | maintains for 10 minutes-3 hours in this state, and processes the fiber in a processing container.
Here, when water is used as the fluid, if the heating temperature is less than 300 ° C., the removal of the sizing agent may be insufficient. On the other hand, when it exceeds 500 ° C., the strength of the carbon fiber tends to decrease. Further, when the pressure is less than 15 MPa, removal of the sizing agent tends to be insufficient, and when it exceeds 30 MPa, the strength of the carbon fiber tends to decrease. When the fluid is a subcritical fluid of water, the retention time is preferably 30 minutes to 3 hours, and when the fluid is a supercritical fluid of water, 10 minutes to 2 hours is preferable. Furthermore, if the holding time is less than the above range, the removal of the sizing agent tends to be insufficient, and if it exceeds the above range, the strength of the carbon fiber tends to decrease.
After treating the carbon fiber to which the sizing agent is adhered in this way with a supercritical or subcritical fluid, the treatment vessel is cooled to normal pressure, and the treated carbon fiber is taken out from the treatment vessel.
[0012]
In such treatment, carbon dioxide, methanol, etc. can be used as the fluid in addition to water, and the fiber can be treated with the fluid at a predetermined temperature and pressure according to the fluid. In addition, it is most preferable to use water because of its high reactivity.
Moreover, there is no restriction | limiting in the form of the fiber processed, The state wound around the bobbin etc. may be sufficient. Further, the fiber may be introduced into a container in which the fluid is in a supercritical state or a subcritical state in advance.
There are no particular restrictions on the shape of the processing vessel, but the part in direct contact with the supercritical or subcritical fluid is formed from a corrosion resistant material such as Hastelloy (alloy made of Ni, Cr, Mo, etc.) or SUS. Is preferably used.
[0013]
By treating in this way, the sizing agent on the surface of the carbon fiber can be dissolved in the fluid, or the sizing agent on the surface of the carbon fiber can be almost removed by modification or decomposition by hydrolysis or oxidation reaction. it can.
Therefore, the sizing agent adhering to the carbon fiber can be easily removed depending on the application, and the fiber reinforced resin can be thermally deteriorated even when used at high temperatures or in electronic parts. A carbon fiber suitable for a reinforcing material of a fiber reinforced resin that does not cause contamination or the like can be provided.
[0014]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
In addition, a processing apparatus and the various physical-property measuring method of the obtained carbon fiber are shown below.
1) Treatment apparatus A batch-type experimental apparatus composed of a 65.9 ml treatment vessel made of Hastelloy, a salt bath with a stirring blade (manufactured by Pressure Glass Co., Ltd., TSC-B600 type), a pressure sensor and the like was used.
2) Test of single fiber strength The carbon fiber aggregate was defibrated, an arbitrary 50 single fibers were taken out, a tensile test was performed on each single fiber at a test length of 25 mm, and the average strength was obtained.
3) Measurement of surface element spectrum The concentration of the element on the surface of the carbon fiber was measured with an X-ray photoelectron spectrometer (ESCALAB MK-II manufactured by VG). Since the C1s peak derived from the sizing agent appears in the vicinity of a binding energy of 286.2 eV, values obtained by dividing this peak intensity by the C1s peak intensity derived from all carbon including carbon fibers are shown in the table.
[0015]
( Comparative Example A )
Polyacrylonitrile-based carbon fiber pyrofil TR50S (manufactured by Mitsubishi Rayon Co., Ltd.) was used as the raw yarn. In this case, an epoxy compound is used as a sizing agent. About 1 g of the above raw yarn was cut into a processing container so as to have a length of about 10 cm to prepare a sample, which was charged into the processing container together with an amount of pure water in consideration of pressure, and sealed. After sealing the processing container, the processing container was connected to a pressure sensor and charged into a molten salt bath that had been heated to 350 ° C. or 450 ° C. in advance. After 60 minutes, the processing container was pulled up from the tank, and then the entire processing container was immersed in water and cooled to room temperature. Thereafter, the sample in the container was collected. The treated carbon fiber was washed with ultrapure water, dried, then subjected to measurement of surface element spectrum, single fiber strength, and evaluation of fiber opening property. In addition, the fiber opening property was determined by relatively evaluating the basis weight with the naked eye. The results are shown in Table 1. The abbreviations in the table indicate the following contents.
(Double-circle): It was very excellent in the opening property.
○: Opening property was good.
(Triangle | delta): Although there was a fiber opening property, it was inadequate.
[0016]
(Comparative Example 1)
The surface element spectrum of the raw yarn used in Comparative Example A , the measurement of single fiber strength, and the evaluation of the spreadability were performed. The results are shown in Table 1 together with Comparative Example A.
[0017]
( Example 1 )
The treatment was performed and evaluated in the same manner as in Comparative Example A except that polyacrylonitrile-based carbon fiber pyrofil HR40 (manufactured by Mitsubishi Rayon Co., Ltd.) was used as the raw yarn. The results are shown in Table 2. In this case, a hydrophilic polymer compound is used as a sizing agent.
[0018]
(Comparative Example 2)
The surface element spectrum of the raw yarn used in Example 1 , the measurement of single fiber strength, and the evaluation of the spreadability were performed. The results are shown in Table 2 together with Example 1 .
[0019]
[Table 1]
Figure 0004766501
[0020]
[Table 2]
Figure 0004766501
[0021]
As is apparent from Tables 1 and 2, when the carbon fiber of Example 1 treated with water in a supercritical and subcritical state was measured by X-ray photoelectron spectroscopy, the C1s spectrum derived from the sizing agent was It was not confirmed at all. And the carbon fiber of this Example was very excellent in opening property.
[0022]
【The invention's effect】
As described above, according to the treatment method of the present invention, the sizing agent can be removed at a very high rate by treating the carbon fiber to which the sizing agent is adhered with a supercritical or subcritical fluid.
Therefore, the sizing agent adhering to the carbon fiber can be easily removed depending on the application, and the fiber reinforced resin is thermally deteriorated even when used at high temperatures or electronic parts, with excellent openability. It is possible to provide a carbon fiber suitable for a reinforcing material of a fiber reinforced resin that does not cause contamination or contamination.

Claims (1)

親水性高分子化合物からなるサイジング剤が付着した炭素繊維を350〜460℃の超臨界または亜臨界の水で処理して、サイジング剤を除去することを特徴とする炭素繊維の処理方法。 A method for treating carbon fiber, comprising treating a carbon fiber to which a sizing agent comprising a hydrophilic polymer compound is attached with supercritical or subcritical water at 350 to 460 ° C. to remove the sizing agent.
JP2000382749A 2000-12-15 2000-12-15 Carbon fiber processing method Expired - Lifetime JP4766501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382749A JP4766501B2 (en) 2000-12-15 2000-12-15 Carbon fiber processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382749A JP4766501B2 (en) 2000-12-15 2000-12-15 Carbon fiber processing method

Publications (2)

Publication Number Publication Date
JP2002180369A JP2002180369A (en) 2002-06-26
JP4766501B2 true JP4766501B2 (en) 2011-09-07

Family

ID=18850521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382749A Expired - Lifetime JP4766501B2 (en) 2000-12-15 2000-12-15 Carbon fiber processing method

Country Status (1)

Country Link
JP (1) JP4766501B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509651B2 (en) * 2004-05-27 2010-07-21 国立大学法人豊橋技術科学大学 Fiber surface modification method and apparatus
CN103361991A (en) * 2013-07-08 2013-10-23 吴江龙纺纺织有限公司 Manufacturing technology of pilling prevention cloth
JP6491831B2 (en) * 2014-07-24 2019-03-27 Kyb株式会社 Method for producing carbon fiber reinforced carbon composite for sliding member
KR101760103B1 (en) * 2016-02-12 2017-07-20 (주)다인스 Numerical method for carbon fiber of sizing removed condition using image process
JP6393348B2 (en) * 2017-01-16 2018-09-19 永虹先進材料股▲ふん▼有限公司 Replacing oil on the surface of carbon fiber
JP6855137B2 (en) * 2017-09-22 2021-04-07 株式会社日本製鋼所 Molding method and molding equipment for fiber-reinforced thermoplastic resin molded products
KR102143024B1 (en) * 2019-06-17 2020-08-11 한국생산기술연구원 Method for preparation of heat-sink silicone elastomer compound
JP7133125B2 (en) * 2021-05-19 2022-09-08 伊澤タオル株式会社 A method for applying a sizing agent to a textile product, a method for producing a textile product with a sizing agent, a method for removing the sizing agent from a textile product with a sizing agent, and a method for producing a textile product from a textile product with a sizing agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732511B2 (en) * 1986-02-17 1995-04-10 東レ株式会社 Vibration plate for speaker
JP3134095B2 (en) * 1996-09-09 2001-02-13 工業技術院長 Fiber recovery and reuse method from fiber reinforced plastic

Also Published As

Publication number Publication date
JP2002180369A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
EP0375171B1 (en) Process for suface-treating reinforcing fibres with sulphones and surface-treated reinforcing fibres obtained thereby
EP0216518B1 (en) Fiber having thermoplastic resin coating
JP4766501B2 (en) Carbon fiber processing method
US5230956A (en) Polyamide-imide sized fibers
US4923752A (en) Sizing for carbon fiber
JP4340485B2 (en) Method for producing carbon fiber reinforced aluminum matrix composite
Salehi‐Mobarakeh et al. Improvement of mechanical properties of composites through polyamide grafting onto kevlar fibers
EP0252985B1 (en) Carbon fiber for composite materials
JP2658308B2 (en) Surface-modified inorganic fiber, method for producing the same, and method for reinforcing resin using the same
JP2014189935A (en) Processing method for carbon fiber yarn
JP6136639B2 (en) Carbon fiber bundle and method for producing the same
US3833402A (en) Graphite fiber treatment
JPH079444A (en) Carbon fiber bundle and prepreg
WO2019203088A1 (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP3862267B2 (en) Composite composed of heat-resistant fiber and siloxane polymer
EP3757284B1 (en) Sizing agent composition, method for producing carbon fibers, and carbon fibers each having sizing agent attached thereonto
Deitzel et al. Surface TREATMENT of TUFF pitch-based carbon fiber for adhesion promotion in high TG thermoplastic composites
KR910003351B1 (en) Method for after-treatment of carbon fiber
JP2003336129A (en) Strand of carbon fibers
JP2002180370A (en) Carbon fiber for metal oxide coating and method for producing the same
JPS61289178A (en) Improved thermal reinforcing method
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
US4961971A (en) Method of making oxidatively stable water soluble amorphous hydrated metal oxide sized fibers
JPH0665787B2 (en) Carbon fiber strand sizing method
JP2016188291A (en) Unidirectional fiber-reinforced resin tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

R150 Certificate of patent or registration of utility model

Ref document number: 4766501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term