[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4621434B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4621434B2
JP4621434B2 JP2004090626A JP2004090626A JP4621434B2 JP 4621434 B2 JP4621434 B2 JP 4621434B2 JP 2004090626 A JP2004090626 A JP 2004090626A JP 2004090626 A JP2004090626 A JP 2004090626A JP 4621434 B2 JP4621434 B2 JP 4621434B2
Authority
JP
Japan
Prior art keywords
lubricant
image
image forming
forming apparatus
brush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004090626A
Other languages
English (en)
Other versions
JP2005275166A (ja
Inventor
大地 山口
健治 杉浦
貴彦 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004090626A priority Critical patent/JP4621434B2/ja
Publication of JP2005275166A publication Critical patent/JP2005275166A/ja
Application granted granted Critical
Publication of JP4621434B2 publication Critical patent/JP4621434B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Description

本発明は、画像形成装置に係り、詳しくは、トナー像を転写材に転写した後、帯電装置により帯電される前の該像担持体表面上に、潤滑剤を供給する潤滑剤供給手段に関するものである。
従来、電子写真プロセスとして、光導電現象を利用して感光体上に静電的な電荷の像(静電潜像)を形成し、この静電潜像に着色した帯電微粒子(トナー)を静電力で付着させて、可視像とするプロセスが知られている。この電子写真プロセスでは、画質の向上やクリーニング性の向上のため、感光体や中間転写ベルトなどのトナー像担持体の表面に潤滑剤を塗布することが行われている。この潤滑剤としては、各種ワックス、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、高級脂肪酸金属塩(ステアリン酸亜鉛等)などがある。潤滑剤をトナー像担持体の表面に塗布することにより、表面の摩擦係数が減少する。トナー像担持体表面の摩擦係数が減少すると、その表面に付着した付着物を表面から容易に除去することができるようになる。また、上述のトナー像担持体が感光体の場合、潤滑剤を塗布することはクリーニングにともなう感光体の摩耗防止にも役立つことが知られている。すなわち、感光体のクリーニングは、通常、クリーニングブレードやクリーニングブラシにより感光体表面を機械的に摺擦することによりおこなわれる。この摺擦により感光体が摩耗してしまうが、潤滑剤塗布による感光体表面の摩擦係数低減化はこのような摩耗の防止にも有効である。
ところで、これらの潤滑剤は微量づつ、粉体の形態で感光体表面に供給されるものである。その具体的な方法としては特許文献1に開示されているように、ブラシなどの塗布手段によりブロック状に固形成形された潤滑剤を削り取って塗布する方法が知られている。
特開2000−162881号公報
しかしながら、単に、ブラシを介して塗布する方法では、ムラ無く均一に感光体表面に潤滑剤を塗布することは難しい。多くの固形潤滑剤は、その成形過程において数μm程度の粒径の粉体を含んでいる。特許文献1に記載のような方法で感光体に潤滑剤を塗布する場合、ブラシが固形潤滑剤を摺擦するときに粉体に剪断力が働くと、粉体が割れ、サブミクロンからナノメーター・オーダー(10−7〜10−9m・オーダー)の粒径となる。そして、剪断力が働いた潤滑剤は粒径が小さい状態で感光体に供給される。一方、直接、剪断力が働くことなく、ミクロン・オーダー(10−6mオーダー)の粒径のままブラシに付着し、更に、そのまま感光体表面に塗布される粉体も存在する。粒径が小さい粉体、すなわち、サブミクロンからナノメーター・オーダーの粉体は容易に均一に塗布することができるが、そのような粒径の粉体が塗布されている表面に更にミクロン・オーダーの粉体を均一に塗布することは難しい。また、ミクロン・オーダーの粒径の粉体は、たとえ、感光体表面に塗布されたとしても、潤滑性を十分に発揮することができず、クリーニング部材によるクリーニング性を低下させてしまうことがわかっている。
本発明は、以上の問題に鑑みなされたものであり、その目的とするところは、像担持体上に潤滑剤を塗布する画像形成装置において、像担持体上に塗布された潤滑剤がその潤滑性を従来よりも有効に発揮し、クリーニング部材によるクリーニング性の低下を抑制することができる画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、静電潜像を担持する像担持体と、該像担持体表面を帯電させる帯電装置と、現像剤を現像剤担持体に担持し該像担持体に対向する現像領域に搬送して該像担持体上の潜像を現像してトナー像化する現像装置と、現像後のトナー像を転写材に転写した後に該像担持体上に残留する転写残トナーを除去するクリーニング手段と、トナー像を転写材に転写した後、帯電装置により帯電される前の該像担持体表面上に、潤滑剤を収容する潤滑剤収容部から該潤滑剤を供給する潤滑剤供給手段とを有する画像形成装置において、該潤滑剤供給手段が回転することにより該潤滑剤を担持・搬送す複数の潤滑剤供給ブラシであり、複数の該潤滑剤供給ブラシのうちの少なくとも一つが該潤滑剤収容部から該潤滑剤を供給され、該潤滑剤収容部から該潤滑剤供給ブラシに供給された該潤滑剤を複数の該潤滑剤供給ブラシ同士が擦れ合う箇所を通過させた後に該像担持体表面上に供給することを特徴とするものである。
また、請求項2の発明は、請求項1の画像形成装置において、上記該潤滑剤収容部から上記潤滑剤供給ブラシに供給された上記潤滑剤を、二つ以上の上記潤滑剤供給ブラシを経由させて上記像担持体表面上に供給することを特徴とするものである。
また、請求項3の発明は、請求項1の画像形成装置において、複数の上記潤滑剤供給ブラシが上記像担持体表面に当接し、上記潤滑剤収容部から供給された上記潤滑剤を該像担持体表面に塗布することを特徴とするものである。
また、請求項4の発明は、請求項1乃至の何れか一項に記載の画像形成装置において、上記潤滑剤供給ブラシに対して上記潤滑剤収容部を接離可能としたことを特徴とするものである。
また、請求項5の発明は、請求項1乃至4の何れか一項に記載の画像形成装置において、上記潤滑剤供給ブラシが担持する上記潤滑剤を加熱する潤滑剤加熱部材を設けたことを特徴とするものである。
また、請求項6の発明は、請求項1乃至5の何れか一項に記載の画像形成装置において、上記潤滑剤収容部に固形潤滑材を配置し、複数の上記潤滑剤供給ブラシのうちの少なくとも一つが該固形潤滑剤と当接して回転して該固形潤滑剤の一部分を削ぎ取ることによって、該潤滑剤収容部から該潤滑剤供給ブラシに上記潤滑剤が供給されることを特徴とするものである。
また、請求項7の発明は、請求項1乃至5の何れか一項に記載の画像形成装置において、微粉体状の該潤滑剤のみを上記潤滑剤供給ブラシに供給する潤滑剤粒径規制手段を上記潤滑剤収容部に設けたことを特徴とするものである。
また、請求項の発明は、請求項1乃至7の何れか一項に記載の画像形成装置において、上記潤滑剤を微粉体にする潤滑剤微粉化手段を、上記潤滑剤供給ブラシの上記像担持体表面移動方向下流側の該像担持体表面に対抗して配置したことを特徴とするものである。
また、請求項の発明は、請求項1乃至8の何れか一項に記載の画像形成装置において、上記帯電装置が上記像担持体に対して接触また近接する帯電ローラを用いた帯電装置であることを特徴とするものである。
また、請求項10の発明は、請求項1乃至9の何れか一項に記載の画像形成装置において、上記潤滑剤の体積抵抗率が1.0×10〜1.0×1015Ω・cmであることを特徴とするものである。
また、請求項11の発明は、請求項1乃至10の何れか一項に記載の画像形成装置において、上記トナー像を形成するトナーの円形度が0.96以上であることを特徴とするものである。
また、請求項12の発明は、請求項1乃至11の何れか一項に記載の画像形成装置において、上記潤滑剤供給手段を少なくとも上記像担持体と共に支持し、画像形成装置本体に着脱自在であるプロセスカートリッジとしたことを特徴とするものである。
上記請求項1乃至12の画像形成装置においては、潤滑剤収容部から潤滑剤供給ブラシに供給された潤滑剤が複数の潤滑剤供給ブラシ同士が擦れ合う箇所を通過することで潤滑剤に剪断力がかかり、粉体の粒径が小さくなり、潤滑剤を所定の粒径より小さい微粉体にする。よって、像担持体上に潤滑剤を均一に塗布することができる。
また、上記請求項7の構成を備えた画像形成装置においては、潤滑剤粒径規制手段で、所定の粒径より小さい微粉体状の潤滑剤のみを潤滑剤供給手段に供給する。よって、像担持体上に潤滑剤を均一に塗布することができる。
また、上記請求項8の構成を備えた画像形成装置においては、像担持体表面移動方向下流側の像担持体表面に対抗する位置の潤滑剤微粉化手段で、像担持体上の潤滑剤を所定の粒径より小さい微粉体にする。よって、像担持体上に潤滑剤を均一に塗布することができる。
請求項1乃至12の発明によれば、像担持体上に潤滑剤を均一に塗布することができるので、潤滑剤が潤滑性を発揮し、像担持体のクリーニング手段がそのクリーニング性能を発揮することができるという優れた効果がある。
[実施形態]
以下、本発明を、画像形成装置である粉体現像電子写真複写機(以下「複写機という」)に適用した一実施形態(以下、実施形態という)について説明する。
図1は、実施形態に係る複写機の画像形成部の一例として、タンデム型フルカラー複写機の画像形成部1の概略構成図である。図中6は転写材で、駆動ローラ6aと転写ローラ6bに周回可能に張架した無端ベルト状の中間転写ベルトである。この中間転写ベルト6と対抗する位置にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(BK)という4色のトナー像を形成する4つの像担持体である感光体2からなる作像ユニット10が配設してある。ここで、図2は作像ユニット10の一つの概略構成図である。
作像ユニット10の感光体2は表面に静電潜像を形成するもので、感光体2の周囲には、次に述べるものが配設されている。感光体2の表面を一様に帯電させる帯電装置である帯電ローラ3、感光体2の表面に像光を照射して潜像を形成する露光装置4、感光体2上に形成した潜像にトナーを選択的に転移させて、トナー像を形成する現像装置5が配置されている。また、潤滑材収容部である固形潤滑材100、感光体2の表面上に潤滑剤を供給する潤滑剤供給ブラシである潤滑剤塗布ブラシ150及び151、クリーニング手段であるクリーニング部13等が配置されている。さらに、感光体2に対向し、感光体2上のトナー像を中間転写ベルト6上に転写する一次転写ローラ9を設けてある。潤滑剤塗布ブラシを用いることで、簡易な装置構成で潤滑剤を常時、安定して供給することができる。なお、一次転写ローラ9には図示しないバイアス回路により、トナー像を転写するのに必要な電圧を印加する。作像ユニット10から中間転写ベルト6の搬送方向下流側には、2次転写ローラ対である転写ローラ6bと2次転写ローラ7が設けてある。
次に画像形成の動作について説明する。感光体2を図1中時計方向に回転駆動して、感光体2を帯電ローラ3で一様に帯電した後、露光装置4により画像データで変調されたレーザを照射して感光体2に静電潜像を形成する。静電潜像の形成された感光体2に現像装置5でトナーを付着させて現像する。現像装置5で感光体2上に形成されたトナー画像は1次転写ローラ9によって、中間転写ベルト6への転写がなされる。このような画像形成が各作像ユニット10Y、10M、10C、10BKで行われ、中間転写ベルト6上にフルカラー画像が形成される。中間転写ベルト6上に形成されたフルカラー画像は、2次転写部である転写ローラ6aと2次転写ローラ7との間に搬送されてきた記録紙Pに転写される。フルカラー画像が転写された記録体Pは定着部(不図示)に搬送される。
定着部は、内蔵ヒータにより所定の定着温度に加熱される定着ローラと、定着ローラに所定圧力で押圧される加圧ローラとを備えている。2次転写部から搬送されてきた記録紙Pを加熱、加圧して、記録紙上のトナー画像を記録紙に定着させた後、図示しない排紙トレー上に排出する。
一方、一次転写ローラ9との対抗部でトナー画像を中間転写ベルト6に転写した感光体2はさらに回転して、クリーニング部13のクリーニングブレード13bにより感光体2の表面に残留するトナーを掻き落とされ除去される。感光体除電装置8で除電する。作像ユニット10の感光体除電装置8で除電した感光体2を帯電装置3で一様に帯電させた後、上記同様に、次の画像形成を行う。なお、クリーニング部13は、クリーニングブレード13bで感光体2上の残留トナーを掻き落とすものに限るものではなく、例えばファーブラシで感光体2上の残留トナーを掻き落とすものであってもよい。
また、帯電ローラ3は、感光体に対して微小なギャップを設けて配置された硬質の導電性ローラからなる。ここで、帯電装置は近接型の導電性ローラを用いているが、これに限るものではなく、接触ローラ帯電、スコロトロン帯電などその他の帯電方式でもかまわない。
次に、実施形態に適用した、帯電ローラ3について説明する。図3は、近接型帯電装置である帯電ローラ3の概略図である。
帯電ローラ3は、導電性基体201とその周囲の抵抗層を備えている。導電性基体201は、直径が8〜20mm、のステンレスの円筒部材である。導電性基体201は、導電性の高い金属であるアルミニウムや体積抵抗率が10Ω・cmオーダー以下の導電性樹脂を用いて、軽量化を図ってもよい。
また、抵抗層202は、導電性材料をABS樹脂などに練り込んだ高分子材料からなり、その表面には、フッ素系の樹脂が薄層203としてある。導電性材料としては、金属イオン錯体、カーボンブラック、イオン系分子などがある。その他、均一な帯電を行うことが可能な材料を用いてもよい。
帯電ローラ3は、その表面が感光体2の表面にと同じ方向移動する。ここで、帯電ローラ3は、感光体2と共に回転しないで静止した状態のものでもよい。帯電ローラ3は、その長手方向(軸方向)の寸法が最大画像幅A4横(約290mm)よりも少し長く設定されている。帯電ローラ3は、その長手方向両端部にスペーサが設けてあり、これらスペーサを感光体2両端部の非画像形成領域に当接させることで、感光ドラム2表面の被帯電面と帯電ローラ3表面の帯電面との間の空隙Hを、その最近接部での距離が5〜100μmになるように保持している。この最近接距離は、さらに好ましくは、30〜65μmに設定するとよい。なお、本実施例では、55μmに設定した。
帯電ローラ3には、帯電用の電源が接続されている。これにより、感光体2表面の被帯電面と、帯電ローラ3表面の帯電面との間の空隙Hで放電により、被帯電面を均一に帯電する。印加電圧バイアスは、DC電圧にAC電圧を重畳した電圧波形を用い、AC電圧のピーク間電圧は帯電開始電圧の2倍以上にするのがよい。また、必要に応じて、DC電圧、好ましくは定電流方式の電圧を用いてもよい。
図4は、実施形態の感光体2と帯電ローラ3との微小ギャップの維持方法の一例を示す図である。スペーサ部材は、帯電ローラの両端部にフィルムを巻きつけて、スペーサ302とした。このスペーサ302は、感光体2の感光面に接触させ、帯電ローラ3と感光体2の画像領域にある一定の微小ギャップHを得るようになっている。印加バイアスは、AC重畳タイプの電圧を印加して、帯電ローラ3と感光体2との微小ギャップHに生じる放電により、感光体2を帯電させる。さらに、軸である導電性基材201をスプリング303などで加圧することで、微小ギャップの維持精度が向上する。
さらに、ギャップ部材であるスペーサを帯電ローラと一体成型にしてもよい。このとき、スペーサ部分は、すくなくともその表面を絶縁体にするのがよい。このようにすることにより、ギャップ部分で放電をなくし、スペーサ部分に放電生成物が堆積し、放電生成物粘着性により、トナーがギャップ部分に固着し、ギャップが広がることがなくなる。
また、ギャップ部材は、熱収縮チューブを用いてもよく、この方法が現時点で最も好ましい。熱収縮チューブには、例えば105℃用のスミチューブ(商品名:F 105℃、住友化学社製)等がある。スミチューブの厚さは300μmで、装着する帯電部材の直径にもよるが、熱収縮チューブは50〜60%程度の収縮率を示し、熱収縮により0〜200μm程度増厚するため、帯電部材は増加分を加味した切削加工が必要となる。例えば、φ12mmの帯電部材にスペーサ部材を装着する場合には、切削深さを350μmとし、内径15mm程度の熱収縮チューブを使用すればよい。帯電部材端部の切削部に熱収縮チューブを装着した後、帯電部材を回転させ端面より内側に向かって、120〜130℃の熱源で加熱しながら均一に熱収縮させることによって、帯電部材と像担持体間の空隙を約50μm程度に設定できる。熱融着し固定した熱収縮チューブは使用中に外れることは無いが、予防のために、端部にシアノアクリレート樹脂(例えば、アロンアルファ(商標)、シアノボンド(商標))などの液体状の接着剤を少量流し込み、固定させることができる。
熱収縮チューブは厚みがあるのでスペーサ部材にする場合は、図5に示すように段差601を取り、スペーサ部材を装着する方法がある。他には図6及び図7に示す方法がある。図6は抵抗層の端部を一部残して溝602を形成し、その溝にエンドレスの伸縮性を有する角形リング状のスペーサ部材を装着するものである。そして、図7は抵抗層202を、丸みを持たせて切削し溝603を形成し、丸形のリング状(通常Oリングと称する)のスペーサ部材を装着する。端部を削り細目にして、スペーサ部材を挿入しやすくするのが望ましく、また完全にカットして、接着剤で固定することも可能である。スペーサ部材を切削部若しくは溝を形成した部位に装着し固定する場合には、前記した液体状接着剤の他、2液性のエポキシ樹脂などの接着剤を用いるのが望ましい。
また、スペーサ部材は、後から帯電ローラより径の太いものを差し込んで、コロ部材としてもよい。
次に実施形態の特徴部の構成について説明をする。この構成は、潤滑剤供給手段としての潤滑材塗布部材に、潤滑剤微粉化手段としての潤滑剤摺擦部材を設けたものである。図8は、図2で示した実施形態の潤滑剤供給部の模式図である。二つの同方向に回転する潤滑剤塗布ブラシ150、151を介し、固形潤滑剤100を感光体2へ塗布する。第一潤滑剤塗布ブラシ150は固形潤滑剤100と当接して回転し、固形潤滑剤100の一部分を削ぎ取る。削ぎ取られた固形潤滑剤100は第一潤滑剤塗布ブラシ150に付着して、回転し、もう一つの回転する第二潤滑剤塗布ブラシ151に接触する際に移動し、更に回転した後、感光体2に塗布される。このとき、第一潤滑剤塗布ブラシ150から第二潤滑剤塗布ブラシ151へ移動する際に、潤滑剤塗布ブラシ同士で擦れ合うことにより、固形潤滑剤100に剪断力がかかり、粉体の粒径が小さくなり、所定の粒径よりも小さい微粉体になる。また、二つの潤滑剤塗布ブラシ150、151を移動する間に、遠心力により固形潤滑剤100の一部が2つの潤滑剤塗布ブラシ150,151からふるい落とされる。粒径の大きい粉体ほど、かかる遠心力は大きいので、感光体2に塗布される固形潤滑剤は粒径の小さいものになる。つまり、潤滑剤塗布部材である二つの潤滑剤塗布ブラシ150、151が潤滑剤微粉化手段である潤滑剤摺擦部材としての役割も兼ねた構成である。二つの潤滑剤塗布ブラシ150、151で摺擦され、微粉化された潤滑剤の粒径は1.0μm以下となることが望ましい。
図2及び図8では、潤滑剤塗布ブラシを二つ備えた構成を示しているが、2つに限らず複数個設け、潤滑剤塗布ブラシから潤滑剤塗布ブラシへ受け渡す際に潤滑剤が摺擦される構成であれば良い。また、図8では、第一潤滑剤塗布ブラシ151と第二潤滑剤塗布ブラシ151とが同一方向に回転しているが、2つの潤滑剤塗布ブラシの回転方向は逆であってもかまわない。
また、このとき、像担持体に接している第二潤滑剤塗布ブラシ151はクリーニング用の潤滑剤塗布ブラシと兼ねることもできる。つまり、感光体2と当接する箇所の第二潤滑剤塗布ブラシ151の回転方向上流側は潤滑剤を担持し、感光体に当接する箇所から回転方向下流側で感光体2表面上の残留トナーを掻きあげる。掻きあげられた残留トナーは不図示の回収部材によって第二潤滑剤塗布ブラシ151から回収される。この時の第二潤滑剤塗布ブラシ151によるクリーニングが不十分である場合は、図2に示すように、第二潤滑剤塗布ブラシ151の感光体2の回転方向下流側にクリーニングブレード13bを設けても良い。ブレードによるクリーニングの前に潤滑剤塗布ブラシによるクリーニングを行うことにより、潤滑剤塗布ブラシに摺擦された感光体2上の残留トナーがクリーニングブレード13bによりクリーニングされやすくなる。
また、潤滑剤塗布部材としての潤滑剤塗布ブラシとクリーニング部材であるクリーニングブレード13bとの位置関係は、図2の構成に限るものではない。例えば、潤滑剤塗布部材をクリーニングブレード13bの感光体回転方向下流側に設置し、クリーニングブレードの感光体回転方向上流側にクリーニング手段としてのファーブラシを設けても良い。このように、クリーニング手段としてのファーブラシを潤滑剤塗布部材としての潤滑剤塗布ブラシとは、別に設けることにより、クリーニング性能の向上を図ることが出来る。また、ファーブラシとブレードによってクリーニングがなされた後の感光体表面に潤滑剤を塗布するため、潤滑性の向上も図ることが出来る。
一方、図2のように一つの潤滑剤塗布ブラシが潤滑剤塗布部材としての役割と、クリーニング部材としての役割とを兼ねた構成だと、ブラシやブラシを回転させる駆動機構など部材点数の削減を図ることが出来る。
ところで、球形度が低いトナーを用いると、転写率が悪くなる場合がある(最悪値で85%の転写率)。この場合、像担持体上に未転写トナーに覆われた部分が存在してしまう。像担持体上に多量のトナーがあると、地汚れが発生し像担持体に潤滑剤の塗布ムラが発生してしまう。すると像担持体表面の状態が変化してしまい、通常のブレードクリーニングではクリーニングできない場合がある。
そこで、クリーニング部材としてのファーブラシが導電性を有する繊維により構成し、ファーブラシまたは、ファーブラシからトナーを回収する回収部材に電圧を印加し、像担持体から残留トナーを回収するクリーニング手段を設けてもよい。
クリーニング部材としてのファーブラシに電圧を印加することにより、ファーブラシが残留トナーをひきつける。そして、感光体表面にNOx等が付着して表面状態が変化した、あるいは静止摩擦係数が変化した場合においても、クリーニング部材が表面状態に合わせて変形して接触するので、良好なクリーニング性を保つことができる。また、印加する電圧の大きさを制御することにより、入力トナー量の変動によるクリーニング余裕度低下を起こすことなく、感光体上のトナーを良好にクリーニングできる。さらに、従来のクリーニング部材では、回収が困難であった、円形度0.96以上のトナーの残留トナーであっても、容易にクリーニングできる。
これにより、潤滑剤の塗布ムラがあったとしても、クリーニング性を低下させない。
また、感光体2と接している潤滑剤塗布ブラシ151は図示しないソレノイドを用いた機構により、所定のタイミングで感光体2と接離可能にする、もしくは、その回転数を変化させることにより、感光体2上の潤滑剤塗布量を制御することができる。
ところで、潤滑剤塗布ブラシ151がクリーニング用のファーブラシを兼ねている場合は、潤滑剤塗布ブラシ151を感光体2から接離可能にすると、クリーニングに不具合がおこる恐れがある。よって、この場合は、潤滑剤収容部である固形潤滑剤100にソレノイドを用いた機構を設け、潤滑剤塗布部材である潤滑剤塗布ブラシ150に対し所定のタイミングで接離可能としてもよい。この固形潤滑剤100を潤滑剤塗布ブラシ150に対して接離する所定のタイミングは、塗布動作が連続動作から間欠動作まで任意の塗布状態で制御するようにする。このように、潤滑剤塗布ブラシ150と固形潤滑剤との接離のタイミングを制御することにより、感光体2への潤滑剤の塗布量を制御することが出来る。
固形潤滑剤100としては、例えば、各種ワックスやフッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン等)や高級脂肪酸金属塩(ステアリン酸亜鉛等)等を用いることができる。特にステアリン酸亜鉛のようなラメラ結晶紛体を使用することは好適である。ラメラ結晶は両親媒性分子が自己組織化した層状構造を有しており、剪断力が加わると層間にそって結晶が割れて滑りやすくなる。この作用が低摩擦係数化につながり、剪断力を受けて均一に感光体表面を覆っていくラメラ結晶の特性は少量の潤滑剤によって効果的に感光体表面を覆うことが出来る。この低摩擦係数化によって、クリーニング手段としてのクリーニング部13のブレードがそのクリーニング性能を発揮することができる。
また、このように固形潤滑剤を塗布することにより、潤滑剤としての効果の他に、帯電による感光体の劣化を緩和させる保護物質としての効果があることがわかっている。特に、帯電ローラ3を用いた帯電装置において有用である。これは、感光体に近接、もしくは接触配置される帯電部材と感光体との近接空間で放電を起こし、感光体を帯電させる方式を用いる場合、感光体表面の劣化が進行しやすいため、特に保護物質としての効果は非常に大きい。例えば、近接型帯電方式でDC成分にAC成分を重畳した電圧を印加し、かつ、脂肪酸金属塩を潤滑剤として用いる場合、放電領域において被帯電体表面に存在する脂肪酸金属塩に含まれる金属元素の元素割合[%]が、XPSによる測定で、
1.52×10−4×{Vpp−2×Vth}×f/v [%]
以上であるように潤滑剤を感光体に塗布した場合、その潤滑剤は保護物質としての機能を十分に発揮することがわかっている。
(ここで、Vppは帯電部材に印加する交流成分の振幅[V]、
fは帯電部材に印加する交流成分の周波数[Hz]、
Gpは帯電部材表面と被帯電体表面との最近接距離[μm]、
vは帯電部材と対向する被帯電体表面の移動速度[mm/sec]、
Vthは放電開始電圧である。
またVthの値は、被帯電体の膜厚をd[μm]、
被帯電体の比誘電率をεopc、
被帯電体と帯電部材の間の空間における比誘電率をεairとしたとき、
312+6.2×(d/εopc+Gp/εair)+√(7737.6×d/ε)である)
また、実施形態で用いる潤滑剤は、その体積抵抗率が1.0×10〜1015Ω・cmの範囲内のものを用いる。潤滑剤の抵抗が低すぎると、塗布したとき感光体2の表面抵抗を低下させてしまう。すると、感光体2が静電潜像を維持出来なくなり、像流れが発生してしまう。また、潤滑剤の抵抗が高すぎると微粉体となった潤滑剤が帯電しやすくなる。すると、潤滑剤の微粉体が凝集してしまい、潤滑剤の塗布を適切に行うことが出来なくなる。
そこで、潤滑剤の抵抗値を適当な値にすることで、感光体2上の静電潜像を破壊することなく、また、潤滑剤が凝集することもない。
また、実施形態でトナー像を形成するトナーは、その円形度が0.96以上のトナーを用いる。これは、円形度が低いトナーは転写率が悪い場合がある(最悪値で85%の転写率)。この場合、感光体2上に未転写の残留トナーで覆われた部分が存在してしまう。感光体2上に多量のトナーがあると、地汚れが発生し、感光体2に潤滑剤の塗布ムラが発生してしまう。そこで、円形度が0.96以上の球形トナーを用いることで、未転写トナーがほとんどなくなり、地汚れトナーがない状態となる。これにより、残留トナーを原因とした感光体2の潤滑剤のムラが発生しなくなる。
ところで、高画質化を実現するときは、トナーは特定の形状を有すことが重要であり、平均円形度が0.95未満で、球形からあまりに離れた不定形の形状では、満足した転写性やチリのない高画質画像が得られない。
ここで、トナーの円形度の測定方法と、トナーの粒径の測定方法について説明する。トナー円形度測定方法としては、粒子を含む懸濁液を平板上の撮像部検知帯に通過させ、CCDカメラで光学的に粒子画像を検知し、解析する光学的検知帯の手法が適当である。この手法で得られる投影面積の等しい相当円の周囲長を実在粒子の周囲長で除した値である平均円形度が0.95以上のトナーが適正な濃度の再現性のある高精細な画像を形成するのに有効である事が判明した。より好ましくは、平均円形度が0.960から0.998である。この値はフロー式粒子像分析装置FPIA−2000(東亜医用電子株式会社製)により平均円形度として計測できる。具体的な測定方法としては、容器中の予め不純固形物を除去した水100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加える。試料を分散した懸濁液は超音波分散器で約1〜3分間分散処理を行ない、分散液濃度を3000〜1万個/μlとして前記装置によりトナーの形状及び分布を測定することによって得られる。
次に、トナー粒径測定方法は、トナーの平均粒径及び粒度分布はコールターマルチサイザーIII(コールター社製)を用い、パーソナルコンピューター(IBM社製)を接続し専用解析ソフト(コールター社製)を用いてデータ解析した。Kd値は10μmの標準粒子を用いて設定し、アパーチャカレントはオートマティックの設定で行った。電解液は1級塩化ナトリウムを用いて1%NaCl水溶液を調製する。その他に、ISOTON−II(コールターサイエンティフィックジャパン社製)が使用できる。測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜5ml加え、更に測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行ない、100μmアパーチャーチューブを用いて、2μm以上のトナー5万カウント測定して重量平均粒径を求めた。
感光体2表面に凹凸があると、感光体2上の潤滑剤の均一性が低下する。そこで、感光体2にアモルファスシリコンを用いることで、感光体の平滑性が劇的に向上する。これにより、感光体2上に潤滑剤を均一に塗布することができる。
図9は、アモルファスシリコン感光体の層構成を説明するための模式的構成図である。図9(a)に示す電子写真用感光体500は、支持体501の上にa−Si:H、Xからなり光導電性を有する光導電層502が設けられている。図9(b)に示す電子写真用感光体500は、支持体501の上に、a−Si:H、Xからなり光導電性を有する光導電層502と、アモルファスシリコン系表面層503とから構成されている。図9(c)に示す電子写真用感光体500は、支持体501の上に、a−Si:H、Xからなり光導電性を有する光導電層502と、アモルファスシリコン系表面層503と、アモルファスシリコン系電荷注入阻止層504とから構成されている。図9(d)に示す電子写真用感光体500は、支持体501の上に、光導電層502が設けられている。該光導電層502はa−Si:H、Xからなる電荷発生層505ならびに電荷輸送層506とからなり、その上にアモルファスシリコン系表面層503が設けられている。
また、感光体2表面の平滑性を向上するために、感光体2は表層にフィラーを分散した有機感光体(OPC)を使用しても良い。
有機感光体(OPC)のみを用いた感光体では、クリーニングプロセスで摺擦し、残留トナーを回収するため、感光体はその表面が摩耗する。このとき、磨耗が急速に進行すると、感光体の表面は不均一に摩耗する場合が多い。これにより、感光体の表面に凹凸が発生し、像担持体上に潤滑剤を均一に塗布することができなくなる。
そこで、硬度に優れる表層にフィラーを分散し、表層を強化した有機感光体(OPC)を用いるので、経時において摩耗量が少ない為、像担持体表面に凹凸が生じにくく、潤滑剤を均一に塗布できるようになる。
また、感光体2表面の平滑性を向上するために、感光体2は表層にABS樹脂などの架橋型電荷輸送材料を使用しても良い。硬度に優れるABS樹脂を用いるので、経時において摩耗量が少ない為、像担持体表面に凹凸が生じにくく、潤滑剤を均一に塗布できるようになる。
図1ではタンデム型の画像形成部1を示したが、これに限るものではない。タンデム型の画像形成部の代わりに、リボルバ型を採用した複写機の画像形成部について図10を用いて説明する。
リボルバタイプのフルカラー画像形成部1は、現像装置5の動作を切り替えることによって1つの感光体2上に順次複数色のトナー像を現像していくのである。
そして、2次転写ローラ7と転写ローラ9との間で中間転写ローラ6上のカラートナー画像を記録紙Pに転写し、トナー画像の転写された記録紙Pを定着部(不図示)に搬送し、定着画像を得る。
一方、トナー画像を中間転写ベルト6に転写した感光体2をさらに回転して、クリーニング部13で感光体2表面に残留するトナーをブレードにより掻き落として除去した後、感光体除電装置8で除電する。感光体除電装置8で除電した感光体2を帯電装置である帯電ローラ3で一様に帯電させた後、上記同様に、次の画像形成を行う。なお、クリーニング部13は、ブレードで感光体2上の残留トナーを掻き落とすものに限るものではなく、例えばファーブラシで感光体2上の残留トナーを掻き落とすものであってもよい。
次に、図1及び図2の作像ユニット10をプロセスカ−トリッジとした構成の概略構成を図11に示す。図11において、20はプロセスカ−トリッジ全体を示し、2は感光体、3は帯電手段、5は現像装置、13はクリーニング手段、100は固形潤滑剤、150及び151は潤滑剤塗布ブラシを示す。
上述の感光体2、帯電装置3、現像装置5、クリ−ニング部13、固形潤滑材100、潤滑剤塗布ブラシ150、151等の構成要素のうち、複数のものをプロセスカ−トリッジとして一体に結合して構成する。そして、このプロセスカ−トリッジを複写機やプリンタ−等の画像形成装置本体に対して着脱可能に構成する。
潤滑剤塗布ブラシ等の潤滑剤塗布部材を感光体と別に設置すると、設置における位置ずれが生じやすい。そこで、このように少なくとも感光体2と潤滑剤塗布ブラシ150、151とを共に支持するプロセスカートリッジとすることで、感光体に対する潤滑剤供給手段の位置を固定することができる。これにより、潤滑剤を安定して感光体に塗布することができる。
次に、帯電装置の帯電方法別の課題について述べる。コロナ帯電については、電子写真プロセスは、感光体を一様に帯電させる帯電部など各部でコロナ放電を利用する場合が多いが、このコロナ放電により生成物が発生する。例えば、オゾン、窒素酸化物があげられる。オゾンは、高濃度で画像形成装置内に滞留すると、感光体表面を酸化し、感光体光感度の低下や帯電能の劣化を生じさせ、形成画像が悪化する(参考文献:明珍 寿史 他、"オゾンによる感光体劣化軽減のためのコロナチャージャの開発"、電子写真学会誌、第31巻、第1号、1992 など)。また、感光体以外の部材の劣化が促進され、部品寿命が低下する等の不具合もある。
画像流れ物質の原因は窒素酸化物と考えられているが、窒素酸化物は、次のよう不具合を生じる。放電により、窒素酸化物が発生することが知られているが、窒素酸化物は空気中の水分と反応して硝酸が、また金属などと反応して金属硝酸塩が生成される。さらに、放電領域中では、アンモニウムイオンも同時に形成されており、このアンモニウムイオンが窒素酸化物と反応し、化合物が生成される。これらの生成物は低湿環境下では高抵抗であるが、高湿環境下では空気中の水と反応し、低抵抗となる。よって、感光体表面に硝酸または硝酸塩による薄い膜が形成されると、画像が流れたような異常画像が発生する。これは硝酸、硝酸塩が吸湿することで低抵抗となり、感光体表面の静電潜像が壊れてしまうためである。
さらに、窒素酸化物は放電後も空気中に分解されずにその場に留まっているため、窒素酸化物から生成された化合物の感光体表面への付着は、帯電を行っていないとき、すなわち、プロセスの休止期間中にも生じる。そして、この化合物は、時間が経過するにつれて、感光体の表面から内部に浸透していく。このため、静電潜像の劣化の一因となっている。感光体表面の付着物は、クリーニング時に感光体を少しずつ削りとることで除去するといった方法が取られている。しかしながら、コスト上昇や経時による劣化問題が起こり、本質的な解決策とはなっていない。
ところで、接触ローラ帯電器については、帯電部材を感光体に接触させて感光体を帯電させる接触帯電装置が提案、実用化されている。例えば、ローラ状の帯電部材を感光体上に接触させ、従動させて感光体の帯電を行うものが知られている。この接触帯電方式は、従来用いられているコロナ帯電方式に比べて、放電生成物の発生量が極めて少ない、印加電圧が低いため電源のコストが小さくなる、電気絶縁の設計が行いやすい等の利点を有している。さらに、上記のオゾン、窒素酸化物などによる不具合も低減する。
接触型ローラ帯電器としては、例えば、特開昭63−7380号公報に開示されているように、ローラ状の帯電部材を感光体上に接触させ、従動させて感光体の帯電を行うものが知られている。
ところで、接触タイプの帯電装置では、帯電部材がゴム材であるため、長期間、コピー機を停止させた場合、感光体に接した状態にあるローラが変形する可能性がある。また、ゴムは吸水しやすい材料であるため環境の変化に伴う電気抵抗変動が大きい。
さらに、ゴムはその弾性を発揮させるためや劣化防止のため数種の可塑剤や活性剤を必要としており、導電性顔料を分散させるためには分散補助剤を用いることも少なくない。つまり、感光体の表面はポリカーボネートやアクリルといった非晶性樹脂であるため、上述の可塑剤や活性剤および分散補助剤に対し非常に弱い。
また、接触帯電方式では帯電部材と感光体との間に異物を巻き込み、帯電部材が汚染されて帯電不良が発生する、直接感光体にローラが触れているために長期保存した場合に感光体が汚染され、そのために横スジ等の画像不良を生じることがある。
また、帯電部材と像担持体が接触している場合、帯電ローラが感光体で接触している部分で感光体表面の潤滑剤が剥がれてしまう恐れがある。
上述のように、コロナ帯電および接触ローラ帯電は、それぞれ軽減することが困難な不具合が生じる。そこで、感光体との間に微小ギャップを設け近接配置させ、ギャップによって形成された近接空間で放電を起こす近接型のローラ帯電を行う。近接型のローラ帯電を行うことにより、コロナ帯電を行う場合と比べて、放電生成物の発生量が極めて少ない、印加電圧が低いため電源のコストが小さくなる、電気絶縁の設計が行いやすい等の利点を有している。さらに、上記のオゾン、窒素酸化物などによる不具合も低減する。そして、接触ローラ帯電のように、感光体に接触しないため、帯電ローラの変形や、感光体の汚染、そして、感光体表面の潤滑剤の剥離など、不具合の発生が生じる恐れがない。また、この場合、感光体と帯電ローラとの距離を保持するスペーサが感光体表面に接触するため、スペーサの接触する部分に潤滑剤を多く塗布するようにしたほうが良い。
ところで、印加バイアス方式には、DC電圧とAC重畳タイプがある。DC電圧を印加する方式は、微小ギャップ変動による帯電電位のばらつき、放電の安定性などの問題により、実用化の上で難しい。このため、AC重畳タイプが、非接触の場合には、適した方式だと考えられる。しかし、AC重畳方式も、DC電圧方式に比べ、微小ギャップ変動に対して帯電電位の安定性、放電の安定性に関して強いとはいえ、変動が大きくなりすぎると、安定性がなくなり、異常画像の原因となってしまう。
実施形態に適用した帯電ローラ3の構成について、発明者は、以下の実験を行い、好適な帯電ローラの構成を見出した。
[実験1]
実験1ではスペーサ部材の抵抗が低く、スペーサ部材が像担持体と近接する部分で放電が起きる場合の不具合について検証した。
スペーサ部材の抵抗値を下げるために、カーボン入りの熱収縮チューブをスペーサ部材に用いた帯電ローラを用意した。
このローラを、下記の条件で画像出力を行った。
(実験装置と条件)
マシン:IPSiO color 8000改造機(直接転写方式のフルカラープリンタ、帯電装置を改造)
帯電装置:図3、4の非接触で硬質タイプの帯電ローラ
ギャップ:50μm
スペーサ部材:図5の方法で、カーボン入りの熱収縮チューブ
帯電への印加バイアス:AC成分:Vpp=2.2kV、f=2kHz、
DC成分:−700V
上記の条件で、200,000枚の画像出力を行ったところで、図3中でのギャップHが50μm(初期)→40μm(ラン後)と減少した。
通紙出力後の帯電ローラのスペーサ部材表面を観察すると、像担持体が磨耗しており、粘着性をもっていた。
このことから、スペーサ部材の抵抗が低くスペーサ部材が像担持体と近接する部分で放電が起きる場合は、放電により像担持体がスパッタされ、像担持体が磨耗し、ギャップが減少したと考える。よって、スペーサ部材は高抵抗、すなわち絶縁性の部材を用いなければならないことが分かる。このときの、スペーサ部材の体積抵抗率としては、1012Ω・cm以上である。
[実験2]
実験2ではローラと像担持体間の微小ギャップと異常画像(斑点状のムラ)の関係を検証した。
帯電ローラと像担持体間の微小ギャップが変動したときの、斑点状の異常画像の発生頻度を調べるために以下の実験を行った。実験は、通常の環境下で行った。
(実験装置と条件)
コピー機:IPSiO color 8000改造機(直接転写方式のフルカラープリンタ、帯電装置を改造)
帯電装置:図3、4の非接触で硬質タイプの帯電ローラ
帯電への印加バイアス:AC成分:Vpp=2.2kV、f=2kHz、
DC成分:−700V
微小ギャップ保持方法:帯電ローラの両端に、ポリエチレンテレフタレート(PET)のテープを巻きつけた。(厚さ:30、50、80、100、120、150μm)。
環境条件:25℃、65%
出力画像:ハーフトーン画像
このときの画像の出力結果を、表1にまとめる。
Figure 0004621434
この結果より、帯電ローラと像担持体の間のギャップが120μm以上になると、斑点状のムラが出力画像に現われることがわかった。よって、正常な画像を出力する、つまり帯電部において均一帯電を行うためには、ギャップを100μm以下にする必要があることがわかる。
[実験3]
実験3ではDC帯電、AC帯電の帯電電位特性のギャップ依存性について、検証した。
帯電ローラと像担持体間の微小ギャップが変動したときの、帯電ローラの印加電圧と感光体の帯電電位との関係を調べるために以下の実験を行った。実験は、通常の環境下で行った。
(実験装置と条件)
コピー機:IPSiO color 8000改造機(直接転写方式のフルカラープリンタ、帯電装置を改造)
帯電装置:図3、4の非接触で硬質タイプの帯電ローラ
微小ギャップ保持方法:帯電ローラの両端に、ポリエチレンテレフタレート(PET)のテープを巻きつけた。(厚さ:0、0.03、0.05、0.08mm)。
環境条件:25℃、65%
出力画像:ハーフトーン画像
ギャップをパラメータとして、DC帯電を行ったときの、印加電圧Vdcと帯電電位の関係を図12に示す。
図12より、ギャップを大きくすると、グラフの傾きはそのままで、プロットが右にシフトしていることがわかる。帯電開始電圧Vth(1501)は、ギャップに依存しており、ギャップが広がると放電開始電圧が高くなるのである。つまり、ギャップが広くなると、印加電圧を高くしないと帯電電位を同一に保てないのである。これより、帯電ローラが非接触の場合、機械からの振動や環境の変化で帯電ローラと像担持体のギャップが変動する可能性があるが、図12に示すようにギャップが変動すると放電開始電圧が変化する。よって、DC帯電を行った場合は、印加バイアスを調整しないと帯電電位が変化してしまうのである。
次に、AC帯電を行ったときの、Vppと帯電電位の関係を図13に示す。図13より、Vppが放電開始電圧Vthの2倍(1601)までは、帯電電位はVppに比例している。VppがVthの2倍以上になると、帯電電位は一定なる。また、ギャップが変動すると、VppがVthの2倍以下では、Vppと帯電電位の関係のプロットが変化する。しかし、VppがVthの2倍以上になると、ギャップに関係なく、帯電電位はある一定値になる。つまり、AC帯電の場合は、VppをVthの2倍以上にすることで、ギャップが変動しても帯電電位を一定に保つことができるのである。
電ローラと像担持体にギャップがある場合は、AC帯電を行った方が安定した帯電を得ることができるのである。
ところで、ギャップと帯電電位の関係は、パッシェンの法則によって説明することができる。特に、ギャップがある範囲のときは、放電開始電圧Vth(V)とギャップd(μm)は、下記の経験式(1)によってあらわされる。
Vth = 6.2×d+312 40≦d≦120(μm)・・・(1)
上記式(1)より、ギャップが変動することにより放電開始電圧が変動する。式から変動幅は、ギャップdが1μm変動することにより、放電開始電圧Vthが6.2V変化することがわかる。
さらに、帯電電位Vは、印加電圧V0をとすると
V=V0−Vth・・・(2)
とあらわされる。式(1)(2)より、ギャップが変動すると帯電電位が変動し、その変動幅は、6.2V/μmであることがわかる。
[実験4]
実験4では帯電-ローラにゴムローラ(硬度が低いローラ、JISA70〜80)を用いた場合の不具合について検証した。労働環境を考慮するとオフィスにおいては最も吸湿が促進する使用環境限界は、おおよそ30℃、80%程度と考えられる。同様にオフィスで想定される低湿度環境限界は、高温の30℃程度においては20%程度と考えられる。本発明はこのような環境条件内で経時品質に優れる帯電装置を提供するように考えられている。
吸湿の影響の小さい30℃、20%条件下において図3のように微小ギャップが形成されている時、従来のゴム帯電ローラを使用すると吸湿により図14(a)のように中抵抗層の吸湿膨張によりギャップ部材が延伸できない為に帯電部材と像担持体が当接してしまう場合がある。また装置の気流設計によって吸湿部位が中央に集中したような場合を考えると図14(b)のようにその部分で当接が発生してしまう。(a)のような当接発生はギャップ部材の延伸性を付与することにより軽減できるが、(b)のような当接が万一発生した場合には前述の方法では軽減できない。
ここで、ゴムローラとハードローラを用いた場合の、環境とギャップの関係を表2に示す。
Figure 0004621434
表2より、帯電ローラが硬質の材料からなる場合は、環境を変化させてもギャップが変化しないが、ゴムローラの場合は、硬質環境の下でギャップが非常に狭くなってしまうことが分かる。ギャップが狭くなると言うことは、接触している可能性も考えられるため、帯電ローラのトナー汚れが発生してしまう可能性がある。よって、帯電均一性を維持するためにも、帯電ローラは、ギャップ維持が確実となるハードタイプのものを用いるのがよい。また、帯電ローラのトナー汚れを避けるという点では、転写効率の高い球形トナーを用いることも有効である。
以上、実施形態によれば、潤滑剤摺擦部材であり、潤滑剤潤滑剤塗布部材である2つの潤滑剤塗布ブラシ150、151上で、第一潤滑剤塗布ブラシ150から第二潤滑剤塗布ブラシ151へ潤滑剤受け渡す際に、第一潤滑剤塗布ブラシ150と、第二潤滑剤塗布ブラシ151との当接部で、潤滑剤が摺擦される。潤滑剤は摺擦されることにより微粉化がなされる。これにより、第2潤滑剤塗布ブラシ151から感光体2に塗布がなされる潤滑剤は、微粉体の状態で塗布される。感光体2上に微粉体の状態で塗布されることにより、潤滑剤は感光体2上で層状構造となり、潤滑性を発揮することが出来る。さらに、潤滑剤が潤滑性を発揮するとクリーニングブレード13bがそのクリーニング性能を発揮することが出来る。
また、不図示のソレノイド機構を固形潤滑剤100に設け、固形潤滑剤100を潤滑剤塗布ブラシ150に対して接離可能とすることにより、感光体2への潤滑剤の塗布量を変えることが出来る。そして、接離機構を制御して、潤滑剤塗布ブラシ150から感光体2への塗布状態を連続動作から、間欠動作まで制御することにより、感光体2への潤滑剤の塗布量を制御することが出来る。
また、感光体2の帯電手段として近接帯電型の帯電ローラ3を用いることにより、チャージャ型よりも消費電力を削減でき、接触型のような感光体を汚染することもない。そして、帯電ローラ3と感光体2との近接空間で放電を起こし、感光体2を帯電させる方式を用いる場合、感光体2表面の劣化が進行しやすいため、均一に塗布がなされた潤滑剤は感光体2の保護物質としての効果も大きい。
また、体積抵抗率が1.0×10〜1.0×1015Ω・cmである潤滑剤を使用することにより、感光体2上での像流れや、潤滑剤の凝集を防止することが出来る。
また、円形度が0.96以上のトナーを用いることにより、未定着トナーが感光体2上に残留することがほとんどなくなるため、地汚れがない状態となり、感光体2上での潤滑剤の塗布ムラの発生を防ぐことが出来る。
また、潤滑剤供給手段である潤滑剤塗布ブラシ150、151を少なくとも感光体2と共に、支持してプロセスカートリッジとすることにより、感光体と潤滑剤塗布ブラシとの位置ずれによる潤滑剤塗布不良を防止することが出来る。
実施変形例]
次に、図8のように複数の潤滑剤塗布ブラシを設け、ブラシからブラシへ潤滑剤を受け渡す構成の代わりに、複数の潤滑剤塗布ブラシ全てが、感光体2に当接し、かつ潤滑剤塗布ブラシ同士も当接する構成である実施変形例について説明する。
図15は実施変形例の模式図である。図15に示すように互いに当接する潤滑剤塗布ブラシ152、153が感光体2と固形潤滑剤100との両方に当接させる構成である。図のように、潤滑剤塗布ブラシ152、153の回転方向は、固形潤滑剤100から潤滑剤の供給を受ける箇所から潤滑剤塗布ブラシの回転方向下流側で他の潤滑剤塗布ブラシと当接するように回転する。このように回転を行うことにより、固形潤滑剤100から潤滑剤塗布ブラシ152、153に供給され、潤滑剤塗布ブラシに付着した潤滑剤は確実に2つの潤滑剤塗布ブラシの当接部を通過することになる。この潤滑剤塗布ブラシの当接部を通過する際に、潤滑剤塗布ブラシに付着している潤滑剤に剪断力が加わり、その粉体の粒径が小さくなり、粒径が小さい状態で、感光体に塗布される。実施変形例の潤滑剤塗布ブラシ152、153は、実施形態の潤滑剤塗布ブラシ150、151と同様に、潤滑剤塗布部材と潤滑剤摺擦部材との両方の役割を兼ねている。
参考変形例1
次に、潤滑剤塗布部材である潤滑剤塗布ブラシに、潤滑剤摺擦部材である摺擦を設けた構成である参考変形例1について説明する。
図16は参考変形例1の模式図である。図16に示すように、潤滑剤塗布ブラシ154が固形潤滑剤100から感光体2まで潤滑剤を担持搬送する領域に、摺擦板としてのフリッカー155を潤滑剤塗布ブラシ154に当接して設けた構成である。
固形潤滑剤100から潤滑剤塗布ブラシ154に付着した潤滑剤は、潤滑剤塗布ブラシ154が回転する際に、潤滑剤塗布ブラシ154とフリッカー155とが接触して、潤滑剤塗布ブラシに付着する潤滑剤に剪断力がかかる。その結果、潤滑剤は微粉体となり、粒径が小さい状態で、感光体に塗布される。
フリッカー155の材料としては、部材の重量が軽いほうが望ましく、加工の容易性などを考えるとPETやアクリルなど樹脂を材料とすることが適している。
参考変形例2
次に、潤滑剤塗布部材である潤滑剤塗布ブラシに、潤滑剤加熱部材を設けた構成である参考変形例2について説明する。
図17は参考変形例2の模式図である。図17に示すように、潤滑剤塗布ブラシ156の内部に加熱部材としてのヒータ157を設けている。ヒータ157の熱が潤滑剤塗布ブラシ介して、潤滑剤塗布ブラシ156に付着している潤滑剤に伝わる。その結果、常温で使用するよりも、潤滑剤の粉体が割れやすく、微粉体化しやすくなり、感光体に粒径が小さい状態で、塗布することができると思われる。ただし、このときヒータ157の温度は、潤滑剤の融点よりも低くなければならない。何故なら、ヒータの温度が潤滑剤の融点よりも高いと、潤滑剤が潤滑剤塗布ブラシ156上で融解してしまい、潤滑剤塗布ブラシ156に固着してしまう可能性があるためである。
図17では、ヒータ157を潤滑剤塗布ブラシ156の内部に設けたが、ヒータの配置としては、このような構成に限るものではなく、潤滑剤塗布ブラシ156の外部から潤滑剤塗布ブラシ156上の潤滑剤を加熱する位置に設けてもよい。
また、潤滑剤塗布部材上で、潤滑剤の微粉化を行う構成として、上述の図8、図15、図16及び17で示した構成を組み合わせた構成を採用しても良い。
参考形態1
次に、潤滑剤収容部に、潤滑剤粒径規制手段を設けた参考形態1について説明する。潤滑剤微粉化手段を設ける箇所以外の点については、実施形態と共通しているので、共通する点についての説明は省略する。
図18は、参考形態1に係る複写機の作像ユニット10の概略構成図である。作ユニットの構成についても実施形態の図2を用いて説明した作像ユニット10と共通する点についての説明は省略する。異なる点としては、潤滑剤収容部に、潤滑剤粒径規制手段として、外力よりも弱い結合力で互いに結合した、一つの結合単位が1μm以下であるバー状の粉体固形潤滑剤110を設けているところである。そして、この粉体固形潤滑剤110を塗布供給部材である潤滑剤塗布ブラシ160によって削り、感光体2の表面上に塗布する構成である。粉体固形潤滑剤110は、潤滑剤塗布ブラシ160の剪断力により削られ、粉体になる。この時、粉体固形潤滑剤110は容易に結合単位が1μm以下の微粉体となる構造の固形潤滑剤であるので、削りだされた粉体は、1μm以下の微粉体となる。このような粉体固形潤滑剤110を用いることにより、潤滑剤塗布ブラシ160で削られ、潤滑剤の粒径が小さい状態となり、感光体2上で潤滑性を発揮する。削りだされる粉体の粒径が1μm以下となる粉体固形潤滑剤は、潤滑剤を一度溶融して、冷却速度を制御(例えば、急速に冷却する)しながら固形化することで、形成できると思われる。また、潤滑剤のバーをローラ状に形成し、回転させながら使用してもよい。
ところで、図18では、潤滑剤供給手段である潤滑剤塗布ブラシ160をクリーニングブレード13bの感光体回転方向上流側に設置していたが、限るものではない。
例えば、図25のように、潤滑剤塗布ブラシ160による潤滑剤の塗布をクリーニングブレード13bの下流で行ってもよい。
また、クリーニングは、クリーニングブラシ13aだけ、クリーニングブレード13bだけという構成としても良い。
また、図26に示すように、潤滑剤塗布ブラシ160で潤滑剤を塗布し、その後潤滑剤を均一に均すブレード161を設けても良い。
以上、参考形態1によれば、潤滑剤収容部に潤滑剤粒径規制手段手段として、粉体固形潤滑剤110を用いることにより、感光体2上に適当な粒径にした潤滑剤を塗布することができる。これにより、感光体2の潤滑作用を維持しながら、クリーニング部材のクリーニング性を発揮させることができる。また、潤滑剤は潤滑剤塗布ブラシ160で削られるまでは固形状であるので、微粉体が複写機内で舞うことを防止でき、潤滑剤のハンドリングを向上することができる。
参考変形例3
次に、潤滑剤収容部に微粉体状の潤滑剤を入れた潤滑剤収容器を設け、潤滑剤粒径規制手段として、潤滑剤収容器から潤滑剤供給手段に潤滑剤を供給する供給口に、目の細かいメッシュを設けた構成である参考変形例3について説明する。
図19は参考変形例3の模式図である。図19の111は、潤滑剤供給手段である潤滑剤塗布ブラシ160に供給する潤滑剤を収容する潤滑剤収容器であり、潤滑剤塗布ブラシ160に潤滑剤を供給する供給口に目の細かいメッシュを設ける。メッシュの目の大きさは、収容した微粉体状の潤滑剤の粒径により異なるが、参考変形例3においては、潤滑剤の粒径を1μm以下するために、メッシュの目の大きさは2〜3μmが適当であると思われる。微粉体状の潤滑剤の粒径をより細かくすることが出来れば、それに合わせて、メッシュの目の大きさも細かくする。このように、供給口にメッシュを設けた潤滑剤収容器111を用いることで、メッシュにより、粒径が小さい潤滑剤のみが、潤滑剤塗布ブラシ160に供給され、感光体2へ供給される。これより、潤滑剤は感光体2上で潤滑性を発揮することができ、クリーニングブレード13bはクリーニング性を発揮することができる。
参考変形例4
次に、潤滑剤収容部に潤滑剤粒径規制手段として、潤滑剤を保持する多孔性スポンジを設けた構成である参考変形例4について説明する。
図20は、参考変形例4の模式図である。図20の112は、潤滑剤を染み込ませた多孔性の潤滑剤保持スポンジである。潤滑剤をスポンジに染み込ます方法としては、潤滑剤を溶融した状態で、スポンジ部材に染み込ませ、これを冷まして潤滑剤をスポンジに染み込ませる。または、微粉体状の潤滑剤の中にスポンジをいれて押圧することで、スポンジの孔に潤滑剤を染み込ませ、保持させるようにしても良い。
潤滑剤をスポンジに染み込ませることにより、粒径の大きな潤滑剤は、スポンジ内部で引っ掛かり、潤滑剤供給ブラシ160に供給されにくくなると思われる。
図20では、潤滑剤保持スポンジ112を箱型に描いているが、この形に限るものではなく、潤滑剤保持スポンジをローラ状に形成し、回転させながら使用してもよい。
参考変形例5
次に、潤滑剤収容部に潤滑剤を保持するその表面に微小な凹凸を多数備えたブラシ繊維を有するブラシ113を設けた構成である参考変形例5について説明する。
図21は、参考変形例5の模式図である。図21の113は、その表面に微小な凹凸を多数備えたブラシ繊維を有するブラシ部材に潤滑剤を染み込ませた潤滑剤保持ブラシである。潤滑剤をブラシ部材に染み込ます方法としては、潤滑剤を溶融した状態で、ブラシ部材に染み込ませ、これを冷まして潤滑剤をブラシに染み込ませた状態にする。または、微粉体状の潤滑剤の中にブラシ部材をいれて押圧することで、ブラシ繊維の表面上の微小な凹凸に潤滑剤を染み込ませ、保持させるようにしても良い。
表面に微小な凹凸を備えたブラシ繊維としては、多孔質状のゼオライトやナノメートルオーダーの微小な繊維が縒って一本のブラシ繊維を形成するカーボン繊維等が考えられる。
潤滑剤を微小な凹凸を備えたブラシに染み込ませることにより、微小な凹凸で保持できる程度の粒径の小さい潤滑剤のみがブラシに保持されることになり、粒径が小さい潤滑剤のみが潤滑剤供給ブラシ160に供給されるようになると思われる。
また、潤滑剤保持ブラシ113をローラ状に形成し、回転させながら使用してもよい。
参考変形例6
次に、潤滑剤収容部に、潤滑剤がある周りの空間を低湿度にするために、低湿度維持手段を設けた構成である参考変形例6について説明する。
図22は、参考変形例6の模式図である。潤滑剤の周りを密閉容器600で密閉し、低湿度維持手段として、除湿のためにシリカゲル700を配置している。
潤滑剤収容部に水分があると、微粉体状の潤滑剤が凝集してしまう。また、水分があると潤滑剤を塗布部材で掻とるとき、微粉体状にならず粒径が大きい状態で塗布部材に転移してしまう。
そこで、潤滑剤収容部に低湿度維持手段であるシリカゲル700を設けることにより、微粉体が水分で凝縮せずに、潤滑剤供給手段である潤滑剤塗布ブラシ160で掻き取るときに、微粉状にすることができる。
よって、感光体2上に適当な粒径にした潤滑剤を塗布することができ、感光体2の潤滑作用を維持しながら、クリーニング部材であるクリーニングブレード13bのクリーニング性を発揮させることができる。
また、低湿度維持手段としては、シリカゲルなどの除湿剤を設置するものに限らず、図23のように、加熱手段であるヒータ701を設けても良い。ヒータを用いるときは、潤滑剤の溶融温度以下で使用するようにする。
参考変形例7
次に、潤滑剤収容部に、潤滑剤が凝集しないように振動させる収容部振動部材を設けた構成である参考変形例7について説明する。
図24は参考変形例7の概略構成図である。ここで微粉体状の潤滑剤を収容する潤滑剤収容器115に振動部材703を設けている。振動部材としては、バイブ用モータやピアゾ素子などが上げられる。
潤滑剤を微粉体状で収容していると、経時で凝集してしまう。そこで、潤滑剤収容器115に振動部材703を設け、潤滑剤を振動させることにより、潤滑剤がほぐれて凝集が生じることを防止することができる。
また、参考変形例7において、運転中に常に振動部材を動作させる必要もなく、振動の時間を任意に制御して、潤滑剤の供給量を制御してもよい。例えば、ドラム回転時間の1/10の時間だけ動作させる、スイッチをONしたときだけ動作させる、200枚プリントしたときにドラムが一周回転する時間だけ動作させる、などである。
これは、微粉体を振動させ続けると、粉体が舞い上がってしまい、機内を汚してしまう恐れがある。そこで、微粉体状の潤滑剤が凝集しない程度で、潤滑剤に振動を与える。これにより、微粉体状の潤滑剤で機内を汚すことなく、潤滑剤の凝集を防ぐことができる。
参考形態2
次に、潤滑剤供給手段の像担持体表面移動方向下流側の像担持体表面に対抗して、潤滑剤微粉化手段を配置した参考形態2について説明する。潤滑剤微粉化手段を設ける箇所以外の点については、実施形態と共通しているので、共通する点についての説明は省略する。
図27は、参考形態2に係る複写機の作像ユニット10の概略構成図である。図27における潤滑剤微粉化手段は、ブレード形状の潤滑剤微粉化ブレード800を用いており、像担持体に対してカウンタ方向(ブレードと像担持体の成す角度が像担持体の回転方向下流側に広がる様)に当てている。この様に当てることで、潤滑剤の粒子のうち、所定の粒径よりも大きな粒子(以下、粗粉と呼ぶ)を堰き止め、下流側に行かない様にする。
但し、所定の粒径よりも小さい粒子である微粉は堰き止めることができない。堰き止められた粗粉や微粉がブレードを通過する際に潤滑剤が像担持体上に均一な膜となって供給される。この時、ブレードを通過した潤滑剤の粒径は1μm以下となることが望ましい。また、粗粉を堰き止める点で、ブレードをカウンタ方向に当てる方式は優れている。
粒径が大きい潤滑剤粉体は感光体上で潤滑性を十分に発揮せず、像担持体のクリーニング部材によるクリーニング性を低下させてしまう。そこで、潤滑剤を適当な粒径で感光体上に担持する。また、微紛体で供給後、像担持体表面に均一に均すことで、近接型の帯電手段による感光体の劣化などの不具合を防止する。
また、潤滑剤微粉化ブレード800は、クリーニングブレード13bと同様の材質を用いて良い。即ち、材質として、ポリウレタンゴム、シリコーンゴム、ニトリルゴム、クロロプレンゴム等の公知の材料で良い。また、その反発弾性率は、20〜80%、厚さは1〜6mm、像担持体に対する当接角度は、15〜45°程度が良い。
また、潤滑剤微粉化ブレード800の位置は、図のように潤滑剤供給手段である潤滑剤塗布ブラシ160の下流側で除電装置8の上流側が好適であるが、除電装置8がクリーニングブレード13bの下流で、潤滑剤塗布ブラシ160の上流にあっても構わない。
また、潤滑剤供給手段である潤滑剤塗布ブラシ160及び潤滑剤微粉化ブレード800はともに、帯電装置8の上流側に配置すると、近接帯電による感光体2の劣化等の不具合を防止或いは減少させるためには望ましい。しかし、潤滑剤微粉化手段である潤滑剤微粉化ブレード800のみ帯電装置8の下流側に配置してよい。この時、潤滑剤微粉化ブレード800を帯電装置8の上流側に設けたものと比して、近接帯電による不具合を防止するという点では、劣るところがある。
図27では、潤滑剤微粉化ブレード800を感光体2の回転方向に対して、カウンタ方向に当てているが、トレーリング方向(ブレードと像担持体の成す角度が像担持体の回転方向下流側に狭まる様)に当ててもよい。
図28はブレードを像担持体に対してトレーリング方向に当てた構成の概略構成図である。この様に潤滑剤微粉化ブレードをトレーリング方向に当てることで、潤滑剤が像担持体上にカウンタ方向と比較して、潤滑剤の膜の形成がより容易となる。ここで、ブレードの材質や厚さ等は、上記カウンタ方式のブレードと同程度のものが使用可能である。
以上、参考形態2によれば、潤滑剤微粉化ブレード800を設けたことにより、感光体2に塗布された粗粉体を堰きとめ、ブレードより下流側の潤滑剤の粒径を所定の粒径以下とすることが出来る。潤滑剤の直径を所定の粒径以下とすることに、潤滑剤は感光体2上で潤滑性を発揮し、また、クリーニングブレード13bのクリーニング性の向上も図ることが出来る。
参考変形例8
次に、図27の潤滑剤微粉化ブレード800の代わりに、ブラシを用いた構成の参考変形例8について説明する。
図29は、参考変形例8の概略構成図である。図27と異なる点は、潤滑剤微粉化手段として、潤滑剤微粉化ブラシ801を設けた点である。
この参考変形例8では潤滑剤微粉化ブラシ801が回転することにより、感光体2表面上の潤滑剤の粗を摺擦し、微粉化する。潤滑剤微粉化ブラシ801の回転方向は、潤滑剤の粗粉を除去する為には、像担持体の回転方向と同じく時計回りが好適だが、像担持体の回転方向と反対方向即ち反時計回りに回転しても良い。反時計回りに回転させる場合は、像担持体表面の速度に対し、ブラシの毛先の速度を変えた方が良く、像担持体表面の速度をV1とすると、ブラシの毛先の速度V2を下記式の範囲にするのが好適である。
0.5×V1≦V2≦5.0×V1 (但し、V1≠V2)・・・(3)
時計回りに回転させる場合も上記式(3)の範囲で特に問題は無い。
また、ブラシの密度としては、2000本/cm以上10000本/cm以下が好適であり、更には、3000本/cm以上8000本/cmがより好適である。上記範囲の下限は、実験にて感光体2に異常画像が出なかった結果を元に決めた値である。そして、上記範囲の上限は、製造上の限界を示しているにすぎないが、今後製造技術が上がり、これ以上の密度も可能となりうる。従って、上限は特に限定されるものではない。加えて、ブラシの帯電極性は、感光体2よりマイナス極性であることが望ましい。この理由は、感光体2がマイナス帯電であり、潤滑剤もマイナスに帯電し易いため、ブラシの帯電極性をプラスにすると、潤滑剤がブラシに引付けられるからである。即ち、感光体2に供給したいにも関らず、ブラシに付着したまま、感光体2に供給出来なくなったり、供給量が減少したりすることを防止する為である。
参考変形例9
次に、潤滑剤微粉化手段として、ローラ形状の潤滑剤微粉化ローラ802を設けた参考変形例9について説明する。
図30は参考変形例9の概略構成図である。この参考変形例9では潤滑剤微粉化ローラ802が回転することにより、感光体2表面上の潤滑剤の粗粉を摺擦し、微粉化する。ローラの材質としては、芯金にはステンレスや軟鋼等の金属及び強化プラスチック等が、また、前記芯金の外側のゴム材料としては、ポリウレタンゴム、シリコーンゴム、ニトリルゴム、クロロプレンゴム等の公知の材料で良い。更に、前記ゴム材料の表層に、トナーや潤滑剤が付着し難い被覆層を設けても良い。このローラの材質として求められる特徴は、内部からの分泌物(オイル)が染み出さないことは勿論、変質が少なく、トナーや潤滑剤が付着し難いことが条件である。
また、前記ローラの回転方向は、像担持体と異なる方向に回転する方が好ましいが、同じ方向(時計回り)に回転しても良い。ローラ表面の速度は式(3)の範囲で良い。
参考変形例10
次に、潤滑剤微粉化手段として、ベルト形状の潤滑剤微粉化ベルト803を設けた参考変形例10について説明する。
図31、図32は参考変形例10の概略構成図である。この参考変形例10では潤滑剤微粉化ベルト803が回転することにより、感光体2表面上の潤滑剤の粗粉を摺擦し、微粉化する。
図31は2つのローラに巻き掛けられた無端ベルトの一方のローラ側を感光体2に接触させる構造である。そして、図32は、感光体2と接触する面積を広く取るために、3本のローラに無端ベルトを回転支持し、その内の2本のローラを感光体2に接触させる構造を採っている。このような構造を採ることで、図31の構造よりも潤滑剤の粗粉をより少なくし、潤滑剤の感光体2への供給を加速している。
ベルトの回転方向は、像担持体表面の移動方向に沿って、前記無端ベルトの表面が動くような構成でも良いし、像担持体表面の移動方向に逆らって前記無端ベルトの表面が動くような構成でも構わない。ベルト表面の移動速度は、式(3)に示した範囲で良い。加えて、ベルトの構成は、少なくとも基層と弾性層と表面層の3層を有していることが好ましいが、この構成に限定するわけではない。たとえば、基層と表面層の2層構成で、支持ローラ側に弾性層を持たせても良い。
ベルトの駆動は、像担持体から離れたローラから取るのが良いが、それ以外の感光体2に接触したローラから取っても構わない。
上述の参考変形例810のように、回転体を用いて感光体2上の潤滑剤を微粉化する構成においては、回転体の表面速度を変化させることにより、微粉体の粒径を調節することが出来る。例えば、回転体の表面速度を速くすると、潤滑剤は摺擦される機会が増えるため、より小さな微粉体とすることが出来る。
ところで、実施形態、実施変形例参考形態1参考形態2及びそれぞれの参考変形例は、微粉化手段の設置位置が異なるため、一つの複写機に対して、複数の実施形態変形例、参考形態または参考変形例を適用しても良い。
実施形態に係る画像形成装置の画像形成部の概略構成図。 実施形態に係る作像ユニットの概略構成図。 帯電ローラの概略図。 帯電ローラと感光体との微小ギャップの説明図。 帯電ローラのスペーサ装着方法の説明図。 帯電ローラのスペーサ装着方法の説明図。 帯電ローラのスペーサ装着方法の説明図。 実施形態に係る潤滑剤供給手段の模式図。 アモルファスシリコン感光体の層構成の説明図。 リボルバ型を採用した複写機の画像形成部の概略構成図。 実施形態に係るプロセスカートリッジの模式図。 DC帯電時の印加電圧と帯電電位との関係図。 AC帯電時の印加電圧と帯電電位との関係図。 ゴムローラからなる帯電ローラの吸湿膨張の様子を説明する概略構成図 実施変形例に係る潤滑剤供給手段の模式図。 参考変形例1に係る潤滑剤供給手段の模式図。 参考変形例2に係る潤滑剤供給手段の模式図。 参考形態1に係る作像ユニットの概略構成図。 参考変形例3に係る作像ユニットの模式図。 参考変形例4に係る作像ユニットの模式図。 参考変形例5に係る作像ユニットの模式図。 参考変形例6に係る作像ユニットの模式図。 参考変形例6に係る作像ユニットの模式図。 参考変形例7に係る作像ユニットの模式図。 参考形態1に係る作像ユニットの一つ目の配置例図。 参考形態1に係る作像ユニットの2つ目の配置例図。 参考形態2に係る作像ユニットの概略構成図。 参考形態2に係る作像ユニットの二つ目の概略構成図。 参考変形例8に係る作像ユニットの概略構成図。 参考変形例9に係る作像ユニットの概略構成図。 参考変形例10に係る作像ユニットの概略構成図。 参考変形例10に係る作像ユニットの二つ目の概略構成図。
符号の説明
2 感光体
3 帯電装置
4 露光装置
5 現像装置
6 中間転写ベルト
7 2次転写ローラ
8 除電装置
9 一次転写ローラ
10 作像ユニット
13 クリーニング装置
13a クリーニングブラシ
13b クリーニングブレード
100 固形潤滑剤
110 粉体固形潤滑剤
111 潤滑剤収容器
112 潤滑剤保持スポンジ
113 潤滑剤保持ブラシ
150 第一潤滑剤塗布ブラシ
151 第二潤滑剤塗布ブラシ
152 下流側潤滑剤塗布ブラシ
153 上流側潤滑剤塗布ブラシ
154 フリッカー付き潤滑剤塗布ブラシ
155 フリッカー
156 ヒータ付き潤滑剤塗布ブラシ
157 ヒータ
160 潤滑剤塗布ブラシ
201 導電性基体
202 抵抗層
203 薄層
302 スペーサ
303 スプリング
500 電子写真用感光体
501 支持体
502 光導電層
503 アモルファスシリコン系表面層
504 アモルファスシリコン系電荷注入阻止層
505 電荷発生層
506 電荷輸送層
600 密閉容器
700 シリカゲル
701 低湿度保持ヒータ
703 振動部材

Claims (12)

  1. 静電潜像を担持する像担持体と、
    該像担持体表面を帯電させる帯電装置と、
    現像剤を現像剤担持体に担持し該像担持体に対向する現像領域に搬送して該像担持体上の潜像を現像してトナー像化する現像装置と、
    現像後のトナー像を転写材に転写した後に該像担持体上に残留する転写残トナーを除去するクリーニング手段と、
    トナー像を転写材に転写した後、帯電装置により帯電される前の該像担持体表面上に、潤滑剤を収容する潤滑剤収容部から該潤滑剤を供給する潤滑剤供給手段とを有する画像形成装置において、
    該潤滑剤供給手段が回転することにより該潤滑剤を担持・搬送す複数の潤滑剤供給ブラシであり、
    複数の該潤滑剤供給ブラシのうちの少なくとも一つが該潤滑剤収容部から該潤滑剤を供給され、
    該潤滑剤収容部から該潤滑剤供給ブラシに供給された該潤滑剤を複数の該潤滑剤供給ブラシ同士が擦れ合う箇所を通過させた後に該像担持体表面上に供給することを特徴とする画像形成装置。
  2. 請求項1の画像形成装置において、
    上記該潤滑剤収容部から上記潤滑剤供給ブラシに供給された上記潤滑剤を、二つ以上の上記潤滑剤供給ブラシを経由させて上記像担持体表面上に供給することを特徴とする画像形成装置。
  3. 請求項1の画像形成装置において、
    複数の上記潤滑剤供給ブラシが上記像担持体表面に当接し、上記潤滑剤収容部から供給された上記潤滑剤を該像担持体表面に塗布することを特徴とする画像形成装置。
  4. 請求項1乃至3の何れか一項に記載の画像形成装置において、
    上記潤滑剤供給ブラシに対して上記潤滑剤収容部を接離可能としたことを特徴とする画像形成装置。
  5. 請求項1乃至4の何れか一項に記載の画像形成装置において、
    上記潤滑剤供給ブラシが担持する上記潤滑剤を加熱する潤滑剤加熱部材を設けたことを特徴とする画像形成装置。
  6. 請求項1乃至5の何れか一項に記載の画像形成装置において、
    上記潤滑剤収容部に固形潤滑材を配置し、
    複数の上記潤滑剤供給ブラシのうちの少なくとも一つが該固形潤滑剤と当接して回転して該固形潤滑剤の一部分を削ぎ取ることによって、該潤滑剤収容部から該潤滑剤供給ブラシに上記潤滑剤が供給されることを特徴とする画像形成装置。
  7. 請求項1乃至5の何れか一項に記載の画像形成装置において、
    微粉体状の該潤滑剤のみを上記潤滑剤供給ブラシに供給する潤滑剤粒径規制手段を上記潤滑剤収容部に設けたことを特徴とする画像形成装置
  8. 請求項1乃至7の何れか一項に記載の画像形成装置において、
    上記潤滑剤を微粉体にする潤滑剤微粉化手段を、上記潤滑剤供給ブラシの上記像担持体表面移動方向下流側の該像担持体表面に対抗して配置したことを特徴とする画像形成装置
  9. 請求項1乃至8の何れか一項に記載の画像形成装置において、
    上記帯電装置が上記像担持体に対して接触また近接する帯電ローラを用いた帯電装置であることを特徴とする画像形成装置。
  10. 請求項1乃至9の何れか一項に記載の画像形成装置において、
    上記潤滑剤の体積抵抗率が1.0×10〜1.0×1015Ω・cmであることを特徴とする画像形成装置。
  11. 請求項1乃至10の何れか一項に記載の画像形成装置において、
    上記トナー像を形成するトナーの円形度が0.96以上であることを特徴とする画像形成装置。
  12. 請求項1乃至11の何れか一項に記載の画像形成装置において、
    上記潤滑剤供給手段を少なくとも上記像担持体と共に支持し、画像形成装置本体に着脱自在であるプロセスカートリッジとしたことを特徴とする画像形成装置。
JP2004090626A 2004-03-25 2004-03-25 画像形成装置 Expired - Fee Related JP4621434B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090626A JP4621434B2 (ja) 2004-03-25 2004-03-25 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090626A JP4621434B2 (ja) 2004-03-25 2004-03-25 画像形成装置

Publications (2)

Publication Number Publication Date
JP2005275166A JP2005275166A (ja) 2005-10-06
JP4621434B2 true JP4621434B2 (ja) 2011-01-26

Family

ID=35174884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090626A Expired - Fee Related JP4621434B2 (ja) 2004-03-25 2004-03-25 画像形成装置

Country Status (1)

Country Link
JP (1) JP4621434B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147971A (ja) * 2005-11-28 2007-06-14 Ricoh Co Ltd 画像形成装置及びこれに用いるプロセスカートリッジ
JP4885526B2 (ja) * 2005-11-30 2012-02-29 株式会社リコー 画像形成装置
JP2007248810A (ja) * 2006-03-16 2007-09-27 Ricoh Co Ltd 画像形成装置
JP2008096948A (ja) 2006-09-12 2008-04-24 Ricoh Co Ltd 画像形成装置、プロセスカートリッジ
JP5005991B2 (ja) * 2006-09-15 2012-08-22 株式会社リコー 画像形成装置
US7693476B2 (en) 2006-10-06 2010-04-06 Ricoh Company, Ltd. Image forming apparatus with protective agent applying unit and process cartridge
JP5100106B2 (ja) * 2006-12-20 2012-12-19 株式会社リコー 潤滑剤供給装置、プロセスカートリッジ、及び、画像形成装置
JP5186803B2 (ja) * 2007-05-11 2013-04-24 株式会社リコー 画像形成装置
JP5073418B2 (ja) * 2007-08-28 2012-11-14 シャープ株式会社 潤滑剤供給構造及びクリーニング装置並びに画像形成装置
JP5262196B2 (ja) * 2008-03-07 2013-08-14 富士ゼロックス株式会社 画像形成装置、清掃装置及び作像装置
JP2009300847A (ja) * 2008-06-16 2009-12-24 Ricoh Co Ltd 画像形成装置、プリンタ、ファクシミリ装置、複写機および複合画像形成装置
JP5316010B2 (ja) 2009-01-15 2013-10-16 株式会社リコー 保護層形成装置、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP2011170155A (ja) * 2010-02-19 2011-09-01 Fuji Xerox Co Ltd 清掃装置、画像形成装置、及び潤滑剤
JP2013047781A (ja) 2011-07-26 2013-03-07 Kyocera Document Solutions Inc 正帯電性静電潜像現像用現像剤、及び画像形成方法
JP5870737B2 (ja) * 2012-02-16 2016-03-01 コニカミノルタ株式会社 画像形成装置
JP2014006399A (ja) * 2012-06-25 2014-01-16 Ricoh Co Ltd 画像形成装置
JP7020005B2 (ja) * 2017-09-07 2022-02-16 富士フイルムビジネスイノベーション株式会社 搬送装置及び画像形成装置
JP2020013056A (ja) 2018-07-20 2020-01-23 エイチピー プリンティング コリア カンパニー リミテッドHP Printing Korea Co., Ltd. 画像形成装置
JP7255239B2 (ja) * 2019-03-06 2023-04-11 コニカミノルタ株式会社 画像形成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183859A (ja) * 1999-12-27 2001-07-06 Ricoh Co Ltd 画像形成装置
JP2002268494A (ja) * 2001-03-08 2002-09-18 Ricoh Co Ltd 画像形成装置
JP2003043885A (ja) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd 潤滑剤塗布装置
JP2003058004A (ja) * 2001-08-20 2003-02-28 Canon Inc 画像形成装置及びプロセスカートリッジ
JP2004029337A (ja) * 2002-06-25 2004-01-29 Konica Minolta Holdings Inc 画像形成装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254933A (ja) * 1995-01-18 1996-10-01 Ricoh Co Ltd 電子写真装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183859A (ja) * 1999-12-27 2001-07-06 Ricoh Co Ltd 画像形成装置
JP2002268494A (ja) * 2001-03-08 2002-09-18 Ricoh Co Ltd 画像形成装置
JP2003043885A (ja) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd 潤滑剤塗布装置
JP2003058004A (ja) * 2001-08-20 2003-02-28 Canon Inc 画像形成装置及びプロセスカートリッジ
JP2004029337A (ja) * 2002-06-25 2004-01-29 Konica Minolta Holdings Inc 画像形成装置

Also Published As

Publication number Publication date
JP2005275166A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4621434B2 (ja) 画像形成装置
JP3943797B2 (ja) 画像形成装置
JP5262315B2 (ja) 画像形成装置及びプロセスカートリッジ
JP4724389B2 (ja) 画像形成装置
JP2004117960A (ja) 画像形成装置
KR100730679B1 (ko) 현상 장치, 카트리지 및 화상 형성 장치
JPH05346751A (ja) 画像形成装置
JP4208513B2 (ja) 画像形成装置
JP2010054848A (ja) 転写電界形成部材、転写装置及び画像形成装置
JP2005315912A (ja) 画像形成装置
JPH09127768A (ja) 帯電装置
JP3356603B2 (ja) 帯電装置及び該装置を組込んだ画像形成装置
JP2008276083A (ja) 画像形成方法、画像形成装置
JP4376053B2 (ja) 画像形成装置
JP2005115311A (ja) クリーニング装置、画像形成装置およびプロセスカートリッジ
KR20020064657A (ko) 대전 장치 및 이를 사용한 화상 형성 장치
JP2006349735A (ja) 画像形成装置
JP3327106B2 (ja) 画像形成装置
JP2005140945A (ja) 帯電ローラ、帯電ローラの製造方法及び画像形成装置
JPH0460660A (ja) 接触帯電装置及び画像形成装置
US20050141923A1 (en) Image forming apparatus
JP2003302812A (ja) 帯電装置、プロセスカートリッジ、及び画像形成装置
JP3788251B2 (ja) 画像形成装置およびクリーニング装置
JP2013152293A (ja) 画像形成装置
JP2017009674A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees