JP4601462B2 - Perovskite complex oxide and method for producing the same - Google Patents
Perovskite complex oxide and method for producing the same Download PDFInfo
- Publication number
- JP4601462B2 JP4601462B2 JP2005059347A JP2005059347A JP4601462B2 JP 4601462 B2 JP4601462 B2 JP 4601462B2 JP 2005059347 A JP2005059347 A JP 2005059347A JP 2005059347 A JP2005059347 A JP 2005059347A JP 4601462 B2 JP4601462 B2 JP 4601462B2
- Authority
- JP
- Japan
- Prior art keywords
- perovskite
- solution
- diffraction
- composite
- addition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、ペロブスカイト型複合酸化物及びその製造方法に関する。 The present invention relates to a perovskite complex oxide and a method for producing the same.
ABO3(Aは希土類金属を示し、Bはアルカリ土類金属又は遷移金属を示す)で表されるペロブスカイト型複合酸化物は、CO、HC、NOxなどを浄化する、安価な排ガス浄化用三元触媒、触媒担体等として実用化が期待されている。また、現在では、上記特性に加えて、ディーゼルエンジンの排ガスに含まれる煤、燃料微粒子等を燃焼させる特性も要求されている。これらの要求性能を満足するために、上記複合酸化物であって、比表面積が大きいもの、特に高温条件下における比表面積の減少度が少ないもの(即ち、比表面積の耐熱性が高いもの)の開発が進められている。 A perovskite complex oxide represented by ABO 3 (A represents a rare earth metal, and B represents an alkaline earth metal or a transition metal) is an inexpensive three-ply gas purification catalyst that purifies CO, HC, NO x and the like. Practical use is expected as an original catalyst, a catalyst carrier, and the like. At present, in addition to the above characteristics, there is a demand for the characteristics of burning soot, fuel particulates and the like contained in exhaust gas from a diesel engine. In order to satisfy these required performances, the composite oxide having a large specific surface area, particularly one having a small decrease in specific surface area under high temperature conditions (ie, having a high specific surface area heat resistance) Development is underway.
ペロブスカイト型複合酸化物を用いた排ガス燃焼触媒としては、例えば、下記特許文献1〜4に示すものが知られている。 As an exhaust gas combustion catalyst using a perovskite complex oxide, for example, those shown in Patent Documents 1 to 4 below are known.
特許文献1は、酸素欠陥型ペロブスカイト触媒に関する。特許請求の範囲には、ガス浄化用触媒であって、その組成がA1A´2B3O7−α(AはYおよび希土類元素から選ばれる1種または2種以上の元素、A´はBa,SrおよびCaから選ばれる1種または2種以上の元素、BはCu,Mnおよび鉄族元素から選ばれる1種または2種以上を示し、0≦α≦1を示す)で表され、かつ、比表面積が1〜10m2/gの粉体であることを特徴とする酸素欠陥型ペロブスカイト触媒が開示されている。 Patent Document 1 relates to an oxygen-deficient perovskite catalyst. The claims include a gas purification catalyst, the composition of which is A 1 A ′ 2 B 3 O 7-α (A is one or more elements selected from Y and rare earth elements, A ′ Is one or more elements selected from Ba, Sr and Ca, B is one or more elements selected from Cu, Mn and iron group elements, and 0 ≦ α ≦ 1) An oxygen-deficient perovskite catalyst characterized by being a powder having a specific surface area of 1 to 10 m 2 / g is disclosed.
特許文献2は、酸化触媒に関する。請求項1には、一般式:LaXA1−XBYB’1−YO3 (式中AはBa、Sr、Zn、Ag、Ce;BはMnまたはCo;B’はCo、Fe、Ni、Cu、Ti、ZrまたはCr;また、0≦X≦1、0≦Y≦1)で表される比表面積が20m2/g以上のペロブスカイト型複合酸化物が固体酸担体に担持されていることを特徴とする酸化触媒が開示されている。 Patent Document 2 relates to an oxidation catalyst. Claim 1 includes the general formula: La X A 1-X B Y B ′ 1-Y O 3 (wherein A is Ba, Sr, Zn, Ag, Ce; B is Mn or Co; B ′ is Co, Fe, Ni, Cu, Ti, Zr or Cr; and a perovskite complex oxide having a specific surface area represented by 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1) of 20 m 2 / g or more is supported on a solid acid carrier An oxidation catalyst is disclosed which is characterized in that
特許文献3は、LaMn系酸化物触媒用粉末の製造方法に関する。請求項1には、LaおよびMnを必須とし、Pb,K,Ce,Co,Ni,Mgの金属元素の内の少なくとも一種を主成分とするLaMn系酸化物触媒用粉末の製造方法において、前記粉末を構成する金属元素の硝酸塩とアミノ酸との錯体の溶液を、該溶液の沸点以上に加熱することを特徴とするLaMn系酸化物触媒用粉末の製造方法が開示されている。また、実施例では、La0.8Ce0.2MnO3で表されるペロブスカイト型複合酸化物であって、BET比表面積が38.1のものが得られたことが記載されている。 Patent Document 3 relates to a method for producing a powder for an LaMn-based oxide catalyst. In Claim 1, in the manufacturing method of the powder for LaMn system oxide catalyst which makes La and Mn essential, and has at least 1 sort of metal elements of Pb, K, Ce, Co, Ni, and Mg as a main component, A method for producing a powder for a LaMn-based oxide catalyst, characterized in that a solution of a complex of a nitrate of a metal element constituting a powder and an amino acid is heated to a boiling point or higher of the solution is disclosed. In the examples, it is described that a perovskite complex oxide represented by La 0.8 Ce 0.2 MnO 3 having a BET specific surface area of 38.1 was obtained.
特許文献4は、酸素欠乏型ペロブスカイト触媒に関する。請求項1には、次式:A1A´2B3O7−α(Aは、Yおよび希土類元素から選ばれる少なくとも1種の元素、A′は、Ba,SrおよびCaから選ばれる少なくとも1種の元素、Bは、Cu,Mnおよび鉄族元素から選ばれる少なくとも1種の元素を示し、0≦α≦1である)で表される複合酸化物が、MgO,ZrO2,ZnO,SrTiO3,CoAl2O4,ZnAl2O4およびMgAl2O4から選ばれる少なくとも1種の酸化物担体に担持された、比表面積が10〜35m2/gの触媒からなることを特徴とするガス浄化用の酸素欠陥型ペロブスカイト触媒が記載されている。 Patent Document 4 relates to an oxygen-deficient perovskite catalyst. In claim 1, the following formula: A 1 A ′ 2 B 3 O 7-α (A is at least one element selected from Y and rare earth elements, A ′ is at least selected from Ba, Sr and Ca) One element, B represents at least one element selected from Cu, Mn, and an iron group element, and 0 ≦ α ≦ 1, and a composite oxide represented by MgO, ZrO 2 , ZnO, It is characterized by comprising a catalyst having a specific surface area of 10 to 35 m 2 / g supported on at least one oxide carrier selected from SrTiO 3 , CoAl 2 O 4 , ZnAl 2 O 4 and MgAl 2 O 4. An oxygen-deficient perovskite catalyst for gas purification is described.
しかしながら、このような従来公知のペロブスカイト型複合酸化物は、比表面積が不十分であるか、又は高温条件下における比表面積の減少率が大きく、上記した要求性能を満足するためには、さらなる改良の余地がある。
本発明は、高温条件下における比表面積の減少が抑制されたペロブスカイト型複合酸化物を提供することを主な目的とする。 The main object of the present invention is to provide a perovskite complex oxide in which the decrease in specific surface area under high temperature conditions is suppressed.
本発明者等は、上記目的を達成すべく鋭意研究を重ねた結果、特定の製造方法により製造されたペロブスカイト型複合酸化物が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a perovskite complex oxide manufactured by a specific manufacturing method can achieve the above object, and have completed the present invention.
即ち、本発明は下記のペロブスカイト型複合酸化物及びその製造方法に関する。 That is, the present invention relates to the following perovskite complex oxide and a method for producing the same.
1.一般組成式:LaFe xTi1−xOα
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表されるペロブスカイト型複合酸化物であって、
大気雰囲気下、1000℃で3時間焼成後のBET比表面積が20m2/g以上であることを特徴とする複合酸化物。
1. General composition formula: LaFe x Ti 1-x O α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
A perovskite complex oxide represented by:
A composite oxide having a BET specific surface area of 20 m 2 / g or more after firing at 1000 ° C. for 3 hours in an air atmosphere.
2.前記複合酸化物のX線回折結果(回折角と回折X線強度との関係)において、ペロブスカイト型構造に起因する回折X線強度の最大値をImaxとし、ペロブスカイト型構造に起因しない回折X線強度の最大値をI´maxとし、
次式:Phase Purity(%)=Imax/(Imax+I´max)
から算出されるPhase Purityが95%以上である、上記項1に記載の複合酸化物。
2. In the X-ray diffraction result (relation between diffraction angle and diffraction X-ray intensity) of the composite oxide, the maximum value of the diffraction X-ray intensity caused by the perovskite structure is Imax, and the diffraction X-ray intensity not caused by the perovskite structure Is the maximum value of I′max,
The following formula: Phase Purity (%) = Imax / (Imax + I′max)
Item 2. The composite oxide according to Item 1, wherein the phase purity calculated from the above is 95% or more.
3.一般組成式:LaFe xTi1−xOα
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表されるペロブスカイト型複合酸化物の製造方法であって、
1)Laを含む金属塩と、2)Feを含む金属塩と、3)チタン塩とを溶解した混合溶液を、アルカリ溶液に添加することによって複合水酸化物を生成後、当該複合水酸化物を焼成することを特徴とする製造方法。
3 . General composition formula: LaFe x Ti 1-x O α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
A method for producing a perovskite complex oxide represented by:
A composite hydroxide is produced by adding a mixed solution in which 1) a metal salt containing La , 2) a metal salt containing Fe , and 3) a titanium salt is dissolved in an alkaline solution, and then the composite hydroxide. The manufacturing method characterized by baking.
4.前記混合溶液をアルカリ溶液に添加する速度が、
1)添加後の溶液中に生成した、一般組成式:LaFe xTi1−x(OH)α
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表される複合水酸化物の量をP(mol)とし、
2)添加後の溶液の全量をQ(L)とし、
3)添加開始から添加終了までの時間をR(時間)とした場合に、
4)0.01≦P/(Q・R)≦0.5
を満たす速度である、上記項3に記載の製造方法。
4. The rate at which the mixed solution is added to the alkaline solution is
1) General composition formula generated in the solution after the addition: LaFe x Ti 1-x (OH) α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
The amount of the composite hydroxide represented by P is (mol),
2) Let the total amount of the solution after addition be Q (L),
3) When the time from the start of addition to the end of addition is R (time),
4) 0.01 ≦ P / (Q · R) ≦ 0.5
Item 4. The production method according to Item 3 , wherein the production rate is satisfied.
以下、本発明の複合酸化物及びその製造方法について詳細に説明する。 Hereinafter, the composite oxide of the present invention and the production method thereof will be described in detail.
ペロブスカイト型複合酸化物
本発明のペロブスカイト型複合酸化物は、一般組成式:LaFe xTi1−xOα
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表されるペロブスカイト型複合酸化物であって、大気雰囲気下、1000℃で3時間焼成後のBET比表面積が20m2/g以上であることを特徴とする。
Perovskite complex oxide The perovskite complex oxide of the present invention has a general composition formula: LaFe x Ti 1-x O α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
The BET specific surface area after baking for 3 hours at 1000 degreeC in air | atmosphere is 20 m < 2 > / g or more.
上記組成式中、Laは、供給源となる金属塩(原料)に工業的不純物が少ないという観点から好ましい。 In the above composition formula , La is preferable from the viewpoint that the metal salt (raw material) serving as the supply source has few industrial impurities.
上記組成式中、Feは、複合酸化物に良好な燃焼触媒性能を付与する観点から好ましい。 In the above composition formula , Fe is preferable from the viewpoint of imparting good combustion catalyst performance to the composite oxide.
上記組成式中、xはFeの原子数を示す。Feの割合とTiの割合とは相関しており、Tiの一部と置換する形でFeは含まれる。即ち、xは0.17≦x≦0.64の数値であればよい。 In the above composition formula, x represents the number of Fe atoms. The proportion of Fe and the proportion of Ti are correlated, and Fe is included in the form of replacing a part of Ti. That is, x may be a numerical value satisfying 0.17 ≦ x ≦ 0.64 .
上記組成式中、αはO(酸素)の原子数を示す。ペロブスカイト型複合酸化物は、構成元素の種類により酸素欠損を生じる場合がある。そのため、本明細書では、2.5≦α≦3と記載している。 In the above composition formula, α represents the number of O (oxygen) atoms. The perovskite complex oxide may cause oxygen deficiency depending on the type of constituent elements. Therefore, in the present specification, 2.5 ≦ α ≦ 3 is described.
本発明のペロブスカイト型複合酸化物は、高温条件下における比表面積の減少が抑制されており、大気雰囲気下、1000℃で3時間焼成後のBET比表面積は20m2/g以上である。複合酸化物の組成を好適化した実施態様では、同条件で焼成後のBET比表面積は25m2/g以上となる。高温条件下における比表面積の減少が抑制される理由の詳細は不明であるが、Tiを構成元素として含むことによる複合酸化物全体の構造安定化に起因すると考えられる。 In the perovskite complex oxide of the present invention, the decrease in specific surface area under high temperature conditions is suppressed, and the BET specific surface area after firing at 1000 ° C. for 3 hours in an air atmosphere is 20 m 2 / g or more. The optimization of the embodiment the composition of the composite oxide, BET specific surface area after firing under the same conditions becomes 2 5 m 2 / g or more. Although the details of the reason why the reduction in specific surface area under high temperature conditions is suppressed are unclear, it is thought to be due to the structural stabilization of the entire composite oxide by containing Ti as a constituent element.
次に、具体例として、LaFe x Ti 1−x O α (但し、記号の説明は前記と同じ)で表される複合酸化物の特性について説明する。 Next, as a specific example, characteristics of the composite oxide represented by LaFe x Ti 1-x O α (wherein the symbols are the same as those described above) will be described.
図1には、この複合酸化物のx(Feの割合:モル比)を横軸にとり、大気雰囲気下、1000℃で3時間焼成後のBET比表面積(Aged SA)を縦軸にとったグラフが示されている。 FIG. 1 is a graph in which x (ratio of Fe: molar ratio) of this composite oxide is taken on the horizontal axis, and the BET specific surface area (Aged SA) after firing at 1000 ° C. for 3 hours in the atmosphere is taken on the vertical axis. It is shown.
図1からは、上記複合酸化物において所定の比表面積特性を具備するためには、x(Feの割合)は0.17≦x≦0.64の範囲に設定する必要があることが分かる。また、0.24≦x≦0.6に設定する場合には、焼成後の比表面積は25m2/g以上となることが分かる。 From FIG. 1, it can be seen that x (the ratio of Fe) needs to be set in a range of 0.17 ≦ x ≦ 0.64 in order to have a predetermined specific surface area characteristic in the composite oxide. Also , 0 . In the case of setting 24 ≦ x ≦ 0.6, it can be seen that the specific surface area after firing is 25 m 2 / g or more.
本発明のペロブスカイト型複合酸化物は、実質的にペロブスカイト型結晶構造のみからなることが好ましい。具体的には、複合酸化物のX線回折結果(回折角と回折X線強度との関係)において、ペロブスカイト型構造に起因する回折X線強度の最大値をImaxとし、ペロブスカイト型構造に起因しない回折X線強度の最大値をI´maxとし、
次式:Phase Purity(%)=Imax/(Imax+I´max)
から算出されるPhase Purityが95%以上であることが好ましい。複合酸化物が実質的にペロブスカイト型構造のみからなる場合には、I´maxが実質的に0となるため、複合酸化物のPhase Purityは実質的に100%となる。このように結晶構造が実質的にペロブスカイト単一相からなる場合には、複合酸化物の構成元素が原子レベルで均一に分散されており、触媒作用の異なる活性点(上記例では、La、Fe及びTi)が近接し合うため、良好な触媒活性効果が得られる。
The perovskite complex oxide of the present invention preferably consists essentially of a perovskite crystal structure. Specifically, in the X-ray diffraction result of the composite oxide (relation between the diffraction angle and the diffraction X-ray intensity), the maximum value of the diffraction X-ray intensity attributed to the perovskite structure is Imax, and it does not result from the perovskite structure. Let the maximum value of the diffracted X-ray intensity be I′max,
The following formula: Phase Purity (%) = Imax / (Imax + I′max)
It is preferable that the phase purity calculated from is 95% or more. When the composite oxide is substantially composed only of a perovskite structure, I′max is substantially 0, so that the phase purity of the composite oxide is substantially 100%. Thus, when the crystal structure is substantially composed of a perovskite single phase, the constituent elements of the composite oxide are uniformly dispersed at the atomic level, and active sites having different catalytic actions (in the above example, La, Fe And Ti) are close to each other, so that a good catalytic activity effect is obtained.
本発明のペロブスカイト型複合酸化物は、高温条件下における比表面積の減少が抑制されているため、CO、HC、NOxなどを浄化する排ガス浄化用三元触媒として有用であるだけでなく、ディーゼルエンジン排ガスに含まれる煤又は燃料微粒子を分解する燃焼触媒としても有用である。また、触媒担体としても使用できる。なお、本発明のペロブスカイト型複合酸化物は、自動車排ガス浄化用触媒以外の触媒及び触媒担体としても適用可能である。 The perovskite-type composite oxide of the present invention is not only useful as a three-way catalyst for exhaust gas purification that purifies CO, HC, NO x, etc., because the reduction in specific surface area under high temperature conditions is suppressed. It is also useful as a combustion catalyst for decomposing soot or fuel particles contained in engine exhaust gas. It can also be used as a catalyst carrier. The perovskite complex oxide of the present invention is also applicable as a catalyst and a catalyst carrier other than the catalyst for automobile exhaust gas purification.
ペロブスカイト型複合酸化物の製造方法
本発明のペロブスカイト型複合酸化物の製造方法は限定的ではないが、例えば、1)Laを含む金属塩と、2)Feを含む金属塩と、3)チタン塩とを溶解した混合溶液を、アルカリ溶液に添加することによって複合水酸化物を生成後、前記複合水酸化物を焼成することを特徴とする製造方法(以下「本発明の製造方法」と記載する)により好適に製造できる。
Method for Producing Perovskite Type Composite Oxide The method for producing the perovskite type composite oxide of the present invention is not limited. For example, 1) a metal salt containing La , 2) a metal salt containing Fe , and 3) a titanium salt A mixed solution in which the compound hydroxide is added to an alkaline solution to form a composite hydroxide, and then the composite hydroxide is fired (hereinafter referred to as “the manufacturing method of the present invention”). ) .
金属塩については、いずれも硝酸塩、硫酸塩、酢酸塩、塩化物、アルコキシド、臭化物等が挙げられる。この中でも、後工程での不純物混入を避ける観点から、硝酸塩、アルコキシド等が好ましく、アルコキシドがより好ましい。 The gold Shokushio Both nitrates, sulfates, acetates, chlorides, alkoxides, bromides, and the like. Among these, nitrates, alkoxides, and the like are preferable, and alkoxides are more preferable, from the viewpoint of avoiding contamination with impurities in the subsequent steps.
金属塩を溶解する溶媒としては特に限定されないが、通常は水を使用できる。混合溶液の濃度は、LaFe xTi1−xOα(但し、記号の説明は前記と同じ)濃度に換算して1〜20重量%程度が好ましく、5〜15重量%程度がより好ましい。1重量%未満は生産効率の観点から好ましくない。20重量%を超える場合には、イオン状態での溶解が困難となり、混合溶液の安定性の観点から好ましくない。 Although it does not specifically limit as a solvent which melt | dissolves a metal salt, Usually, water can be used. Concentration of the mixed solution, LaFe x Ti 1-x O α ( although the description of the symbols are as defined above) is preferably about 1 to 20% by weight in terms of concentration, more preferably about 5 to 15 wt%. Less than 1% by weight is not preferable from the viewpoint of production efficiency. If it exceeds 20% by weight, dissolution in an ionic state becomes difficult, which is not preferable from the viewpoint of the stability of the mixed solution.
アルカリ溶液としては、前記混合溶液との混合により、複合水酸化物を生じる限り特に限定されない。例えば、アンモニア、苛性ソーダ、炭酸ソーダ等の少なくとも1種を水に溶解したものが使用できる。なお、複合酸化物中への不純物の混入を避ける観点からは、アンモニアを用いることが好ましい。アルカリ溶液の濃度としては、5〜30重量%程度が好ましい。かかる範囲内に設定する場合には、アルカリ溶液中で塩基が拡散し、均一な沈殿が得られ易く、しかも沈殿生成速度が遅くなり難い。 The alkaline solution is not particularly limited as long as a composite hydroxide is formed by mixing with the mixed solution. For example, what dissolved at least 1 sort (s), such as ammonia, caustic soda, sodium carbonate, in water, can be used. Note that ammonia is preferably used from the viewpoint of avoiding impurities from being mixed into the composite oxide. The concentration of the alkaline solution is preferably about 5 to 30% by weight. When set within such a range, the base diffuses in the alkaline solution, a uniform precipitate is easily obtained, and the precipitate formation rate is unlikely to be slow.
複合水酸化物の生成に際しては、金属塩の混合溶液をアルカリ溶液に添加する。この添加により、LaFe xTi1−x(OH)α(但し、αがOHの量を示す以外は、記号の説明は前記と同じ、以下同じ)で表される複合水酸化物が生成する。前記添加態様は、一般に採用される、金属塩の混合溶液にアルカリ溶液を添加する態様とは逆であり、いわゆる逆中和と称される態様である。かかる態様を採用する理由は、等電点よりはるかに高く、且つ常に強アルカリ領域で沈殿生成反応を進行させるため、均一組成の複合金属水酸化物が得られ易いためである。他方、等電点が異なる金属イオンを酸性領域〜弱アルカリ領域に添加して沈殿生成する場合(逆中和ではない態様)には、等電点の差により生成する複合水酸化物の組成にバラツキが生じ、均一組成の複合水酸化物が得られ難い。 In producing the composite hydroxide, a mixed solution of metal salts is added to the alkaline solution. By this addition, a composite hydroxide represented by LaFe x Ti 1-x (OH) α (wherein the symbols are the same as those described above, except that α indicates the amount of OH, hereinafter the same) is generated. The addition mode is opposite to the generally employed mode of adding an alkaline solution to a mixed solution of metal salts, and is a so-called reverse neutralization mode. The reason for adopting such an embodiment is that a composite metal hydroxide having a uniform composition is easily obtained because the precipitation reaction is always performed in a strongly alkaline region, which is much higher than the isoelectric point. On the other hand, when metal ions having different isoelectric points are added to the acidic region to the weakly alkaline region to form precipitates (an embodiment that is not reverse neutralization), the composition of the composite hydroxide generated by the difference in isoelectric points Variation occurs and it is difficult to obtain a composite hydroxide having a uniform composition.
本発明の製造方法で採用する添加態様では、沈殿生成後の溶液のpHは9.5以上が好ましく、9.5〜10.5程度がより好ましい。pHが9.5未満の場合では、金属イオンの全てが水酸化物生成に用いられない場合がある。pHが10.5を超える場合には、経済的ではないため好ましくない。 In the addition mode employed in the production method of the present invention, the pH of the solution after the precipitation is preferably 9.5 or higher, more preferably about 9.5 to 10.5. When the pH is less than 9.5, not all metal ions may be used for hydroxide generation. A pH exceeding 10.5 is not preferable because it is not economical.
本発明の製造方法で採用する添加態様では、金属塩の混合溶液をアルカリ溶液に添加する速度は、
1)添加後の溶液中に生成した、一般組成式:LaFe xTi1−x(OH)α(但し、記号の説明は前記と同じ)
で表される複合水酸化物の量をP(mol)とし、
2)添加後の溶液の全量をQ(L)とし、
3)添加開始から添加終了までの時間をR(時間)とした場合に、
4)0.01≦P/(Q・R)≦0.5、好ましくは0.05≦P/(Q・R)≦0.3
を満たす速度であることが好ましい。従って、上記4)で示す条件を満たすように、予め金属塩混合溶液及びアルカリ溶液の濃度及び量を設定しておくことが好ましい。
In the addition mode employed in the production method of the present invention, the rate at which the mixed solution of the metal salt is added to the alkaline solution is:
1) General composition formula generated in the solution after addition: LaFe x Ti 1-x (OH) α (however, the symbols are the same as described above)
The amount of the composite hydroxide represented by P is (mol),
2) Let the total amount of the solution after addition be Q (L),
3) When the time from the start of addition to the end of addition is R (time),
4) 0.01 ≦ P / (Q · R) ≦ 0.5, preferably 0.05 ≦ P / (Q · R) ≦ 0.3
It is preferable that the speed is satisfied. Therefore, it is preferable to set the concentrations and amounts of the metal salt mixed solution and the alkali solution in advance so as to satisfy the condition shown in 4) above.
上記P/(Q・R)の値が0.01未満の場合には、沈殿の生成効率が低くなる。また、0.5を超える場合には、溶液のpHが局所的に9.5未満〜酸性となる場合があるため、等電点の異なる金属の沈殿(水酸化物)生成速度に差が生じ、均一組成の複合水酸化物が得られ難くなるおそれがある。 When the value of P / (Q · R) is less than 0.01, the formation efficiency of the precipitate is lowered. In addition, when it exceeds 0.5, the pH of the solution may be locally less than 9.5 to acidic, resulting in a difference in the rate of precipitation (hydroxide) formation of metals with different isoelectric points. There is a risk that it may be difficult to obtain a composite hydroxide having a uniform composition.
上記過程を経て得られる一般組成式:LaFe xTi1−x(OH)αで表される複合水酸化物は、直ぐに焼成に供してもよいが、必要に応じて、沈殿を含む溶液を加熱熟成に供してもよい。加熱熟成することにより、複合水酸化物中における構成金属(La、Fe及びTi)の分散・再凝集が繰り返されるため、複合水酸化物の組成をより均一化できる。このことは、複合酸化物のPhase Purityの向上に寄与する。 The composite hydroxide represented by the general composition formula obtained through the above process: LaFe x Ti 1-x (OH) α may be immediately subjected to calcination, but if necessary, the solution containing the precipitate is heated. You may use for aging. By aging by heating, the constituent metals ( La , Fe and Ti) in the composite hydroxide are repeatedly dispersed and re-agglomerated, so that the composition of the composite hydroxide can be made more uniform. This contributes to the improvement of the phase purity of the composite oxide.
加熱熟成の条件は、前記した分散・再凝集が可能な熱処理条件であれば特に限定されず、温度は50℃以上が好ましく、80℃以上がより好ましく、100℃以上が最も好ましい。加熱時間は温度条件に応じて適宜設定すればよいが、3〜7時間程度が好ましい。かかる条件設定の場合には、効率的に加熱熟成が行える。加熱手段は限定的ではないが、粉体特性向上の観点からはオートクレープ等が好ましい。 The heat aging conditions are not particularly limited as long as the heat treatment conditions allow the dispersion and reaggregation described above, and the temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and most preferably 100 ° C. or higher. The heating time may be appropriately set according to the temperature condition, but is preferably about 3 to 7 hours. In such a condition setting, heat aging can be performed efficiently. The heating means is not limited, but autoclave or the like is preferable from the viewpoint of improving powder characteristics.
複合水酸化物は、固液分離法により回収すればよい。固液分離法としては、ろ過、遠心分離、デカンテーション等が挙げられる。純水等を用いた洗浄を組み合わせて固液分離を行う場合には、不純物を除去し易いため好ましい。 The composite hydroxide may be recovered by a solid-liquid separation method. Examples of the solid-liquid separation method include filtration, centrifugation, and decantation. When solid-liquid separation is performed by combining cleaning with pure water or the like, it is preferable because impurities can be easily removed.
固液分離により得られた複合水酸化物ケーキは、必要に応じて、乾燥させる。乾燥方法は特に限定されず、自然乾燥・加熱乾燥のいずれでもよい。なお、空気中の二酸化炭素の吸着を防止する観点からは、真空乾燥が好ましい。 The composite hydroxide cake obtained by solid-liquid separation is dried as necessary. The drying method is not particularly limited, and any of natural drying and heat drying may be used. In addition, vacuum drying is preferable from the viewpoint of preventing adsorption of carbon dioxide in the air.
乾燥後の複合水酸化物は、適宜粉砕処理・分級処理を行ってもよい。また、乾燥状態の複合水酸化物に、1)Laを含む金属塩及び2)Feを含む金属塩、の少なくとも1種を含有する溶液を含浸させることにより、複合水酸化物の組成調整をさらに行ってもよい。かかる場合には、金属塩溶液の濃度は、0.1〜10重量%程度とすることが好ましい。 The dried composite hydroxide may be appropriately pulverized and classified. Further, the composition of the composite hydroxide is further adjusted by impregnating the dry composite hydroxide with a solution containing at least one of 1) a metal salt containing La and 2) a metal salt containing Fe. You may go. In such a case, the concentration of the metal salt solution is preferably about 0.1 to 10% by weight.
複合水酸化物は、次いで、焼成することにより、ペロブスカイト型複合酸化物となる。焼成条件は、ペロブスカイト型結晶への結晶化が進行する限り特に限定されない。通常は、500〜1000℃程度で1〜10時間程度焼成すればよく、ペロブスカイト型結晶に結晶化した段階で焼成を止めればよい。500℃未満の場合には、ペロブスカイト型結晶への結晶化が不十分となるおそれがある。1000℃を超える場合には、複合酸化物自体の比表面積が低くなるおそれがある。焼成雰囲気は限定されないが、通常は大気雰囲気でよい。 The composite hydroxide is then fired to form a perovskite composite oxide. The firing conditions are not particularly limited as long as crystallization into a perovskite crystal proceeds. Usually, the firing may be performed at about 500 to 1000 ° C. for about 1 to 10 hours, and the firing may be stopped at the stage of crystallization into a perovskite crystal. When the temperature is lower than 500 ° C., crystallization into a perovskite crystal may be insufficient. When it exceeds 1000 ° C., the specific surface area of the composite oxide itself may be lowered. Although the firing atmosphere is not limited, it may normally be an air atmosphere.
本発明のペロブスカイト型複合酸化物は、高温条件下における比表面積の減少が抑制されているため、CO、HC、NOxなどを浄化する排ガス浄化用三元触媒として有用であるだけでなく、ディーゼルエンジン排ガスに含まれる煤又は燃料微粒子を分解する燃焼触媒としても有用である。また、触媒担体としても使用できる。なお、本発明のペロブスカイト型複合酸化物は、自動車排ガス浄化用触媒以外の触媒及び触媒担体としても適用可能である。 The perovskite-type composite oxide of the present invention is not only useful as a three-way catalyst for exhaust gas purification that purifies CO, HC, NO x, etc., because the reduction in specific surface area under high temperature conditions is suppressed. It is also useful as a combustion catalyst for decomposing soot or fuel particles contained in engine exhaust gas. It can also be used as a catalyst carrier. The perovskite complex oxide of the present invention is also applicable as a catalyst and a catalyst carrier other than the catalyst for automobile exhaust gas purification.
本発明の製造方法によれば、高温条件下における比表面積の減少が抑制されている本発明のペロブスカイト型複合酸化物を効率的に製造できる。 According to the production method of the present invention, it is possible to efficiently produce the perovskite type complex oxide of the present invention in which the decrease in specific surface area under high temperature conditions is suppressed.
以下に実施例、参考例及び比較例を示し本発明の特徴を一層明確にする。但し、本発明は実施例の内容に限定されない。 Examples , reference examples and comparative examples are shown below to further clarify the features of the present invention. However, the present invention is not limited to the contents of the examples.
実施例、参考例及び比較例において、BET比表面積の測定は、比表面積計「フローソーブ−II」(マイクロメリティクス製)を用いて行った。 In Examples , Reference Examples and Comparative Examples , the BET specific surface area was measured using a specific surface area meter “Flowsorb-II” (manufactured by Micromeritics).
実施例1
<LaFexTi1−xOαの製造>
硝酸ランタン溶液(La2O3換算濃度として20重量%)335g、硝酸鉄(III)9水和物(Fe(NO3)3・9H2O、純度99%以上)30g及び四塩化チタン溶液(TiO2換算濃度として15重量%)175gを混合後、純水460gを加えて、均一溶液となるまで撹拌した。
Example 1
<Production of LaFe x Ti 1-x O α >
Lanthanum nitrate solution (20 wt% as La 2 O 3 reduced concentration) 335 g, iron nitrate (III) 9 hydrate (Fe (NO 3) 3 · 9H 2 O, 99% or more) 30 g and titanium tetrachloride solution ( After mixing 175 g of TiO 2 equivalent concentration (15 wt%), 460 g of pure water was added and stirred until a uniform solution was obtained.
金属塩の混合溶液の濃度は、LaFexTi1−xOαの濃度に換算すると、x=0.2であった。即ち、La:Fe:Tiのモル比は1:0.2:0.8であった。 Concentration of the mixed solution of the metal salt, in terms of the concentration of LaFe x Ti 1-x O α , was x = 0.2. That is, the molar ratio of La: Fe: Ti was 1: 0.2: 0.8.
この混合溶液を、25%アンモニア水500gを水で3倍に希釈した希釈アンモニア水1.5L中に一定速度で約1時間かけて添加し、複合水酸化物を生成させた。 This mixed solution was added to 1.5 L of diluted aqueous ammonia obtained by diluting 500 g of 25% aqueous ammonia three times with water at a constant rate over about 1 hour to form a composite hydroxide.
添加後の溶液中に生成した、LaFe0.2Ti0.8(OH)2.5≦α≦3で表される複合水酸化物の量をP(mol)とし、添加後の溶液の全量をQ(L)とし、添加開始から添加終了までの時間をR(時間)とした場合に、P/(Q・R)の値は0.16であった。 The total amount of the solution after the addition, where P (mol) is the amount of the composite hydroxide represented by LaFe 0.2 Ti 0.8 (OH) 2.5 ≦ α ≦ 3 generated in the solution after the addition Is Q (L), and the time from the start of addition to the end of addition is R (time), the value of P / (Q · R) was 0.16.
沈殿生成後の溶液を55℃で3時間保持することにより、加熱熟成を行った。次いで、生成した複合水酸化物をろ過後、純水を用いて水洗を行った。次いで、複合水酸化物を乾燥後、電気炉を用いて、大気雰囲気下、600℃で10時間焼成した。 The solution after precipitation was aged by heating at 55 ° C. for 3 hours. Next, the produced composite hydroxide was filtered and washed with pure water. Next, the composite hydroxide was dried and then baked at 600 ° C. for 10 hours in an air atmosphere using an electric furnace.
以上の過程を経て、LaFe0.2Ti0.8O2.5≦α≦3で表されるペロブスカイト型複合酸化物100gを得た。この複合酸化物のBET比表面積は29.6m2/gであった。 Through the above process, 100 g of a perovskite complex oxide represented by LaFe 0.2 Ti 0.8 O 2.5 ≦ α ≦ 3 was obtained. The composite oxide had a BET specific surface area of 29.6 m 2 / g.
前記複合酸化物を大気雰囲気下、1000℃で3時間焼成後のBET比表面積は21.7m2/gであった。 The BET specific surface area after firing the composite oxide at 1000 ° C. for 3 hours in the air atmosphere was 21.7 m 2 / g.
前記複合酸化物のX線回折結果を図2に示す。図2の結果から算出される複合酸化物のPhase Purityは68%であった。 The X-ray diffraction result of the composite oxide is shown in FIG. The phase purity of the composite oxide calculated from the results of FIG. 2 was 68%.
実施例2〜3、参考例及び比較例1〜3
La:Fe:Tiのモル比を表1の通りとした以外は、実施例1と同様にしてペロブスカイト型複合酸化物を製造した。
Examples 2-3, Reference Examples and Comparative Examples 1-3
A perovskite complex oxide was produced in the same manner as in Example 1 except that the molar ratio of La: Fe: Ti was changed as shown in Table 1.
得られた複合酸化物の特性を表1に示す。 Table 1 shows the characteristics of the obtained composite oxide.
比較例4
金属塩の混合溶液に希釈アンモニア水を添加し、且つ、La:Fe:Tiのモル比を1:0.6:0.4とした以外は、実施例1同様にしてペロブスカイト型複合酸化物を製造した。
Comparative Example 4
A perovskite complex oxide was prepared in the same manner as in Example 1 except that diluted aqueous ammonia was added to the mixed solution of metal salts and the molar ratio of La: Fe: Ti was 1: 0.6: 0.4. Manufactured.
得られた複合酸化物の特性を表1に示す。 Table 1 shows the characteristics of the obtained composite oxide.
*1:乾燥状態の複合水酸化物を大気雰囲気下、600℃で10時間焼成後の比表面積
*2:大気雰囲気下、さらに1000℃で3時間焼成後の比表面積
表1の結果からは、実施例1〜3のペロブスカイト型複合酸化物は、高温条件下での比表面積の減少が抑制されていることが分かる。
* 1: Specific surface area after calcining the composite hydroxide in the dry state at 600 ° C. for 10 hours in the air atmosphere * 2: Specific surface area after calcining at 1000 ° C. for 3 hours in the air atmosphere From the results in Table 1, It can be seen that the perovskite complex oxides of Examples 1 to 3 are suppressed from decreasing in specific surface area under high temperature conditions.
比較例4(金属塩の混合溶液にアルカリ溶液を添加する製造方法)のペロブスカイト型複合酸化物は、高温条件下での比表面積の減少が、同モル比の実施例3のペロブスカイト型複合酸化物と比べて非常に大きく、またPhase Purityは非常に低いものであった。 The perovskite type complex oxide of Comparative Example 4 (manufacturing method in which an alkali solution is added to a mixed solution of metal salts) has a specific surface area decrease under a high temperature condition, but the perovskite type complex oxide of Example 3 having the same molar ratio. The Phase Purity was very low.
Claims (4)
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表されるペロブスカイト型複合酸化物であって、
大気雰囲気下、1000℃で3時間焼成後のBET比表面積が20m2/g以上であることを特徴とする複合酸化物。 General composition formula: LaFe x Ti 1-x O α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
A perovskite complex oxide represented by:
A composite oxide having a BET specific surface area of 20 m 2 / g or more after firing at 1000 ° C. for 3 hours in an air atmosphere.
次式:Phase Purity(%)=Imax/(Imax+I´max)
から算出されるPhase Purityが95%以上である、請求項1に記載の複合酸化物。 In the X-ray diffraction result (relation between diffraction angle and diffraction X-ray intensity) of the composite oxide, the maximum value of the diffraction X-ray intensity caused by the perovskite structure is Imax, and the diffraction X-ray intensity not caused by the perovskite structure Is the maximum value of I′max,
The following formula: Phase Purity (%) = Imax / (Imax + I′max)
2. The composite oxide according to claim 1, wherein the phase purity calculated from is 95% or more.
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表されるペロブスカイト型複合酸化物の製造方法であって、
1)Laを含む金属塩と、2)Feを含む金属塩と、3)チタン塩とを溶解した混合溶液を、アルカリ溶液に添加することによって複合水酸化物を生成後、当該複合水酸化物を焼成することを特徴とする製造方法。 General composition formula: LaFe x Ti 1-x O α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
A method for producing a perovskite complex oxide represented by:
A composite hydroxide is produced by adding a mixed solution in which 1) a metal salt containing La , 2) a metal salt containing Fe , and 3) a titanium salt is dissolved in an alkaline solution, and then the composite hydroxide. The manufacturing method characterized by baking.
1)添加後の溶液中に生成した、一般組成式:LaFe xTi1−x(OH)α
〔式中、xは0.17≦x≦0.64の数値を示す。αは2.5≦α≦3の数値を示す。〕
で表される複合水酸化物の量をP(mol)とし、
2)添加後の溶液の全量をQ(L)とし、
3)添加開始から添加終了までの時間をR(時間)とした場合に、
4)0.01≦P/(Q・R)≦0.5
を満たす速度である、請求項3に記載の製造方法。 The rate at which the mixed solution is added to the alkaline solution is
1) General composition formula generated in the solution after the addition: LaFe x Ti 1-x (OH) α
Wherein, x is the numerical of 0.17 ≦ x ≦ 0.64. α represents a numerical value of 2.5 ≦ α ≦ 3. ]
The amount of the composite hydroxide represented by P is (mol),
2) Let the total amount of the solution after addition be Q (L),
3) When the time from the start of addition to the end of addition is R (time),
4) 0.01 ≦ P / (Q · R) ≦ 0.5
The manufacturing method of Claim 3 which is the speed | rate which satisfy | fills.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059347A JP4601462B2 (en) | 2005-03-03 | 2005-03-03 | Perovskite complex oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059347A JP4601462B2 (en) | 2005-03-03 | 2005-03-03 | Perovskite complex oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006240923A JP2006240923A (en) | 2006-09-14 |
JP4601462B2 true JP4601462B2 (en) | 2010-12-22 |
Family
ID=37047701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005059347A Expired - Fee Related JP4601462B2 (en) | 2005-03-03 | 2005-03-03 | Perovskite complex oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4601462B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4855012B2 (en) * | 2005-08-18 | 2012-01-18 | 株式会社ノリタケカンパニーリミテド | Oxygen ion conductor, oxygen separation membrane, and hydrocarbon oxidation reactor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258628A (en) * | 1988-12-26 | 1990-10-19 | Nippon Mining Co Ltd | Production of plzt ceramics raw material powder |
JPH0497915A (en) * | 1990-08-10 | 1992-03-30 | Ube Ind Ltd | Manufacture of garnet fine particle powder |
JPH0549943A (en) * | 1991-08-20 | 1993-03-02 | Sakai Chem Ind Co Ltd | Oxidizing catalyst |
JPH05261289A (en) * | 1992-01-20 | 1993-10-12 | Sekiyu Sangyo Kasseika Center | Catalyst for catalytically reducing nox |
JPH1179746A (en) * | 1997-08-29 | 1999-03-23 | Ishihara Sangyo Kaisha Ltd | Perovskite composite oxide and its production |
JP2003531809A (en) * | 2000-05-04 | 2003-10-28 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Substituted barium titanate and barium strontium titanate ferroelectric composition |
JP2004269327A (en) * | 2003-03-11 | 2004-09-30 | National Institute Of Advanced Industrial & Technology | Method of manufacturing lanthanide perovskite compound |
-
2005
- 2005-03-03 JP JP2005059347A patent/JP4601462B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02258628A (en) * | 1988-12-26 | 1990-10-19 | Nippon Mining Co Ltd | Production of plzt ceramics raw material powder |
JPH0497915A (en) * | 1990-08-10 | 1992-03-30 | Ube Ind Ltd | Manufacture of garnet fine particle powder |
JPH0549943A (en) * | 1991-08-20 | 1993-03-02 | Sakai Chem Ind Co Ltd | Oxidizing catalyst |
JPH05261289A (en) * | 1992-01-20 | 1993-10-12 | Sekiyu Sangyo Kasseika Center | Catalyst for catalytically reducing nox |
JPH1179746A (en) * | 1997-08-29 | 1999-03-23 | Ishihara Sangyo Kaisha Ltd | Perovskite composite oxide and its production |
JP2003531809A (en) * | 2000-05-04 | 2003-10-28 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Substituted barium titanate and barium strontium titanate ferroelectric composition |
JP2004269327A (en) * | 2003-03-11 | 2004-09-30 | National Institute Of Advanced Industrial & Technology | Method of manufacturing lanthanide perovskite compound |
Also Published As
Publication number | Publication date |
---|---|
JP2006240923A (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344805B2 (en) | Zirconia-based composite oxide and method for producing the same | |
US7919429B2 (en) | Zirconia-ceria-yttria-based mixed oxide and process for producing the same | |
JP4053623B2 (en) | Zirconium-cerium composite oxide and method for producing the same | |
KR101286799B1 (en) | Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis | |
JP4789794B2 (en) | Cerium-zirconium composite oxide and method for producing the same | |
EP1872851B1 (en) | Cerium oxide-zirconium oxide-based mixed oxide and method for the production thereof | |
JP4579162B2 (en) | Zirconium oxide and cerium oxide based compositions with low maximum reducible temperature, process for their preparation and their use as catalysts | |
JP5190196B2 (en) | Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter | |
JP2005170774A (en) | Compound oxide, method for producing the same, and exhaust gas cleaning catalyst | |
JPWO2007052821A1 (en) | Catalyst carrier particles, exhaust gas purification catalyst, and production method thereof | |
JP2005231951A (en) | Multiple oxide and catalyst for purification of exhaust gas | |
JP5063980B2 (en) | Composite oxide and filter for exhaust gas purification catalyst | |
KR101574553B1 (en) | Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification | |
KR101593683B1 (en) | Composite oxide | |
JP4928931B2 (en) | Ceria-zirconia composite oxide and method for producing the same | |
JP3956733B2 (en) | Cerium-zirconium composite metal oxide for exhaust gas purification catalyst | |
WO2013073381A1 (en) | Composite oxide | |
JP2013166130A (en) | Exhaust gas cleaning three way catalyst | |
JP4768475B2 (en) | Composite oxide and filter for PM combustion catalyst | |
JP4601462B2 (en) | Perovskite complex oxide and method for producing the same | |
JP4263470B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4972868B2 (en) | Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use thereof | |
JP7178526B1 (en) | Porous zirconia-based composite oxide and method for producing porous zirconia-based composite oxide | |
JP2006256911A (en) | Preparation method of ceria-zirconia-based oxide | |
JP2005179093A (en) | Ceria-zirconia based compound oxide and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4601462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |