JP2008098179A - Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell - Google Patents
Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP2008098179A JP2008098179A JP2007285186A JP2007285186A JP2008098179A JP 2008098179 A JP2008098179 A JP 2008098179A JP 2007285186 A JP2007285186 A JP 2007285186A JP 2007285186 A JP2007285186 A JP 2007285186A JP 2008098179 A JP2008098179 A JP 2008098179A
- Authority
- JP
- Japan
- Prior art keywords
- cerium
- membrane
- polymer
- compound
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、初期の出力電圧が高く、長期に渡って高い出力電圧を得られる固体高分子形燃料電池用の電解質膜に関する。 The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell that has a high initial output voltage and can obtain a high output voltage over a long period of time.
燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子形燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。 A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have been developed for polymer electrolyte membranes with high ionic conductivity, and can operate at room temperature to obtain high output density. With increasing social demand for environmental problems, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.
固体高分子形燃料電池では、通常、固体高分子電解質としてプロトン伝導性のイオン交換膜が使用され、特にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。 In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is particularly excellent in basic characteristics. In a polymer electrolyte fuel cell, gas diffusible electrode layers are arranged on both surfaces of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant are respectively supplied to an anode and a cathode. To generate electricity.
固体高分子形燃料電池のカソードにおける酸素の還元反応は過酸化水素(H2O2)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードには、カソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又は過酸化物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子電解質膜とする場合は、ラジカルに対する安定性に乏しく、長期間にわたる運転においては大きな問題となっていた。 Since the reduction reaction of oxygen at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer There is concern about the possibility of causing deterioration of the electrolyte membrane. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, there is a concern that hydrogen peroxide or peroxide radicals may be similarly generated. In particular, when a hydrocarbon-based membrane is used as a solid polymer electrolyte membrane, the stability against radicals is poor, which has been a serious problem in long-term operation.
例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙船の電源として採用された時であり、この時にはスチレン−ジビニルベンゼン重合体をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問題があった。このような問題を改善する技術としては、高分子電解質膜中に過酸化水素を接触分解できる遷移金属酸化物又はフェノール性水酸基を有する化合物を添加する方法(特許文献1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過酸化水素を分解する方法(特許文献2参照)が知られている。しかし、これらの技術は、初期的には改善の効果があるものの、長期間にわたる耐久性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があった。 For example, the polymer electrolyte fuel cell was first put into practical use when it was used as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-divinylbenzene polymer was used as an electrolyte membrane. However, there was a problem with durability over a long period of time. As a technique for improving such a problem, a method of adding a transition metal oxide or a compound having a phenolic hydroxyl group capable of catalytic decomposition of hydrogen peroxide into a polymer electrolyte membrane (see Patent Document 1), a polymer electrolyte, A method is known in which catalytic metal particles are supported in a membrane and hydrogen peroxide is decomposed (see Patent Document 2). However, although these techniques have an improvement effect in the initial stage, there is a possibility that a serious problem may arise in durability over a long period of time. There is also a problem that the cost becomes high.
一方、上記のような炭化水素系の重合体からなる電解質膜に対し、ラジカルに対する安定性が格段に優れる重合体として、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が知られている。近年、これらのパーフルオロカーボン重合体からなるイオン交換膜を用いた固体高分子形燃料電池は、自動車用、住宅用市場等の電源として期待され、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コスト化が望まれている。また、燃料電池システム全体の効率の点から低加湿又は無加湿での運転が要求されることも多い。 On the other hand, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is known as a polymer that is remarkably excellent in radical stability compared to the electrolyte membrane made of a hydrocarbon-based polymer as described above. . In recent years, polymer electrolyte fuel cells using ion-exchange membranes made of these perfluorocarbon polymers are expected to be used as power sources for automobiles and residential markets, etc. . In these applications, since operation with particularly high efficiency is required, operation at a higher voltage is desired, and at the same time, cost reduction is desired. In addition, from the viewpoint of the efficiency of the entire fuel cell system, operation with low or no humidification is often required.
しかし、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、低加湿又は無加湿での運転条件においては、電圧劣化が大きいことが報告されている(非特許文献1参照)。すなわち、低加湿又は無加湿での運転条件においては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜においても過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられる。 However, even in a fuel cell using an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, the stability is very high when operated under high humidification, but in operating conditions under low or no humidification. It has been reported that the voltage degradation is large (see Non-Patent Document 1). That is, under operating conditions with low or no humidification, it is considered that deterioration of the electrolyte membrane proceeds due to hydrogen peroxide or peroxide radicals even in an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. .
そこで本発明は、車載用、住宅用市場等への固体高分子形燃料電池を実用化において、十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度(露点)がセル温度よりも低い低加湿又は無加湿での運転、セル温度に近い温度で加湿する高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわたって安定した発電が可能な固体高分子形燃料電池用膜を提供することを目的とする。 Therefore, the present invention enables power generation with sufficiently high energy efficiency in the practical application of polymer electrolyte fuel cells for in-vehicle and residential markets, and the humidification temperature (dew point) of the supplied gas is higher than the cell temperature. Solid polymer type that has high power generation performance and stable power generation over a long period of time, whether it is operated with low or no humidification, or with high humidification where the temperature is close to the cell temperature. It aims at providing the membrane for fuel cells.
本発明者らは、スルホン酸基を有する高分子化合物からなるイオン交換膜を用いた燃料電池において、低加湿又は無加湿での運転条件における膜の劣化を防止することを目的に鋭意検討し、膜中に難溶性セリウム化合物を含有させることにより電解質膜の劣化を格段に抑制できることを見出し、本発明に至った。 In the fuel cell using an ion exchange membrane made of a polymer compound having a sulfonic acid group, the present inventors diligently studied for the purpose of preventing the membrane from deteriorating under operating conditions with low or no humidity. It has been found that the deterioration of the electrolyte membrane can be remarkably suppressed by containing a poorly soluble cerium compound in the membrane, leading to the present invention.
本発明は、スルホン酸基を有する高分子化合物と難溶性セリウム化合物とからなる陽イオン交換膜からなることを特徴とする固体高分子形燃料電池用電解質膜を提供する。ここで、本発明における難溶性セリウム化合物とは、25℃の水に対する溶解度が、水100gに対して0.1g以下であるセリウム化合物を意味する。具体的には、リン酸第一セリウム、リン酸第二セリウム、酸化セリウム、水酸化第一セリウム、水酸化第二セリウム、炭酸セリウム、フッ化セリウム、シュウ酸セリウム、タングステン酸セリウム、ヘテロポリ酸のセリウム塩等が挙げられ、これらの化合物からなる群から選ばれる1種以上のセリウム化合物が特に好ましい。なお、難溶性セリウム化合物中のセリウムの価数は+3価又は+4価の状態を取り得るが、本発明では特に限定されない。 The present invention provides an electrolyte membrane for a polymer electrolyte fuel cell, comprising a cation exchange membrane comprising a polymer compound having a sulfonic acid group and a hardly soluble cerium compound. Here, the hardly soluble cerium compound in the present invention means a cerium compound having a solubility in water at 25 ° C. of 0.1 g or less with respect to 100 g of water. Specifically, cerium phosphate, cerium phosphate, cerium oxide, cerium hydroxide, cerium hydroxide, cerium carbonate, cerium fluoride, cerium fluoride, cerium oxalate, cerium tungstate, and heteropolyacid A cerium salt etc. are mentioned, The 1 or more types of cerium compound chosen from the group which consists of these compounds is especially preferable. Although the valence of cerium in the hardly soluble cerium compound can be in a +3 or +4 valence state, it is not particularly limited in the present invention.
また、本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物からなる陽イオン交換膜を、セリウムイオンを含む溶液中に浸漬してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、膜中に難溶性セリウム化合物を形成することを特徴とする固体高分子形燃料電池用電解質膜の製造方法を提供する。 Further, the present invention is a method for obtaining the above-described electrolyte membrane, wherein a cation exchange membrane made of a polymer compound having a sulfonic acid group is immersed in a solution containing cerium ions to partially remove the sulfonic acid group. Solid polymer form characterized by forming a poorly soluble cerium compound in a film by ion exchange with cerium ions and then immersing in a solution containing a substance that forms a poorly soluble cerium compound by reacting with cerium ions A method for producing an electrolyte membrane for a fuel cell is provided.
さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物の分散液中に、当該分散液に溶解可能なセリウム化合物を添加してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液又は固体を前記分散液に添加して、該分散液中に難溶性セリウム化合物を形成し、得られた液を用いてキャスト製膜することを特徴とする固体高分子形燃料電池用電解質膜の製造方法を提供する。 Furthermore, the present invention is a method for obtaining the above-described electrolyte membrane, wherein a cerium compound that is soluble in the dispersion is added to the dispersion of the polymer compound having a sulfonic acid group, and a part of the sulfonic acid group is removed. After ion exchange with cerium ions, a solution or solid containing a substance that forms a sparingly soluble cerium compound by reacting with cerium ions is added to the dispersion to form a sparingly soluble cerium compound in the dispersion, There is provided a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, characterized in that the obtained liquid is cast into a membrane.
さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物の分散液中に、難溶性セリウム化合物の微粒子を添加し混合することにより前記分散液中に難溶性セリウム化合物を分散させ、得られた液を用いてキャスト製膜することを特徴とする固体高分子形燃料電池用電解質膜の製造方法を提供する。 Furthermore, the present invention is a method for obtaining the above-mentioned electrolyte membrane, in which a slightly soluble cerium compound fine particle is added to and mixed with a dispersion of a polymer compound having a sulfonic acid group, and is hardly soluble in the dispersion. Disclosed is a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, characterized in that a cerium compound is dispersed and a cast membrane is formed using the obtained liquid.
本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有するため、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池は、耐久性に優れ、長期にわたって安定な発電が可能である。そして、上記のいずれかの製造方法を採用すると、得られる電解質膜は難溶性セリウム化合物を分散性よく均一に膜中に含有させることができる。 Since the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals, the polymer electrolyte fuel cell comprising the membrane electrode assembly having the electrolyte membrane of the present invention has excellent durability, Stable power generation is possible for a long time. When any one of the above production methods is employed, the obtained electrolyte membrane can contain the hardly soluble cerium compound uniformly in the membrane with good dispersibility.
本発明における難溶性セリウム化合物としては、リン酸第一セリウム、リン酸第二セリウム、酸化セリウム、水酸化第一セリウム、水酸化第二セリウム、炭酸セリウム、フッ化セリウム、シュウ酸セリウム、タングステン酸セリウム、ヘテロポリ酸のセリウム塩等が挙げられる。これらは無水物でもよく、結晶水又は水和水を有していてもよい。難溶性セリウム化合物のセリウムの価数は+3価でも+4価でもよい。例えば酸化セリウムの場合は、Ce2O3でもCeO2でもよい。 Examples of the hardly soluble cerium compound in the present invention include cerium phosphate, cerium phosphate, cerium oxide, cerium hydroxide, cerium hydroxide, cerium carbonate, cerium fluoride, cerium oxalate, and tungstic acid. Examples include cerium and cerium salts of heteropolyacids. These may be anhydrous and may have water of crystallization or water of hydration. The valence of cerium of the hardly soluble cerium compound may be +3 or +4. For example, in the case of cerium oxide, Ce 2 O 3 or CeO 2 may be used.
本発明の電解質膜が過酸化水素又は過酸化物ラジカルに対して優れた耐性を有し、耐久性に優れる理由は明確ではないが、以下のいずれかの機構を考えている。1つには、難溶性セリウム化合物が膜中で解離する、又は部分的に溶解することによりセリウムイオンが生成し、生成したセリウムイオンと−SO3 −基との相互作用により、スルホン酸基の一部がセリウムイオンでイオン交換され、当該イオンが電解質膜の過酸化水素又は過酸化物ラジカル耐性を効果的に向上させていると考えられる。もう一つとしては、難溶性セリウム化合物中のセリウム元素が、触媒層から膜中に拡散してくる過酸化水素を効果的に分解する機能を有していると考えられる。 The reason why the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals and excellent durability is not clear, but one of the following mechanisms is considered. For example, cerium ions are generated by dissociation or partial dissolution of a poorly soluble cerium compound in the membrane, and the interaction between the generated cerium ions and —SO 3 — groups results in the formation of sulfonic acid groups. It is considered that some of the ions are ion-exchanged with cerium ions, and the ions effectively improve the hydrogen peroxide or peroxide radical resistance of the electrolyte membrane. Another is considered that the cerium element in the hardly soluble cerium compound has a function of effectively decomposing hydrogen peroxide diffused from the catalyst layer into the film.
また、難溶性セリウム化合物は、電解質膜に過酸化水素又は過酸化物ラジカルに対する優れた耐性を付与することに加え、充填剤としても機能し、膜の機械的強度の向上や機械的安定性を付与することにも寄与していると考えられる。さらに難溶性セリウム化合物は、電解質膜を構成するイオン交換樹脂においてイオン交換基同士が集って形成されるクラスター領域に存在させることも可能であり、また、イオンではないため、イオン交換基が存在しない主鎖の部分にも存在させることもできる。すなわち難溶性セリウム化合物は電解質膜を構成する樹脂内に均一に存在させることが可能であり、ミクロ的にもより均等に電解質膜の機械的強度の向上や機械的安定性を付与することが可能であると考えられる。 In addition, in addition to imparting excellent resistance to hydrogen peroxide or peroxide radicals to the electrolyte membrane, the poorly soluble cerium compound also functions as a filler, improving the mechanical strength and mechanical stability of the membrane. It is thought that it also contributes to granting. Furthermore, the poorly soluble cerium compound can be present in the cluster region formed by gathering ion exchange groups in the ion exchange resin that constitutes the electrolyte membrane. It can also be present in the part of the main chain that is not. In other words, the poorly soluble cerium compound can be uniformly present in the resin constituting the electrolyte membrane, and can improve the mechanical strength and mechanical stability of the electrolyte membrane more evenly on a micro level. It is thought that.
一方、水溶性のセリウム化合物を陽イオン交換膜中に含有させた場合、発電により生成する水や、ガスの加湿により膜に供給される水によりセリウム化合物が容易にイオンに解離し、多量のセリウムイオンが生成する。その結果、多量のスルホン酸基がセリウムイオンによりイオン交換されることになり、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。したがって、水溶性のセリウム化合物を膜中に含有させる場合は、膜中への添加量を厳密に制御する必要がある。また、水溶性セリウム化合物がイオンに解離し、膜中の水に溶解すると、充填剤としての機能は有しないので、膜強度を向上させることはできない。 On the other hand, when a water-soluble cerium compound is contained in the cation exchange membrane, the cerium compound is easily dissociated into ions by water generated by power generation or water supplied to the membrane by gas humidification. Ions are generated. As a result, a large amount of sulfonic acid groups are ion-exchanged with cerium ions, and sufficient conductivity of hydrogen ions cannot be ensured, resulting in increased membrane resistance and reduced power generation characteristics. Therefore, when a water-soluble cerium compound is contained in the film, it is necessary to strictly control the amount added to the film. Further, when the water-soluble cerium compound is dissociated into ions and dissolved in water in the film, the film strength cannot be improved because it does not have a function as a filler.
一方、本発明の電解質膜は、難溶性セリウム化合物を不均一に含有するように調整することもできる。例えば、2層以上の層からなる陽イオン交換膜(積層膜)であってその全ての層ではなく少なくとも1層が難溶性セリウム化合物を含有している、すなわち厚さ方向に不均一に難溶性セリウム化合物を含んでいてもよい。したがって、特にアノード側について過酸化水素又は過酸化物ラジカルに対する耐久性を高める必要がある場合は、アノードに一番近い層のみ難溶性セリウム化合物を含有するイオン交換膜からなる層とすることもできる。 On the other hand, the electrolyte membrane of the present invention can also be adjusted so as to contain a poorly soluble cerium compound non-uniformly. For example, it is a cation exchange membrane (laminated membrane) consisting of two or more layers, and at least one of the layers contains a hardly soluble cerium compound, that is, non-uniformly poorly soluble in the thickness direction. It may contain a cerium compound. Therefore, when it is necessary to increase the durability against hydrogen peroxide or peroxide radicals particularly on the anode side, only the layer closest to the anode can be a layer made of an ion exchange membrane containing a hardly soluble cerium compound. .
