[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4748701B2 - Low-temperature fired porcelain composition and wiring board using the same - Google Patents

Low-temperature fired porcelain composition and wiring board using the same Download PDF

Info

Publication number
JP4748701B2
JP4748701B2 JP2003124478A JP2003124478A JP4748701B2 JP 4748701 B2 JP4748701 B2 JP 4748701B2 JP 2003124478 A JP2003124478 A JP 2003124478A JP 2003124478 A JP2003124478 A JP 2003124478A JP 4748701 B2 JP4748701 B2 JP 4748701B2
Authority
JP
Japan
Prior art keywords
low
glass
mol
wiring board
temperature fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124478A
Other languages
Japanese (ja)
Other versions
JP2004323337A (en
Inventor
泰志 墨
秀俊 水谷
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003124478A priority Critical patent/JP4748701B2/en
Publication of JP2004323337A publication Critical patent/JP2004323337A/en
Application granted granted Critical
Publication of JP4748701B2 publication Critical patent/JP4748701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【本発明の属する技術分野】
本発明は、低温焼成磁器組成物およびそれを用いた配線基板に関し、特に、高周波用に適した低温焼成磁器組成物およびそれを用いた配線基板に関する。
【0002】
【従来の技術】
従来、例えば、LSIやICあるいはディスクリート部品などの電子部品が搭載された配線基板、あるいは、その配線基板内部に種々の厚膜印刷素子が作りこまれた配線基板として、比較的高密度の配線が可能な多層配線基板が多用されている。本明細書において、該多層配線基板も含め配線基板と総称する。
また、最近、携帯電話をはじめとする無線通信には、電波資源拡大と伝送容量の高密度化を測るために、マイクロ波帯からミリ波帯の高周波帯が積極的に採用されるようになり、これに使用される無線通信機器用の部品として、高周波信号を取り扱うための配線基板に対する需要が爆発的に増大しつつある。
【0003】
上述した高周波信号を取り扱う場合、電子部品の動作電源と電子部品とを繋ぐ配線がインダクタンスとして寄与するため、配線等にノイズが重畳されることによる誤動作の発生、電子部品の動作応答の遅延、または、高周波信号の伝送損失等の不具合が生じることがある。このような、低周波信号では問題にならなかった、高周波信号特有の不具合を抑制するためには、配線層をAg、Cu等の低抵抗率の材料から構成させ、他方、誘電体層を低比誘電率でかつ高周波帯においても誘電損失の低い材料より構成させた配線基板を用いることが必要とされる。
【0004】
しかし、配線層の材料として、融点が1000℃前後と低いAgやCuを採用した場合、配線層と絶縁層とを同時焼成して配線基板を形成するためには、絶縁層は、その焼成温度が800〜1050℃で低温焼成可能な材料で構成する必要がある。低温焼成が可能で、比誘電率が低く、かつ高周波帯においても誘電損失の低い材料として、ホウケイ酸ガラスを主体とし、焼成段階にて結晶を析出させた結晶化ガラスが種々提案されている。例えば、ガラスと、無機フィラーよりなるガラスセラミック材料として、ガラス中のB量を増やすことによって焼結性を確保する例が開示されている(特許文献1〜3)。
【0005】
【特許文献1】
特開平3−141153
【特許文献2】
特開平9−142876
【特許文献3】
特開平7−45958
【0006】
【発明が解決しようとする課題】
しかし、B量の多いガラスを用いたガラスセラミック材料は、セラミックグリーンシートとした時のシート上にホウ酸の結晶が析出することがあり、ハンドリング性が損なわれるという問題があった。これはガラス中のBが化学的に不安定であり、空気中の水分と反応する為である。ホウ酸の結晶を抑制する方法として、特開平7−45958にはセラミックグリーンシート内に塩基を添加する方法が記載されている。しかしこの方法では添加物の種類や量によって、脱バインダ性や焼結体の特性が変動してしまうという問題があった。
また、ガラス組成物において、ガラス成分の溶融温度を1450℃程度とし、かつ、800〜1050℃程度にて低温焼成させる場合、アルカリ金属、Pb、AsおよびSb等の金属成分を添加させる必要があった。しかし、これら金属成分酸化物は、焼結体及び低温焼成磁器組成物よりなる配線基板の高周波帯における誘電損失を増大させてしまう。
【0007】
本発明は、かかる問題を考慮してなされたものである。すなわち、本発明は、高周波信号における電気的特性に適し、セラミックグリーンシートとした時のホウ酸結晶の析出が無く、かつ、最適焼成条件の幅が広い低温焼成磁器組成物およびそれを用いた配線基板を提供することを目的とする。
【0008】
【課題を解決するための手段および作用・効果】
上記課題を解決するための本発明の低温焼成磁器組成物は、SiO、B、Al、金属酸化物ROを含有し、SiO、B、Al、ROの合計量を100mol%としたとき、SiOの含有量が68〜72mol%、Bの含有量が14〜22mol%、Alの含有量が4〜11mol%、ROの含有量が4〜11mol%であるとともに、SiOとBとの合計量は92mol%以下であり、B/ROで表されるBとROのmol比が1.3〜4であり、前記金属酸化物ROのはCa、Sr、Mg、Znのうちから選ばれる少なくとも一種の成分からなるとともに、該金属酸化物ROの合計量を100mol%としたとき、CaOは含有量が60mol%以上であり、アルカリ金属、Pb、AsおよびSbを含まないガラスと、SiOあるいはAlの少なくともいずれか一方の無機フィラーとを含み、前記ガラスの含有量が55〜80体積%であり、前記無機フィラーの含有量が20〜45体積%であることを特徴とする。
【0009】
本発明のガラスは、SiOとBを主成分とするホウ珪酸ガラスであり、アルカリ金属含有量を含まない為、非晶質にもかかわらず誘電損失が低い。また焼成過程(1050℃以下)で結晶が析出しない組成とすることで、最適焼成条件の幅が広く量産性に優れたものとなる。
【0010】
該ガラスは、SiO、B、Al、RO(RはCa、Sr、Mg、Znのうちから選ばれる少なくとも一種)を含有する。該ガラス中のSiOとBとの合計量は84〜92mol%が好ましい。84mol%以下であると誘電率や誘電損失が高くなるからである。92mol%以上であるとSiO系の結晶(たとえばクリストバライト)が析出するからである。該ガラス中のSiOは、55mol%より小さいと誘電率が上昇してしまうからである。72mol%より大きいと焼結できなくなるからである。該ガラス中のB量は14〜26mol%であり、特に16〜24mol%、更には18〜22mol%が望ましい。14mol%より小さいと焼結できなくなるからである。26mol%より大きいと脱脂性が低下するからである。該ガラス中のAl量は4〜11mol%が望ましい。4mol%より小さいとガラス化が分相してしまったりSiO系結晶が析出するからである。11mol%より大きいとAl結晶や長石が析出するからである。該ガラスのRO量は4〜11mol%が望ましい。4mol%より小さいとガラスの溶融が困難だからである。11mol%より大きいと、誘電率や誘電損失が高くなるからである。RO量は特に8mol%以下、更には6mol%以下とすると誘電損失を著しく低くでき望ましい。
【0011】
該ガラスのB量とRO量との関係は、B/ROで表されるBとROのmol比が1.3〜4である。1.3より小さいと誘電損失が大きくなるからであり、特に2以上、更には3以上が望ましい。4より大きいと、セラミックグリーンシートとした時のシート上にホウ酸結晶が析出してしまうからである。
【0012】
本発明の低温焼成磁器組成物は、ガラス中のB量が多いにもかかわらず、セラミックグリーンシートとした時のシート上にホウ酸結晶が析出しないのは、以下の作用による。グリーンシート上にホウ酸の結晶が析出するのは、グリーンシートの保管中に空気中の水分とガラスとが反応し、水分中にB成分が一旦溶出し、それがHBOの板状結晶として再結晶化するからと考えられる。一方、ホウ酸はアルカリ(土類)酸化物と塩を形成し、形成される塩のROとBとの比率は、ROが1molに対しBが最大4molの八ホウ酸塩が存在することが知られている。このことから、ガラス中のB量をB/RO比で4以下としておけば、Bが水分中に溶出したとしても、同様に水分に対して溶出しやすいであろうRイオンとの塩を不足無く作るため、ホウ酸結晶は析出しないものと考えられる。
【0013】
該ROのRは、Ca、Sr、Mg、Znのうちから選ばれる少なくとも一種であるが、量産時に安定した焼結性と高い歩留まりを得るためには、Caを必須成分とし、ROの合計量を100mol%としたときのCaOの含有量が60〜100mol%であり、Sr、Mg、Znは任意成分であることが好ましい。CaOはガラス化範囲が広く、分相や結晶化が起こりにくいからである。CaOが60mol%より小さいと結晶化が起こったり、粘度が上昇し焼結性が低下することがある
【0014】
従来、上記結晶化ガラスもしくは、結晶析出させずに非晶質のままとするガラス組成物において、ガラス成分の溶融温度を1450℃程度とし、かつ、800〜1050℃程度にて低温焼成させる場合、アルカリ金属、Pb、AsおよびSb等の金属成分を添加させる必要があった。しかし、これら金属成分酸化物は、焼結体及び低温焼成磁器組成物よりなる配線基板の高周波帯における誘電損失を増大させてしまう。
【0015】
本発明の低温焼成磁器組成物は、アルカリ金属、Pb、AsおよびSb等の金属成分を含有させずに、1050℃以下で低温焼成が可能であるとともに、該低温焼成後においても非晶質のままとすることが可能である。その結果、金属成分酸化物による高周波帯での誘電損失増大といった不具合を抑制することができ、ひいては、本発明の低温焼成磁器組成物よりなる配線基板の高周波帯における誘電損失をさらに低減することが可能となる。
【0016】
また、本発明の低温焼成磁器組成物は、高周波信号に対応した、低比誘電率化および、誘電損失の低減を可能とする効果を有する。さらに、アルカリ金属、Pb、AsおよびSb等の他の構成成分を含有しないために、焼成過程において形成される異相粒界を低減させることが可能となり、結晶析出といった非晶質性が損なわれる不具合を抑制することが可能となる。その結果、低温焼成磁器組成物に含まれるガラスマトリックが結晶化しないとともに、上記したアルカリ金属等を添加させた場合に発生する不具合を抑制することが可能となるので、高周波帯における誘電損失を低減することができる。
【0017】
該ガラスは、その屈伏点が700〜900℃であることが好ましい。低温焼成磁器組成物を構成する構成成分とともに、通常、有機材料よりなるバインダを含有させた状態で焼成が行なわれる。該有機材料よりなるバインダは、焼成段階にて、脱脂することにより除去されるが、低温焼成磁器組成物の屈伏点が700℃未満であると、脱脂によるバインダの除去が完了する前に緻密化が進んでしまうため、炭素成分が残留する不具合が起こりやすくなる。他方、屈伏点が880℃以上であると、配線基板の配線層を低抵抗率のCuやAgより構成させた場合、配線層と絶縁層との焼成収縮のタイミングが合わなくなるため、絶縁層と配線層とを同時焼成させることが困難となる。特に好ましくは750〜880℃、更に好ましくは800〜880℃である。
【0018】
本発明の無機フィラーはSiOあるいはAlの少なくともいずれか一方を含み、該無機フィラーは、アルミナ、ムライト、石英、シリカガラス、及びそれらの混合物が好ましく、特にはアルミナが好ましい。アルミナは高純度の原料が入手しやすいため誘電損失を低減させやすく、かつ、焼結体の強度が向上するからである。また該無機フィラーは、アルカリ金属、アルカリ土類金属を含有しないことが好ましい。アルカリ金属、アルカリ土類金属を含有すると、焼成体である低温焼成磁器組成物の誘電損失が大きくなってしまうからである。
【0019】
前記ガラスは、前記SiOの含有量が68〜72mol%である。SiO含有量が多くなると耐メッキ性が向上し、メッキ処理での不具合が低下するからである。
【0020】
前記ガラスは、RO/Alで表されるAlとROのmol比が1より大きく2以下であることが望ましい。上記ガラス粉末は誘電損失を低下させる為にRO量が少なく、ホウ酸結晶の析出を抑制する為にB量の上限はRO量によって制限される。このためガラスの粘性が上昇し焼結性が低下してしまう傾向にある。RO/Alのmol比を1より大きくすることによって、RO量が少なく、Sb,Pb等の有害成分を含まない組成でも良好な焼結性を確保できる。RO/Al量が2より大きいと、電極と同時焼成する際に電極部に反りが発生したり、分相したりするため望ましくない。
【0021】
O/Al比が1以下の場合には、ROはガラス形成酸化物の四面体構造を切断する非架橋酸素を与えられず、焼成温度でのガラス粘度が高すぎ、焼結できないと考えられる
【0022】
前記ROは、MgOを必須の成分とすることが望ましい。MgOは誘電率と誘電損失を低下させるからである。ROの合計量を100mol%としたとき、MgO量は40mol%以下、特に20mol%以下が望ましい。40mol%より大きいと結晶化しやすくなるからである。
【0023】
前記ガラスと前記無機フィラーを含む低温焼成磁器組成物において、該ガラスの含有量が55〜80体積%であり、該無機フィラーの含有量が20〜45体積%である。ガラスが55体積%より少ないと、緻密な焼結体が得られないからである。80体積%以上であると脱バインダ性が低下したり、焼成体の寸法変動が大きくなるからである。特に好ましくは、該ガラスの含有量が55〜70体積%であり、該無機フィラーの含有量が30〜45体積%である。更に好ましくは、該ガラスの含有量が55〜65体積%であり、該無機フィラーの含有量が35〜45体積%である。
【0024】
前記低温焼成磁器組成物は850〜1050℃で焼成された後において、含まれる結晶相は、上記無機フィラー中に含有される結晶相のみである。ガラス粉末の結晶化に起因する結晶が存在しない為、焼結体中の結晶相は、無機フィラー中に含有される結晶相のみである。ガラス粉末の結晶化に起因する結晶が存在すると、焼成条件によって結晶化度が変わる為、高周波特性が焼成条件に大きく依存してしまう。このため、最適焼成条件が狭く、条件だしが難しい。また結晶化するガラスは、焼成過程で一旦軟化し、その後結晶化に伴い流動性を失う。このため、焼成過程で発生する基板の反りを、焼成条件で修正することが難しい。本発明の低温焼成磁器組成物は結晶化しないガラスからなる為、上の問題は起こりにくく最適焼成条件の幅を広くできる。
【0025】
なお、本明細書における本発明のガラスが非晶質である、および焼結体は、ガラスに起因する結晶を析出していないとは、1050℃以下の焼成やアニーリング等の熱処理後においても、ガラスの構成成分(無機フィラーとして結晶性フィラー粒子を添加した場合は、この無機フィラーを除く。例えば、SiO、Al、ムライト、エンスタタイト等の無機フィラー。)に起因して結晶化した結晶相がガラスマトリックス(ガラスよりなる部分)中に形成されていないことを意味する。さらに、該結晶相が形成されていないとは、低温焼成磁器組成物を用いた成形体を1050℃以下の熱処理にて得られる焼結体をX線回折測定した際に、ガラスの構成成分(無機フィラーとして結晶性フィラー粒子を添加した場合は、この無機フィラーを除く。例えば、SiO、Al、ムライト、エンスタタイト等の無機フィラー。)に起因した結晶相が存在した場合に観測される回折パターンが現れないものを言う。
【0026】
前記低温焼成磁器組成物によれば、比誘電率は7以下、10GHzにおける誘電損失は0.003以下という、高周波特性に優れた磁器が得られる。比誘電率としては、通常は3以上であり、特に6.5以下、更には6以下が好ましい。誘電損失としては特に0.002以下、更には0.0015以下が好ましい。このように、低比誘電率であり、かつ高周波帯における誘電損失が低減された、本発明の低温焼成磁器組成物より、高周波信号を取り扱う場合に問題となった高周波信号の伝送損失等の不具合を抑制することが可能となる。ここで誘電率および誘電損失は公知の方法で測定すれば良い。例えば、JIS R 1627に記載の両端短絡型誘電体共振器法のTE011モードで測定できる。
【0027】
基板の表面および/または内部に配線層が形成された配線基板において、絶縁層に本発明の低温焼成磁器組成物を用いることにより、同時焼結性に優れ、かつ高周波信号に適した配線基板とすることができる。従来、基板に上記した結晶化ガラスを用いて、配線層と同時焼成させると、ガラス成分の流動化が焼成段階で抑制されることにより、形成された配線基板にそりがでる場合があった。しかしながら、本発明の低温焼成磁器組成物が含むガラスマトリックは結晶化しないので、形成される配線基板のそり発生を抑制することができ、ひいては、電気信号の伝送損失低減などの電気的特性向上を可能とする。ところで、低温焼成磁器組成物の構成成分としてガラス以外に無機フィラーとして結晶性のもの(例えば、アルミナ、石英、ガーナイト、ディオプサイド、スピネル、エンスタタイト、コージェライト、アノーサイト等)を添加物として併用した場合には、ガラスマトリックス自体は結晶化した結晶相がない非晶質なものであるが、焼結体全体としては結晶化した結晶相を含有するものとなる。このような場合においても、ガラスマトリックス自体が結晶化しない限りにおいては、本発明の技術的範囲に含まれる。
【0028】
