[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4609577B2 - ピストン機関 - Google Patents

ピストン機関 Download PDF

Info

Publication number
JP4609577B2
JP4609577B2 JP2008321553A JP2008321553A JP4609577B2 JP 4609577 B2 JP4609577 B2 JP 4609577B2 JP 2008321553 A JP2008321553 A JP 2008321553A JP 2008321553 A JP2008321553 A JP 2008321553A JP 4609577 B2 JP4609577 B2 JP 4609577B2
Authority
JP
Japan
Prior art keywords
piston
cylinder
engine
space
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008321553A
Other languages
English (en)
Other versions
JP2010144585A (ja
Inventor
寛 矢口
大作 澤田
正章 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008321553A priority Critical patent/JP4609577B2/ja
Priority to US12/640,455 priority patent/US8479506B2/en
Publication of JP2010144585A publication Critical patent/JP2010144585A/ja
Application granted granted Critical
Publication of JP4609577B2 publication Critical patent/JP4609577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/85Crankshafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、ピストンとシリンダとの間に気体を介在させた気体軸受を用いるピストン機関に関する。
近年、乗用車やバス、トラック等の車両に搭載される内燃機関の排熱や工場排熱を回収するために、理論熱効率に優れたスターリングエンジンが注目されてきている。特許文献1には、ピストンとシリンダとの間に気体軸受を介在させるとともに、ピストンを近似直線機構で支持するスターリングエンジンが開示されている。
特開2005−106009号公報
特許文献1に開示されたスターリングエンジンは、シリンダ内をピストンが往復運動するピストン機関であり、ピストンとシリンダとの微小なクリアランスに気体軸受を介在させる。このため、スターリングエンジンを停止させる際には、ピストンとシリンダとが接触するおそれがある。本発明は、上記に鑑みてなされたものであって、ピストンとシリンダとの間に気体軸受を介在させる構造のピストン機関を停止させる場合に、ピストンとシリンダとの接触を抑制することを目的とする。
上述の目的を達成するために、本発明に係るピストン機関は、シリンダ内をピストンが往復運動し、当該ピストンの往復運動を回転運動に変換して出力するピストン機関において、前記シリンダと前記ピストンとの間に介在する気体軸受と、前記シリンダ内に作動流体が充填される第1の空間と、前記ピストンに対して前記第1の空間の反対側における第2の空間とを接続する流体通路と、前記流体通路に設けられて当該流体通路を開閉する通路開閉手段と、を備え、当該通路開閉手段は、前記ピストン機関が停止する際には、前記第1の空間内における前記作動流体の圧力と前記ピストン機関の機関回転速度とに基づいて定められる、前記ピストンが前記シリンダ内に浮上している領域で、前記ピストン機関が運転されている場合に前記流体通路を連通させることを特徴とする。
本発明の好ましい態様としては、前記ピストン機関において、前記第1の空間は、前記作動流体が充填される作動流体空間であり、前記第2の空間は、前記ピストンの往復運動を回転運動に変換する運動変換部材が配置される空間であることが望ましい。
本発明の好ましい態様としては、前記ピストン機関において、前記ピストン機関は、ヒータによって前記作動流体を加熱して動作するものであり、前記ピストン機関が前記ヒータの余熱で作動する場合には、前記通路開閉手段は、前記ピストンが前記シリンダ内に浮上している領域と、前記ピストンが前記シリンダ内に浮上しない領域との境界まで前記流体通路を閉じるタイミングを遅らせることが望ましい。
本発明の好ましい態様としては、前記ピストン機関において、前記ピストン機関は、第1のシリンダ及び当該第1のシリンダ内を往復運動する第1のピストンと、第2のシリンダ及び当該第2のシリンダ内を往復運動する第2のピストンとを有し、前記第1のシリンダと前記第2のシリンダとの間に前記ヒータが配置されるスターリングエンジンであることが望ましい。
本発明は、ピストンとシリンダとの間に気体軸受を介在させる構造のピストン機関を停止させる場合に、ピストンとシリンダとの接触を抑制できる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、以下の説明により本発明が限定されるものではない。また、以下の実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。なお、以下においては、ピストン機関の一例としてスターリングエンジンを取り上げるが、ピストン機関はこれに限定されるものではない。また、ピストン機関であるスターリングエンジンを用いて、車両等に搭載される内燃機関の排熱を回収する例を説明するが、排熱の回収対象は内燃機関に限られない。例えば工場やプラント、あるいは発電施設の排熱を回収する場合にも本発明は適用できる。
(実施形態)
本実施形態に係るピストン機関は、ピストンとシリンダとの間に気体軸受が介在する構造を備える。このため、例えば、シリンダ内の作動流体空間から、ピストンの外殻とピストンの内部の仕切り部材とで囲まれる蓄圧空間内へ作動流体を導入させ、この作動流体をピストンの側部に設けた給気孔からピストンとシリンダとの間に流出させ、ピストンとシリンダとの間に気体軸受を形成する。本実施形態は、このようなピストン機関において、作動流体が充填される第1の空間と、ピストンに対して第1の空間の反対側に形成される第2の空間とを流体通路で接続し、この流体通路を開閉する通路開閉手段を設ける。そして、通路開閉手段は、ピストン機関が停止する際には、第1の空間内における作動流体の圧力とピストン機関の機関回転速度とに基づいて定められる、ピストンがシリンダ内に浮上している領域で、ピストン機関が運転されている場合に流体通路を連通させる点に特徴がある。なお、気体軸受は、静圧気体軸受、動圧気体軸受のいずれでもよい。ここで、ピストン機関の機関回転速度とは、ピストン機関の出力軸の回転速度をいう。ピストンの往復運動をクランクシャフトで回転運動に変換して取り出す場合、クランクシャフトの回転速度が機関回転速度となる。
図1は、本実施形態に係るピストン機関であるスターリングエンジンの構成を示す断面図である。図2は、本実施形態に係るスターリングエンジンが備える気体軸受を示す平面図である。図3は、本実施形態に係るスターリングエンジンが備える気体軸受の構成例、及びピストンの支持構造を示す説明図である。本実施形態に係るピストン機関であるスターリングエンジン100は、いわゆるα型の直列2気筒スターリングエンジンである。本実施形態において、スターリングエンジン100は、内燃機関の排ガスExを通過させる通路として機能するヒータケース3に熱交換器108を配置して、熱機関(例えば、内燃機関)の排ガスExから熱エネルギを回収する、排熱回収装置として用いられる。
スターリングエンジン100は、第1のシリンダである高温側シリンダ30H内に収められた第1のピストンである高温側ピストン20Hと、第2のシリンダである低温側シリンダ30L内に収められた第2のピストンである低温側ピストン20Lとが直列に配置されている。なお、以下において、高温側シリンダ30Hと低温側シリンダ30Lとを区別しない場合にはシリンダ30といい、高温側ピストン20Hと低温側ピストン20Lとを区別しない場合にはピストン20という。後述するように、本実施形態に係るスターリングエンジン100は、高温側シリンダ30Hと高温側ピストン20Hとの間、及び低温側シリンダ30Lと低温側ピストン20Lとの間に気体軸受GBを介在させる。
高温側シリンダ30Hと低温側シリンダ30Lとは、基準体である基板111に、直接又は間接的に支持、固定されている。本実施形態においては、スターリングエンジン100が備える基板111が、スターリングエンジン100の各構成要素の位置基準となる。このように構成することで、前記各構成要素の相対的な位置精度を確保できるので、ピストンとシリンダとのクリアランスを精度よく保持することができる。これによって、気体軸受GBの機能を十分に発揮させることができる。
高温側シリンダ30Hと低温側シリンダ30Lとの間には、ヒータ(加熱器)105と再生器106とクーラ(冷却器)107とで構成される熱交換器108が設けられる。ヒータ105の一方の端部は高温側シリンダ30Hと接続されて、高温側シリンダ30Hとヒータ105との間で作動流体が流出入する。ヒータ105は、ヒータケース3内を流れる内燃機関の排ガスExの熱を作動流体に与えて加熱し、加熱された作動流体が高温側シリンダ30H内に流入する。ヒータ105は、例えば、熱伝導率が高く耐熱性に優れた材料のチューブを複数束ねて構成できる。また、本実施形態において、ヒータ105は、略U字形状である。これによって、内燃機関の排気通路内のような比較的狭い空間にも、ヒータ105を容易に配置することができる。ヒータ105の他方の端部、すなわち、高温側シリンダ30Hとは反対側の端部は再生器106と接続される。そして、ヒータ105と再生器106との間で作動流体が流出入する。
再生器106は、ヒータ105と接続される側の端部と反対側の端部がクーラ107と接続されて、ヒータ105又はクーラ107から流入する作動流体が通過する。再生器106は、例えば、多孔質の蓄熱体で構成できる。クーラ107の再生器106と接続される側とは反対側の端部は、低温側シリンダ30Lが接続される。そして、クーラ107と低温側シリンダ30Lとの間で作動流体が流出入する。クーラ107は、再生器106を通過した作動流体を冷却する。クーラ107は、熱伝導率が高く耐熱性に優れた材料のチューブを複数束ねて構成できる。クーラ107は空冷としてもよいし、水冷としてもよい。本実施形態において、熱交換器108は上述したように構成される。そして、高温側シリンダ30H及び低温側シリンダ30Lは、それぞれ熱交換器108を通過した作動流体が流出入する。