本発明においては、難溶性セリウム化合物を膜中に多量に存在させても極端にはプロトン伝導性を阻害しない。この理由としては、解離平衡や溶解等によりセリウムイオンが生成したとしても、これらのセリウムイオンは微量であるためと考えられる。すなわち、生成したセリウムイオンは難溶性セリウム化合物の近傍のスルホン酸と効果的にイオン交換し、過酸化水素又は過酸化物ラジカルに対して優れた耐性を付与するが、多量のスルホン酸基がセリウムイオンによりイオン交換されることがないため、極端には膜抵抗が増加しないと推定される。したがって、難溶性セリウム化合物の膜中への添加量を幅広く変えても、極端な膜抵抗増加を抑制できることから、過酸化水素又は過酸化物ラジカルに対して優れた耐性を有する膜や膜電極接合体の製造が非常に容易となる。 In the present invention, even if a poorly soluble cerium compound is present in a large amount in the membrane, it does not extremely impair proton conductivity. The reason is considered to be that even if cerium ions are generated due to dissociation equilibrium, dissolution, or the like, these cerium ions are in a very small amount. That is, the produced cerium ion effectively ion-exchanges with the sulfonic acid in the vicinity of the poorly soluble cerium compound and imparts excellent resistance to hydrogen peroxide or peroxide radicals, but a large amount of sulfonic acid groups are cerium. Since ion exchange is not performed by ions, it is presumed that the membrane resistance does not increase extremely. Therefore, even if the amount of the poorly soluble cerium compound added to the film is widely changed, it is possible to suppress an extreme increase in film resistance, so that the film or membrane electrode junction has excellent resistance to hydrogen peroxide or peroxide radicals. The production of the body is very easy.
一方、難溶性セリウム化合物は一般に電気伝導度が低いため、膜中に添加した量に依存して電流遮蔽が発生する。したがって、本発明において、電解質膜中に含まれる難溶性セリウム化合物の好ましい割合としては、陽イオン交換膜全質量の0.3〜80%(質量比)であることが好ましく、より好ましくは0.4〜70%、さらに好ましくは0.5〜50%である。 On the other hand, since poorly soluble cerium compounds generally have low electrical conductivity, current shielding occurs depending on the amount added to the film. Therefore, in the present invention, the preferred ratio of the hardly soluble cerium compound contained in the electrolyte membrane is preferably 0.3 to 80% (mass ratio) of the total mass of the cation exchange membrane, more preferably 0.8. It is 4-70%, More preferably, it is 0.5-50%.
膜中の難溶性セリウム化合物の含有量がこの範囲よりも少ないと、過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。また含有量がこの範囲よりも多いと、上述の様に電流遮蔽が発生するため、膜抵抗が増大して発電特性が低下するおそれがある。 If the content of the poorly soluble cerium compound in the film is less than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content is larger than this range, current shielding occurs as described above, so that the membrane resistance increases and the power generation characteristics may be deteriorated.
なお、本発明の電解質膜が積層膜からなる場合は、電解質膜全体に対する難溶性セリウム化合物の割合が上述の範囲に入っていればよく、難溶性セリウム化合物を含む層自体の難溶性セリウム化合物の含有率は上述の範囲より高くてもよい。 In the case where the electrolyte membrane of the present invention is a laminated film, the ratio of the hardly soluble cerium compound to the whole electrolyte membrane only needs to be within the above range, and the layer containing the hardly soluble cerium compound itself contains the hardly soluble cerium compound. The content rate may be higher than the above range.
スルホン酸基を有する高分子化合物中に難溶性セリウム化合物を含有させた本発明の電解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。
(1)スルホン酸基を有する高分子化合物の溶液又は分散液中と難溶性セリウム化合物を混合した後、得られた液を用いてキャスト法等により製膜する方法。このとき難溶性セリウム化合物は該化合物を溶解又は高度に分散できる溶媒(分散媒)とあらかじめ混合しておいてからスルホン酸基を有する高分子化合物の溶液又は分散液と混合してもよい。
Although the method of obtaining the electrolyte membrane of this invention which made the polymer compound which has a sulfonic acid group contain the hardly soluble cerium compound is not specifically limited, For example, the following method is mentioned.
(1) A method of forming a film by a casting method or the like using a liquid obtained by mixing a solution or dispersion of a polymer compound having a sulfonic acid group and a hardly soluble cerium compound. At this time, the sparingly soluble cerium compound may be mixed in advance with a solvent (dispersion medium) capable of dissolving or highly dispersing the compound and then mixed with a solution or dispersion of a polymer compound having a sulfonic acid group.
(2)セリウムイオンが含まれる溶液中にスルホン酸基を有する高分子化合物からなる膜を浸漬してセリウムイオンを膜中に含有させた後、リン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオンと反応して難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、難溶性セリウム化合物を膜中に析出させる方法。
(3)スルホン酸基を有する高分子化合物の分散液中に水溶性セリウム化合物を添加してスルホン酸基をセリウムイオンによりイオン交換した後、該分散液にリン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオンと反応して難溶性セリウム化合物を形成する物質又はそれを含む溶液を添加して、該分散液中に難溶性セリウム化合物を生成させ、得られた液を用いてキャスト法等により製膜する方法。
(2) After immersing a membrane made of a polymer compound having a sulfonic acid group in a solution containing cerium ions to contain cerium ions in the membrane, phosphoric acid, oxalic acid, NaF, sodium hydroxide, etc. A method of immersing in a solution containing a substance that reacts with cerium ions to form a hardly soluble cerium compound, thereby precipitating the hardly soluble cerium compound in the film.
(3) A water-soluble cerium compound is added to a dispersion of a polymer compound having a sulfonic acid group, and the sulfonic acid group is ion-exchanged with cerium ions, and then phosphoric acid, oxalic acid, NaF or hydroxide is added to the dispersion. A substance such as sodium that reacts with cerium ions to form a hardly soluble cerium compound or a solution containing the same is added to form a hardly soluble cerium compound in the dispersion, and the resulting solution is used as a casting method. A method of forming a film by, for example.
(2)や(3)の方法では、スルホン酸基を有する高分子化合物を液状媒体中(例えば水、アルコール等)でセリウムイオンによりイオン交換するので、当該液状媒体に、この液状媒体に可溶のセリウム化合物を溶解する必要がある。このようなセリウム化合物としては、例えば酢酸セリウム(Ce(CH3COO)3・H2O)、塩化セリウム(CeCl3・6H2O)、硝酸セリウム(Ce(NO3)3・6H2O)硫酸セリウム(Ce2(SO4)3・8H2O)等が挙げられる。 In the methods (2) and (3), since the polymer compound having a sulfonic acid group is ion-exchanged with cerium ions in a liquid medium (for example, water, alcohol, etc.), it is soluble in the liquid medium. It is necessary to dissolve the cerium compound. Examples of such cerium compounds include cerium acetate (Ce (CH 3 COO) 3 .H 2 O), cerium chloride (CeCl 3 .6H 2 O), and cerium nitrate (Ce (NO 3 ) 3 .6H 2 O). Examples thereof include cerium sulfate (Ce 2 (SO 4 ) 3 · 8H 2 O).
ここで、本発明の電解質膜が難溶性セリウム化合物を含む層と含まない層とからなる積層膜からなる場合は、その作製方法としては、例えば上述の(1)〜(3)のいずれかの方法により難溶性セリウム化合物を含む陽イオン交換膜を作製しておく。そして、これを難溶性セリウム化合物を含まない陽イオン交換膜と積層する工程を経て作製することが好ましいが、特に限定されない。 Here, in the case where the electrolyte membrane of the present invention is composed of a laminated film composed of a layer containing a sparingly soluble cerium compound and a layer not containing it, for example, any one of the above-mentioned (1) to (3) A cation exchange membrane containing a hardly soluble cerium compound is prepared by the method. And although it is preferable to produce through the process of laminating this with the cation exchange membrane which does not contain a poorly soluble cerium compound, it is not specifically limited.
例えば、難溶性セリウム化合物としてリン酸第一セリウムを用いる場合、(1)〜(3)のいずれの方法も好ましく採用できるが、特にリン酸第一セリウムを均一に含有させるためには(3)の方法が好ましい。この場合、例えば、スルホン酸基を有する高分子化合物の分散液に硝酸セリウムを溶解し、次いでリン酸を加えることにより液中にリン酸第一セリウムを含有させることができ、その結果リン酸第一セリウムを含む膜を得ることができる。リン酸第一セリウムが電解質膜中に含まれると、電解質膜の劣化を充分に抑制できるだけでなく、リン酸第一セリウムが吸水性を有することから低加湿の発電においても膜の乾燥が抑制され、高い電圧で発電できるので好ましい。また、水酸化セリウムや、結晶水や水和水を有する難溶性セリウム化合物も、保水性を有する効果が高いことから好ましい。 For example, when using cerium phosphate as the poorly soluble cerium compound, any of the methods (1) to (3) can be preferably employed. In particular, in order to uniformly contain cerium phosphate (3) This method is preferred. In this case, for example, by dissolving cerium nitrate in a dispersion of a polymer compound having a sulfonic acid group and then adding phosphoric acid, cerium phosphate can be contained in the liquid. A film containing monocerium can be obtained. When cerium phosphate is contained in the electrolyte membrane, not only can the deterioration of the electrolyte membrane be sufficiently suppressed, but also the drying of the membrane is suppressed even in low-humidity power generation because cerium phosphate has water absorption. It is preferable because power can be generated at a high voltage. Further, cerium hydroxide and a hardly soluble cerium compound having water of crystallization or water of hydration are also preferable because of their high water retention effect.
本発明におけるスルホン酸基を有する高分子化合物としては特に限定されないが、イオン交換容量は0.5〜3.0ミリ当量/g乾燥樹脂であることが好ましく、特に0.7〜2.5ミリ当量/g乾燥樹脂であることが好ましい。また、耐久性の観点から当該高分子化合物は含フッ素重合体であることが好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体(エーテル結合性の酸素原子を含んでいてもよい)が好ましい。上記パーフルオロカーボン重合体としては特に限定されないが、CF2=CF−(OCF2CFX)m−Op−(CF2)n−SO3Hで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。 The polymer compound having a sulfonic acid group in the present invention is not particularly limited, but the ion exchange capacity is preferably 0.5 to 3.0 meq / g dry resin, particularly 0.7 to 2.5 mm. Equivalent / g dry resin is preferred. From the viewpoint of durability, the polymer compound is preferably a fluorine-containing polymer, and more preferably a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Is not particularly restricted but includes perfluorocarbon polymer, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is 0 to 3 N represents an integer of 1 to 12, p represents 0 or 1, X represents a fluorine atom or a trifluoromethyl group, and a polymer unit based on tetrafluoroethylene; It is preferable that it is a copolymer containing.
上記パーフルオロビニル化合物の好ましい例をより具体的に示すと、下記式(i)〜(iii)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。 More specifically, preferred examples of the perfluorovinyl compound include compounds represented by the following formulas (i) to (iii). However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.
スルホン酸基を有するパーフルオロカーボン重合体を用いる場合、重合後にフッ素化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。 When using the perfluorocarbon polymer which has a sulfonic acid group, you may use what the terminal of the polymer was fluorinated by fluorination after superposition | polymerization. When the terminal of the polymer is fluorinated, the durability against hydrogen peroxide and peroxide radicals is further improved, so that the durability is improved.
また、スルホン酸基を有する高分子化合物として、スルホン酸基を有するパーフルオロカーボン重合体以外のものも使用でき、例えば高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基が導入された構造を有する高分子化合物であって、イオン交換容量が0.8〜3.0ミリ当量/g乾燥樹脂である高分子化合物が好ましく使用できる。具体的には、例えば下記の高分子化合物が使用できる。 Further, as the polymer compound having a sulfonic acid group, those other than the perfluorocarbon polymer having a sulfonic acid group can be used, for example, having an aromatic ring in the main chain of the polymer or in the main chain and the side chain. A polymer compound having a structure in which a sulfonic acid group is introduced into the aromatic ring and having an ion exchange capacity of 0.8 to 3.0 meq / g dry resin can be preferably used. Specifically, for example, the following polymer compounds can be used.
スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルホキシド、スルホン化ポリフェニレンサルファイド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等。 Sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylenesulfone, sulfonated polyphenyleneoxide, Sulfonated polyphenylene sulfoxide, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ketone ketone, sulfonated polyimide and the like.
本発明の電解質膜を有する固体高分子形燃料電池は、例えば以下のような構成である。すなわち、本発明の電解質膜の両面に、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソードが配置された膜電極接合体を備える。膜電極接合体のアノード及びカソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される構成である。アノードにおいてはH2→2H++2e−の反応が起こり、カソードにおいては1/2O2+2H++2e−→H2Oの反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直接メタノール燃料電池にも使用できる。
The polymer electrolyte fuel cell having the electrolyte membrane of the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin are arranged on both surfaces of the electrolyte membrane of the present invention is provided. The anode and cathode of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane). Grooves serving as fuel gas or oxidant gas passages are formed on both surfaces of the membrane electrode assembly to form a stack in which a plurality of membrane electrode assemblies are stacked via the separator. Hydrogen gas is supplied, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e − occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e − → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
The electrolyte membrane of the present invention can also be used in a direct methanol fuel cell in which methanol is supplied to the anode side instead of fuel gas.
上述の触媒層は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末とスルホン酸基を有するパーフルオロカーボン重合体の溶液を混合し均一な分散液を得て、例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。 The catalyst layer described above is obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and a solution of a perfluorocarbon polymer having a sulfonic acid group are mixed to obtain a uniform dispersion. For example, by any of the following methods: A gas diffusion electrode is formed to obtain a membrane electrode assembly.
第1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が上記電解質膜と密着するように、上記電解質膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込む方法も使用できる。 The first method is a method in which the dispersion liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is a method in which the dispersion liquid is applied onto two carbon cloths or carbon papers and then sandwiched from both surfaces of the electrolyte membrane so that the surface on which the dispersion liquid is applied is in close contact with the electrolyte membrane. It is. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst. In addition, a method can be used in which a catalyst layer is prepared by applying the dispersion to a separately prepared substrate, bonded to the electrolyte membrane by a method such as transfer, and then peeled off and sandwiched between the gas diffusion layers. .
触媒層中に含まれるイオン交換樹脂は特に限定されないが、電解質膜を構成する樹脂と同様に、スルホン酸基を有するパーフルオロカーボン重合体であることが好ましい。触媒層中のイオン交換樹脂は、本発明の電解質膜と同様に難溶性セリウム化合物を含んでいてもよい。難溶性セリウム化合物を含むイオン交換樹脂は、アノードにもカソードにも用いることができ、樹脂の分解は効果的に抑制されるので、固体高分子形燃料電池はさらに耐久性が付与される。 Although the ion exchange resin contained in the catalyst layer is not particularly limited, it is preferably a perfluorocarbon polymer having a sulfonic acid group, like the resin constituting the electrolyte membrane. The ion exchange resin in the catalyst layer may contain a hardly soluble cerium compound as in the electrolyte membrane of the present invention. An ion exchange resin containing a hardly soluble cerium compound can be used for both the anode and the cathode, and the decomposition of the resin is effectively suppressed, so that the polymer electrolyte fuel cell is further provided with durability.
触媒層中のイオン交換樹脂と電解質膜の両方に難溶性セリウム化合物を含有させたい場合は、例えば触媒層と電解質膜との接合体をあらかじめ作製し、上述の(2)の方法で触媒層中のイオン交換樹脂及び電解質膜中に難溶性セリウム化合物を含有させることも可能である。 When it is desired to contain a sparingly soluble cerium compound in both the ion exchange resin and the electrolyte membrane in the catalyst layer, for example, a joined body of the catalyst layer and the electrolyte membrane is prepared in advance, and the above-mentioned method (2) It is also possible to contain a hardly soluble cerium compound in the ion exchange resin and the electrolyte membrane.
本発明の電解質膜は、一部が難溶性セリウム化合物を含む、スルホン酸基を有する高分子化合物のみからなる膜であってもよいが、他の成分を含んでいてもよく、ポリテトラフルオロエチレンやパーフルオロアルキルエーテル等の他の樹脂等の繊維、織布、不織布、多孔体等により補強されている膜であってもよい。補強された膜の場合でも、セリウムイオンを含む溶液中に浸漬した後、上述の(2)の方法で膜中に難溶性セリウム化合物を含有させることにより本発明の電解質膜が得られる。また、難溶性セリウム化合物を分散した高分子化合物を含む分散液を用いて製膜する方法も適用できる。 The electrolyte membrane of the present invention may be a membrane made only of a polymer compound having a sulfonic acid group, partly containing a hardly soluble cerium compound, but may contain other components, and polytetrafluoroethylene Or a film reinforced with fibers such as other resins such as perfluoroalkyl ether, woven fabric, non-woven fabric, porous body, or the like. Even in the case of a reinforced membrane, the electrolyte membrane of the present invention can be obtained by immersing it in a solution containing cerium ions and then incorporating a poorly soluble cerium compound into the membrane by the method (2) described above. Moreover, the method of forming into a film using the dispersion liquid containing the high molecular compound which disperse | distributed the hardly soluble cerium compound is also applicable.
以下、本発明を具体的に実施例(例1〜6)及び比較例(例7〜10)を用いて説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described using Examples (Examples 1 to 6) and Comparative Examples (Examples 7 to 10), but the present invention is not limited to these.
[例1]
固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ50μmのイオン交換膜(商品名:フレミオン、旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂)であって、大きさ5cm×5cm(面積25cm2)を使用した。この膜全体の重さを乾燥窒素中で16時間放置した後、乾燥窒素中で測定したところ、0.251gであった。この膜のスルホン酸基の量は以下の式により求められる。
0.251×1.1(1.1ミリ当量/g乾燥樹脂)=0.276(ミリ当量)。
[Example 1]
As a solid polymer electrolyte membrane, an ion exchange membrane (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 milliequivalent / g dry resin) made of a perfluorocarbon polymer having a sulfonic acid group was used. Then, a size of 5 cm × 5 cm (area 25 cm 2 ) was used. The total weight of this film was allowed to stand in dry nitrogen for 16 hours and then measured in dry nitrogen, and it was 0.251 g. The amount of sulfonic acid groups in this membrane is determined by the following formula.
0.251 × 1.1 (1.1 milliequivalent / g dry resin) = 0.276 (milliequivalent).
次に、この膜の全質量に対して、3.1%の量に相当するセリウムイオン(+3価)を含むように、硝酸セリウム(Ce(NO3)3・6H2O)24.0mgを500mLの蒸留水に溶解し、この中に上記イオン交換膜を浸漬し、室温で40時間、スターラーを用いて撹拌を行ってイオン交換膜中のスルホン酸基の一部をセリウムイオンによりイオン交換した。次いで、この膜を1モル/Lのリン酸水溶液に室温で60時間浸漬した。この膜をX線回折により確認したところ、膜中にリン酸第一セリウムが析出していることが確認された。このリン酸第一セリウムの、膜の全質量に対する含有割合は5.2%であった。 Then, based on the total weight of the membrane, as containing cerium ions (trivalent) which corresponds to the amount of 3.1%, a cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 24.0mg Dissolved in 500 mL of distilled water, the ion exchange membrane was immersed in this, and stirred with a stirrer at room temperature for 40 hours to ion-exchange part of the sulfonic acid groups in the ion exchange membrane with cerium ions. . Subsequently, this membrane was immersed in a 1 mol / L phosphoric acid aqueous solution at room temperature for 60 hours. When this film was confirmed by X-ray diffraction, it was confirmed that cerium phosphate was precipitated in the film. The content ratio of this cerium phosphate with respect to the total mass of the film was 5.2%.
次に、白金がカーボン担体(比表面積800m2/g)に触媒全質量の50%含まれるように担持された触媒粉末(エヌ・イーケムキャット社製)1.0gに、蒸留水5.1gを混合した。この混合液にCF2=CF2/CF2=CFOCF2CF(CF3)O(CF2)2SO3H共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールに分散させた固形分濃度9質量%の液5.6gを混合した。この混合物をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。 Next, 5.1 g of distilled water was added to 1.0 g of catalyst powder (manufactured by N.E. Chemcat Co.) supported by platinum so that 50% of the total mass of the catalyst was contained in a carbon support (specific surface area 800 m 2 / g). Mixed. CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) is dispersed in ethanol in this mixed solution. 5.6 g of a liquid having a solid content concentration of 9% by mass was mixed. This mixture was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica) to prepare a coating solution for forming a catalyst layer.
この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cm2であった。 This coating solution was applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before formation of the catalyst layer and the mass of the base film after formation of the catalyst layer, 0.5 mg / Cm 2 .
次に、上述のリン酸セリウムを含有させたイオン交換膜を用い、この膜の両面に基材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層をイオン交換膜の両面にそれぞれ接合した膜触媒層接合体を得た。なお、電極面積は16cm2であった。 Next, using the above-described ion exchange membrane containing cerium phosphate, the catalyst layers formed on the base film are arranged on both sides of the membrane, and transferred by a hot press method to be used as an anode catalyst layer and a cathode. A membrane catalyst layer assembly was obtained in which the catalyst layers were bonded to both surfaces of the ion exchange membrane. The electrode area was 16 cm 2 .
この膜触媒層接合体を厚さ350μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、加速試験として開回路試験(OCV試験)を行った。試験は、常圧で、電流密度0.2A/cm2に相当する水素(利用率70%)及び空気(利用率40%)をそれぞれアノード及びカソードに供給し、セル温度は90℃、アノードガスの露点は60℃、カソードガスの露点は60℃として、発電は行わずに開回路状態で100時間運転し、その間の電圧変化を測定した。また、試験前後にアノードに水素、カソードに窒素を供給し、膜を通してアノードからカソードにリークする水素ガス量を分析し、膜の劣化の程度を調べた。結果を表1に示す。 A membrane / electrode assembly is produced by sandwiching the membrane / catalyst layer assembly between two gas diffusion layers made of carbon cloth having a thickness of 350 μm. The membrane / electrode assembly is assembled in a power generation cell and an open circuit test (OCV test) is performed as an acceleration test. ) In the test, hydrogen (utilization rate 70%) and air (utilization rate 40%) corresponding to a current density of 0.2 A / cm 2 were supplied to the anode and the cathode, respectively, the cell temperature was 90 ° C., and the anode gas. The dew point was 60 ° C., the dew point of the cathode gas was 60 ° C., 100 hours of operation was performed in an open circuit state without power generation, and the voltage change during that time was measured. Also, before and after the test, hydrogen was supplied to the anode and nitrogen was supplied to the cathode, and the amount of hydrogen gas leaking from the anode to the cathode through the membrane was analyzed to examine the degree of membrane degradation. The results are shown in Table 1.
次に、また上記同様に膜電極接合体を作製して発電用セルに組み込み、低加湿での運転条件における耐久試験を行った。試験条件は、常圧にて、水素(利用率70%)/空気(利用率40%)を供給し、セル温度80℃において電流密度0.2A/cm2における固体高分子形燃料電池の初期特性評価及び耐久性評価を実施した。アノード側は露点80℃、カソード側は露点50℃としてそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関係を測定した。結果を表2に示す。また、上記のセルの評価条件において、カソード側の露点を80℃に変更した以外は同様にして、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関係を測定した。評価結果を表3に示す。 Next, a membrane electrode assembly was prepared in the same manner as described above and incorporated in a power generation cell, and an endurance test under operating conditions with low humidification was performed. The test conditions were as follows: hydrogen (utilization 70%) / air (utilization 40%) was supplied at normal pressure, and the initial state of the polymer electrolyte fuel cell at a cell temperature of 80 ° C. and a current density of 0.2 A / cm 2 Characteristic evaluation and durability evaluation were performed. Hydrogen and air were humidified and supplied into the cell with a dew point of 80 ° C. on the anode side and a dew point of 50 ° C. on the cathode side, respectively. The results are shown in Table 2. Further, under the above-described cell evaluation conditions, the relationship between the cell voltage at the initial stage of operation and the elapsed time after the start of operation and the cell voltage was measured in the same manner except that the dew point on the cathode side was changed to 80 ° C. The evaluation results are shown in Table 3.
[例2]
300mlガラス製丸底フラスコに、CF2=CF2/CF2=CFOCF2CF(CF3)O(CF2)2SO3H共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールと水の混合液(水:エタノール=40:60)に分散させた固形分濃度30質量%の分散液(以下、分散液Aという)100gを用意した。この分散液に対して、上記共重合体の質量の2.8%に相当するセリウムイオンを含む、硝酸セリウム(Ce(NO3)3・6H2O)2.64gを50mLの蒸留水に溶解した溶液を添加して、室温でスターラーで10時間混合した。これにより、CF2=CF2/CF2=CFOCF2CF(CF3)O(CF2)2SO3H共重合体のスルホン酸基の30%をCe3+でイオン交換した液状組成物を得た。
[Example 2]
In a 300 ml glass round bottom flask, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) 100 g of a dispersion liquid (hereinafter referred to as “dispersion liquid A”) having a solid content concentration of 30 mass% was prepared by dispersing the above in a mixed liquid of ethanol and water (water: ethanol = 40: 60). For this dispersion, containing cerium ions corresponding to 2.8% of the mass of the copolymer, cerium nitrate (Ce (NO 3) 3 · 6H 2 O) dissolved 2.64g of distilled water 50mL The solution was added and mixed with a stirrer at room temperature for 10 hours. As a result, a liquid composition in which 30% of the sulfonic acid group of CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer was ion-exchanged with Ce 3+ was obtained. It was.
次にこの液状組成物に1mol/Lのリン酸水溶液5.0gを撹拌しながら滴下し、さらに室温で2時間撹拌を続けた。滴下開始より微細な白色の粒子の析出がみられ、最終的には均一で安定に分散した白色液状組成物が得られた。この白色の粒子をX線回折により同定した結果、リン酸第一セリウムであることが確認された。次に、この組成物を100μmのエチレン/テトラフルオロエチレン共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、以下、単にETFEシートという。)上に、ダイコータにて塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに120℃で30分のアニールを施し、膜厚50μmの固体高分子電解質膜を得た。この膜中に存在する白色の粒子をX線回折により同定したところ、リン酸第一セリウムであることが確認された。リン酸第一セリウムは、膜の全質量に対して4.7%含まれていた。 Next, 5.0 g of a 1 mol / L phosphoric acid aqueous solution was added dropwise to the liquid composition while stirring, and stirring was further continued at room temperature for 2 hours. Precipitation of fine white particles was observed from the start of dropping, and finally, a white liquid composition that was uniformly and stably dispersed was obtained. As a result of identifying the white particles by X-ray diffraction, it was confirmed that the particles were cerium phosphate. Next, this composition was coated on a sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd., hereinafter simply referred to as ETFE sheet) made of a 100 μm ethylene / tetrafluoroethylene copolymer with a die coater. The film was cast, pre-dried at 80 ° C. for 10 minutes, then dried at 120 ° C. for 10 minutes, and further annealed at 120 ° C. for 30 minutes to obtain a solid polymer electrolyte membrane having a thickness of 50 μm. When white particles present in the film were identified by X-ray diffraction, it was confirmed to be ceric phosphate. The cerium phosphate contained 4.7% with respect to the total mass of the membrane.
この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜電極接合体を得た。この膜電極接合体について例1と同様の評価を行ったところ、表1〜3に示す結果となった。 A membrane having a size of 5 cm × 5 cm was cut out from this polymer electrolyte membrane, and a membrane / electrode assembly was obtained in the same manner as in Example 1. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.
[例3]
硝酸セリウム(Ce(NO3)3・6H2O)10.0gを500mLの蒸留水に溶解し、この中に1モル/Lのリン酸水溶液を100g滴下し、白色の沈殿を得た。これを水洗し、pHが7になるまで水洗・濾過を繰り返し、80℃で乾燥した。この結晶を、X線回折により同定した結果、リン酸第一セリウムであることが確認された。
[Example 3]
Cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 10.0g was dissolved in distilled water of 500 mL, the aqueous solution of phosphoric acid 1 mol / L therein and 100g added dropwise to give a white precipitate. This was washed with water, repeatedly washed with water and filtered until the pH reached 7, and dried at 80 ° C. As a result of identifying this crystal by X-ray diffraction, it was confirmed that it was ceric phosphate.
次に、300mlのガラス製丸底フラスコに、分散液Aを100gと、上記で得られたリン酸第一セリウム2.00gとを仕込み、室温で8時間撹拌することにより、リン酸セリウムが分散した液状組成物を得る。次にこの組成物を100μmのETFEシート上に、ダイコータで塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施して、膜厚50μmでリン酸第一セリウムの含有率が膜全質量の6.2%の高分子電解質膜を得る。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。 Next, 100 g of dispersion A and 2.00 g of cerium phosphate obtained above were charged into a 300 ml glass round bottom flask and stirred for 8 hours at room temperature to disperse cerium phosphate. A liquid composition is obtained. Next, this composition was coated on a 100 μm ETFE sheet with a die coater to form a cast film, pre-dried at 80 ° C. for 10 minutes, dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes. To obtain a polymer electrolyte membrane having a thickness of 50 μm and a content of cerium phosphate of 6.2% of the total mass of the membrane. A membrane having a size of 5 cm × 5 cm is cut out from the polymer electrolyte membrane, and a membrane electrode assembly is obtained in the same manner as in Example 1. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
[例4]
300mlのガラス製丸底フラスコに、CF2=CF2/CF2=CFOCF2CF(CF3)O(CF2)2SO3H共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールに分散させた固形分濃度9.5質量%の分散液100gに対して、粉末状の炭酸セリウム水和物(Ce2(CO3)3・8H2O)0.30gとを仕込み、この混合物を超音波発生ホモジナイザー(商品名:US−600T:日本精機社製)を使用して混合、粉砕させ、炭酸セリウム粒子が分散された半透明の分散液を得た。次にこの組成物を100μmのETFEシート上に、ダイコータにて、塗工してキャスト製膜した。
[Example 4]
In a 300 ml glass round bottom flask, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) ) Is dispersed in ethanol with a solid content concentration of 9.5% by mass, and 0.30 g of powdered cerium carbonate hydrate (Ce 2 (CO 3 ) 3 · 8H 2 O) is charged. The mixture was mixed and pulverized using an ultrasonic generation homogenizer (trade name: US-600T: manufactured by Nippon Seiki Co., Ltd.) to obtain a translucent dispersion in which cerium carbonate particles were dispersed. Next, this composition was coated on a 100 μm ETFE sheet with a die coater to form a cast film.
これを80℃で30分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmで炭酸セリウム水和物の含有率が膜全質量の3.2%の高分子電解質膜を得る。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。 This is dried at 80 ° C. for 30 minutes and further annealed at 150 ° C. for 30 minutes to obtain a polymer electrolyte membrane having a film thickness of 50 μm and a cerium carbonate hydrate content of 3.2% of the total mass of the membrane. A membrane having a size of 5 cm × 5 cm is cut out from the polymer electrolyte membrane, and a membrane electrode assembly is obtained in the same manner as in Example 1. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
[例5]
300mlのガラス製丸底フラスコに、分散液Aを100gと、酸化セリウム微粉末(CeO2、純正化学社製、平均粒径0.4μm)を0.5gとを仕込んで混合した。この混合物を超音波発生ホモジナイザー(US−600T:日本精機社製)を使用してさらに混合、粉砕させ、酸化セリウム粒子が分散された半透明の分散液を得た。この溶液を例2と同様に塗工して、キャスト製膜することで膜厚50μmで酸化セリウムの含有率が膜全質量の1.6%の高分子電解質膜を得た。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜電極接合体を得た。この膜電極接合体について例1と同様の評価を行ったところ、表1〜3に示す結果のとおりとなった。
[Example 5]
In a 300 ml glass round bottom flask, 100 g of dispersion A and 0.5 g of cerium oxide fine powder (CeO 2 , Junsei Chemical Co., Ltd., average particle size 0.4 μm) were charged and mixed. This mixture was further mixed and pulverized using an ultrasonic generation homogenizer (US-600T: manufactured by Nippon Seiki Co., Ltd.) to obtain a translucent dispersion in which cerium oxide particles were dispersed. This solution was applied in the same manner as in Example 2 and cast to obtain a polymer electrolyte membrane having a thickness of 50 μm and a cerium oxide content of 1.6% of the total mass of the membrane. A membrane having a size of 5 cm × 5 cm was cut out from this polymer electrolyte membrane, and a membrane / electrode assembly was obtained in the same manner as in Example 1. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.
[例6]
電解質膜として、スルホン酸基を有するポリエーテルエーテルケトンの、スルホン酸基の一部を難溶性セリウム化合物でイオン交換した高分子化合物からなる厚さ50μmのイオン交換膜を以下のようにして作製した。すなわち、粒状の市販のポリエーテルエーテルケトン(商品名:PEEK−450P、Victrex社製)60gを室温で98%の硫酸1200gに少量ずつ添加し、室温で60時間撹拌して均一な溶液を得ることで、ポリエーテルエーテルケトンにスルホン酸基が導入された高分子化合物の溶液を得た。次にこの溶液を冷却しながら、5Lの蒸留水に除除に滴下することで、スルホン酸基を有するポリエーテルエーテルケトンを析出させ、濾過して分離した。次いでこれを蒸留水で中性になるまで洗浄し、その後80℃真空下で24時間乾燥して48gのスルホン酸基を有するポリエーテルエーテルケトンを得た。
[Example 6]
As the electrolyte membrane, a 50 μm-thick ion exchange membrane made of a polymer compound of polyether ether ketone having a sulfonic acid group, in which a part of the sulfonic acid group was ion-exchanged with a sparingly soluble cerium compound, was prepared as follows. . That is, 60 g of granular commercially available polyetheretherketone (trade name: PEEK-450P, manufactured by Victrex) is added little by little to 1200 g of 98% sulfuric acid at room temperature, and stirred at room temperature for 60 hours to obtain a uniform solution. Thus, a solution of a polymer compound in which a sulfonic acid group was introduced into polyether ether ketone was obtained. Next, while cooling this solution, it was dropped into 5 L of distilled water for removal, thereby precipitating polyether ether ketone having a sulfonic acid group, and separating by filtration. Next, this was washed with distilled water until neutral, and then dried under vacuum at 80 ° C. for 24 hours to obtain 48 g of polyetheretherketone having sulfonic acid groups.
次にこの化合物約1gを精密に秤量した後、1規定の塩化ナトリウム水溶液500mL中に浸漬し、60℃で24時間反応させてスルホン酸基をナトリウムイオンによりイオン交換した。この試料を室温まで冷却した後、蒸留水で十分洗浄し、イオン交換した1規定の塩化ナトリウム水溶液中と洗浄した蒸留水を0.01規定の水酸化ナトリウムで滴定して、イオン交換容量を求めた。イオン交換容量は1.6ミリ当量/g乾燥樹脂であった。 Next, about 1 g of this compound was precisely weighed and then immersed in 500 mL of a 1N aqueous sodium chloride solution and reacted at 60 ° C. for 24 hours to ion-exchange sulfonic acid groups with sodium ions. After cooling this sample to room temperature, it was thoroughly washed with distilled water, and the ion exchange capacity was obtained by titrating the ion-exchanged 1N aqueous sodium chloride solution and the washed distilled water with 0.01N sodium hydroxide. It was. The ion exchange capacity was 1.6 meq / g dry resin.
次に、スルホン酸基を有するポリエーテルエーテルケトンをN−メチル−2−ピロリドン(NMP)に溶解して約10質量%の溶液とし、これに例3で得られたリン酸第一セリウムを添加して混合する。これを室温でポリテトラフルオロエチレンからなる基材にキャスト製膜した後、窒素雰囲気で100℃で10時間乾燥してNMPを蒸発させ、厚さ50μmで膜中のリン酸第一セリウムの含有率が膜全質量の3.0%の高分子電解質膜を得る。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。 Next, a polyether ether ketone having a sulfonic acid group is dissolved in N-methyl-2-pyrrolidone (NMP) to obtain a solution of about 10% by mass, and the cerium phosphate obtained in Example 3 is added thereto. And mix. This was cast into a substrate made of polytetrafluoroethylene at room temperature, dried in a nitrogen atmosphere at 100 ° C. for 10 hours to evaporate NMP, and the content of cerium phosphate in the film at a thickness of 50 μm Gives a polymer electrolyte membrane of 3.0% of the total mass of the membrane. A membrane having a size of 5 cm × 5 cm is cut out from the polymer electrolyte membrane, and a membrane electrode assembly is obtained in the same manner as in Example 1. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
[例7]
固体高分子電解質膜として、例1で用いたものと同じ市販のイオン交換膜を何も処理せずに用い、次に、この膜を用いて例1と同様にして膜電極接合体を得た。この膜電極接合体について例1と同様の評価を行ったところ、表1〜3に示す結果のとおりとなった。
[Example 7]
As the solid polymer electrolyte membrane, the same commercially available ion exchange membrane as that used in Example 1 was used without any treatment, and then a membrane / electrode assembly was obtained using this membrane in the same manner as in Example 1. . When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.
[例8]
300mlのガラス製丸底フラスコに、分散液Aを100gと粉末状のリン酸ジルコニウム(第一稀元素化学工業社製)1.00gとを仕込み、PTFE半月板翼にて、室温で8時間撹拌してリン酸ジルコニウムが分散した液状組成物を得た。次にこの組成物を100μmのETFEシート上にダイコータにて塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmでリン酸ジルコニウムの含有率が膜全質量の3.2%の固体高分子電解質膜を得た。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜触媒層接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなった。
[Example 8]
A 300 ml glass round bottom flask was charged with 100 g of dispersion A and 1.00 g of powdered zirconium phosphate (Daiichi Rare Element Chemical Co., Ltd.) and stirred at room temperature for 8 hours with a PTFE meniscus blade. Thus, a liquid composition in which zirconium phosphate was dispersed was obtained. Next, this composition was coated on a 100 μm ETFE sheet with a die coater to form a cast film, pre-dried at 80 ° C. for 10 minutes, dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes. Thus, a solid polymer electrolyte membrane having a thickness of 50 μm and a zirconium phosphate content of 3.2% of the total mass of the membrane was obtained. A membrane having a size of 5 cm × 5 cm is cut out from the polymer electrolyte membrane, and a membrane / catalyst layer assembly is obtained in the same manner as in Example 1. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.
[例9]
300mlのガラス製丸底フラスコに、分散液Aを100gと粉末状の二酸化ケイ素(関東化学株式会社製、平均粒径1.0μm)1.00gとを仕込み、PTFE半月板翼にて、室温で8時間撹拌して二酸化ケイ素を分散した液状組成物を得る。次にこの組成物を100μmのETFEシート上にダイコータにて塗工してキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmで二酸化ケイ素の含有率が膜全質量の3.2%の固体高分子電解質膜を得る。この電解質膜から、5cm×5cmの大きさの膜を切り出し、例1と同様にして膜触媒層接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。
[Example 9]
A 300 ml glass round bottom flask was charged with 100 g of dispersion A and 1.00 g of powdered silicon dioxide (manufactured by Kanto Chemical Co., Inc., average particle size 1.0 μm), and at room temperature with a PTFE meniscus blade. Stir for 8 hours to obtain a liquid composition in which silicon dioxide is dispersed. Next, this composition was coated on a 100 μm ETFE sheet with a die coater to form a cast film, pre-dried at 80 ° C. for 10 minutes, dried at 120 ° C. for 10 minutes, and further annealed at 150 ° C. for 30 minutes. To obtain a solid polymer electrolyte membrane having a thickness of 50 μm and a silicon dioxide content of 3.2% of the total mass of the membrane. A membrane having a size of 5 cm × 5 cm is cut out from the electrolyte membrane, and a membrane / catalyst layer assembly is obtained in the same manner as in Example 1. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
[例10]
例6で得られたスルホン酸基を有するポリエーテルエーテルケトンからなるイオン交換膜を、何も含有させずにそのまま用いる以外は例5と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例1と同様に評価を行うと、表1〜3に示す結果のとおりとなる。
[Example 10]
A membrane / catalyst layer assembly was obtained in the same manner as in Example 5 except that the ion exchange membrane comprising the polyether ether ketone having a sulfonic acid group obtained in Example 6 was used as it was without containing anything. Get the body. When this membrane / electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
上記実施例及び比較例の結果より、加速試験である高温・低加湿の開回路試験(OCV試験)においては、従来の電解質膜は劣化して水素リークが増大していたが、本発明の電解質膜は格段に優れた耐久性を示すことが認められる。 From the results of the above examples and comparative examples, in the open circuit test (OCV test) of high temperature and low humidity, which is an accelerated test, the conventional electrolyte membrane deteriorated and hydrogen leakage increased, but the electrolyte of the present invention It can be seen that the membrane exhibits exceptional durability.
本発明の電解質膜は、燃料電池の発電により生成される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れている。したがって、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池は、低加湿発電、高加湿発電のいずれにおいても長期の耐久性を有する。 The electrolyte membrane of the present invention is extremely excellent in durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane of the present invention has long-term durability in both low humidification power generation and high humidification power generation.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007285186A JP2008098179A (en) | 2007-11-01 | 2007-11-01 | Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007285186A JP2008098179A (en) | 2007-11-01 | 2007-11-01 | Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004292619A Division JP5247974B2 (en) | 2004-10-05 | 2004-10-05 | Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008098179A true JP2008098179A (en) | 2008-04-24 |
Family
ID=39380763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007285186A Withdrawn JP2008098179A (en) | 2007-11-01 | 2007-11-01 | Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008098179A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011222268A (en) * | 2010-04-08 | 2011-11-04 | Honda Motor Co Ltd | Membrane for solid polymer fuel cell-electrode structure and method of manufacturing the same |
WO2013031479A1 (en) * | 2011-08-26 | 2013-03-07 | 旭硝子株式会社 | Solid polymer electrolyte membrane, and membrane electrode assembly for use in solid polymer fuel cell |
CN103515629A (en) * | 2012-06-29 | 2014-01-15 | 中国科学院大连化学物理研究所 | Composite ultrafiltration or nanofiltration membrane for hydrogen-chlorine fuel cells, and preparation and application thereof |
JP2020064721A (en) * | 2018-10-15 | 2020-04-23 | トヨタ自動車株式会社 | Fuel battery cell |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4333328A1 (en) * | 1992-10-07 | 1994-04-14 | Basf Ag | Controlled decomposition of per-oxide(s) - is carried out by passing a soln. contg. peroxide over a metal oxide catalyst |
JP2004134294A (en) * | 2002-10-11 | 2004-04-30 | Toyota Central Res & Dev Lab Inc | Solid polyelectrolyte |
JP2005019232A (en) * | 2003-06-26 | 2005-01-20 | Toyota Central Res & Dev Lab Inc | Transition metal oxide containing solid polyelectrolyte |
JP2005071760A (en) * | 2003-08-22 | 2005-03-17 | Toyota Central Res & Dev Lab Inc | Solid high polymer fuel cell |
JP2005093234A (en) * | 2003-09-17 | 2005-04-07 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell |
JP2005093233A (en) * | 2003-09-17 | 2005-04-07 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell |
WO2005124911A1 (en) * | 2004-06-22 | 2005-12-29 | Asahi Glass Company, Limited | Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell |
JP2007031718A (en) * | 2004-06-22 | 2007-02-08 | Asahi Glass Co Ltd | Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell |
-
2007
- 2007-11-01 JP JP2007285186A patent/JP2008098179A/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4333328A1 (en) * | 1992-10-07 | 1994-04-14 | Basf Ag | Controlled decomposition of per-oxide(s) - is carried out by passing a soln. contg. peroxide over a metal oxide catalyst |
JP2004134294A (en) * | 2002-10-11 | 2004-04-30 | Toyota Central Res & Dev Lab Inc | Solid polyelectrolyte |
JP2005019232A (en) * | 2003-06-26 | 2005-01-20 | Toyota Central Res & Dev Lab Inc | Transition metal oxide containing solid polyelectrolyte |
JP2005071760A (en) * | 2003-08-22 | 2005-03-17 | Toyota Central Res & Dev Lab Inc | Solid high polymer fuel cell |
JP2005093234A (en) * | 2003-09-17 | 2005-04-07 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell |
JP2005093233A (en) * | 2003-09-17 | 2005-04-07 | Toyota Central Res & Dev Lab Inc | Electrolyte membrane electrode assembly for solid polymer fuel cell and the solid polymer fuel cell |
WO2005124911A1 (en) * | 2004-06-22 | 2005-12-29 | Asahi Glass Company, Limited | Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell |
JP2007031718A (en) * | 2004-06-22 | 2007-02-08 | Asahi Glass Co Ltd | Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011222268A (en) * | 2010-04-08 | 2011-11-04 | Honda Motor Co Ltd | Membrane for solid polymer fuel cell-electrode structure and method of manufacturing the same |
WO2013031479A1 (en) * | 2011-08-26 | 2013-03-07 | 旭硝子株式会社 | Solid polymer electrolyte membrane, and membrane electrode assembly for use in solid polymer fuel cell |
US9379403B2 (en) | 2011-08-26 | 2016-06-28 | Asahi Glass Company, Limited | Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell |
CN103515629A (en) * | 2012-06-29 | 2014-01-15 | 中国科学院大连化学物理研究所 | Composite ultrafiltration or nanofiltration membrane for hydrogen-chlorine fuel cells, and preparation and application thereof |
JP2020064721A (en) * | 2018-10-15 | 2020-04-23 | トヨタ自動車株式会社 | Fuel battery cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5287969B2 (en) | Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell | |
JP5247974B2 (en) | Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell | |
US9455465B2 (en) | Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell | |
US20080118808A1 (en) | Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell | |
JP2006099999A (en) | Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell | |
JP4765908B2 (en) | Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell | |
JP5286651B2 (en) | Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell | |
JP4997971B2 (en) | Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell | |
JP2007031718A5 (en) | ||
JP4972867B2 (en) | Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell | |
JP2008098179A (en) | Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell | |
JP2006318755A (en) | Film-electrode assembly for solid polymer fuel cell | |
KR100970358B1 (en) | Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell | |
JP4765401B2 (en) | Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell | |
JP2007095529A (en) | Electrolyte film for solid polymer fuel cell, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20110930 |