また、高周波信号に対応した配線基板においては、配線層は低抵抗率のCu、Ag、Au等の材料を用いることが要求される。その場合、Cu、Ag、Auは、融点が低いために、配線層と基板とを同時焼成させるためには、基板に用いる材料を800〜1050℃程度の低温焼成にて形成可能なものとする必要がある。本発明の低温焼成磁器組成物は、焼成温度を1050℃以下とすることができるので、低温焼成磁器組成物を用いて基板を形成することが可能であり、さらに高周波信号に適した配線基板とすることができる。
【0029】
特に、上記Cu、Ag、Auの中において、Cu、Agは低抵抗率であるので、配線層の材料に適しており、さらに、Agより耐マイグレーション性に優れたCuが最適である。しかし、Cuは、大気を含む酸化雰囲気中で焼成すると酸化され、配線層の抵抗増大などの不具合が起こる。そのために、通常、基板とCuを用いた配線層とを同時焼成させる際には、還元もしくは中性雰囲気でおこなわれている。この際、上記のように基板は、基板の構成成分である低温焼成磁器組成物とともに、通常、有機材料よりなるバインダが含有された状態で焼成される。該バインダは、焼成段階において脱脂により除去させるが、焼成温度が高いほど、バインダ除去効果は上がる。しかし、焼成温度が高くなると、配線層に用いられるCuの融点に近づきすぎて、焼成過程においてCuが仮焼結してしまい、基板との同時焼成が困難となる。また、焼成体のサイズや形状によってバインダの除去条件が変化するために、低温焼成磁器組成物と、Cuよりなる配線層とを同時焼成させる際には、焼成温度等の焼成条件の最適化の幅は広いほどよい。
【0030】
本発明においては、上記したように低温焼成磁器組成物を、従来の結晶化ガラスに比べて、焼成温度等の焼成条件の最適化の幅を広げて焼成させることが可能である。そのために、本発明の低温焼成磁器組成物と、Cuを用いた配線層とを同時焼成させることで、同時焼結性に優れ、そり等の不具合を抑制させた配線基板を形成させることが可能である。
【0031】
その結果、さらに、高周波信号に適した配線基板となるとともに、該配線基板の歩留まり等の生産性をも向上させることができる。
【0032】
【発明の実施の形態】
本発明の低温焼成磁器組成物の製造方法であるが、特に限定されないがその一例を示す。ガラスを構成する原料における原料元素の酸化物を焼成後の組成が前記含有量となるように、秤量して混合後、例えば、ルツボ中で、1600℃程度にて溶融を行なった後、ボールミール等により粉砕することにより、本発明の低温焼成磁器組成物の構成成分となるガラス粉末を得る。
【0033】
該ガラス粉末の平均粒経は1〜3μmの範囲となるように粉砕するのがよい。平均粒径が3μmより大きくなると、焼結性が低下し、他方、平均粒径が1μm未満となると、脱バインダ性が低下するからである。
【0034】
上記のように作製したガラス粉末に、無機フィラーと、有機材料よりなるバインダと溶剤等とを加え混練するとともに、シート状に成形させる。その後、成形させた成形体を多孔質セラミックセッター上にて焼成させることで、焼結体を得ることができる。
【0035】
上記バインダとしては、アクリル系樹脂(例えば、ポリメチルメタクリレート、ポリt−ブチルメタクリレート)、セルロースアセテートブチレート、ポリエチレン、ポリビニルアルコール、ポリビニルブチラールなどを挙げることができ、溶剤としては、アセトン、メチルエチルケトン、ジアセトン、メチルイソブチルケトン、ベンゼン、ブロムクロロメタン、エタノール、ブタノール、プロパノール、トルエン、キシレンなどを挙げることができる。
【0036】
次に本発明の配線基板を形成した場合の一実施形態を図1に示す。
図1は、配線基板1の概略断面図を模式的に示すものであり、基板2の内部に、配線層3が形成されているとともに、必要に応じてその表面には半導体素子51が実装される。各配線層3は、配線層3を厚さ方向に貫くビアホール35により互いに電気的に接続される。配線基板1は、例えば高周波用多層セラミック配線基板として機能させるため、高周波用パッケージや、それ自身が高周波信号処理能力を有した能動素子機能を備えたものであってもよいし、別途構成されたアンテナスイッチモジュール等の高周波用素子を搭載するための電子部品であってもよい。
【0037】
本実施形態の配線基板1では、配線層3は、ノイズ防護用のシールド部として機能する接地導体(図示せず)が随伴したものとして構成されている。さらに、本実施形態の配線基板1では、配線層3のほかに、コンデンサ54、インダクタ53及び抵抗器55などの種々の厚膜回路素子が作りこまれているが、厚膜回路素子を特に有さない、配線層のみを有する基板として構成することも可能である。また、配線基板1を高周波用多層セラミック配線基板とした場合、配線層3の一部をストリップラインとして構成されることももできる。また、図1における配線基板1は、多層配線基板をなしているが、本発明の適用は、配線層3を有しないもの、もしくは、高周波用のスロットライン、コプレーナウェーブガイドなどの高周波用金属配線よりなる形態など、公知の配線基板に適用可能である。さらに、電子部品51を搭載させる際の配線基板1の表面に形成される接続端子を、本発明の配線層3の一部に接合させることもできる。
【0038】
図1に示した配線基板1において、電子部品51が搭載される側とは反対側の面がマザーボードなどの上に配置されるための複数の端子を有する配線基板にたいしても、適用可能である。つまり、本発明においては、配線基板1の母体となる基板2の形成時のそりが抑制されることにより接続信頼性が向上される、内部にコンデンサ54などの電子部品が形成されたもの、電子部品51またはマザーボートと接続される接続端子が表面もしくは裏面に形成された公知の配線基板に適用可能である。
【0039】
次に、図1に示したような配線基板を代表させて、その製造工程の一例を以下に説明する。
基板2となるべきグリーンシートを用意する。グリーンシートは、上記と同工程にて形成可能な平均粒径が1〜3μmの範囲となるガラス粉末と、無機フィラーと、上記同様なバインダおよび溶剤と、さらに、可塑剤(ブチルベンジルフタレート、ジブチルフタレート、ジメチルフタレート、フタル酸ジ2エチルヘキシル、アジピン酸エステル、ポリエチレングリコール誘導体、トリクレゾールホスフェートなど)、解膠剤(脂肪酸(グリセリントリオレートなど)、界面活性剤(ベンゼンスルホン酸など)、湿潤剤(アルキルアリルポリエーテルアルコール、ポチエチレングリコールエチルエーテル、ニチルフェニルグリコール、ポリオキシエチレンエステルなど)などの添加剤を配合して混練し、ドクターブレード法等によりシート状に成形したものである。
【0040】
このように得られたグリーンシート上に配線層(厚膜回路素子を作りこむ場合は、その素子のパターンも含む)となるべき配線パターンを複数、公知のスクリーン印刷法により形成を行なう。
【0041】
こうしてパターン形成が完成すれば、多層配線基板を作製する場合、その上に別のセラミックグリーンシートを重ね、さらにパターン形成/グリーンシート積層の工程を繰り返し、熱圧着積層することにより、その積層体を得る。なお、ビアホール35を形成する場合は、グリーンシートのビア形成位置にドリル等を用いて穿孔しておき、ここに金属ペーストを充填するようにする。
【0042】
上記した配線層の形成に使用される金属の材質は、銀系(銀単体、銀−金属酸化物(マンガン、バナジウム、ビスマス、アルミニウム、ケイ素、銅等の酸化物)、銀−ガラス添加、銀−パラジウム、銀−白金、銀−ロジウム等)、金系(金単体、金−金属酸化物、金−パラジウム、金−白金、金−ロジウム等)、銅系(銅単体、銅−金属酸化物、銅−パラジウム、銅−白金、銅−ロジウム等)等の低抵抗材料を用いることができる。
【0043】
【実施例】
以下、本発明の効果を確認するために行なった実験結果について説明する。
【0044】
(実施例1)
上記した製造工程に従い、SiO、B、Alおよびアルカリ土類金属酸化物のCaO、MgOとからなる下表1に示されるガラス組成で構成される平均粒径が3μmガラス粉末と無機フィラーであるアルミナ(Al)フィラーとを準備した。これらを、ガラス粉末64体積%、アルミナフィラーを36体積%の混合比で混合し、混合粉末100重量部に対して、アクリル樹脂系のバインダ4重量部と溶剤を加えて調製した。その後、調製した造粒粉を一軸形成した後、150MPaにてCIPを行い成形体を得た。次いで、この成形体を多孔質セラミックセッター(イソライト工業製ILS−ZRI)上に乗せて、950℃の温度にて、大気中で2時間の焼成を行ない、焼結体を得た。本実施例における低温焼成磁器組成物の試料番号に対する、ガラスを構成する各成分の含有量(mol%)、B/ROで表されるBとROのmol比、及びRO/Alで表されるAlとROのmol比を表1に示す。
【0045】
【表1】
【0046】
上記の成形体を40℃、湿度80%環境に放置7日放置後、表面に結晶が析出しているかを観察してホウ酸結晶析出の有無を確認した。
上記実施例にて作製された焼結体に対してX線回折測定により、ガラスマトリックスが非晶質か否かの判定を行なった。ここでは、結晶化に伴う回折パターンが観測されないものを非晶質と判定する。また、JIS C 2141の方法により吸水率を測定した。
耐メッキ性の評価にあっては、50×60mmで厚み1mmの焼成サンプルを得た。上記焼成サンプルを10ml/lの硫酸で洗浄した後、プレディップ、Pd活性処理を経て、無電解Ni−Pメッキ液に浸漬した。更に水洗した後、置換Auメッキ液に浸漬し、更に無電解Auメッキ液に浸漬した。上記メッキ処理前のサンプルとメッキ処理後のサンプルをそれぞれSEM観察し、画像処理によりサンプル表面のガラス成分の面積を算出した。上記メッキ前の面積に対するメッキ後の面積の減少率が0〜10%のものを◎、10〜20%のものを○、20〜40%のものを△。
また、上記焼結体を直径15〜16mm×厚さ7.5〜8mmの大きさに加工した。その後、この低温焼成磁器組成物の比誘電率及び誘電損失をTE011モード及び共振周波数8〜12GHzの条件でJIS R 1627の方法により測定した。これらの測定結果を表2に示す。
【0047】
【表2】
【0048】
試料番号1〜15はB/RO比を4以下としたものである。これらのガラス組成で作成された低温焼成磁器組成物はSiO添加量、Al添加量にかかわらず、プレス体表面にホウ酸結晶が析出しなかった。試料番号16〜18はB/RO比が4より大きいものであるが、プレス体表面にホウ酸の結晶が析出していることが観察された。試料番号19はB/RO比が1より小さいものであるが、このガラス組成で作成された低温焼成磁器組成物は誘電損失が大きすぎ、測定できなかった。
【0049】
試料番号6、7、14、16、18はRO/Al比が1のものである。これらのガラス組成で作成された低温焼成磁器組成物は、吸水率が0.1%を超えており、緻密化が不十分であった。試料番号10はRO/Al比が2以上のものであるが、溶融後のガラスに若干の分相があり、ガラスが白化していた。
【0050】
試料番号1〜6はROが6mol%以下のものであるが、これらのガラス組成で作成された低温焼成磁器組成物は、誘電損失が0.0015以下であり特に良好であった。試料番号13はROが14mol%と大きいものであるが、これらのガラス組成で作成された低温焼成磁器組成物は、誘電損失が著しく大きくなってしまった。
【0051】
試料番号2〜6はROをCaOの一部をMgOに置換したものである。これらのガラス組成で作成された低温焼成磁器組成物は誘電率と誘電損失が小さくなった。しかし置換量が多い試料番号4は、これらのガラス組成で作成された低温焼成磁器組成物は、結晶化が起こり緻密化が阻害されてしまった。結晶化した結晶相は2Al・Bであった。
【0052】
試料番号1〜6、12、15は、SiOの含有量が68mol%以上のものである。これらのガラス組成で作成された低温焼成磁器組成物は、耐メッキ性が特に良好な結果となっている。
【0053】
(実施例2)
表1の試料番号5及び試料番号8のガラス組成割合のガラス粉末62体積%とアルミナフィラー38体積%との混合粉末100重量部に対してアクリル樹脂系バインダ20重量部、可塑剤(フタル酸ジブチル)10重量部、溶剤(トルエンとイソプロピルアルコールの混合液)75重量部とを混和し、スラリーを作製した。次に、ドクターブレード法により厚さ250μmのグリーンシートを作製した。得られたグリーンシートの表面にCuペーストをスクリーン印刷法にてパターン印刷することで配線層を形成するとともに、さらに、形成された配線層を被覆する形にてグリーンシートを積層させ未焼成積層体を形成させた。その後、未焼成積層体を、湿潤窒素雰囲気下にて、850℃にて脱脂させるとともに、窒素雰囲気下にて1000℃の温度にて2時間焼成させることで、配線基板を得た。
【0054】
実施例2にて形成された配線基板は、目視にて、そりのない配線基板となっていることが確認された。
このように、本発明の低温焼成磁器組成物を配線基板に用いることで、Cuなどの低抵抗率であり低融点である材料より配線層を形成しても、700〜1050℃の範囲にて同時焼成可能であり、配線基板のそり発生が抑制された、高周波信号に対応したものとすることができる。またセラミックグリーンシートにホウ酸結晶が析出せず生産性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の配線基板の一実施形態を示す概略断面図。
【符号の説明】
1 配線基板
2 基板
3 配線層
[0001]
[Technical field to which the present invention pertains]
The present invention relates to a low-temperature fired ceramic composition and a wiring board using the same, and more particularly to a low-temperature fired ceramic composition suitable for high frequency use and a wiring board using the same.
[0002]
[Prior art]
Conventionally, for example, as a wiring board on which electronic parts such as LSI, IC, or discrete parts are mounted, or a wiring board in which various thick film printing elements are built in the wiring board, a relatively high density wiring is used. Possible multilayer wiring boards are frequently used. In this specification, the multilayer board is collectively referred to as a wiring board.
In recent years, high frequency bands from the microwave band to the millimeter wave band have been actively adopted for wireless communication such as cellular phones in order to measure the expansion of radio wave resources and the increase in transmission capacity. Demand for wiring boards for handling high-frequency signals as parts for wireless communication devices used for this is increasing explosively.
[0003]
When handling the above-mentioned high-frequency signal, the wiring connecting the operation power supply of the electronic component and the electronic component contributes as inductance, so that malfunctions caused by noise superimposed on the wiring etc., delay in the operation response of the electronic component, or In some cases, problems such as transmission loss of high-frequency signals may occur. In order to suppress such problems peculiar to high-frequency signals that were not a problem with low-frequency signals, the wiring layer is made of a low-resistivity material such as Ag or Cu, while the dielectric layer is made low. It is necessary to use a wiring board made of a material having a dielectric constant and a low dielectric loss even in a high frequency band.
[0004]
However, when Ag or Cu having a melting point as low as about 1000 ° C. is adopted as the material of the wiring layer, in order to form the wiring substrate by simultaneously firing the wiring layer and the insulating layer, the insulating layer has its firing temperature. Needs to be made of a material that can be fired at a low temperature of 800 to 1050 ° C. As a material that can be fired at a low temperature, has a low dielectric constant, and has a low dielectric loss even in a high frequency band, various types of crystallized glass mainly composed of borosilicate glass and crystals precipitated at the firing stage have been proposed. For example, as a glass ceramic material composed of glass and an inorganic filler, B in glass2O3Examples in which sinterability is ensured by increasing the amount are disclosed (Patent Documents 1 to 3).
[0005]
[Patent Document 1]
JP-A-3-141153
[Patent Document 2]
Japanese Patent Laid-Open No. 9-142876
[Patent Document 3]
JP-A-7-45958
[0006]
[Problems to be solved by the invention]
But B2O3A glass-ceramic material using a large amount of glass has a problem in that boric acid crystals may be deposited on the ceramic green sheet, which deteriorates handling properties. This is B in the glass2O3Is chemically unstable and reacts with moisture in the air. As a method for suppressing boric acid crystals, JP-A-7-45958 describes a method of adding a base into a ceramic green sheet. However, this method has a problem that the binder removal property and the characteristics of the sintered body vary depending on the type and amount of the additive.
Moreover, in the glass composition, when the melting temperature of the glass component is set to about 1450 ° C. and low-temperature firing is performed at about 800 to 1050 ° C., it is necessary to add a metal component such as alkali metal, Pb, As, and Sb. It was. However, these metal component oxides increase the dielectric loss in the high frequency band of the wiring board made of the sintered body and the low-temperature fired ceramic composition.
[0007]
The present invention has been made in consideration of such problems. That is, the present invention is a low-temperature fired ceramic composition that is suitable for electrical characteristics in high-frequency signals, has no precipitation of boric acid crystals when formed into a ceramic green sheet, and has a wide range of optimum firing conditions, and wiring using the same An object is to provide a substrate.
[0008]
[Means for solving the problems and actions / effects]
  In order to solve the above problems, the low-temperature fired porcelain composition of the present invention comprises SiO 22, B2O3, Al2O3, Containing metal oxide RO, SiO2, B2O3, Al2O3When the total amount of RO is 100 mol%, SiO2Content of 68-72 mol%, B2O3The content of 14 ~22mol%, Al2O3Content is 4 to 11 mol%, RO content is 4 to 11 mol%, and SiO2And B2O3And the total amount is 92 mol% or less, and B2O3B represented by / RO2O3And the molar ratio of RO is 1.3 to 4, and the metal oxide RORIs composed of at least one component selected from Ca, Sr, Mg, and Zn, and when the total amount of the metal oxide RO is 100 mol%, CaO has a content of 60 mol% or more, an alkali metal, Glass containing no Pb, As and Sb, and SiO2Or Al2O3And at least one of the inorganic fillersThe glass content is 55 to 80% by volume, and the inorganic filler content is 20 to 45% by volume.It is characterized by that.
[0009]
The glass of the present invention is made of SiO.2And B2O3Is a borosilicate glass containing as a main component and does not contain an alkali metal content, and therefore has a low dielectric loss despite being amorphous. Moreover, by setting it as the composition which a crystal | crystallization does not precipitate in a baking process (1050 degrees C or less), the width | variety of the optimal baking conditions is wide and it becomes what was excellent in mass-productivity.
[0010]
  The glass is made of SiO2, B2O3, Al2O3, RO (R is at least one selected from Ca, Sr, Mg, Zn). SiO in the glass2And B2O3The total amount is preferably 84 to 92 mol%. This is because the dielectric constant and dielectric loss increase when the content is 84 mol% or less. When it is 92 mol% or more, SiO2This is because system crystals (for example, cristobalite) are precipitated. SiO in the glass2amountIsThis is because the dielectric constant increases if it is less than 55 mol%. This is because if it exceeds 72 mol%, sintering cannot be performed.. TheB in glass2O3The amount is 14 to 26 mol%, particularly 16 to 24 mol%, more preferably 18 to 22 mol%. This is because if it is less than 14 mol%, sintering cannot be performed. It is because degreasing property will fall when it is larger than 26 mol%. Al in the glass2O3The amount is desirably 4 to 11 mol%. If it is less than 4 mol%, vitrification may be separated or SiO2This is because system crystals are precipitated. Al is greater than 11 mol%2O3This is because crystals and feldspar precipitate. As for the RO amount of this glass, 4-11 mol% is desirable. This is because it is difficult to melt the glass if it is less than 4 mol%. This is because if it exceeds 11 mol%, the dielectric constant and dielectric loss increase. If the RO amount is 8 mol% or less, more preferably 6 mol% or less, the dielectric loss can be remarkably reduced, which is desirable.
[0011]
B of this glass2O3The relationship between quantity and RO quantity is B2O3B represented by / RO2O3And the molar ratio of RO is 1.3-4. This is because if it is less than 1.3, the dielectric loss increases, and it is particularly desirable that it be 2 or more, and more preferably 3 or more. If it is larger than 4, boric acid crystals will be deposited on the ceramic green sheet.
[0012]
The low-temperature fired porcelain composition of the present invention contains B in glass.2O3The fact that boric acid crystals do not precipitate on the ceramic green sheet despite the large amount is due to the following action. The boric acid crystals are deposited on the green sheet because the water in the air reacts with the glass during storage of the green sheet, and the B component elutes once in the moisture.3BO3It is thought that it is recrystallized as a plate-like crystal. On the other hand, boric acid forms salts with alkali (earth) oxides, and the formed salts RO and B2O3The ratio of RO to 1 mol of RO is B2O3Is known to exist up to 4 mol of octaborate. From this, B in the glass2O3Amount B2O3If the RO ratio is 4 or less, B2O3Even if it elutes in water, it is considered that boric acid crystals do not precipitate because a salt with R ions that would be easily eluted with respect to water is formed without deficiency.
[0013]
R of RO is at least one selected from Ca, Sr, Mg and Zn, but in order to obtain stable sinterability and high yield during mass production, Ca is an essential component and the total amount of RO When the content of CaO is 100 mol%, the content of CaO is preferably 60 to 100 mol%, and Sr, Mg, and Zn are preferably optional components. This is because CaO has a wide vitrification range and phase separation and crystallization are unlikely to occur. If CaO is less than 60 mol%, crystallization may occur or viscosity may increase and sinterability may decrease.
[0014]
Conventionally, in the above-mentioned crystallized glass or a glass composition that remains amorphous without crystal precipitation, when the melting temperature of the glass component is about 1450 ° C. and low-temperature firing is performed at about 800 to 1050 ° C., It was necessary to add metal components such as alkali metal, Pb, As and Sb. However, these metal component oxides increase the dielectric loss in the high frequency band of the wiring board made of the sintered body and the low-temperature fired ceramic composition.
[0015]
The low-temperature fired ceramic composition of the present invention can be fired at a low temperature of 1050 ° C. or less without containing metal components such as alkali metals, Pb, As and Sb, and is amorphous even after the low-temperature firing. It is possible to leave. As a result, it is possible to suppress problems such as increase in dielectric loss in the high frequency band due to the metal component oxide, and further to further reduce the dielectric loss in the high frequency band of the wiring board made of the low-temperature fired ceramic composition of the present invention. It becomes possible.
[0016]
In addition, the low-temperature fired ceramic composition of the present invention has an effect of enabling a reduction in relative dielectric constant and a reduction in dielectric loss corresponding to a high-frequency signal. Further, since it does not contain other components such as alkali metal, Pb, As, and Sb, it is possible to reduce the heterogeneous grain boundary formed in the firing process, and the amorphous nature such as crystal precipitation is impaired. Can be suppressed. As a result, the glass matrix contained in the low-temperature fired porcelain composition does not crystallize, and it is possible to suppress the problems that occur when the above-mentioned alkali metals are added, thus reducing the dielectric loss in the high-frequency band. can do.
[0017]
The glass preferably has a yield point of 700 to 900 ° C. Firing is usually performed in a state in which a binder made of an organic material is contained together with the constituent components constituting the low-temperature fired ceramic composition. The binder made of the organic material is removed by degreasing in the firing stage. If the yield point of the low-temperature fired ceramic composition is less than 700 ° C., the binder is densified before the removal of the binder by degreasing is completed. Therefore, the problem that the carbon component remains is likely to occur. On the other hand, if the yield point is 880 ° C. or higher, when the wiring layer of the wiring board is made of Cu or Ag having a low resistivity, the timing of firing shrinkage between the wiring layer and the insulating layer will not match. It becomes difficult to fire the wiring layer simultaneously. Especially preferably, it is 750-880 degreeC, More preferably, it is 800-880 degreeC.
[0018]
The inorganic filler of the present invention is SiO2Or Al2O3The inorganic filler is preferably alumina, mullite, quartz, silica glass, and a mixture thereof, and particularly preferably alumina. This is because alumina is easy to obtain high-purity raw materials, so that dielectric loss can be easily reduced and the strength of the sintered body is improved. The inorganic filler preferably contains no alkali metal or alkaline earth metal. This is because when an alkali metal or alkaline earth metal is contained, the dielectric loss of the low-temperature fired ceramic composition as a fired body increases.
[0019]
  The glass is made of the SiO2Content of 68-72 mol%TheSiO2This is because, when the content is increased, the plating resistance is improved, and defects in the plating process are reduced.
[0020]
  The glass is RO / Al2O3Al represented by2O3It is desirable that the molar ratio of RO to RO is greater than 1 and 2 or less. The above glass powder has a small amount of RO to reduce dielectric loss, and B to suppress precipitation of boric acid crystals.2O3The upper limit of the amount is limited by the RO amount. For this reason, there exists a tendency for the viscosity of glass to rise and for sinterability to fall. RO / Al2O3By making the molar ratio of 1 greater than 1, good sinterability can be ensured even with a composition that contains a small amount of RO and does not contain harmful components such as Sb and Pb. RO / Al2O3Quantity is more than 2largeIn addition, it is not desirable because warping or phase separation occurs in the electrode portion when co-firing with the electrode.
[0021]
RO / Al2O3When the ratio is 1 or less, RO is not given non-bridging oxygen that cuts the tetrahedral structure of the glass-forming oxide, and the glass viscosity at the firing temperature is too high to sinter..
[0022]
The RO preferably includes MgO as an essential component. This is because MgO decreases the dielectric constant and dielectric loss. When the total amount of RO is 100 mol%, the amount of MgO is preferably 40 mol% or less, particularly preferably 20 mol% or less. This is because if it exceeds 40 mol%, crystallization is facilitated.
[0023]
  In the low-temperature fired ceramic composition containing the glass and the inorganic filler, the glass content is 55 to 80% by volume, and the inorganic filler content is 20 to 45% by volume.TheThis is because if the glass content is less than 55% by volume, a dense sintered body cannot be obtained. This is because if it is 80% by volume or more, the binder removal property is lowered, and the dimensional variation of the fired body is increased. Particularly preferably, the glass content is 55 to 70% by volume, and the inorganic filler content is 30 to 45% by volume. More preferably, the glass content is 55 to 65% by volume, and the inorganic filler content is 35 to 45% by volume.
[0024]
After the low-temperature fired ceramic composition is fired at 850 to 1050 ° C., the crystal phase contained is only the crystal phase contained in the inorganic filler. Since there are no crystals resulting from crystallization of the glass powder, the crystal phase in the sintered body is only the crystal phase contained in the inorganic filler. If there are crystals resulting from the crystallization of the glass powder, the crystallinity changes depending on the firing conditions, so that the high-frequency characteristics greatly depend on the firing conditions. For this reason, the optimum firing conditions are narrow, and it is difficult to put out the conditions. Glass that crystallizes once in the firing process and then loses fluidity as it crystallizes. For this reason, it is difficult to correct the warping of the substrate that occurs during the firing process under the firing conditions. Since the low-temperature fired ceramic composition of the present invention is made of glass that does not crystallize, the above problems hardly occur and the range of optimum firing conditions can be widened.
[0025]
It should be noted that the glass of the present invention in this specification is amorphous, and that the sintered body does not precipitate crystals caused by the glass, even after heat treatment such as baking or annealing at 1050 ° C. or lower. Component of glass (when crystalline filler particles are added as inorganic filler, this inorganic filler is excluded. For example, SiO2, Al2O3, Inorganic fillers such as mullite and enstatite. ) Is not formed in the glass matrix (portion made of glass). Further, the fact that the crystal phase is not formed means that when a sintered body obtained by a heat treatment at 1050 ° C. or less is measured by X-ray diffraction for a molded body using a low-temperature fired ceramic composition, When crystalline filler particles are added as an inorganic filler, this inorganic filler is excluded, for example, SiO.2, Al2O3, Inorganic fillers such as mullite and enstatite. The diffraction pattern observed in the presence of a crystal phase due to ()) does not appear.
[0026]
According to the low-temperature fired ceramic composition, it is possible to obtain a ceramic having excellent high frequency characteristics such as a dielectric constant of 7 or less and a dielectric loss at 10 GHz of 0.003 or less. The relative dielectric constant is usually 3 or more, particularly 6.5 or less, more preferably 6 or less. The dielectric loss is particularly preferably 0.002 or less, and more preferably 0.0015 or less. As described above, the low dielectric constant and the dielectric loss in the high frequency band are reduced, and the low-temperature fired porcelain composition of the present invention causes problems such as transmission loss of the high-frequency signal, which is a problem when handling high-frequency signals. Can be suppressed. Here, the dielectric constant and dielectric loss may be measured by known methods. For example, it can be measured in the TE011 mode of the both-end short-circuited dielectric resonator method described in JIS R 1627.
[0027]
In a wiring board in which a wiring layer is formed on the surface and / or inside of the board, by using the low-temperature fired ceramic composition of the present invention for the insulating layer, a wiring board that is excellent in simultaneous sintering and suitable for high-frequency signals can do. Conventionally, when the above-described crystallized glass is used for a substrate and simultaneously fired with a wiring layer, the fluidization of the glass component is suppressed in the firing step, and thus the formed wiring substrate may be warped. However, since the glass matrix contained in the low-temperature fired porcelain composition of the present invention does not crystallize, it is possible to suppress warpage of the formed wiring board, and to improve electrical characteristics such as reduction in transmission loss of electrical signals. Make it possible. By the way, as a component of the low-temperature fired ceramic composition, in addition to glass, crystalline inorganic fillers (for example, alumina, quartz, garnite, diopside, spinel, enstatite, cordierite, anorsite, etc.) are used as additives. When used in combination, the glass matrix itself is amorphous with no crystallized crystal phase, but the entire sintered body contains a crystallized crystal phase. Such a case is included in the technical scope of the present invention as long as the glass matrix itself is not crystallized.
[0028]
Further, in a wiring board that supports high-frequency signals, the wiring layer is required to use a material such as Cu, Ag, or Au having a low resistivity. In that case, since Cu, Ag, and Au have a low melting point, in order to simultaneously fire the wiring layer and the substrate, the material used for the substrate can be formed by low-temperature firing at about 800 to 1050 ° C. There is a need. Since the firing temperature of the low-temperature fired ceramic composition of the present invention can be set to 1050 ° C. or lower, a substrate can be formed using the low-temperature fired ceramic composition, and a wiring board suitable for high-frequency signals and can do.
[0029]
In particular, among Cu, Ag, and Au, Cu and Ag are suitable for the material of the wiring layer because Cu and Ag have a low resistivity, and Cu that is more excellent in migration resistance than Ag is most suitable. However, Cu is oxidized when fired in an oxidizing atmosphere including the atmosphere, causing problems such as increased resistance of the wiring layer. Therefore, normally, when the substrate and the wiring layer using Cu are simultaneously fired, the reduction or neutral atmosphere is performed. At this time, as described above, the substrate is usually fired in a state in which a binder made of an organic material is contained together with the low-temperature fired ceramic composition which is a component of the substrate. The binder is removed by degreasing in the firing stage, but the higher the firing temperature, the higher the binder removal effect. However, when the firing temperature is increased, the temperature becomes too close to the melting point of Cu used for the wiring layer, and Cu is pre-sintered in the firing process, making simultaneous firing with the substrate difficult. In addition, since the binder removal conditions vary depending on the size and shape of the fired body, when firing the low-temperature fired ceramic composition and the wiring layer made of Cu simultaneously, the firing conditions such as the firing temperature are optimized. The wider the better.
[0030]
In the present invention, as described above, the low-temperature fired porcelain composition can be fired with a wider range of optimization of the firing conditions such as the firing temperature as compared with the conventional crystallized glass. Therefore, by simultaneously firing the low-temperature fired porcelain composition of the present invention and a wiring layer using Cu, it is possible to form a wiring board that has excellent simultaneous sintering properties and suppresses problems such as warping. It is.
[0031]
As a result, a wiring board suitable for high-frequency signals can be obtained, and productivity such as the yield of the wiring board can be improved.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Although it is a manufacturing method of the low-temperature baking ceramic composition of this invention, Although it does not specifically limit, the example is shown. After weighing and mixing the raw material element oxide in the raw material constituting the glass so that the composition after the firing becomes the above content, for example, after melting at about 1600 ° C. in a crucible, ball meal By pulverizing, etc., the glass powder used as the component of the low-temperature baking ceramic composition of this invention is obtained.
[0033]
The glass powder is preferably pulverized so that the average particle size is in the range of 1 to 3 μm. This is because when the average particle size is larger than 3 μm, the sinterability is lowered, and when the average particle size is less than 1 μm, the binder removal property is lowered.
[0034]
An inorganic filler, a binder made of an organic material, a solvent, and the like are added to the glass powder produced as described above and kneaded and formed into a sheet shape. Then, a sintered compact can be obtained by baking the shape | molded molded object on a porous ceramic setter.
[0035]
Examples of the binder include acrylic resins (for example, polymethyl methacrylate, poly t-butyl methacrylate), cellulose acetate butyrate, polyethylene, polyvinyl alcohol, and polyvinyl butyral. Solvents include acetone, methyl ethyl ketone, and diacetone. Methyl isobutyl ketone, benzene, bromochloromethane, ethanol, butanol, propanol, toluene, xylene and the like.
[0036]
Next, an embodiment in which the wiring board of the present invention is formed is shown in FIG.
FIG. 1 schematically shows a schematic cross-sectional view of a wiring board 1. A wiring layer 3 is formed inside a board 2, and a semiconductor element 51 is mounted on the surface of the wiring layer 3 as necessary. The Each wiring layer 3 is electrically connected to each other by a via hole 35 penetrating the wiring layer 3 in the thickness direction. The wiring board 1 may be provided with a high-frequency package or an active element function having high-frequency signal processing capability in order to function as, for example, a high-frequency multilayer ceramic wiring board, or may be configured separately. It may be an electronic component for mounting a high frequency element such as an antenna switch module.
[0037]
In the wiring board 1 of the present embodiment, the wiring layer 3 is configured with a ground conductor (not shown) functioning as a noise protection shield part. Furthermore, in the wiring board 1 of the present embodiment, various thick film circuit elements such as the capacitor 54, the inductor 53, and the resistor 55 are formed in addition to the wiring layer 3, but the thick film circuit element is particularly provided. It is also possible to configure as a substrate having only a wiring layer. Moreover, when the wiring board 1 is a multilayer ceramic wiring board for high frequency, a part of the wiring layer 3 can be configured as a strip line. The wiring board 1 in FIG. 1 is a multilayer wiring board, but the application of the present invention does not have the wiring layer 3, or a high-frequency metal wiring such as a high-frequency slot line or a coplanar waveguide. The present invention can be applied to a known wiring board. Furthermore, a connection terminal formed on the surface of the wiring board 1 when the electronic component 51 is mounted can be joined to a part of the wiring layer 3 of the present invention.
[0038]
The wiring board 1 shown in FIG. 1 can also be applied to a wiring board having a plurality of terminals for placing the surface opposite to the side on which the electronic component 51 is mounted on a mother board or the like. In other words, in the present invention, the connection reliability is improved by suppressing warpage during the formation of the substrate 2 which is the base of the wiring substrate 1, and the electronic component such as the capacitor 54 is formed inside, The present invention can be applied to a known wiring board in which connection terminals connected to the component 51 or the mother boat are formed on the front surface or the back surface.
[0039]
Next, an example of the manufacturing process will be described below by taking the wiring board as shown in FIG. 1 as a representative.
A green sheet to be the substrate 2 is prepared. The green sheet is composed of glass powder having an average particle diameter in the range of 1 to 3 μm, the inorganic filler, the same binder and solvent as described above, and a plasticizer (butylbenzyl phthalate, dibutyl). Phthalate, dimethyl phthalate, diethylhexyl phthalate, adipic acid ester, polyethylene glycol derivative, tricresol phosphate, etc.), peptizer (fatty acid (glycerin triolate, etc.), surfactant (benzenesulfonic acid, etc.), wetting agent ( Additives such as alkyl allyl polyether alcohol, polyethylene glycol ethyl ether, nithyl phenyl glycol, polyoxyethylene ester, etc.) are blended and kneaded, and formed into a sheet by a doctor blade method or the like.
[0040]
On the green sheet thus obtained, a plurality of wiring patterns to be a wiring layer (including a pattern of the element when a thick film circuit element is formed) are formed by a known screen printing method.
[0041]
When pattern formation is completed in this way, when producing a multilayer wiring board, another ceramic green sheet is overlaid thereon, and further, the pattern formation / green sheet lamination process is repeated, and thermocompression lamination is performed, whereby the laminate is obtained. obtain. In addition, when forming the via hole 35, it drills using a drill etc. in the via formation position of a green sheet, and fills it with a metal paste here.
[0042]
The metal material used for forming the wiring layer described above is silver-based (silver simple substance, silver-metal oxide (oxide of manganese, vanadium, bismuth, aluminum, silicon, copper, etc.), silver-glass addition, silver -Palladium, silver-platinum, silver-rhodium, etc.), gold-based (single gold, gold-metal oxide, gold-palladium, gold-platinum, gold-rhodium, etc.), copper-based (single copper, copper-metal oxide) , Copper-palladium, copper-platinum, copper-rhodium, etc.) or the like can be used.
[0043]
【Example】
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
[0044]
Example 1
In accordance with the manufacturing process described above, SiO2, B2O3, Al2O3And an alkaline earth metal oxide CaO, MgO having an average particle size of 3 μm glass powder composed of a glass composition shown in Table 1 below, and alumina (Al2O3) Prepared with filler. These were prepared by mixing 64% by volume of glass powder and 36% by volume of alumina filler, and adding 4 parts by weight of an acrylic resin binder and a solvent to 100 parts by weight of the mixed powder. Then, after uniaxially forming the prepared granulated powder, CIP was performed at 150 MPa to obtain a molded body. Next, this compact was placed on a porous ceramic setter (ILS-ZRI manufactured by Isolite Kogyo Co., Ltd.) and fired at 950 ° C. for 2 hours in the air to obtain a sintered body. Content (mol%) of each component which comprises glass with respect to the sample number of the low-temperature baking ceramic composition in a present Example, B2O3B represented by / RO2O3And RO molar ratio, and RO / Al2O3Al represented by2O3Table 1 shows the molar ratio of NO to RO.
[0045]
[Table 1]
[0046]
The molded body was allowed to stand in an environment of 40 ° C. and 80% humidity for 7 days, and then the presence or absence of boric acid crystals was confirmed by observing whether crystals were precipitated on the surface.
Whether or not the glass matrix was amorphous was determined by X-ray diffraction measurement on the sintered body produced in the above example. Here, the case where a diffraction pattern accompanying crystallization is not observed is determined to be amorphous. Further, the water absorption was measured by the method of JIS C 2141.
In the evaluation of plating resistance, a fired sample having a thickness of 50 mm and a thickness of 1 mm was obtained. The fired sample was washed with 10 ml / l sulfuric acid, then pre-diped, subjected to Pd activation treatment, and immersed in an electroless Ni-P plating solution. After further washing with water, it was immersed in a substituted Au plating solution and further immersed in an electroless Au plating solution. Each of the sample before the plating treatment and the sample after the plating treatment was observed with an SEM, and the area of the glass component on the sample surface was calculated by image processing. The rate of reduction of the area after plating with respect to the area before plating is 0 to 10%, ◯ is 10 to 20%, and 20 to 40% is Δ.
The sintered body was processed into a size of 15 to 16 mm in diameter and 7.5 to 8 mm in thickness. Thereafter, the relative dielectric constant and dielectric loss of the low-temperature fired ceramic composition were measured by the method of JIS R 1627 under conditions of TE011 mode and a resonance frequency of 8 to 12 GHz. These measurement results are shown in Table 2.
[0047]
[Table 2]
[0048]
Sample numbers 1-15 are B2O3/ RO ratio is 4 or less. Low-temperature fired porcelain compositions made with these glass compositions are SiO2Addition amount, Al2O3Regardless of the amount added, boric acid crystals did not precipitate on the surface of the pressed body. Sample numbers 16-18 are B2O3Although the / RO ratio was larger than 4, it was observed that crystals of boric acid were precipitated on the surface of the pressed body. Sample number 19 is B2O3Although the / RO ratio is smaller than 1, the low-temperature fired ceramic composition made with this glass composition has a too large dielectric loss and cannot be measured.
[0049]
Sample numbers 6, 7, 14, 16, 18 are RO / Al2O3The ratio is one. The low-temperature fired porcelain compositions prepared with these glass compositions had a water absorption rate exceeding 0.1%, and the densification was insufficient. Sample number 10 is RO / Al2O3Although the ratio was 2 or more, the glass after melting had some phase separation, and the glass was whitened.
[0050]
Sample Nos. 1 to 6 have RO of 6 mol% or less, but the low-temperature fired ceramic compositions prepared with these glass compositions were particularly good with a dielectric loss of 0.0015 or less. Sample No. 13 has a large RO of 14 mol%, but the low-temperature fired porcelain composition prepared with these glass compositions has a remarkably large dielectric loss.
[0051]
Sample numbers 2 to 6 are obtained by substituting part of CaO with MgO for RO. Low-temperature fired porcelain compositions made with these glass compositions have low dielectric constants and dielectric losses. However, in Sample No. 4 with a large amount of substitution, the low-temperature fired porcelain composition prepared with these glass compositions crystallized and the densification was hindered. The crystallized crystal phase is 2Al2O3・ B2O3Met.
[0052]
Sample numbers 1-6, 12, 15 are SiO2Content is 68 mol% or more. Low-temperature fired porcelain compositions made with these glass compositions have particularly good plating resistance.
[0053]
(Example 2)
20 parts by weight of an acrylic resin binder and 100 parts by weight of a plasticizer (dibutyl phthalate) with respect to 100 parts by weight of mixed powder of 62% by volume of glass powder and 38% by volume of alumina filler in the glass composition ratios of Sample No. 5 and Sample No. 8 in Table 1. ) 10 parts by weight and 75 parts by weight of a solvent (mixed solution of toluene and isopropyl alcohol) were mixed to prepare a slurry. Next, a green sheet having a thickness of 250 μm was produced by a doctor blade method. A wiring layer is formed by pattern-printing Cu paste on the surface of the obtained green sheet by a screen printing method, and further, the green sheet is laminated so as to cover the formed wiring layer, and an unfired laminated body Formed. Thereafter, the non-fired laminate was degreased at 850 ° C. in a wet nitrogen atmosphere and fired at 1000 ° C. for 2 hours in a nitrogen atmosphere to obtain a wiring board.
[0054]
It was confirmed by visual observation that the wiring board formed in Example 2 was a wiring board without warping.
Thus, by using the low-temperature fired porcelain composition of the present invention for a wiring board, even if a wiring layer is formed from a material having a low resistivity and a low melting point such as Cu, the temperature range is 700 to 1050 ° C. Simultaneous firing is possible, and generation of warp of the wiring board is suppressed, and it can be adapted to a high-frequency signal. Further, boric acid crystals do not precipitate on the ceramic green sheet, and productivity can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a wiring board according to the present invention.
[Explanation of symbols]
1 Wiring board
2 Substrate
3 Wiring layer

Claims (6)

SiO、B、Al、金属酸化物ROを含有し、SiO、B、Al、ROの合計量を100mol%としたとき、SiOの含有量が68〜72mol%、Bの含有量が14〜22mol%、Alの含有量が4〜11mol%、ROの含有量が4〜11mol%であるとともに、SiOとBとの合計量は92mol%以下であり、B/ROで表されるBとROのmol比が1.3〜4であり、前記金属酸化物ROのはCa、Sr、Mg、Znのうちから選ばれる少なくとも一種の成分からなるとともに、該金属酸化物ROの合計量を100mol%としたとき、CaOは含有量が60mol%以上であり、アルカリ金属、Pb、AsおよびSbを含まないガラスと、
SiOあるいはAlの少なくともいずれか一方の無機フィラーとを含み、
前記ガラスの含有量が55〜80体積%であり、前記無機フィラーの含有量が20〜45体積%であることを特徴とする低温焼成磁器組成物。
When SiO 2 , B 2 O 3 , Al 2 O 3 , and metal oxide RO are contained, and the total amount of SiO 2 , B 2 O 3 , Al 2 O 3 , and RO is 100 mol%, the content of SiO 2 There 68~72mol%, B 2 O content of 3 14~ 22 mol%, 4~11mol% is content of Al 2 O 3, with the content of RO is 4~11mol%, SiO 2 and B the total amount of the 2 O 3 is not more than 92 mol%, a mol ratio of B 2 O 3 and RO represented by B 2 O 3 / RO is 1.3 to 4, R of the metal oxide RO is It consists of at least one component selected from Ca, Sr, Mg, and Zn, and when the total amount of the metal oxide RO is 100 mol%, CaO has a content of 60 mol% or more, an alkali metal, Pb , As and Sb Not including glass,
Including at least one inorganic filler of SiO 2 or Al 2 O 3 ,
A low-temperature fired ceramic composition, wherein the glass content is 55 to 80% by volume and the inorganic filler content is 20 to 45% by volume .
前記ガラスは、RO/Alで表されるAlとROのmol比が1より大きく2以下であることを特徴とする請求項1に記載の低温焼成用磁器組成物。 2. The porcelain composition for low-temperature firing according to claim 1, wherein the glass has a molar ratio of Al 2 O 3 represented by RO / Al 2 O 3 and RO of greater than 1 and 2 or less. 前記ROは、MgOを必須の成分とすることを特徴とする請求項1又は2に記載の低温焼成磁器組成物。  The low-temperature fired porcelain composition according to claim 1 or 2, wherein the RO contains MgO as an essential component. 850〜1050℃で焼成された後において含まれる結晶相は、前記無機フィラー中に含有される結晶相のみであることを特徴とする請求項1ないしのいずれか1項に記載の低温焼成磁器組成物。The low-temperature fired ceramic according to any one of claims 1 to 3 , wherein the crystal phase contained after firing at 850 to 1050 ° C is only the crystal phase contained in the inorganic filler. Composition. 10GHzにおける比誘電率が7以下であり、10GHzにおける誘電損失が0.003以下であることを特徴とする請求項に記載の低温焼成磁器組成物。5. The low-temperature fired ceramic composition according to claim 4 , wherein the relative dielectric constant at 10 GHz is 7 or less, and the dielectric loss at 10 GHz is 0.003 or less. 絶縁体と導体とを850〜1050℃で同時焼成することによって製造される配線基板において、該絶縁体は上記請求項1乃至のいずれか1項に記載の低温焼成磁器組成物よりなり、該導体はAg、Au、Cuのうちから選ばれる少なくとも一種よりなることを特徴とする配線基板。In a wiring board manufactured by simultaneously firing an insulator and a conductor at 850 to 1050 ° C, the insulator comprises the low-temperature fired ceramic composition according to any one of claims 1 to 5 , The wiring board, wherein the conductor is made of at least one selected from Ag, Au, and Cu.
JP2003124478A 2003-04-28 2003-04-28 Low-temperature fired porcelain composition and wiring board using the same Expired - Fee Related JP4748701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124478A JP4748701B2 (en) 2003-04-28 2003-04-28 Low-temperature fired porcelain composition and wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124478A JP4748701B2 (en) 2003-04-28 2003-04-28 Low-temperature fired porcelain composition and wiring board using the same

Publications (2)

Publication Number Publication Date
JP2004323337A JP2004323337A (en) 2004-11-18
JP4748701B2 true JP4748701B2 (en) 2011-08-17

Family

ID=33502051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124478A Expired - Fee Related JP4748701B2 (en) 2003-04-28 2003-04-28 Low-temperature fired porcelain composition and wiring board using the same

Country Status (1)

Country Link
JP (1) JP4748701B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699769B2 (en) * 2005-02-02 2011-06-15 日本特殊陶業株式会社 Manufacturing method of ceramic multilayer substrate
JP5383962B2 (en) * 2005-02-28 2014-01-08 京セラ株式会社 Glass ceramic composition, glass ceramic sintered body, wiring board using the same, and mounting structure thereof
JP2012167008A (en) * 2012-04-06 2012-09-06 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same, and mounting structure of the same
WO2024195810A1 (en) * 2023-03-23 2024-09-26 日本山村硝子株式会社 Material for high-frequency dielectric ceramic production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260465A (en) * 1984-06-01 1985-12-23 鳴海製陶株式会社 Low temperature burnt ceramic
JP3240271B2 (en) * 1996-02-29 2001-12-17 ティーディーケイ株式会社 Ceramic substrate
JP2003026446A (en) * 2001-07-16 2003-01-29 Asahi Glass Co Ltd Composition for electronic circuit board and electronic circuit board
JP2004244271A (en) * 2003-02-14 2004-09-02 Asahi Glass Co Ltd Lead-free glass, composition for electronic circuit board, and electronic circuit board

Also Published As

Publication number Publication date
JP2004323337A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
KR100942615B1 (en) Dielectric material and dielectric sintered body and wiring board using the same
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP4748701B2 (en) Low-temperature fired porcelain composition and wiring board using the same
JP3903781B2 (en) Composite multilayer ceramic electronic component and method for manufacturing the same
JP2008251782A (en) Ceramic wiring board and its manufacturing method
JP2007284327A (en) Ceramic composition and laminated ceramic circuit device
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JP4792167B2 (en) Porcelain, manufacturing method thereof, and high-frequency wiring board
JP3847103B2 (en) Optoelectronic mounting circuit board and mounting board
JP2004256347A (en) Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact, and its mounting structure
JP3559407B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2005216998A (en) Ceramic circuit board and manufacturing method therefor
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP4045127B2 (en) Ceramic substrate
JP2009182285A (en) Wiring board and method of manufacturing the same
JP2000285732A (en) Conductive paste and high-frequency electronic component using the same
JPH11186727A (en) Wiring board and manufacture thereof
JP4619173B2 (en) Composite electronic component materials
JP2010109133A (en) Ceramic electronic component and electronic apparatus using the same
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3643264B2 (en) Conductive paste and wiring board using the same
JP2000264719A (en) Porcelain composition, porcelain and circuit board using same
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics
JP3441950B2 (en) Wiring board and its mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

R150 Certificate of patent or registration of utility model

Ref document number: 4748701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees