JP4627935B2 - Conditioning material - Google Patents
Conditioning material Download PDFInfo
- Publication number
- JP4627935B2 JP4627935B2 JP2001221474A JP2001221474A JP4627935B2 JP 4627935 B2 JP4627935 B2 JP 4627935B2 JP 2001221474 A JP2001221474 A JP 2001221474A JP 2001221474 A JP2001221474 A JP 2001221474A JP 4627935 B2 JP4627935 B2 JP 4627935B2
- Authority
- JP
- Japan
- Prior art keywords
- alc
- humidity control
- carbonation
- waste material
- humidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 34
- 230000003750 conditioning effect Effects 0.000 title description 3
- 239000002699 waste material Substances 0.000 claims description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 239000004567 concrete Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000006148 magnetic separator Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/16—Waste materials; Refuse from building or ceramic industry
- C04B18/167—Recycled materials, i.e. waste materials reused in the production of the same materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Civil Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Building Environments (AREA)
- Processing Of Solid Wastes (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、建築物解体現場等から発生する炭酸化飽和した軽量気泡コンクリート(以下、ALCという)廃材を再利用した調湿材に関するものである。
【0002】
【従来の技術】
一般にALCは、珪酸質原料として天然の珪石や珪砂と、石灰質原料としての天然原料から直接製造される石灰石やセメントを主原料とし、副原料として石膏の他、オートクレーブ前のALC切断屑などの繰り返し原料を添加し、その配合物に水を加えて混合スラリーとし、これらのスラリーを発泡硬化させた後、水蒸気養生することによって得られる。得られたALCは、所定寸法に切削加工することによって、パネルなどの建築材料などとなる。建築材料としてのALCパネルは、鉄筋造やRC造などの外壁、屋根、床などの材料として広く用いられる。
【0003】
ところで、ALC製造工場やALCの建築施工現場、建築物解体現場等からは、ALC廃材が多量に発生する。製造工程から発生するALC廃材に関しては、上記のように繰り返し原料として再利用しており、バージン原料に対する割合が大きくなると強度低下の原因となるため、添加量が制限されるという問題はあるものの、工程内でのリサイクル化が進んでいる。しかしながら、ALC建設施工現場や建築物解体現場からのALC廃材に関しては産業廃棄物として処理するだけで、リサイクル化が進んでいない状況である。ALC廃材を産業廃棄物として処理するには、多額の費用が必要になるため製品のコストが上昇する。そのためALC建設施工現場や建築物解体現場からのALC廃材の有効利用が望まれている。
【0004】
一方、従来からALCを利用した二次製品が各種知られており、その中でALCを利用した調湿材としては、以下に記載するものが知られている。ALC製造工程で発生する不良品や建築中に発生する端材などを粉砕したALCの粉末そのものを調湿材とするもの(特開平6−99063号公報等参照)、前記ALC粉末を炭酸ガスで炭酸化させることにより生成されるものを調湿材とするもの、さらに前記ALC粉末に水等を添加、造粒して、その造粒物を炭酸ガスで炭酸化させた後、乾燥させてなる調湿材(特開平10−33979号公報等参照)などがある。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のALC粉末そのものを調湿材としたものについては、炭酸化したものと比べ比表面積が小さいため吸放湿量が少なく、また使用中に炭酸化が進行するとトバモライト結晶が反応して水が放出され、調湿材としての機能が低下するという難点がある。
また、ALC粉末を炭酸化した調湿材についても、炭酸化によって比表面積は増大するが、粉末であることにより調湿能力が低く、十分な調湿機能が得られない上、ハンドリング時や床等に散布する場合に風で粉末が飛散したりして取り扱い上も不利な面が多かった。
さらに、ALC粉末を造粒後に炭酸化、乾燥させた調湿材の場合は、炭酸化により調湿機能は優れているが、炭酸化に多くの手間と時間を要し、製造コストが高くなるという問題があった。
【0006】
本発明は、これらの問題を解決するためになされたもので、低コストで優れた調湿機能を有する調湿材を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る調湿材は、ビルや家屋の建て替え、リフォーム、補修の対象となる建物から発生するALC廃材を有効利用するものであり、その要旨は、炭酸化飽和したALC廃材からなることを特徴とし、また、炭酸化飽和したALC廃材を磁選機などで鉄筋を取り除いた後、それを破砕して得られた粒径3〜30mmの破砕物からなることを特徴とし、さらに、炭酸化飽和した軽量気泡コンクリート廃材を磁選機などで鉄筋を取り除いた後、それを3mm以下の大きさに粉砕し、該粉砕物を粒径3〜30mmに造粒し、乾燥させて得られたものからなることを特徴とするものである。
【0008】
ここで、ALCの炭酸化とは、ALCの主要鉱物であるトバモライトが、炭酸ガスと水分が存在する環境下で、シリカゲルと炭酸カルシウムに分解する反応であり、仕上げ等の施工が適切に施された場合にも、徐々に進行することが知られている。また、炭酸化することによりALCは収縮し(炭酸化収縮)、さらに炭酸化したALCは乾燥収縮率が大きくなり、乾燥収縮と湿潤膨張の繰り返しによるひび割れの発生やパネル強度の低下につながることが知られている。それと同時に、ALCは炭酸化することによって比表面積が増大し、吸放湿量の優れたものとなることも知られている。
【0009】
【発明の実施の形態】
本発明において使用するALCは、炭酸化したALC廃材であって、炭酸化度が60%以上のものが好ましい。ALCの炭酸化の進行と劣化の関係は図1に示すごとく、炭酸化度は経過年数に比例し、50%までは比例関係で増加し、60%で飽和することか知られている(特開2000−283895号公報等参照)。つまり、炭酸化度が60%に達すると、耐用年数を超過したと考えられる。このことから、60%を下回る炭酸化度のALC廃材の場合、炭酸化が未飽和のため、さらに炭酸化が進行すると、トバモライト結晶が反応して水が放出され、調湿材としての機能は低いものとなる。したがって、本発明の調湿材としては、炭酸化度が60%以上のものが好適である。
【0010】
また、回収したALC廃材に含まれる鉄筋は磁選機などで取り除いた後、このALC廃材を破砕し、その破砕物の粒径を3〜30mmとしたのは、3mm未満ではハンドリング時や床等に散布する場合に風で粉末が飛散し、他方、30mmを超えると塊状物となり調湿材として適さないためである。したがって、調湿材として用いる場合の粒径としては、取り扱い上にも散布する上でも3〜30mmが好ましい。
【0011】
さらに、磁選機などで鉄筋を取り除いたALC廃材を3mm以下の大きさに粉砕した後、該粉砕物を粒径3〜30mmに造粒したものからなる調湿材の場合の造粒手法としては、半乾式低水分のペレッティングプレス造粒、またはローループレス造粒などの方法が適しており、使用するALC粉末の粒径は3mm以下のものが使用できる。ALC粉末の含水率は水添加により10〜50%に調整するのが好ましい。また場合によっては澱粉質や糖蜜などのバインダーを添加してもかまわない。
【0012】
造粒して得られる調湿材、あるいは破砕して得られる調湿材は、所定の粒径であれば、形状が歪んであっても構わない。
【0013】
このようにALC廃材、ALC廃材を破砕あるいは造粒したものを調湿材に用いることで、建築廃材の有効利用がはかられ、環境上も好ましいという優れた効果が得られるのみならず、利用するALC廃材は、前記したごとく良好な調湿性能をすでに有しているので、あらためて炭酸化処理を施す必要がなく、そのまま利用できる利点もある。
【0014】
【実施例】
表1に示す炭酸化度、形状およびかさ比重のALC廃材の調湿性能を調べた。
調湿性能は、恒温恒湿槽の中に試料を静置して重量変化を調べることによって評価した。その時の試験条件は、温度20℃一定、40%RH状態から1時間で80%RHまで増湿し、80%RHにて11時間保持した後、1時間で40%RHに湿度を落とし、40%RHに11時間保持し、これを2回繰り返した。その結果は水分の増加減少量を質量%にて図2に示す。
図2の結果より明らかなごとく、本発明例1の調湿材は、良好な値を示したのに対し、炭酸化度が60%未満の調湿材(比較例1.2.3)の場合は、調湿性能が劣っている。なお、比較例4は、質量当たりで換算すると、本発明例1の9割程度の吸放出特性を示したが、カサ比重が大きく低いため、散布した場合を考えると体積当たりでは、極めて調湿効率が悪いといえる。なお、ここでは本発明例1のみの結果を示したが、残りの本発明例2.3についても同様の結果が得られることはいうまでもない。
【0015】
【表1】
【0016】
【発明の効果】
以上説明したごとく、本発明の調湿材は、すでに炭酸化飽和したALC廃材を原料とするため、建築廃材の有効利用がはかられ、環境上も好ましいという優れた効果が得られるのみならず、利用するALC廃材は、良好な調湿性能をすでに有しているので、あらためて炭酸化処理を施す必要がなく、そのまま利用できる利点があり、従来の調湿材に比べ製造コストも安価につく。また、ALCと調湿性能が大きく異なる天然素材を組み合わせることにより、吸放出特性を制御・向上させたALC基の複合調湿材を提供することも可能である。
【図面の簡単な説明】
【図1】ALCの炭酸化の進行と劣化の関係を示す図である。
【図2】本発明の実施例における調湿材の調湿性能を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a humidity control material that reuses carbonated and saturated lightweight cellular concrete (hereinafter referred to as ALC) waste material generated from a building demolition site or the like.
[0002]
[Prior art]
In general, ALC mainly uses natural silica stone and silica sand as siliceous raw materials and limestone and cement directly produced from natural raw materials as calcareous raw materials. It is obtained by adding raw materials, adding water to the blend to form a mixed slurry, foam-curing these slurries, and then curing with water vapor. The obtained ALC is made into a building material such as a panel by cutting into a predetermined dimension. ALC panels as building materials are widely used as materials for outer walls, roofs, floors, etc., such as steel bars and RC structures.
[0003]
By the way, a large amount of ALC waste material is generated from ALC manufacturing factories, ALC building construction sites, building demolition sites, and the like. As for ALC waste material generated from the manufacturing process, it is reused as a repetitive raw material as described above, and when the ratio to the virgin raw material increases, it causes a decrease in strength, but there is a problem that the addition amount is limited, Recycling within the process is progressing. However, ALC waste materials from ALC construction sites and building demolition sites are only treated as industrial waste and are not being recycled. In order to treat ALC waste as industrial waste, a large amount of expense is required, which increases the cost of the product. Therefore, effective use of ALC waste materials from ALC construction sites and building demolition sites is desired.
[0004]
On the other hand, conventionally, various secondary products using ALC are known, and among them, the following are known as humidity control materials using ALC. ALC powder itself obtained by pulverizing defective products generated in the ALC manufacturing process or mill materials generated during construction is used as a humidity control material (see JP-A-6-99063, etc.), and the ALC powder is carbon dioxide. What is produced by carbonation is used as a humidity control material, further water is added to the ALC powder, granulated, and the granulated product is carbonated with carbon dioxide gas and then dried. There is a humidity control material (see JP-A-10-33979).
[0005]
[Problems to be solved by the invention]
However, the conventional ALC powder itself as a humidity control material has a smaller specific surface area than the carbonated one, so the amount of moisture absorbed and released is small, and when the carbonation proceeds during use, the tobermorite crystals react. There is a problem that water is released and the function as a humidity control material is lowered.
In addition, the specific surface area of the humidity control material obtained by carbonizing the ALC powder also increases due to the carbonation. However, since the powder is a powder, the humidity control capability is low, and a sufficient humidity control function cannot be obtained. In the case of spraying, etc., there were many disadvantages in handling because the powder was scattered by the wind.
Furthermore, in the case of a humidity control material obtained by carbonizing and drying ALC powder after granulation, the humidity control function is excellent due to carbonation, but it takes a lot of labor and time for carbonation, and the production cost increases. There was a problem.
[0006]
The present invention has been made to solve these problems, and aims to provide a humidity control material having an excellent humidity control function at low cost.
[0007]
[Means for Solving the Problems]
The humidity control material according to the present invention effectively uses ALC waste generated from a building to be rebuilt, renovated or repaired, and the gist of the humidity control material is that it is composed of ALC waste material saturated with carbonation. It is also characterized in that it consists of a crushed material with a particle size of 3 to 30 mm obtained by removing the rebar from a carbonized and saturated ALC waste material using a magnetic separator, etc. After removing the rebar from the lightweight lightweight concrete waste material with a magnetic separator, etc., it is pulverized to a size of 3 mm or less, and the pulverized product is granulated to a particle size of 3 to 30 mm and dried. It is characterized by this.
[0008]
Here, carbonation of ALC is a reaction in which tobermorite, the main mineral of ALC, decomposes into silica gel and calcium carbonate in an environment where carbon dioxide and moisture are present. In this case, it is known to progress gradually. Carbonation causes ALC to shrink (carbonation shrinkage). Carbonated ALC also increases the drying shrinkage rate, which can lead to cracking and panel strength reduction due to repeated drying shrinkage and wet expansion. Are known. At the same time, it is known that ALC increases in specific surface area by carbonation and has an excellent moisture absorption / release amount.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The ALC used in the present invention is a carbonated ALC waste material, preferably having a carbonation degree of 60% or more. As shown in FIG. 1, the relationship between the progress and deterioration of ALC carbonation is known to be proportional to the number of years elapsed, increase up to 50% in a proportional relationship, and saturate at 60%. (See Kai 2000-283895). That is, when the carbonation degree reaches 60%, it is considered that the service life has been exceeded. From this, in the case of ALC waste materials having a carbonation degree of less than 60%, since carbonation is unsaturated, when carbonation proceeds further, tobermorite crystals react to release water, and the function as a humidity control material is It will be low. Therefore, as the humidity control material of the present invention, those having a carbonation degree of 60% or more are suitable.
[0010]
Also, after removing the reinforcing bars contained in the recovered ALC waste material with a magnetic separator, etc., this ALC waste material was crushed and the particle size of the crushed material was 3 to 30 mm. This is because the powder is scattered by the wind when sprayed, and on the other hand, if it exceeds 30 mm, it becomes a lump and is not suitable as a humidity control material. Therefore, the particle size when used as a humidity control material is preferably 3 to 30 mm for both handling and application.
[0011]
Furthermore, as a granulation method in the case of a humidity control material comprising an ALC waste material from which reinforcing bars have been removed with a magnetic separator or the like, pulverized to a size of 3 mm or less, and then the pulverized product is granulated to a particle size of 3 to 30 mm A semi-dry type low moisture pelletizing press granulation method or a roll-press granulation method is suitable, and the ALC powder used can have a particle size of 3 mm or less. The water content of the ALC powder is preferably adjusted to 10 to 50% by adding water. In some cases, a binder such as starch or molasses may be added.
[0012]
The humidity conditioning material obtained by granulation or the humidity conditioning material obtained by crushing may have a distorted shape as long as it has a predetermined particle size.
[0013]
In this way, the use of the ALC waste material and the crushed or granulated ALC waste material as the humidity control material makes it possible to effectively use the building waste material, and not only provides an excellent effect that it is environmentally friendly, but also uses it. Since the ALC waste material to be used already has a good humidity control performance as described above, there is an advantage that it can be used as it is without the need for carbonation treatment.
[0014]
【Example】
The humidity control performance of the ALC waste material having the carbonation degree, shape and bulk specific gravity shown in Table 1 was examined.
The humidity control performance was evaluated by leaving the sample in a constant temperature and humidity chamber and examining the change in weight. The test conditions at that time were as follows: the temperature was constant at 20 ° C., the humidity increased from 40% RH to 80% RH in 1 hour, held at 80% RH for 11 hours, and then the humidity was reduced to 40% RH in 1 hour. It was held at% RH for 11 hours and this was repeated twice. The result is shown in FIG.
As is clear from the results of FIG. 2, the humidity control material of Example 1 of the present invention showed good values, whereas the humidity control material having a carbonation degree of less than 60% (Comparative Example 1.2.3). In the case, the humidity control performance is inferior. In addition, Comparative Example 4 showed about 90% of the absorption / release characteristics of Example 1 of the present invention when converted per mass, but because the bulk density is large and low, considering the case of spraying, the humidity control is extremely high per volume. It can be said that efficiency is bad. Although only the result of the present invention example 1 is shown here, it is needless to say that the same result can be obtained for the remaining invention example 2.3.
[0015]
[Table 1]
[0016]
【The invention's effect】
As described above, since the humidity control material of the present invention uses ALC waste material that has already been saturated with carbonation as a raw material, not only can the excellent use of the building waste material be achieved, but it is also favorable in terms of the environment. Since the ALC waste material used already has good humidity control performance, it does not need to be re-carbonated and has the advantage that it can be used as it is, and the manufacturing cost is low compared to conventional humidity control materials. . It is also possible to provide an ALC-based composite humidity control material with controlled / improved absorption / release characteristics by combining a natural material with a greatly different humidity control performance from ALC.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the progress of carbonation of ALC and its deterioration.
FIG. 2 is a diagram showing humidity control performance of a humidity control material in an example of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001221474A JP4627935B2 (en) | 2001-07-23 | 2001-07-23 | Conditioning material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001221474A JP4627935B2 (en) | 2001-07-23 | 2001-07-23 | Conditioning material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003033622A JP2003033622A (en) | 2003-02-04 |
JP4627935B2 true JP4627935B2 (en) | 2011-02-09 |
Family
ID=19055136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001221474A Expired - Fee Related JP4627935B2 (en) | 2001-07-23 | 2001-07-23 | Conditioning material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4627935B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012082084A (en) * | 2010-10-07 | 2012-04-26 | Asahi Kasei Construction Materials Co Ltd | Humidity conditioning building material and method of manufacturing the same |
CN102454247A (en) * | 2010-10-21 | 2012-05-16 | 旭化成建材株式会社 | Moisture-adjusting building material and manufacture method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005320202A (en) * | 2004-05-10 | 2005-11-17 | Shimizu Corp | Cement composition using waste concrete fine powder and method of preparing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699063A (en) * | 1992-09-24 | 1994-04-12 | Takeshi Fujiwara | Under-floor humidity conditioning agent |
JPH1033979A (en) * | 1996-07-19 | 1998-02-10 | Onoda Autoclaved Light Weight Concrete Co Ltd | Method of manufacturing humidity control material |
JPH1176737A (en) * | 1997-09-04 | 1999-03-23 | Sumitomo Metal Mining Co Ltd | Flexible vessel for housing humidifying material and humidifying method using the same |
JP2001353418A (en) * | 2000-06-14 | 2001-12-25 | Clion Co Ltd | Porous humidifying material and producing method thereof |
JP2002004447A (en) * | 2000-06-22 | 2002-01-09 | Clion Co Ltd | Moisture adjusting building material |
JP2002030735A (en) * | 2000-07-14 | 2002-01-31 | Clion Co Ltd | Moisture-conditioning building material |
-
2001
- 2001-07-23 JP JP2001221474A patent/JP4627935B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699063A (en) * | 1992-09-24 | 1994-04-12 | Takeshi Fujiwara | Under-floor humidity conditioning agent |
JPH1033979A (en) * | 1996-07-19 | 1998-02-10 | Onoda Autoclaved Light Weight Concrete Co Ltd | Method of manufacturing humidity control material |
JPH1176737A (en) * | 1997-09-04 | 1999-03-23 | Sumitomo Metal Mining Co Ltd | Flexible vessel for housing humidifying material and humidifying method using the same |
JP2001353418A (en) * | 2000-06-14 | 2001-12-25 | Clion Co Ltd | Porous humidifying material and producing method thereof |
JP2002004447A (en) * | 2000-06-22 | 2002-01-09 | Clion Co Ltd | Moisture adjusting building material |
JP2002030735A (en) * | 2000-07-14 | 2002-01-31 | Clion Co Ltd | Moisture-conditioning building material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012082084A (en) * | 2010-10-07 | 2012-04-26 | Asahi Kasei Construction Materials Co Ltd | Humidity conditioning building material and method of manufacturing the same |
CN102454247A (en) * | 2010-10-21 | 2012-05-16 | 旭化成建材株式会社 | Moisture-adjusting building material and manufacture method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003033622A (en) | 2003-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109516703B (en) | Recovery of aggregate and powdery mineral material from demolition waste | |
JP7450409B2 (en) | Method for producing cement mixture, mixed cement and carbon dioxide adsorbent | |
CN101560088B (en) | Autoclaved ceramic slag brick taking ceramic slag as main material and production method thereof | |
JP3221908B2 (en) | Method for producing recycled aggregate and recycled aggregate | |
EP0222457A1 (en) | Method for producing a building element from fly ash comprising material and building element formed | |
CN105948803A (en) | Preparing method for aerated concrete products | |
CN102898086A (en) | Preparation method of high-performance recycled aggregate concrete | |
CN112079583A (en) | Building material product based on rapid carbonization of regenerated cementing material and preparation method thereof | |
JP4627935B2 (en) | Conditioning material | |
JP4189730B2 (en) | Non-asbestos processing method of asbestos slate | |
KR100713686B1 (en) | Porous material of calcium silicate used waste concrete powder | |
CN115849824B (en) | Electric furnace nickel slag carbon fixation and high-value utilization method thereof in concrete | |
CN1235892A (en) | Artificial light-weight aggregate, method for manufacturing the artificial light-weight aggregate | |
JP2005320202A (en) | Cement composition using waste concrete fine powder and method of preparing the same | |
EP4095111A1 (en) | Calcium-silicate bricks | |
JP4418244B2 (en) | Method for producing powdered solidified material | |
JP2004082061A (en) | Treatment and recycling method of calcium silicate-based waste | |
CN107879726A (en) | A kind of preparation method of coal ash sintering brick | |
JP4014400B2 (en) | Soil treatment material composition and method for producing the same | |
CN101565291B (en) | Method for fixing sulfur for baked brick of high-sulfur coal gangue | |
CN106746831A (en) | A kind of waste and old concrete Low Temperature Heat Treatment regeneration activity micro mist and preparation method thereof | |
JPH1045446A (en) | Production of anhydrous gypsum ii and cement | |
JP3602588B2 (en) | Concrete waste treatment method | |
CN115385644B (en) | Wet-mixed cured mortar prepared from solid waste limestone slag, and preparation and application methods thereof | |
JP4317391B2 (en) | Eco lime cement, method for producing the same and method for producing eco lime cement solidified body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071128 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |