[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4765401B2 - Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell - Google Patents

Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4765401B2
JP4765401B2 JP2005145424A JP2005145424A JP4765401B2 JP 4765401 B2 JP4765401 B2 JP 4765401B2 JP 2005145424 A JP2005145424 A JP 2005145424A JP 2005145424 A JP2005145424 A JP 2005145424A JP 4765401 B2 JP4765401 B2 JP 4765401B2
Authority
JP
Japan
Prior art keywords
fuel cell
membrane
polymer
cerium
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005145424A
Other languages
Japanese (ja)
Other versions
JP2006324094A (en
Inventor
仁郎 川添
真二 寺園
栄治 遠藤
敦義 竹中
達也 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005145424A priority Critical patent/JP4765401B2/en
Publication of JP2006324094A publication Critical patent/JP2006324094A/en
Application granted granted Critical
Publication of JP4765401B2 publication Critical patent/JP4765401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、初期の出力電圧が高く、長期に渡って高い出力電圧を得られる固体高分子形燃料電池用の電解質膜の製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法に関する。   The present invention relates to a method for producing an electrolyte membrane for a polymer electrolyte fuel cell and a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, which have a high initial output voltage and can obtain a high output voltage over a long period of time .

燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子形燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。   A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have been developed for polymer electrolyte membranes with high ionic conductivity, and can operate at room temperature to obtain high output density. With increasing social demand for environmental problems, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.

固体高分子形燃料電池では、通常、固体高分子電解質としてプロトン伝導性のイオン交換膜が使用され、特にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。   In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is particularly excellent in basic characteristics. In a polymer electrolyte fuel cell, gas diffusible electrode layers are arranged on both surfaces of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant are respectively supplied to an anode and a cathode. To generate electricity.

固体高分子形燃料電池のカソードにおける酸素の還元反応は過酸化水素(H)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードには、カソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又は過酸化物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子電解質膜とする場合は、ラジカルに対する安定性に乏しく、長期間にわたる運転においては大きな問題となっていた。 Since the reduction reaction of oxygen at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer There is concern about the possibility of causing deterioration of the electrolyte membrane. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, there is a concern that hydrogen peroxide or peroxide radicals may be similarly generated. In particular, when a hydrocarbon-based membrane is used as a solid polymer electrolyte membrane, the stability against radicals is poor, which has been a serious problem in long-term operation.

例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙船の電源として採用された時であり、この時にはスチレン−ジビニルベンゼン重合体をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問題があった。一方、炭化水素系の重合体からなる電解質膜に対し、ラジカルに対する安定性が格段に優れる重合体として、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が知られている。近年、これらのパーフルオロカーボン重合体からなるイオン交換膜を用いた固体高分子形燃料電池は、自動車用、住宅用市場等の電源として期待され、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コスト化が望まれている。また、燃料電池システム全体の効率の点から低加湿又は無加湿での運転が要求されることも多い。   For example, the polymer electrolyte fuel cell was first put into practical use when it was used as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-divinylbenzene polymer was used as an electrolyte membrane. However, there was a problem with durability over a long period of time. On the other hand, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is known as a polymer that is remarkably excellent in radical stability compared to an electrolyte membrane made of a hydrocarbon-based polymer. In recent years, polymer electrolyte fuel cells using ion-exchange membranes made of these perfluorocarbon polymers are expected to be used as power sources for automobiles and residential markets, etc. . In these applications, since operation with particularly high efficiency is required, operation at a higher voltage is desired and at the same time cost reduction is desired. In addition, from the viewpoint of the efficiency of the entire fuel cell system, operation with low or no humidification is often required.

しかし、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、低加湿又は無加湿での運転条件においては、電圧の低下が大きいことが報告されている(非特許文献1参照)。すなわち、低加湿又は無加湿での運転条件においては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜においても過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられる。   However, even in a fuel cell using an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, the stability is very high when operated under high humidification, but in operating conditions under low or no humidification. It has been reported that the voltage drop is large (see Non-Patent Document 1). That is, under operating conditions with low or no humidification, it is considered that deterioration of the electrolyte membrane proceeds due to hydrogen peroxide or peroxide radicals even in an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. .

陽イオン交換基を有するパーフルオロカーボン重合体からなるイオン交換膜から構成される電解質膜の劣化を抑制する方法として、電解質膜又は電極にリン酸セリウムを含ませる方法が報告されている(特許文献1参照)。リン酸セリウムを含む電解質膜の製造方法としては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を硝酸セリウムの水溶液に浸漬し、次いでリン酸水溶液に接触させ、リン酸セリウムを析出させる方法が報告されている(特許文献1参照)。また、リン酸セリウムを含む電極の製造方法としては、スルホン酸基を有するパーフルオロカーボン重合体の溶液分散液にリン酸セリウム粉末を混合させ、この液を塗工して電極を形成する方法が報告されている(特許文献1参照)。   As a method for suppressing deterioration of an electrolyte membrane composed of an ion exchange membrane made of a perfluorocarbon polymer having a cation exchange group, a method of containing cerium phosphate in an electrolyte membrane or an electrode has been reported (Patent Document 1). reference). As a method for producing an electrolyte membrane containing cerium phosphate, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is immersed in an aqueous solution of cerium nitrate, and then contacted with an aqueous solution of phosphoric acid to precipitate cerium phosphate. A method has been reported (see Patent Document 1). In addition, as a method for producing an electrode containing cerium phosphate, a method of forming an electrode by mixing cerium phosphate powder into a solution dispersion of a perfluorocarbon polymer having a sulfonic acid group and coating the solution is reported. (See Patent Document 1).

特開2005−71760号公報(請求項2、4頁19〜46行、9頁20行〜10頁7行、実施例1、実施例11)JP-A-2005-71760 (Claim 2, page 4, lines 19 to 46, page 9, line 20 to page 10, line 7, Example 1 and Example 11) 新エネルギー・産業技術総合開発機構主催 平成12年度固体高分子形燃料電池研究開発成果報告会要旨集、56頁16〜24行Summary of the 2000 report on research and development results on polymer electrolyte fuel cells sponsored by the New Energy and Industrial Technology Development Organization, page 56, lines 16-24

スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を硝酸セリウムの水溶液に浸漬し、次いでリン酸水溶液に接触させ、膜にリン酸セリウムを析出させて電解質を作製する方法には、以下の問題があった。   A method for producing an electrolyte by immersing an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group in an aqueous solution of cerium nitrate, then contacting the aqueous solution with phosphoric acid, and precipitating cerium phosphate on the membrane includes the following: There was a problem.

まず、膜表面に均一に斑なくリン酸セリウムを析出させることが困難であり、また析出したリン酸セリウムは表層の数ミクロンの厚み部分に堆積したものであり、機械的に容易に除去されてしまう。さらに、水溶液中で膨潤した膜を乾燥させる際に変形が生じ、安定した膜の加工が困難であった。加えて、この方法では、スルホン酸基の大部分は一端セリウムイオンで置換された後、リン酸にて加水分解されスルホン酸基に再生されるが、スルホン酸基の再生割合や析出させるリン酸セリウムの量を制御することは困難であった。   First, it is difficult to deposit cerium phosphate uniformly and uniformly on the film surface, and the deposited cerium phosphate is deposited on the surface of a few microns thick and is easily removed mechanically. End up. Furthermore, when a film swollen in an aqueous solution is dried, deformation occurs, and it is difficult to process the film stably. In addition, in this method, most of the sulfonic acid groups are once replaced with cerium ions, and then hydrolyzed with phosphoric acid to be regenerated into sulfonic acid groups. It was difficult to control the amount of cerium.

また、スルホン酸基を有するパーフルオロカーボン重合体の分散液にリン酸セリウム粉末を混合させ、この液を塗工して電極を形成する方法においては、リン酸セリウム粉末をパーフルオロカーボン重合体の分散液に微細かつ均一に分散させるには特殊な分散技術が必要とされる。さらに、高純度リン酸セリウム粉末を分散させる方法も提案されているが、工業的に高純度リン酸セリウム粉体を製造するには、大量のリン酸廃水及び洗浄水を必要とする。   In the method of mixing a cerium phosphate powder with a dispersion of a perfluorocarbon polymer having a sulfonic acid group and coating the liquid to form an electrode, the cerium phosphate powder is dispersed in a perfluorocarbon polymer dispersion. To disperse finely and uniformly, a special dispersion technique is required. Furthermore, although a method for dispersing high-purity cerium phosphate powder has been proposed, industrial production of high-purity cerium phosphate powder requires a large amount of phosphoric acid waste water and washing water.

本発明は、高い発電性能を有し、かつ長期間にわたって安定した発電が可能な固体高分子形燃料電池用膜又は固体高分子形燃料電池用膜電極接合体の製造方法であって、微細かつ粒度の揃ったリン酸セリウムを均一に含有する電解質膜又は触媒層を簡便に精度よく得ることのできる製造方法を提供することを目的とする。   The present invention relates to a method for producing a membrane for a polymer electrolyte fuel cell or a membrane electrode assembly for a polymer electrolyte fuel cell that has high power generation performance and is capable of stable power generation over a long period of time. An object of the present invention is to provide a production method capable of easily and accurately obtaining an electrolyte membrane or a catalyst layer containing cerium phosphate having a uniform particle size.

本発明は、陽イオン交換基を有する高分子化合物からなる陽イオン交換膜からなり、リン酸セリウムを含む固体高分子形燃料電池用電解質膜の製造方法であって、陽イオン交換基を有する高分子化合物の分散液に、炭酸セリウムを添加して陽イオン交換基の一部をセリウムイオンによりイオン交換した後、リン酸又はリン酸を含む溶液を前記分散液に添加して、該分散液中にリン酸セリウムを形成し、得られた液状組成物を用いてキャスト製膜し、電解質膜を作製することを特徴とする固体高分子形燃料電池用電解質膜の製造方法を提供する。   The present invention relates to a method for producing an electrolyte membrane for a polymer electrolyte fuel cell comprising a cation exchange membrane comprising a polymer compound having a cation exchange group, and containing cerium phosphate, the method comprising the steps of: After adding cerium carbonate to the molecular compound dispersion and ion-exchanging a part of the cation exchange groups with cerium ions, phosphoric acid or a solution containing phosphoric acid is added to the dispersion, A method for producing an electrolyte membrane for a polymer electrolyte fuel cell is provided, in which cerium phosphate is formed and cast using the obtained liquid composition to produce an electrolyte membrane.

また、本発明は、触媒及びイオン交換樹脂を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子形燃料電池用膜電極接合体の製造方法であって、上記の方法により前記電解質膜を作製することを特徴とする固体高分子形燃料電池用膜電極接合体の製造方法を提供する。   The present invention also relates to a membrane / electrode assembly for a polymer electrolyte fuel cell comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the cathode. A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein the electrolyte membrane is produced by the method described above.

さらに、本発明は、触媒及びイオン交換樹脂を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子形燃料電池用膜電極接合体の製造方法であって、陽イオン交換基を有する高分子化合物の分散液に、炭酸セリウムを添加して陽イオン交換基の一部をセリウムイオンによりイオン交換した後、リン酸又はリン酸を含む溶液を前記分散液に添加して、該分散液中にリン酸セリウムを形成し、得られた液状組成物に前記触媒を分散させ、塗工することにより前記カソード及び前記アノードの少なくとも一方を作製することを特徴とする固体高分子形燃料電池用膜電極接合体の製造方法を提供する。   Furthermore, the present invention provides a membrane electrode assembly for a polymer electrolyte fuel cell, comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the cathode. A method for producing a dispersion of a polymer compound having a cation exchange group, wherein cerium carbonate is added to ion-exchange a part of the cation exchange group with cerium ion, and then phosphoric acid or phosphoric acid is contained. A solution is added to the dispersion to form cerium phosphate in the dispersion, and the catalyst is dispersed in the obtained liquid composition and applied to produce at least one of the cathode and the anode. A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell is provided.

本発明の製造方法により、簡便に、精度よく、リン酸セリウムが膜中に均一に配合された電解質膜を得ることができる。本発明の製造方法では、陽イオン交換基を有する高分子化合物のイオン交換容量とその分散液のポリマー濃度に応じて、炭酸セリウム及びリン酸濃度を適宜調整して添加することが可能であり、キャスト製膜して得られる電解質膜のリン酸セリウム含有量を制御することができる。また、キャスト塗工時の液の濃度や塗工量を調整することより、均一な厚みの電解質膜を作製することができる。同様に、リン酸セリウムが均一に配合された触媒層を形成することができる。   By the production method of the present invention, an electrolyte membrane in which cerium phosphate is uniformly blended in the membrane can be obtained easily and accurately. In the production method of the present invention, the cerium carbonate and phosphoric acid concentrations can be appropriately adjusted and added according to the ion exchange capacity of the polymer compound having a cation exchange group and the polymer concentration of the dispersion, The cerium phosphate content of the electrolyte membrane obtained by casting can be controlled. Further, an electrolyte membrane having a uniform thickness can be produced by adjusting the concentration of liquid and the amount of coating at the time of cast coating. Similarly, a catalyst layer in which cerium phosphate is uniformly blended can be formed.

本発明の製造方法により得られる電解質膜又は触媒層は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有するため、本発明の電解質膜又は触媒層を有する膜電極接合体を備える固体高分子形燃料電池は、耐久性に優れ、長期にわたって安定な発電が可能である。   Since the electrolyte membrane or catalyst layer obtained by the production method of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals, a solid electrode comprising the membrane electrode assembly having the electrolyte membrane or catalyst layer of the present invention is provided. Molecular fuel cells are excellent in durability and can stably generate power over a long period of time.

本発明において、陽イオン交換基を有する高分子化合物の陽イオン交換基としては、特に制約されないが、スルホン酸基、カルボン酸基、スルホンイミド基、ホスホン酸基、ケトイミド基等が挙げられる。特に酸性度が強く、化学的安定性の高いスルホン酸基が好ましい。以下、スルホン酸基を有する高分子化合物を例にとり説明する。   In the present invention, the cation exchange group of the polymer compound having a cation exchange group is not particularly limited, and examples thereof include a sulfonic acid group, a carboxylic acid group, a sulfonimide group, a phosphonic acid group, and a ketoimide group. In particular, a sulfonic acid group having strong acidity and high chemical stability is preferred. Hereinafter, the polymer compound having a sulfonic acid group will be described as an example.

スルホン酸基を有する高分子化合物の分散液の分散媒としては、例えば、アルコール類、水等が挙げられる。なお、本明細書においてはスルホン酸基を有する高分子化合物の分散液には、スルホン酸基を有する高分子化合物の溶液も含まれるものとする。   Examples of the dispersion medium of the dispersion liquid of the polymer compound having a sulfonic acid group include alcohols and water. In this specification, the dispersion of a polymer compound having a sulfonic acid group includes a solution of the polymer compound having a sulfonic acid group.

本発明においては、スルホン酸基を有する高分子化合物の分散液に、炭酸セリウムを添加して溶解させる。炭酸セリウムとしては、Ce(CO・8HOが好ましい。当該分散液に炭酸セリウムを添加すると、セリウムは分散液中でイオンの状態で存在し、高分子化合物のスルホン酸基(−SOH)の少なくとも一部がセリウムイオンによりイオン交換されると考えられる。Ce(CO・8HOを用いた場合は、3価のセリウムイオンが生成する。炭酸塩は、一般的に水に難溶解性であるものが多いが、炭酸セリウムの場合は、スルホン酸基を有する高分子化合物の分散液に水を含有させておくと、容易に炭酸ガスを発生しながら溶解し、スルホン酸基の一部をイオン交換する。引き続き所定量のリン酸を添加すると、容易に再度イオン交換し、リン酸セリウム結晶を形成し安定に分散する。リン酸の添加量が適切な範囲であれば、本溶液をキャスト法で塗工し、溶媒を乾燥除去して電解質膜を得ると、当該電解質膜中にはポリマー官能基であるスルホン酸基以外のアニオン種は残存しないため、過剰のアニオンを水洗する必要は無い。このような膜の製造の観点からも炭酸塩は好ましい。 In the present invention, cerium carbonate is added and dissolved in a dispersion of a polymer compound having a sulfonic acid group. As cerium carbonate, Ce 2 (CO 3 ) 3 · 8H 2 O is preferable. When cerium carbonate is added to the dispersion, cerium is present in an ion state in the dispersion, and at least a part of the sulfonic acid group (—SO 3 H) of the polymer compound is ion-exchanged by cerium ions. It is done. When Ce 2 (CO 3 ) 3 · 8H 2 O is used, trivalent cerium ions are generated. Many carbonates are generally poorly soluble in water. However, in the case of cerium carbonate, carbon dioxide gas is easily generated by adding water to a dispersion of a polymer compound having a sulfonic acid group. It dissolves as it is generated and ion exchanges part of the sulfonic acid group. When a predetermined amount of phosphoric acid is subsequently added, ion exchange is easily performed again to form a cerium phosphate crystal and stably disperse. If the addition amount of phosphoric acid is in an appropriate range, this solution is applied by a casting method, and the solvent is removed by drying to obtain an electrolyte membrane. In addition to the sulfonic acid group that is a polymer functional group in the electrolyte membrane, Therefore, it is not necessary to wash the excess anion with water. From the viewpoint of production of such a membrane, carbonate is preferable.

分散液中に水が含まれないと、炭酸セリウムの溶解に時間を要する場合があるので、分散液中に水を含有させることが好ましい。分散液中に含有させる水の量は、スルホン酸基を有する高分子化合物のイオン交換容量や濃度、添加するセリウム又はマンガンとの交換率により適宜設定される。   If water is not contained in the dispersion, it may take time for dissolution of cerium carbonate. Therefore, it is preferable to contain water in the dispersion. The amount of water to be contained in the dispersion is appropriately set depending on the ion exchange capacity and concentration of the polymer compound having a sulfonic acid group and the exchange rate with cerium or manganese to be added.

スルホン酸基を有する高分子化合物の分散液の固形分濃度は特に限定されないが、後段の工程において通常のキャスト塗工が可能であるという観点から、高分子化合物は分散液全質量に対して5〜50%であることが好ましく、10〜35%であることがより好ましい。   The solid content concentration of the dispersion of the polymer compound having a sulfonic acid group is not particularly limited, but the polymer compound is 5 to the total mass of the dispersion from the viewpoint that normal cast coating is possible in the subsequent step. It is preferably ˜50%, more preferably 10 to 35%.

高分子化合物のスルホン酸基100当量に対し0.5〜80当量のセリウムイオンに相当する量の炭酸セリウムを添加することが好ましい。スルホン酸基100当量に対するセリウムイオンの当量を以下、「置換率」という。置換率はより好ましくは、1〜50当量である。置換率がこの範囲よりも小さいと過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。また置換率がこの範囲よりも大きいと、高分子化合物の凝集体が生成するおそれがある。   It is preferable to add an amount of cerium carbonate corresponding to 0.5 to 80 equivalents of cerium ion with respect to 100 equivalents of the sulfonic acid group of the polymer compound. The equivalent of cerium ion to 100 equivalent of sulfonic acid group is hereinafter referred to as “substitution rate”. The substitution rate is more preferably 1 to 50 equivalents. If the substitution rate is smaller than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the substitution rate is larger than this range, aggregates of polymer compounds may be formed.

また、セリウムイオン1当量に対し0.5〜4当量のリン酸イオンに相当する量のリン酸を添加することが好ましい。より好ましくはセリウムイオン1当量に対し1〜3当量である。該割合がこの範囲より低いとリン酸セリウムが十分に形成されないおそれがある。また該割合がこの範囲より高いと過剰のリン酸が残存し、膜電極接合体を形成した後、触媒を被毒するおそれがある。   Moreover, it is preferable to add the phosphoric acid of the quantity equivalent to 0.5-4 equivalent of phosphate ion with respect to 1 equivalent of cerium ions. More preferably, it is 1-3 equivalents with respect to 1 equivalent of cerium ions. If the ratio is lower than this range, cerium phosphate may not be sufficiently formed. On the other hand, if the ratio is higher than this range, excess phosphoric acid remains, and the catalyst may be poisoned after the membrane / electrode assembly is formed.

膜中に形成されるリン酸第一セリウム(リン酸セリウム(III)、CePO)又はリン酸第二セリウム(リン酸セリウム(IV)、Ce(PO)は無水物でもよく、結晶水又は水和水を有していてもよい。本発明では、リン酸セリウムの形態がいずれであっても、十分にその効果を得ることが可能である。 The cerium phosphate (cerium (III) phosphate, CePO 4 ) or cerium phosphate (cerium (IV) phosphate, Ce 3 (PO 4 ) 4 ) formed in the film may be anhydrous, You may have crystal water or hydration water. In the present invention, the effect can be sufficiently obtained regardless of the form of cerium phosphate.

キャスト製膜する分散液の固形分濃度は特に限定されない。通常のキャスト塗工が可能なように、濃度、粘度を調製することができるが、この観点から固形分濃度は液状組成物全質量に対する質量比で5〜50%、特に10〜35%であることが好ましい。   The solid content concentration of the dispersion to be cast is not particularly limited. The concentration and viscosity can be adjusted so that ordinary cast coating is possible, but from this point of view, the solid content concentration is 5 to 50%, particularly 10 to 35% in terms of mass ratio to the total mass of the liquid composition. It is preferable.

リン酸セリウムは一般に電気伝導度が低いため、膜中に添加した量に依存して電流遮蔽が発生する。したがって、本発明の製造方法により得られる電解質膜中に含まれるリン酸セリウムの好ましい割合としては、電解質膜全質量の0.3〜20%(質量比)であることが好ましく、より好ましくは0.4〜10%、さらに好ましくは0.5〜5%である。   Since cerium phosphate generally has low electrical conductivity, current shielding occurs depending on the amount added to the film. Therefore, the preferred ratio of cerium phosphate contained in the electrolyte membrane obtained by the production method of the present invention is preferably 0.3 to 20% (mass ratio) of the total mass of the electrolyte membrane, more preferably 0. .4 to 10%, more preferably 0.5 to 5%.

膜中のリン酸セリウムの含有量がこの範囲よりも少ないと、過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。また含有量がこの範囲よりも多いと、上述の様に電流遮蔽が発生するため、膜抵抗が増大して発電特性が低下するおそれがある。   If the content of cerium phosphate in the film is less than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content is larger than this range, current shielding occurs as described above, so that the membrane resistance increases and the power generation characteristics may be deteriorated.

電解質膜は、リン酸セリウムを不均一に含有するように調整することもできる。例えば、2層以上の層からなる陽イオン交換膜(積層膜)であってその全ての層ではなく少なくとも1層がリン酸セリウムを含有している、すなわち厚さ方向に不均一にリン酸セリウムを含んでいてもよい。したがって、特にアノード側について過酸化水素又は過酸化物ラジカルに対する耐久性を高める必要がある場合は、アノードに一番近い層のみリン酸セリウムを含有するイオン交換膜からなる層とすることもできる。   The electrolyte membrane can also be adjusted to contain cerium phosphate non-uniformly. For example, it is a cation exchange membrane (laminated membrane) composed of two or more layers, and at least one of the layers contains cerium phosphate, that is, cerium phosphate is unevenly distributed in the thickness direction. May be included. Therefore, when it is necessary to increase the durability against hydrogen peroxide or peroxide radicals particularly on the anode side, only the layer closest to the anode can be a layer made of an ion exchange membrane containing cerium phosphate.

なお、本発明により得られる電解質膜が積層膜からなる場合は、電解質膜全体に対するリン酸セリウムの割合が上述の範囲に入っていればよく、リン酸セリウムを含む層自体のリン酸セリウムの含有率は上述の範囲より高くてもよい。   In addition, when the electrolyte membrane obtained by the present invention is a laminated film, the ratio of cerium phosphate to the entire electrolyte membrane should be within the above range, and the cerium phosphate containing layer of cerium phosphate itself contains The rate may be higher than the above range.

本発明において電解質膜を構成する陽イオン交換膜は、スルホン酸基を有する高分子化合物からなることが好ましい。スルホン酸基を有する高分子化合物としては特に限定されないが、イオン交換容量は0.5〜3.0ミリ当量/g乾燥樹脂であることが好ましく、特に0.7〜2.5ミリ当量/g乾燥樹脂であることが好ましい。また、耐久性の観点から当該高分子化合物は含フッ素重合体であることが好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体(エーテル結合性の酸素原子を含んでいてもよい)が好ましい。上記パーフルオロカーボン重合体としては特に限定されないが、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロ化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。 In the present invention, the cation exchange membrane constituting the electrolyte membrane is preferably made of a polymer compound having a sulfonic acid group. The polymer compound having a sulfonic acid group is not particularly limited, but the ion exchange capacity is preferably 0.5 to 3.0 meq / g dry resin, particularly 0.7 to 2.5 meq / g. A dry resin is preferred. From the viewpoint of durability, the polymer compound is preferably a fluorine-containing polymer, and more preferably a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Is not particularly restricted but includes perfluorocarbon polymer but, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) perfluoro compound represented by n -SO 3 H (m is 0-3 N represents an integer of 1 to 12, p represents 0 or 1, X represents a fluorine atom or a trifluoromethyl group, and a polymer unit based on tetrafluoroethylene. It is preferable that it is a copolymer containing.

上記パーフルオロ化合物の好ましい例をより具体的に示すと、下記式(i)〜(iii)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。   When the preferable example of the said perfluoro compound is shown more concretely, the compound represented by following formula (i)-(iii) will be mentioned. However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.

Figure 0004765401
Figure 0004765401

スルホン酸基を有するパーフルオロカーボン重合体を用いる場合、重合後にフッ素化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。   When using the perfluorocarbon polymer which has a sulfonic acid group, you may use what the terminal of the polymer was fluorinated by fluorination after superposition | polymerization. When the terminal of the polymer is fluorinated, the durability against hydrogen peroxide and peroxide radicals is further improved, so that the durability is improved.

また、スルホン酸基を有する高分子化合物として、スルホン酸基を有するパーフルオロカーボン重合体以外のものも使用でき、例えば高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基が導入された構造を有する高分子化合物であって、イオン交換容量が0.8〜3.0ミリ当量/g乾燥樹脂である高分子化合物が好ましく使用できる。具体的には、例えば下記の高分子化合物が使用できる。   Further, as the polymer compound having a sulfonic acid group, those other than the perfluorocarbon polymer having a sulfonic acid group can be used, for example, having an aromatic ring in the main chain of the polymer or in the main chain and the side chain A polymer compound having a structure in which a sulfonic acid group is introduced into the aromatic ring and having an ion exchange capacity of 0.8 to 3.0 meq / g dry resin can be preferably used. Specifically, for example, the following polymer compounds can be used.

スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルホキシド、スルホン化ポリフェニレンサルファイド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等。   Sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylenesulfone, sulfonated polyphenyleneoxide, Sulfonated polyphenylene sulfoxide, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ketone ketone, sulfonated polyimide and the like.

上記スルホン酸基を有するパーフルオロカーボン重合体は、対応するフルオロスルホニル基(−SOF基)を有するモノマーを共重合させた後、加水分解、酸型化処理を行うことにより得られる。
スルホンイミド基(−SONHSO基)を有する高分子化合物は、対応するフルオロスルホニル基(−SOF基)を有するモノマーの−SOF基をスルホンイミド基に変換したモノマーを共重合させる、又は対応する−SOF基を有するポリマーを合成し、該ポリマーの−SOF基を変換することによって得られる。−SOF基は、RSONHM(Rはパーフルオロアルキル基、Mはアルカリ金属又は1〜4級のアンモニウム)との反応により塩型のスルホンイミド基(−SONMSO基)に変換でき、さらに硫酸、硝酸、塩酸等の酸で処理することにより、酸型に変換できる。
The perfluorocarbon polymer having a sulfonic acid group can be obtained by copolymerizing a monomer having a corresponding fluorosulfonyl group (—SO 2 F group), followed by hydrolysis and acidification treatment.
A polymer compound having a sulfonimide group (—SO 2 NHSO 2 R f group) is a monomer obtained by converting a —SO 2 F group of a monomer having a corresponding fluorosulfonyl group (—SO 2 F group) into a sulfonimide group. It is copolymerized, or corresponding to synthesize a polymer having -SO 2 F groups, is obtained by converting the -SO 2 F groups of the polymer. The —SO 2 F group is converted into a salt-type sulfonimide group (—SO 2 NMSO 2 R by reaction with R f SO 2 NHM (R f is a perfluoroalkyl group, M is an alkali metal or a quaternary ammonium group). f group) and can be converted into an acid form by treatment with an acid such as sulfuric acid, nitric acid or hydrochloric acid.

ホスホン酸基を有する高分子化合物としては、テトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFPO(OH)とに基づく繰り返し単位とを含む共重合体が好適な例として挙げられる。 As a polymer compound having a phosphonic acid group, a copolymer containing a repeating unit based on tetrafluoroethylene and a repeating unit based on CF 2 ═CFO (CF 2 ) 3 PO (OH) 2 is a preferable example. Can be mentioned.

本発明により得られる電解質膜は、リン酸セリウムを含む、陽イオン交換基を有する高分子化合物のみからなる膜であってもよいが、他の成分を含んでいてもよい。例えば、ポリテトラフルオロエチレン(以下、PTFEという)やパーフルオロアルキルエーテル等の他の樹脂等の繊維、織布、不織布、多孔体等により補強されている膜を、本発明の液状組成物を用いて製膜する方法にも適用できる。   The electrolyte membrane obtained by the present invention may be a membrane made of only a polymer compound having a cation exchange group, including cerium phosphate, but may contain other components. For example, a film reinforced with fibers such as polytetrafluoroethylene (hereinafter referred to as PTFE) or other resin such as perfluoroalkyl ether, a woven fabric, a nonwoven fabric, a porous body or the like is used for the liquid composition of the present invention. It can also be applied to the method of film formation.

本発明により得られる膜電極接合体を有する固体高分子形燃料電池は、例えば以下のような構成である。すなわち、電解質膜の両面に、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソードが配置された膜電極接合体を備える。膜電極接合体のアノード及びカソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される構成である。アノードにおいてはH→2H+2eの反応が起こり、カソードにおいては1/2O+2H+2e→HOの反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の膜電極接合体は、アノード側に燃料ガスではなくメタノールを供給する直接メタノール燃料電池にも使用できる。
The polymer electrolyte fuel cell having a membrane electrode assembly obtained by the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin are disposed on both surfaces of the electrolyte membrane is provided. The anode and cathode of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane). Grooves serving as fuel gas or oxidant gas passages are formed on both surfaces of the membrane electrode assembly to form a stack in which a plurality of membrane electrode assemblies are stacked via the separator. Hydrogen gas is supplied, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
The membrane electrode assembly of the present invention can also be used in a direct methanol fuel cell that supplies methanol instead of fuel gas to the anode side.

膜電極接合体は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末とイオン交換樹脂の溶液を混合し均一な触媒層形成用塗工液(以下、塗工液という。)を得て、例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。   The membrane / electrode assembly is obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and an ion exchange resin solution are mixed to obtain a uniform coating solution for forming a catalyst layer (hereinafter referred to as coating solution). For example, a gas diffusion electrode is formed by any of the following methods to obtain a membrane electrode assembly.

第1の方法は、電解質膜の両面に上記塗工液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記塗工液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、塗工液が塗布された面が上記電解質膜と密着するように、上記電解質膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。また、別途用意した基材に上記塗工液を塗工して触媒層を作製し、転写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込む方法も使用できる。   The first method is a method in which the coating liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is to sandwich the coating liquid from both sides of the electrolyte membrane so that the surface to which the coating liquid is applied adheres to the electrolyte membrane after applying and drying the coating solution on two carbon cloths or carbon paper. It is a method to rub Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst. In addition, the above coating solution is applied to a separately prepared substrate to produce a catalyst layer, and after joining the electrolyte membrane by a method such as transfer, the substrate is peeled off and sandwiched between the gas diffusion layers. it can.

触媒層中に含まれるイオン交換樹脂は特に限定されないが、本発明における電解質膜を構成する陽イオン交換基を有する高分子化合物であることが好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体であることが好ましい。触媒層は、本発明による電解質膜と同様にリン酸セリウムを含んでいてもよい。このような触媒層では、イオン交換樹脂の分解が効果的に抑制されるので、固体高分子形燃料電池はさらに耐久性が付与される。また、電解質膜としてはリン酸セリウムを含まないイオン交換樹脂を使用し、触媒層のみリン酸セリウムを含有させることもできる。   The ion exchange resin contained in the catalyst layer is not particularly limited, but is preferably a polymer compound having a cation exchange group constituting the electrolyte membrane in the present invention, and particularly a perfluorocarbon polymer having a sulfonic acid group. It is preferable. The catalyst layer may contain cerium phosphate as in the electrolyte membrane according to the present invention. In such a catalyst layer, since the decomposition of the ion exchange resin is effectively suppressed, the polymer electrolyte fuel cell is further provided with durability. Further, an ion exchange resin not containing cerium phosphate can be used as the electrolyte membrane, and only the catalyst layer can contain cerium phosphate.

触媒層中にリン酸セリウムを含有させる場合、陽イオン交換基を有する高分子化合物の分散液に、炭酸セリウムを添加して陽イオン交換基の一部をセリウムイオンによりイオン交換した後、リン酸又はリン酸を含む溶液を前記分散液に添加して、該分散液中にリン酸セリウムを形成し、得られた液状組成物に触媒を分散させたものを塗工液として上記同様の方法で触媒層を形成すればよい。この場合、カソード及びアノードのいずれか一方のみを上記リン酸セリウムを含む塗工液を使用して作製することもできるし、カソード、アノードともに上記リン酸セリウムを含む塗工液を使用して作製することもできる。   When cerium phosphate is contained in the catalyst layer, cerium carbonate is added to the dispersion of the polymer compound having a cation exchange group, and a part of the cation exchange group is ion-exchanged with cerium ion, and then phosphoric acid is added. Alternatively, a solution containing phosphoric acid is added to the dispersion, cerium phosphate is formed in the dispersion, and a catalyst obtained by dispersing the catalyst in the obtained liquid composition is used as a coating solution in the same manner as described above. A catalyst layer may be formed. In this case, only one of the cathode and the anode can be prepared using the coating solution containing the cerium phosphate, or both the cathode and the anode can be prepared using the coating solution containing the cerium phosphate. You can also

炭酸セリウムの添加量、リン酸の添加量については特に限定されないが、本発明の電解質膜の製造方法における数値範囲と同様の範囲を好ましく採用することができる。
触媒層中に含まれるリン酸セリウムの好ましい割合としては、0.1〜10%(質量比)であることが好ましく、0.3〜5%であることがより好ましい。触媒層中のリン酸セリウムの含有量がこの範囲より少ないと上述したリン酸セリウムの効果が十分に得られないおそれがあり、また含有量がこの範囲よりも多いと、抵抗の上昇につながるおそれがある。
The addition amount of cerium carbonate and the addition amount of phosphoric acid are not particularly limited, but a range similar to the numerical range in the method for producing an electrolyte membrane of the present invention can be preferably employed.
A preferred ratio of cerium phosphate contained in the catalyst layer is preferably 0.1 to 10% (mass ratio), and more preferably 0.3 to 5%. If the content of cerium phosphate in the catalyst layer is less than this range, the above-described effect of cerium phosphate may not be sufficiently obtained, and if the content is more than this range, the resistance may increase. There is.

以下、本発明を具体的に実施例及び比較例を用いて説明するが、本発明はこれらに限定されない。なお、電解質膜について物性の測定及び試験を以下のように行った。   Hereinafter, the present invention will be specifically described using Examples and Comparative Examples, but the present invention is not limited thereto. The physical properties of the electrolyte membrane were measured and tested as follows.

<導電率>
Electrochimica.Acta.,43,24,3749−3754(1998)に記載の方法に従い、四端子白金電極による交流抵抗10kHzでの80℃、95%RHにおける導電率を測定した。
<Conductivity>
Electrochimica. Acta. , 43, 24, 3749-3754 (1998), the conductivity at 80 ° C. and 95% RH at an AC resistance of 10 kHz using a four-terminal platinum electrode was measured.

<フェントン試験>
乾燥窒素雰囲気下にて質量測定した電解質膜を、3%の過酸化水素と200ppmのFeに相当する硫酸第1鉄(FeSO・7HO)とを含む水溶液中に入れ、90℃、16時間の浸漬試験を行った。試験後の水溶液中のフッ素イオン濃度をフッ素イオン電極((株)東興化学研究所製、CE5101−SR)で測定した。膜の質量あたりのフッ素イオン生成量を算出した。
<Fenton test>
The electrolyte membrane whose mass was measured in a dry nitrogen atmosphere was placed in an aqueous solution containing 3% hydrogen peroxide and ferrous sulfate (FeSO 4 .7H 2 O) corresponding to 200 ppm of Fe, and 90 ° C., 16 A time immersion test was performed. The fluorine ion concentration in the aqueous solution after the test was measured with a fluorine ion electrode (CE5101-SR, manufactured by Toko Chemical Laboratory Co., Ltd.). The fluorine ion production amount per mass of the membrane was calculated.

[例1(実施例)]
300mlガラス製丸底フラスコに、CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールと水の混合液(水:エタノール=40:60)に分散させた固形分濃度30質量%の分散液(以下、分散液Aという)100gを用意した。この分散液Aに対して、炭酸セリウム(Ce(CO・8HO)1.0gを添加して、スターラーで、室温で4時間撹拌した。これにより、CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体のスルホン酸基の30%をCe3+でイオン交換した液状組成物を得た。
[Example 1 (Example)]
In a 300 ml glass round bottom flask, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) 100 g of a dispersion liquid (hereinafter referred to as “dispersion liquid A”) having a solid content concentration of 30 mass% was prepared by dispersing the above in a mixed liquid of ethanol and water (water: ethanol = 40: 60). To this dispersion A, 1.0 g of cerium carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O) was added, and the mixture was stirred with a stirrer at room temperature for 4 hours. As a result, a liquid composition in which 30% of the sulfonic acid group of CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer was ion-exchanged with Ce 3+ was obtained. It was.

次にこの液状組成物に1mol/Lのリン酸(HPO)水溶液3.3g(PO 3−/Ce3+=1/1モル比)を撹拌しながら滴下し、さらに室温で2時間撹拌を続けた。滴下開始より微細な白色の粒子の析出がみられ、最終的には均一で安定に分散した白色の液状組成物(以下、液状組成物Bという)が得られた。この白色の粒子をX線回折により同定した結果、リン酸第一セリウムであることが確認された。液状組成物Bの粒度分布をマイクロトラック(日機装株式会社製、溶媒:エタノール/水=1/1)で測定したところ、平均粒径0.8μm(標準偏差0.2)であり、粒度のそろったものであった。液状組成物Bを室温で1週間放置しても、粒度分布に変化はなかった。 Next, 3.3 g of a 1 mol / L phosphoric acid (H 3 PO 4 ) aqueous solution (PO 4 3− / Ce 3+ = 1/1 molar ratio) was added dropwise to the liquid composition with stirring, and further at room temperature for 2 hours. Stirring was continued. Precipitation of fine white particles was observed from the start of dropping, and finally, a white liquid composition (hereinafter referred to as liquid composition B) that was uniformly and stably dispersed was obtained. As a result of identifying the white particles by X-ray diffraction, it was confirmed that the particles were cerium phosphate. When the particle size distribution of the liquid composition B was measured with Microtrac (manufactured by Nikkiso Co., Ltd., solvent: ethanol / water = 1/1), the average particle size was 0.8 μm (standard deviation 0.2). It was. Even when the liquid composition B was allowed to stand at room temperature for 1 week, there was no change in the particle size distribution.

次に、液状組成物Bを100μmのエチレン/テトラフルオロエチレン共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、以下、単にETFEシートという。)上に、ダイコータにて塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmの固体高分子電解質膜を得た。この膜中に存在する白色の粒子をX線回折により同定したところ、リン酸第一セリウムであることが確認された。高分子電解質膜を窒素中で乾燥し、ついで濃硝酸(14mol/L)に浸し、リン酸セリウムをすべて溶解させた液をICP分光分析で測定した。その結果から、リン酸第一セリウムは、膜の全質量に対して2.5%含まれていたことがわかった。得られた膜の導電率は、0.20S/cmであった。また、フェントン試験における膜の質量あたりのフッ素イオン生成量は0.002%であった。   Next, the liquid composition B was coated on a sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd., hereinafter simply referred to as ETFE sheet) made of a 100 μm ethylene / tetrafluoroethylene copolymer with a die coater. The film was cast and pre-dried at 80 ° C. for 10 minutes, then dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes to obtain a solid polymer electrolyte membrane having a thickness of 50 μm. When white particles present in the film were identified by X-ray diffraction, it was confirmed to be ceric phosphate. The polymer electrolyte membrane was dried in nitrogen, then immersed in concentrated nitric acid (14 mol / L), and a solution in which all of cerium phosphate was dissolved was measured by ICP spectroscopic analysis. From the result, it was found that 2.5% of cerium phosphate was contained with respect to the total mass of the film. The conductivity of the obtained film was 0.20 S / cm. Further, the fluorine ion production amount per mass of the film in the Fenton test was 0.002%.

次に、白金がカーボン担体(比表面積800m/g)に触媒全質量の50%含まれるように担持された触媒粉末(エヌ・イーケムキャット社製)1.0gに、蒸留水5.1gを混合した。この混合液にCF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールに分散させた固形分濃度9質量%の液5.6gを混合した。この混合物をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。 Next, 5.1 g of distilled water was added to 1.0 g of catalyst powder (manufactured by N.E. Chemcat Co.) supported by platinum so that 50% of the total mass of the catalyst was contained in a carbon support (specific surface area 800 m 2 / g). Mixed. CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) is dispersed in ethanol in this mixed solution. 5.6 g of a liquid having a solid content concentration of 9% by mass was mixed. This mixture was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica) to prepare a coating solution for forming a catalyst layer.

この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。 This coating solution was applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before formation of the catalyst layer and the mass of the base film after formation of the catalyst layer, 0.5 mg / Cm 2 .

次に、上述のリン酸セリウムを含有させた電解質膜から、5cm×5cmの大きさの膜を切り出し、この膜の両面に基材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層をイオン交換膜の両面にそれぞれ接合した膜触媒層接合体を得た。なお、電極面積は16cmであった。 Next, from the electrolyte membrane containing cerium phosphate described above, a membrane having a size of 5 cm × 5 cm is cut out, and catalyst layers formed on the base film are disposed on both sides of the membrane, respectively, and a hot press method is performed. Was transferred to obtain a membrane catalyst layer assembly in which the anode catalyst layer and the cathode catalyst layer were bonded to both surfaces of the ion exchange membrane, respectively. The electrode area was 16 cm 2 .

この膜触媒層接合体を厚さ350μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜電極接合体を作製し、発電用セルを完成させ、加速試験として開回路試験(OCV試験)を行った。試験は、常圧で、電流密度0.2A/cmに相当する水素(利用率70%)及び空気(利用率40%)をそれぞれアノード及びカソードに供給し、セル温度は90℃、アノードガスの露点は60℃、カソードガスの露点は60℃として、発電は行わずに開回路状態で100時間運転し、その間の電圧変化を測定した。また、試験前後にアノードに水素、カソードに窒素を供給し、膜を通してアノードからカソードにリークする水素ガス量を分析し、膜の劣化の程度を調べた。結果を表1に示した。 This membrane / catalyst layer assembly is sandwiched between two gas diffusion layers made of carbon cloth with a thickness of 350 μm to produce a membrane / electrode assembly, a power generation cell is completed, and an open circuit test (OCV test) is performed as an acceleration test. Went. In the test, hydrogen (utilization rate 70%) and air (utilization rate 40%) corresponding to a current density of 0.2 A / cm 2 were supplied to the anode and the cathode, respectively, the cell temperature was 90 ° C., and the anode gas. The dew point was 60 ° C., the dew point of the cathode gas was 60 ° C., 100 hours of operation was performed in an open circuit state without power generation, and the voltage change during that time was measured. Also, before and after the test, hydrogen was supplied to the anode and nitrogen was supplied to the cathode, and the amount of hydrogen gas leaking from the anode to the cathode through the membrane was analyzed to examine the degree of membrane degradation. The results are shown in Table 1.

[例2(比較例)]
固体高分子電解質膜として、例1で用いたものと同じ市販のイオン交換膜を何も処理せずに用いた。膜の導電率は、0.29S/cmであった。また、フェントン試験における膜の質量あたりのフッ素イオン生成量は0.037%であった。
次に、この膜を用いて例1と同様にして膜電極接合体を得た。この膜電極接合体について例1と同様の評価を行ったところ、表1に示す結果のとおりとなった。
[Example 2 (comparative example)]
As the solid polymer electrolyte membrane, the same commercially available ion exchange membrane as that used in Example 1 was used without any treatment. The conductivity of the film was 0.29 S / cm. Further, the fluorine ion production amount per mass of the film in the Fenton test was 0.037%.
Next, a membrane / electrode assembly was obtained using this membrane in the same manner as in Example 1. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Table 1 were obtained.

Figure 0004765401
Figure 0004765401

[例3〜6]
例1において、スルホン酸基を有する高分子化合物のイオン交換容量、Ce3+による置換率、リン酸の添加量それぞれを表2に示す各種組み合わせのように変更したほかは、例1と同様の方法により、電解質膜を得て、導電率の測定及びフェントン試験を行った。それらの結果を例2の結果と合わせて表2に示す。
セリウムによりイオン置換し、さらにリン酸セリウム塩とすることでフッ素イオンの生成が抑制されていることがわかる。セリウムでイオン交換すると導電率が低下するが、リン酸添加により回復が見られる。このように本発明の製造方法では、膜中のリン酸セリウムの含有量の調整を容易に制御できる。
[Examples 3 to 6]
The same method as in Example 1 except that in Example 1, the ion exchange capacity of the polymer compound having a sulfonic acid group, the substitution rate with Ce 3+ , and the addition amount of phosphoric acid were changed to various combinations shown in Table 2. Thus, an electrolyte membrane was obtained, and conductivity measurement and Fenton test were performed. The results are shown in Table 2 together with the results of Example 2.
It turns out that the production | generation of a fluorine ion is suppressed by ion-substituting with cerium, and also using cerium phosphate salt. When the ion exchange is performed with cerium, the conductivity decreases, but recovery is observed by addition of phosphoric acid. Thus, in the manufacturing method of this invention, adjustment of content of the cerium phosphate in a film | membrane can be controlled easily.

Figure 0004765401
Figure 0004765401

[例7(比較例)]
固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ50μmのイオン交換膜(商品名:フレミオン、旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂)であって、大きさ7.5cm×7.5cmを使用した。この膜全体の重さを乾燥窒素中で16時間放置した後、乾燥窒素中で測定したところ、0.56gであった。この膜のスルホン酸基の量は以下の式により求められる。
0.56×1.1(1.1ミリ当量/g乾燥樹脂)=0.62(ミリ当量)。
[Example 7 (comparative example)]
As a solid polymer electrolyte membrane, an ion exchange membrane (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 milliequivalent / g dry resin) made of a perfluorocarbon polymer having a sulfonic acid group was used. A size of 7.5 cm × 7.5 cm was used. The total weight of the film was allowed to stand in dry nitrogen for 16 hours and then measured in dry nitrogen to find 0.56 g. The amount of sulfonic acid groups in this membrane is determined by the following formula.
0.56 × 1.1 (1.1 milliequivalent / g dry resin) = 0.62 (milliequivalent).

次に、この膜を、セリウムイオン濃度0.05wt%になるように、硝酸セリウム(Ce(NO・6HO)を溶解した水溶液に浸漬し、90℃で2時間加熱した。次いで膜を0.1mol/Lのリン酸(HPO)水溶液に浸漬し、90℃で1時間、加水分解させた。膜は次第に白色化し、リン酸セリウムが膜表面に析出した。さらに、イオン交換水で数回洗浄した後、イオン交換水中で90℃、30分加熱し、余剰のHPOを除去した。この膜を再び乾燥窒素中で16時間放置した後、乾燥窒素中で測定したところ、膜重量変化は5.6%であった。 Next, this film was immersed in an aqueous solution in which cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) was dissolved so that the cerium ion concentration was 0.05 wt%, and heated at 90 ° C. for 2 hours. Next, the membrane was immersed in a 0.1 mol / L phosphoric acid (H 3 PO 4 ) aqueous solution and hydrolyzed at 90 ° C. for 1 hour. The film gradually became white and cerium phosphate was deposited on the film surface. Furthermore, after washing several times with ion-exchanged water, it was heated in ion-exchanged water at 90 ° C. for 30 minutes to remove excess H 3 PO 4 . The membrane was again left in dry nitrogen for 16 hours and then measured in dry nitrogen. The change in membrane weight was 5.6%.

表層に析出したリン酸セリウムは、まだら状の不均一な部分があり、水拭きすると一部欠落するので取り扱いに注意を要した。膜の導電率を測定すると、0.05S/cmと低いものであった。これは表層のリン酸セリウムを除去したものでも同様の値であり、膜内部に取り込まれたセリウムイオンが多く残存している、すなわちHPOによる加水分解が不十分であったと考えられる。 The cerium phosphate deposited on the surface layer had mottled and uneven parts, and some parts were lost when wiped with water. When the conductivity of the film was measured, it was as low as 0.05 S / cm. This is the same value even when the surface layer of cerium phosphate is removed, and it is considered that a large amount of cerium ions taken in the film remain, that is, hydrolysis by H 3 PO 4 was insufficient.

[例8(比較例)]
硝酸セリウム(Ce(NO・6HO)10.0gを500mLの蒸留水に溶解し、この中に1mol/Lのリン酸(HPO)水溶液を100g滴下し、白色の沈殿を得た。これを水洗し、pHが7になるまで水洗・濾過を繰り返し、80℃で乾燥した。この結晶を、X線回折により同定した結果、リン酸第一セリウムであることが確認された。
[Example 8 (comparative example)]
Dissolve 10.0 g of cerium nitrate (Ce (NO 3 ) 3 · 6H 2 O) in 500 mL of distilled water, add 100 g of 1 mol / L phosphoric acid (H 3 PO 4 ) aqueous solution dropwise, and add white precipitate Got. This was washed with water, repeatedly washed with water and filtered until the pH reached 7, and dried at 80 ° C. As a result of identifying this crystal by X-ray diffraction, it was confirmed that it was ceric phosphate.

次に、300mlのガラス製丸底フラスコに、分散液A100gと、上記で得られたリン酸第一セリウム0.75gとを仕込み、マグネチックスターラーで室温で8時間撹拌することにより、リン酸セリウムが分散した液状組成物を得た。液状組成物の粒度分布をマイクロトラック(溶媒:エタノール/水=1/1)で測定したところ、平均粒径10μm(標準偏差0.2)であった。この溶液を1週間放置すると一部沈降が見られ、再度撹拌して粒度分布を測定したところ平均粒径は13μmであった。   Next, a 300 ml glass round bottom flask was charged with 100 g of dispersion A and 0.75 g of the first cerium phosphate obtained above, and stirred for 8 hours at room temperature with a magnetic stirrer to obtain cerium phosphate. A liquid composition in which was dispersed was obtained. When the particle size distribution of the liquid composition was measured with Microtrac (solvent: ethanol / water = 1/1), the average particle size was 10 μm (standard deviation 0.2). When this solution was allowed to stand for 1 week, partial sedimentation was observed. When the particle size distribution was measured by stirring again, the average particle size was 13 μm.

次にこの組成物を100μmのETFEシート上に、ダイコータで塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施して、膜厚50μmでリン酸第一セリウムの含有率が膜全質量の2.5%の高分子電解質膜を得た。
得られた膜は、ほぼ均一な外観を与えるが、一部に斑やブツが生じていた。膜の比較的均一な領域の導電率は、0.21S/cmであった。
Next, this composition was coated on a 100 μm ETFE sheet with a die coater to form a cast film, pre-dried at 80 ° C. for 10 minutes, dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes. As a result, a polymer electrolyte membrane having a film thickness of 50 μm and a cerium phosphate content of 2.5% of the total mass of the membrane was obtained.
The obtained film gave a substantially uniform appearance, but spots and spots were partially formed. The conductivity of the relatively uniform region of the film was 0.21 S / cm.

[例9(実施例)]
白金がカーボン担体(比表面積800m/g)に触媒全質量の50%含まれるように担持された触媒粉末(エヌ・イーケムキャット社製)1.0gに、蒸留水5.1gを混合した。この混合液に例1で作製した液状組成物B1.3gを混合した。この混合物をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕し、触媒層形成用塗工液を作製した。
Example 9 (Example)
Distilled water (5.1 g) was mixed with 1.0 g of a catalyst powder (manufactured by NP Chemcat) on which platinum was supported so that 50% of the total mass of the catalyst was contained in a carbon support (specific surface area 800 m 2 / g). The liquid mixture B1.3g produced in Example 1 was mixed with this liquid mixture. This mixture was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica) to prepare a catalyst layer forming coating solution.

この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。 This coating solution was applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before formation of the catalyst layer and the mass of the base film after formation of the catalyst layer, 0.5 mg / Cm 2 .

次に、固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ50μmのイオン交換膜(商品名:フレミオン、旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂)を使用し、5cm×5cmの大きさの膜を切り出し、この膜の両面に基材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層をイオン交換膜の両面にそれぞれ接合した膜触媒層接合体を得た。なお、電極面積は16cmであった。例1と同様の評価を行うと、表3に示す結果のとおりとなった。 Next, as a solid polymer electrolyte membrane, an ion exchange membrane having a thickness of 50 μm made of a perfluorocarbon polymer having a sulfonic acid group (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 meq / g dry resin) ), And a catalyst layer formed on a base film is disposed on both sides of the membrane, and transferred by a hot press method to be an anode catalyst layer and a cathode catalyst layer. A membrane-catalyst layer assembly was obtained by bonding to the both surfaces of the ion exchange membrane. The electrode area was 16 cm 2 . When the same evaluation as in Example 1 was performed, the results shown in Table 3 were obtained.

Figure 0004765401
Figure 0004765401

本発明により得られる電解質膜又は電極は、燃料電池の発電により生成される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れている。したがって、この電解質膜又は電極を有する膜電極接合体を備える固体高分子形燃料電池は、低加湿発電においても長期の耐久性を有する。
The electrolyte membrane or electrode obtained by the present invention is extremely excellent in durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane or electrode has long-term durability even in low humidification power generation.

Claims (10)

陽イオン交換基を有する高分子化合物からなる陽イオン交換膜からなり、リン酸セリウムを含む固体高分子形燃料電池用電解質膜の製造方法であって、
陽イオン交換基を有する高分子化合物の分散液に、炭酸セリウムを添加して陽イオン交換基の一部をセリウムイオンによりイオン交換した後、リン酸又はリン酸を含む溶液を前記分散液に添加して、該分散液中にリン酸セリウムを形成し、得られた液状組成物を用いてキャスト製膜し、電解質膜を作製することを特徴とする固体高分子形燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane for a polymer electrolyte fuel cell comprising a cation exchange membrane comprising a polymer compound having a cation exchange group and containing cerium phosphate,
After adding cerium carbonate to a dispersion of a polymer compound having a cation exchange group and ion-exchanging a part of the cation exchange group with cerium ion, phosphoric acid or a solution containing phosphoric acid is added to the dispersion. Then, cerium phosphate is formed in the dispersion, and the obtained liquid composition is cast to form an electrolyte membrane, thereby producing an electrolyte membrane for a polymer electrolyte fuel cell, Method.
陽イオン交換基はスルホン酸基である請求項1記載の固体高分子形燃料電池用電解質膜の製造方法。   2. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the cation exchange group is a sulfonic acid group. 前記スルホン酸基を有する高分子化合物を水を含む液体中に分散させる請求項2に記載の固体高分子形燃料電池用電解質膜の製造方法。   The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 2, wherein the polymer compound having a sulfonic acid group is dispersed in a liquid containing water. 高分子化合物のスルホン酸基100当量に対し0.5〜80当量のセリウムイオンに相当する量の炭酸セリウムを添加する請求項2又は3に記載の固体高分子形燃料電池用電解質膜の製造方法。   The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 2 or 3, wherein an amount of cerium carbonate corresponding to 0.5 to 80 equivalents of cerium ions is added to 100 equivalents of the sulfonic acid group of the polymer compound. . セリウムイオン1当量に対し0.5〜4当量のリン酸イオンに相当する量のリン酸を添加する請求項2〜4のいずれかに記載の固体高分子形燃料電池用電解質膜の製造方法。   The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 2 to 4, wherein an amount of phosphoric acid corresponding to 0.5 to 4 equivalents of phosphate ions is added to 1 equivalent of cerium ion. リン酸セリウムは、前記電解質膜全質量の0.3〜20%含まれる請求項2〜5のいずれかに記載の固体高分子形燃料電池用電解質膜の製造方法。   The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 2 to 5, wherein cerium phosphate is contained in an amount of 0.3 to 20% of the total mass of the electrolyte membrane. 前記高分子化合物は、スルホン酸基を有するパーフルオロカーボン重合体(エーテル性酸素原子を含んでいてもよい。)からなる請求項2〜6のいずれかに記載の固体高分子形燃料電池用電解質膜の製造方法。   The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 2 to 6, wherein the polymer compound comprises a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Manufacturing method. 前記高分子化合物は、テトラフルオロエチレンに基づく繰り返し単位とCF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロ化合物(Xはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示す。)に基づく繰り返し単位とを含む共重合体である請求項2〜7のいずれかに記載の固体高分子形燃料電池用電解質膜の製造方法。 The polymer compound includes a perfluoro compound represented by a repeating unit based on tetrafluoroethylene and CF 2 ═CF— (OCF 2 CFX) m —O p — (CF 2 ) n —SO 3 H (X is a fluorine atom) Or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1. Item 8. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to any one of Items 2 to 7. 触媒及びイオン交換樹脂を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子形燃料電池用膜電極接合体の製造方法であって、
請求項1〜8のいずれかの方法により前記電解質膜を作製することを特徴とする固体高分子形燃料電池用膜電極接合体の製造方法。
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the cathode. ,
A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein the electrolyte membrane is produced by the method according to claim 1.
触媒及びイオン交換樹脂を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子形燃料電池用膜電極接合体の製造方法であって、
陽イオン交換基を有する高分子化合物の分散液に、炭酸セリウムを添加して陽イオン交換基の一部をセリウムイオンによりイオン交換した後、リン酸又はリン酸を含む溶液を前記分散液に添加して、該分散液中にリン酸セリウムを形成し、得られた液状組成物に前記触媒を分散させ、塗工することにより前記カソード及び前記アノードの少なくとも一方を作製することを特徴とする固体高分子形燃料電池用膜電極接合体の製造方法。
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the cathode. ,
After adding cerium carbonate to a dispersion of a polymer compound having a cation exchange group and ion-exchanging a part of the cation exchange group with cerium ion, phosphoric acid or a solution containing phosphoric acid is added to the dispersion. And forming at least one of the cathode and the anode by forming cerium phosphate in the dispersion, dispersing the catalyst in the obtained liquid composition, and coating the solid. A method for producing a membrane electrode assembly for a polymer fuel cell.
JP2005145424A 2005-05-18 2005-05-18 Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell Active JP4765401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145424A JP4765401B2 (en) 2005-05-18 2005-05-18 Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145424A JP4765401B2 (en) 2005-05-18 2005-05-18 Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006324094A JP2006324094A (en) 2006-11-30
JP4765401B2 true JP4765401B2 (en) 2011-09-07

Family

ID=37543615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145424A Active JP4765401B2 (en) 2005-05-18 2005-05-18 Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4765401B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
JP5614210B2 (en) * 2010-09-30 2014-10-29 東洋紡株式会社 Polymer electrolyte membrane, membrane / electrode assembly and fuel cell using the same
KR20210100080A (en) * 2018-12-07 2021-08-13 에이지씨 가부시키가이샤 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, solid polymer fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273700A (en) * 1999-03-23 2000-10-03 Suzuki Motor Corp Method for controlling surface treating solution and surface treating system
FR2807422B1 (en) * 2000-04-06 2002-07-05 Engelhard Clal Sas PALLADIUM COMPLEX SALT AND ITS USE FOR ADJUSTING THE PALLADIUM CONCENTRATION OF AN ELECTROLYTIC BATH FOR DEPOSITION OF PALLADIUM OR ONE OF ITS ALLOYS
JP4278133B2 (en) * 2003-04-21 2009-06-10 株式会社豊田中央研究所 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4979179B2 (en) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 Solid polymer fuel cell and manufacturing method thereof
JP5002890B2 (en) * 2004-12-10 2012-08-15 トヨタ自動車株式会社 Fuel cell
JP4821147B2 (en) * 2005-03-18 2011-11-24 トヨタ自動車株式会社 Fuel cell and fuel cell system

Also Published As

Publication number Publication date
JP2006324094A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5287969B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
JPWO2007007767A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
US20070111076A1 (en) Elctrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP4765908B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2007031718A5 (en)
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP4765401B2 (en) Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2008098179A (en) Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell
JP2006318755A (en) Film-electrode assembly for solid polymer fuel cell
JP5109244B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250