高温側シリンダ30H及び低温側シリンダ30L及び熱交換器108内には作動流体(本実施形態では空気)が充填されており、ヒータ105から供給される熱によってスターリングサイクルを構成し、スターリングエンジン100を駆動する。高温側シリンダ30Hの作動流体が充填される空間を高温側作動流体空間MSH、低温側シリンダ30Lの作動流体が充填される空間を低温側作動流体空間MSLといい、両者を区別しない場合には、単に作動流体空間MSという。
高温側ピストン20Hと低温側ピストン20Lとは、高温側シリンダ30Hと低温側シリンダ30L内に気体軸受GBを介して支持されている。すなわち、ピストンリングを介さず、潤滑油を用いないで、ピストンをシリンダ内に支持する構造である。これによって、ピストンとシリンダとの間の摩擦を低減して、スターリングエンジン100の効率を向上させることができる。また、ピストンとシリンダとの摩擦を低減することにより、例えば、内燃機関の排熱回収のような低熱源、低温度差の運転条件下でスターリングエンジン100を使用する場合でも、スターリングエンジン100により排熱から熱エネルギを回収できる。
気体軸受GBを構成するため、図2に示すように、ピストン20(高温側ピストン20H、低温側ピストン20L)とシリンダ30(高温側シリンダ30H、低温側シリンダ30L)との間には、所定のクリアランスtcを設ける。クリアランスtcは、ピストン20の全周にわたって数μm〜数10μmとする。高温側ピストン20H及び低温側ピストン20Lの往復運動は、コネクティングロッド61によって出力軸であるクランクシャフト110に伝達され、ここで回転運動に変換される。このように、クランクシャフト110は、ピストン20の往復運動を回転運動に変換する運動変換部材である。
ここで、気体軸受GBは、ピストン20の直径方向(横方向、スラスト方向)の力に耐える能力(負荷能力)が低いため、ピストン20のサイドフォースFsを実質的に0にすることが好ましい。このため、シリンダ30の軸線(中心軸)に対するピストン20の直線運動精度を高くする必要がある。これを実現するため、図3に示すように、本実施形態において、高温側ピストン20H及び低温側ピストン20Lは、近似直線機構(例えばグラスホッパ機構)60によって支持される。
本実施形態において、近似直線機構60は、グラスホッパ機構を採用する。近似直線機構60は、一端部がスターリングエンジン100の筐体100Cへ回動可能に取り付けられる第1腕62と、同じく一端部がスターリングエンジン100の筐体100Cへ回動可能に取り付けられる第2腕63と、一端部がコネクティングロッド61の端部と回動可能に連結され、他端部が第2腕63の他端部と回動可能に連結される第3腕64とで構成される。コネクティングロッド61は、クランクシャフト110と回動可能に取り付けられる端部とは異なる端部が、第3腕64の端部と回動可能に連結される。また、第1腕62の他端部は、第3腕64の両端部の間に、回動可能に連結される。
このように構成される近似直線機構60を用いれば、高温側ピストン20H及び低温側ピストン20Lを略直線状に往復運動させることができる。その結果、高温側ピストン20H及び低温側ピストン20LのサイドフォースFsがほとんど0になるので、負荷能力の小さい気体軸受GBによっても十分にピストン20を支持できる。なお、ピストン20を支持する近似直線機構60はグラスホッパ機構に限られるものではなく、ワットリンク等を用いてもよい。
なお、本実施形態において近似直線機構60として用いるグラスホッパ機構は、他の近似直線機構に比べて、同じ直線運動精度を得るために必要な機構の寸法が小さくて済むため、スターリングエンジン100全体がコンパクトになるという利点がある。特に、本実施形態に係るスターリングエンジン100を車両に搭載される内燃機関の排熱回収に用い、内燃機関の排ガスの通路に熱交換器108を配置するというような、限られたスペースにスターリングエンジンを設置する場合、スターリングエンジン100の全体がコンパクトである方が設置の自由度は向上する。また、グラスホッパ機構は、同じ直線運動精度を得るために必要な機構の質量が他の機構よりも軽量で済むため、熱効率を向上させる点で有利である。さらに、グラスホッパ機構は、機構の構成が比較的簡単であるため、製造・組み立てが容易であり、また製造コストも低減できるという利点もある。
図1に示すように、スターリングエンジン100を構成する高温側シリンダ30H、高温側ピストン20H、コネクティングロッド61、クランクシャフト110等の構成要素は、筐体100Cに格納される。スターリングエンジン100の筐体100Cは、クランクケース114Aと、シリンダブロック114Bとを含んで構成される。筐体100C内を構成するクランクケース114A内の空間(クランクケース内空間)CSにはクランクシャフト110が配置されるとともに、気体が充填される。本実施形態において、前記気体は、スターリングエンジン100の作動流体と同一である。クランクケース内空間CSに充填される気体は、圧力調整手段であるポンプ115により加圧される。ポンプ115は、例えば、スターリングエンジン100の排熱回収対象である内燃機関によって駆動してもよいし、例えば電動機のような駆動手段を用いて駆動してもよい。なお、ポンプ115を設けず、クランクケース内空間CSに充填される気体を予め所定の圧力まで加圧しておいてもよい。
スターリングエンジン100は、ヒータ105とクーラ107との温度差が同じ場合、作動流体の平均圧力が高い程、高温側と低温側との圧力差が大きくなるので、より高い出力が得られる。本実施形態に係るスターリングエンジン100は、クランクケース内空間CSに充填される気体を加圧することにより、作動流体空間MS内の作動流体を高圧に保持して、スターリングエンジン100からより多くの出力を取り出すように構成してある。これによって、排熱回収のように低質な熱源しか用いることができない場合でも、より多くの出力をスターリングエンジン100から取り出すことができる。ここで、スターリングエンジン100の出力は、筐体100C内に充填される気体の圧力に略比例して大きくなる。
スターリングエンジン100では、筐体100Cにシール軸受116が取り付けられており、クランクシャフト110はシール軸受116により支持される。スターリングエンジン100は、筐体100C内に充填される気体を加圧するが、シール軸受116により、筐体100C内に充填される気体の漏れを最小限に抑えることができる。クランクシャフト110の出力は、例えば、オルダムカップリングのようなフレキシブルカップリング118を介して筐体100Cの外部へ取り出される。
図1、図3に示すように、スターリングエンジン100が備えるピストン20は、頂部20Tと、側部20Sと、底部20Bとを外殻とし、頂部20Tと、側部20Sと、底部20Bとで囲まれる空間を、蓄圧空間20Iとする。スターリングエンジン100は、筐体100Cの外部へ配置した、気体軸受用圧力生成手段である気体軸受ポンプ120から気体供給通路45を介して、ピストン20の蓄圧空間20Iへ作動流体FLが供給される。そして、蓄圧空間20Iへ導入された作動流体FLは、ピストン20の側部20Sに設けられた複数の給気孔22を通ってピストン20の側部20Sとシリンダ30の内壁30Iとの間のクリアランスtcに流出する。これによって、ピストン20とシリンダ30の内壁30Iとの間に気体軸受GBが構成される。
ここで、本実施形態では、筐体100Cのクランクケース内空間CSに充填される気体が加圧される。このため、気体軸受ポンプ120を筐体100Cの外部に配置した場合、気体軸受ポンプ120は、少なくともクランクケース内空間CSの圧力よりも高い圧力で作動流体FLを蓄圧空間20Iへ送り込まないと、蓄圧空間20Iから給気孔22を通して作動流体FLを流出させることはできない。この場合、気体軸受ポンプ120を筐体100Cの内部に配置すれば、気体軸受ポンプ120は、既に加圧された作動流体FLを蓄圧空間20Iに送り込むだけなので、気体軸受GBを形成するために要する気体軸受ポンプ120の仕事量を低減できる。
図1に示すスターリングエンジン100は、ピストン機関であるスターリングエンジン100の作動流体が充填される第1の空間と、ピストン20に対して第1の空間とは反対側における第2の空間とを接続する流体通路を備える。そして、流体通路には、流体通路を開閉可能な通路開閉手段が設けられる。本実施形態に係るスターリングエンジン100では、高温側作動流体空間MSHあるいは低温側作動流体空間MSL、すなわち作動流体空間MSが第1の空間に相当し、クランクケース内空間CSが第2の空間に相当する。本実施形態では、低温側作動流体空間MSLとクランクケース内空間CSとを流体通路40で接続する。流体通路40には通路開閉手段である通路開閉弁41が設けられる。
通路開閉弁41は、例えば、電磁弁を用いて構成される。図1に示すように、通路開閉弁41は、スターリングエンジン100を制御するためのECU(Electronic Control Unit)50と電気的に接続されており、ECU50によって開閉が制御される。通路開閉弁41が開くと、流体通路40によって作動流体空間MSとクランクケース内空間CSとが連通し、通路開閉弁41が閉じると、作動流体空間MSとクランクケース内空間CSとの連通が遮断される。
スターリングエンジン100の運転中には通路開閉弁41が閉じられて、作動流体空間MSとクランクケース内空間CSとの連通が遮断される。そして、ヒータ105が受けた熱のエネルギによって作動流体空間MS内及び熱交換器108内の作動流体の圧力が変化することにより、高温側ピストン20H及び低温側ピストン20Lが往復運動する。この往復運動は、クランクシャフト110で回転運動に変換されて取り出される。
図4は、本実施形態に係るスターリングエンジンを用いた排熱回収システムの構成例を示す概念図である。この排熱回収システム80は、例えば、車両に搭載されて動力発生源となる内燃機関1と、スターリングエンジン100と、スターリングエンジン100によって駆動される発電機2とを含んで構成される。
スターリングエンジン100のヒータ105は、ヒータケース3内に配置される。ヒータケース3は、内燃機関1から排出される排ガスExの通路としても機能する。内燃機関1から排出された排ガスExは、ヒータ105でスターリングエンジン100の作動流体を加熱する。これによって、スターリングエンジン100が排ガスExの熱エネルギを回収して動力を発生する。スターリングエンジン100が発生した動力により、発電機2が駆動され、電力が発生する。このように、排熱回収システム80においては、内燃機関1がスターリングエンジン100による排熱回収対象となる。
図5は、気体軸受によってピストンがシリンダ内に支持される構造において、ピストンの浮上領域と接触領域との判別をするためのマップを示す概念図である。図5のマップ70は、縦軸が、図1に示すスターリングエンジン100の作動流体空間MS内における作動流体の圧力であり、横軸が、スターリングエンジン100のクランクシャフト110の回転速度である。
マップ70の直線Lにより、スターリングエンジン100のピストン20とシリンダ30とが接触する領域(接触領域)と、ピストン20が気体軸受によってシリンダ30内に浮上する、あるいは、ピストン20とシリンダ30とに許容できる接触が発生する領域(浮上領域)とが区別される。すなわち、ある回転速度において、作動流体の圧力が直線Lよりも高い領域は接触領域であり、作動流体の圧力が直線Lよりも低い領域は浮上領域となる。また、ある作動流体の圧力において、回転速度が直線Lよりも低い領域は接触領域であり、回転速度が直線Lよりも高い領域は浮上領域となる。マップ70の関係は、ピストン20がシリンダ30から浮上している領域を探し出す実験中に得られた新たな知見である。なお、本実施形態において、浮上領域は、上述したように、ピストン20が気体軸受によってシリンダ30内に浮上している領域のみならずピストン20とシリンダ30とに許容できる接触が発生する領域も含む概念であるが、好ましくは、ピストン20が気体軸受によってシリンダ30内に浮上している領域を浮上領域とすることが望ましい。
最大作動流体圧力Pmaxは、スターリングエンジン100の第1の空間である作動流体空間MS内における作動流体の圧力の最大値である。最大作動流体圧力Pmaxは、スターリングエンジン100の仕様によって決定されるものであり、作動流体空間MS内における作動流体の圧力は、最大作動流体圧力Pmaxよりも大きくなることはない。したがって、マップ70の直線Lと最大作動流体圧力Pmaxとが交差する点におけるクランクシャフト110の回転速度Nbよりも回転速度が大きい領域は、必ず浮上領域となる。この回転速度Nbを、境界回転速度という。
すなわち、境界回転速度Nbよりもクランクシャフト110の回転速度が大きい場合には、ピストン20はシリンダ30から浮上している。このように、本実施形態では、作動流体空間MS内における作動流体の圧力とスターリングエンジン100の機関回転速度(クランクシャフト110の回転速度)とに基づいて、ピストン20がシリンダ30内に浮上している領域と、ピストン20がシリンダ30に接触する領域とが判定される。
本実施形態では、スターリングエンジン100から出力を得る場合、浮上領域でスターリングエンジン100を運転する。例えば、定格出力が得られる定格回転速度をNcとすると、定格回転速度Ncは境界回転速度Nbよりも大きい回転速度となる。また、本実施形態において、運転しているスターリングエンジン100を停止させる際には、浮上領域で停止させる。これによって、ピストン20とシリンダ30とが非接触の状態を保ったままスターリングエンジン100を停止できるので、ピストン20やシリンダ30の耐久性低下が抑制され、スターリングエンジン100の信頼性が向上する。
図6、図7は、本実施形態において、スターリングエンジンを停止させる際におけるタイミングの一例を説明する図である。図6に示すように、スターリングエンジン100が定格回転速度で運転している場合に、排熱回収対象である内燃機関1の出力(内燃機関出力)が低下し始め(図7の時間t=t1)、その後、内燃機関1の運転が停止したとする(図7の時間t=t2)。内燃機関出力が低下すると、内燃機関1の排ガスExの温度も低下するので、スターリングエンジン100が排ガスExから回収できる熱エネルギも減少する。排ガスExから回収できる熱エネルギが減少すると、スターリングエンジン100のクランクシャフト110の回転速度(SE回転速度)も低下する。同時に、スターリングエンジン100が発生する動力(SE出力)も低下する。
内燃機関1が停止したため、スターリングエンジン100を停止させるが、この場合、図1に示すECU50は、同図に示すクランク角センサ140からクランクシャフト110の回転速度を取得する。そして、クランクシャフト110の回転速度が予め定めた停止回転速度Noと等しくなったら、ECU50は、通路開閉弁41を開く(時間t=t2)。すると、流体通路40によって作動流体空間MSとクランクケース内空間CSとが連通するので、作動流体空間MS内の作動流体がクランクケース内空間CSへ移動する。これによって、作動流体空間MSとクランクケース内空間CSと両者の圧力が略等しくなる。その結果、作動流体空間MS内における作動流体の圧力振幅は略0になって、すなわち、スターリングエンジン100が無負荷状態となって、スターリングエンジン100は停止する(時間t=t3)。ここで、停止回転速度Noは、定格回転速度Ncよりも小さく、境界回転速度Nbよりも大きい値に設定される。
このように、本実施形態では、スターリングエンジン100のクランクシャフト110の回転速度が境界回転速度Nbよりも大きい状態で通路開閉弁41を開き、スターリングエンジン100を停止させるので、ピストン20がシリンダ30から浮上した状態でスターリングエンジン100を停止させることができる。これによって、ピストン20やシリンダ30の耐久性低下が抑制されるので、スターリングエンジン100の信頼性が向上する。なお、上記説明では、内燃機関1が停止したタイミングでスターリングエンジン100のクランクシャフト110の回転速度が停止回転速度Noと等しくなっているが、内燃機関1が停止したタイミングにおいてクランクシャフト110の回転速度が停止回転速度Noよりも大きい場合、通路開閉弁41は閉じたままにしておき、クランクシャフト110の回転速度が停止回転速度Noと等しくなったら通路開閉弁41を開く。一方、内燃機関1が停止する前にクランクシャフト110の回転速度が停止回転速度Noになった場合、その時点で通路開閉弁41を開く。
図8、図9は、本実施形態において、スターリングエンジンを停止させる際におけるタイミングの他の例を説明する図である。この例は、スターリングエンジン100が残熱運転をする場合におけるスターリングエンジン100を停止させる例である。残熱運転とは、スターリングエンジン100のヒータ105に蓄積された余熱でスターリングエンジン100を運転することである。
図8に示すように、スターリングエンジン100が定格回転速度で運転している場合に、排熱回収対象である内燃機関1の運転が停止したとする(図9の時間t=t1)。すると、内燃機関1からスターリングエンジン100のヒータ105に排ガスExが供給されなくなるので、スターリングエンジン100は、ヒータ105の余熱で残熱運転を続けるが、ヒータ105の余熱が少なくなるにしたがって、スターリングエンジン100のクランクシャフト110の回転速度(SE回転速度)は低下する。同時に、スターリングエンジン100が発生する動力(SE出力)も低下する。
内燃機関1が停止したため、スターリングエンジン100を停止させるが、この場合、図1に示すECU50は、同図に示すクランク角センサ140からクランクシャフト110の回転速度を取得する。そして、クランクシャフト110の回転速度が予め定めた停止回転速度Noと等しくなったら、ECU50は、通路開閉弁41を開く(時間t=t2)。ここで、残熱運転をする場合、通路開閉弁41は、ピストン20がシリンダ30内に浮上している領域(浮上領域)と、ピストン20がシリンダ30内に浮上しない領域(接触領域)との境界まで、流体通路40を閉じるタイミングを遅らせる。浮上領域と接触領域との境界におけるクランクシャフト110の回転速度は、境界回転速度Nbなので、残熱運転をする場合、停止回転速度Noを境界回転速度Nbとする。このようにすれば、ピストン20とシリンダ30との接触を回避できる最大限の範囲で残熱運転を実行できる。
なお、本実施形態では、接触領域と浮上領域との境界まで、すなわち、接触領域の直前まで、流体通路40を閉じるタイミングを遅らせるが、安全を考慮して、クランクシャフト110の回転速度が接触領域と浮上領域との境界(すなわち、境界回転速度Nb)に至る前に流体通路40を閉じてもよい。この場合、残熱運転の時間をできる限り長くするため、停止回転速度Noを、境界回転速度Nbに予め定めたマージン回転速度Nmを加算した値とし、マージン回転速度Nmをできる限り小さい値とする。マージン回転速度Nmは、機器間のばらつきや公差等を考慮したものであり、実験や解析により求める。このようにすれば、ピストン20とシリンダ30との接触をより確実に回避しつつ、長時間の残熱運転を実現できる。
通路開閉弁41が開かれると、流体通路40によって作動流体空間MSとクランクケース内空間CSとが連通するので、作動流体空間MS内の作動流体がクランクケース内空間CSへ移動する。これによって、作動流体空間MSの圧力とクランクケース内空間CSの圧力とが略等しくなる。その結果、作動流体空間MS内における作動流体の圧力振幅は略0になって、すなわち、スターリングエンジン100が無負荷状態となって、スターリングエンジン100は停止する(時間t=t3)。このように、残熱運転をする場合には、通路開閉弁41が開かれるタイミングを、スターリングエンジン100のクランクシャフト110の回転速度が境界回転速度Nbとなるまで遅らせて、スターリングエンジン100を停止させる。その結果、ピストン20とシリンダ30との接触を回避した状態で最大限の残熱運転が実現できる。また、ピストン20やシリンダ30の耐久性低下が抑制されるので、スターリングエンジン100の信頼性が向上する。
以上のように、本発明に係るピストン機関は、ピストンとシリンダとの間に気体軸受を介在させるピストン機関に有用であり、特に、このようなピストン機関を停止させることに適している。
本実施形態に係るピストン機関であるスターリングエンジンの構成を示す断面図である。 本実施形態に係るスターリングエンジンが備える気体軸受を示す平面図である。 本実施形態に係るスターリングエンジンが備える気体軸受の構成例、及びピストンの支持構造を示す説明図である。 本実施形態に係るスターリングエンジンを用いた排熱回収システムの構成例を示す概念図である。 気体軸受によってピストンがシリンダ内に支持される構造において、ピストンの浮上領域と接触領域との判別をするためのマップを示す概念図である。 本実施形態において、スターリングエンジンを停止させる際におけるタイミングの一例を説明する図である。 本実施形態において、スターリングエンジンを停止させる際におけるタイミングの一例を説明する図である。 本実施形態において、スターリングエンジンを停止させる際におけるタイミングの他の例を説明する図である。 本実施形態において、スターリングエンジンを停止させる際におけるタイミングの他の例を説明する図である。
符号の説明
1 内燃機関
2 発電機
3 ヒータケース
20 ピストン
20B 底部
20I 蓄圧空間
20S 側部
20T 頂部
20H 高温側ピストン
20L 低温側ピストン
22 給気孔
30 シリンダ
30I 内壁
30H 高温側シリンダ
30L 低温側シリンダ
40 流体通路
41 通路開閉弁
45 気体供給通路
60 近似直線機構
70 マップ
80 排熱回収システム
100 スターリングエンジン
100C 筐体
105 ヒータ
106 再生器
107 クーラ
108 熱交換器
110 クランクシャフト
115 ポンプ
120 気体軸受ポンプ
140 クランク角センサ

Claims (4)

  1. シリンダ内をピストンが往復運動し、当該ピストンの往復運動を回転運動に変換して出力するピストン機関において、
    前記シリンダと前記ピストンとの間に介在する気体軸受と、
    前記シリンダ内に作動流体が充填される第1の空間と、前記ピストンに対して前記第1の空間の反対側における第2の空間とを接続する流体通路と、
    前記流体通路に設けられて当該流体通路を開閉する通路開閉手段と、を備え、
    当該通路開閉手段は、前記ピストン機関が停止する際には、前記第1の空間内における前記作動流体の圧力と前記ピストン機関の機関回転速度とに基づいて定められる、前記ピストンが前記シリンダ内に浮上している領域で、前記ピストン機関が運転されている場合に前記流体通路を連通させることを特徴とするピストン機関。
  2. 前記第1の空間は、前記作動流体が充填される作動流体空間であり、前記第2の空間は、前記ピストンの往復運動を回転運動に変換する運動変換部材が配置される空間である請求項1に記載のピストン機関。
  3. 前記ピストン機関は、ヒータによって前記作動流体を加熱して動作するものであり、
    前記ピストン機関が前記ヒータの余熱で作動する場合には、前記通路開閉手段は、前記ピストンが前記シリンダ内に浮上している領域と、前記ピストンが前記シリンダ内に浮上しない領域との境界まで前記流体通路を閉じるタイミングを遅らせる請求項2に記載のピストン機関。
  4. 前記ピストン機関は、
    第1のシリンダ及び当該第1のシリンダ内を往復運動する第1のピストンと、第2のシリンダ及び当該第2のシリンダ内を往復運動する第2のピストンとを有し、前記第1のシリンダと前記第2のシリンダとの間に前記ヒータが配置されるスターリングエンジンである請求項3に記載のピストン機関。
JP2008321553A 2008-12-17 2008-12-17 ピストン機関 Expired - Fee Related JP4609577B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008321553A JP4609577B2 (ja) 2008-12-17 2008-12-17 ピストン機関
US12/640,455 US8479506B2 (en) 2008-12-17 2009-12-17 Piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321553A JP4609577B2 (ja) 2008-12-17 2008-12-17 ピストン機関

Publications (2)

Publication Number Publication Date
JP2010144585A JP2010144585A (ja) 2010-07-01
JP4609577B2 true JP4609577B2 (ja) 2011-01-12

Family

ID=42238944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321553A Expired - Fee Related JP4609577B2 (ja) 2008-12-17 2008-12-17 ピストン機関

Country Status (2)

Country Link
US (1) US8479506B2 (ja)
JP (1) JP4609577B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418358B2 (ja) * 2010-03-26 2014-02-19 トヨタ自動車株式会社 スターリングエンジン
JP5652368B2 (ja) * 2011-10-11 2015-01-14 トヨタ自動車株式会社 スターリングエンジン
DE102013009219A1 (de) * 2013-05-31 2014-12-04 Man Truck & Bus Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
CN103742287B (zh) * 2013-12-09 2015-05-13 镇江新区科力迪机电科技有限公司 热气机的高压气体保温缸体
US10781771B1 (en) * 2019-09-22 2020-09-22 Ghasem Kahe Automatic cooling system for combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106012A (ja) * 2003-10-01 2005-04-21 Toyota Motor Corp ピストン機関
JP2008128190A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp ピストン装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782859A (en) * 1971-12-07 1974-01-01 M Schuman Free piston apparatus
DE2332192A1 (de) * 1973-06-25 1975-01-09 Motoren Werke Mannheim Ag Vorrichtung zur regelung der leistung einer heissgaskolbenmaschine
US3991574A (en) * 1975-02-03 1976-11-16 Frazier Larry Vane W Fluid pressure power plant with double-acting piston
US4856280A (en) * 1988-12-19 1989-08-15 Stirling Technology, Inc. Apparatus and method for the speed or power control of stirling type machines
JP3783706B2 (ja) 2003-10-01 2006-06-07 トヨタ自動車株式会社 スターリングエンジン及びそれを備えたハイブリッドシステム
GB0412868D0 (en) * 2004-06-10 2004-07-14 Smith Thomas C B Fluidic oscillator
JP4289224B2 (ja) * 2004-06-14 2009-07-01 トヨタ自動車株式会社 スターリングエンジン
JP2006348893A (ja) 2005-06-17 2006-12-28 Toyota Motor Corp 熱機関
JP4978293B2 (ja) 2007-04-19 2012-07-18 トヨタ自動車株式会社 排熱回収機関及び運転制御装置
JP4730430B2 (ja) 2008-12-10 2011-07-20 トヨタ自動車株式会社 ピストン機関

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106012A (ja) * 2003-10-01 2005-04-21 Toyota Motor Corp ピストン機関
JP2008128190A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp ピストン装置

Also Published As

Publication number Publication date
US8479506B2 (en) 2013-07-09
JP2010144585A (ja) 2010-07-01
US20100146962A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4858424B2 (ja) ピストン機関及びスターリングエンジン
JP4609577B2 (ja) ピストン機関
JP2008101477A (ja) スターリングエンジン発電機
JP2009052479A (ja) ピストン機関及びスターリングエンジン
JP4285338B2 (ja) スターリングエンジン
JP4730430B2 (ja) ピストン機関
WO2006070832A1 (ja) ピストン装置、スターリングエンジン、及び外燃機関
JP4120643B2 (ja) ピストン装置
JP5181575B2 (ja) スターリングエンジン
JP2006183566A (ja) ピストン装置、スターリングエンジン、及び外燃機関
JP5422883B2 (ja) ピストン機関及びスターリングエンジン
JP2009091959A (ja) 排熱回収機関及び起動制御装置
JP2009127476A (ja) スターリングエンジン
JP4059249B2 (ja) ピストン機関
JP2009293406A (ja) ピストン機関及びスターリングエンジン
JP2009127518A (ja) ピストン機関及びスターリングエンジン
JP2012041897A (ja) スターリングエンジンの制御装置
JP2006188956A (ja) ピストン機関
JP2009127519A (ja) ピストン機関及びスターリングエンジン
JP5120232B2 (ja) 自動位相差調整式スターリングエンジン
JP4239900B2 (ja) スターリングエンジン
JP2006291902A (ja) ピストン機関
WO2019225640A1 (ja) スターリングエンジン
JP2009085087A (ja) ピストン機関
JP4858451B2 (ja) 外燃機関

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees