[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005231951A - Multiple oxide and catalyst for purification of exhaust gas - Google Patents

Multiple oxide and catalyst for purification of exhaust gas Download PDF

Info

Publication number
JP2005231951A
JP2005231951A JP2004043549A JP2004043549A JP2005231951A JP 2005231951 A JP2005231951 A JP 2005231951A JP 2004043549 A JP2004043549 A JP 2004043549A JP 2004043549 A JP2004043549 A JP 2004043549A JP 2005231951 A JP2005231951 A JP 2005231951A
Authority
JP
Japan
Prior art keywords
composite oxide
aqueous solution
osc
mol
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043549A
Other languages
Japanese (ja)
Inventor
Shoichi Yamauchi
正一 山内
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004043549A priority Critical patent/JP2005231951A/en
Publication of JP2005231951A publication Critical patent/JP2005231951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple oxide which has a pyrochlore structure realizing both a high oxygen occlusion/release capacity and a high heat resistance, and to produce a catalyst for purification of exhaust gas, which uses the multiple oxide as a carrier. <P>SOLUTION: The multiple oxide has the pyrochlore structure containing Ce and Zr. The multiple oxide having the high oxygen occlusion/release capacity and the high heat resistance is obtained by replacing 40-90% of the Ce with rare-earth or alkaline-earth ions. The catalyst for purification of exhaust gas is obtained by using the multiple oxide as the carrier and depositing at least one noble metal such as Pt, Rh, Pd, Ir and Ru on the carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は酸素貯蔵材料、中でも、高い酸素吸蔵放出能力(以下、OSCという)と高い耐熱性を有する複合酸化物及び該複合酸化物を担体とする排ガス浄化用触媒に関するものである。   The present invention relates to an oxygen storage material, in particular, a composite oxide having high oxygen storage / release capability (hereinafter referred to as OSC) and high heat resistance, and an exhaust gas purifying catalyst using the composite oxide as a carrier.

従来、自動車の排ガス中の有害物質である一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を浄化する方法として三元触媒が用いられている。三元触媒でCO及びHCの酸化と窒素酸化物(NOx)の還元とを同時に行って排ガスを浄化する。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性ハニカム基材にγ−アルミナからなる担体層を形成し、その担体層に白金(Pt)、ロジウム(Rh)、パラジウム(Pd)などの触媒金属を担持させたものが広く知られている。   Conventionally, a three-way catalyst has been used as a method for purifying carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are harmful substances in automobile exhaust gas. The exhaust gas is purified by simultaneously performing oxidation of CO and HC and reduction of nitrogen oxide (NOx) with a three-way catalyst. As such a three-way catalyst, for example, a carrier layer made of γ-alumina is formed on a heat-resistant honeycomb substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), palladium (Pd) is formed on the carrier layer. And the like, on which a catalytic metal such as) is supported is widely known.

ところで排ガス浄化用触媒に用いられる担体の条件としては、比表面積が大きく耐熱性が高いことが挙げられ、一般にはアルミナ、シリカ、ジルコニア、チタニアなどが用いられることが多い。   By the way, the condition of the carrier used for the exhaust gas purifying catalyst is that the specific surface area is large and the heat resistance is high. Generally, alumina, silica, zirconia, titania and the like are often used.

また、三元触媒の性能は排ガスの組成、特に酸素濃度に大きな影響を受けるため、排ガス中の酸素濃度をモニターしながら、空燃比の制御を行っている。さらにはOSCを持つセリア(CeO)を助触媒または担体として使用し、排ガスの酸素濃度の変動を緩和している。このOSC材料の条件としてはOSCが高いことと同時に比表面積が大きく耐熱性が高いことが挙げられる。 The performance of the three-way catalyst is greatly influenced by the composition of the exhaust gas, particularly the oxygen concentration. Therefore, the air-fuel ratio is controlled while monitoring the oxygen concentration in the exhaust gas. Further, ceria (CeO 2 ) with OSC is used as a promoter or support to mitigate fluctuations in the oxygen concentration of the exhaust gas. The conditions for this OSC material include a high specific surface area and high heat resistance as well as a high OSC.

ところが従来の排ガス浄化用触媒では、800℃を越えるような高温にさらされると、シンタリングによる担体の比表面積の低下、触媒金属の粒成長が生じ、特にCeOは高温での比表面積の低下が大きいためOSCも低下し、浄化性能が著しく低下するという問題点があった。 However, when the conventional exhaust gas purifying catalyst is exposed to a high temperature exceeding 800 ° C., the specific surface area of the support is reduced due to sintering, and grain growth of the catalytic metal occurs. In particular, CeO 2 has a low specific surface area at high temperature. Therefore, there is a problem that the OSC is lowered and the purification performance is remarkably lowered.

また、近年の排ガス規制の強化により、エンジン始動からごく短時間にも排ガスを浄化する必要性がきわめて高くなっている。エンジン始動時は排ガス温度が低く十分に触媒が働かない。そのため触媒をエンジンの近くに配置することで排ガス温度を高くし、触媒が働くようにしている。一方で触媒をエンジンに近づける場合、高速運転時には触媒は800℃、さらには1000℃に達する排ガスにさらされる。このため、担体の高耐熱性への要求はますます高まっている。   In addition, due to the recent tightening of exhaust gas regulations, the necessity of purifying exhaust gas within a very short time after engine startup has become extremely high. When starting the engine, the exhaust gas temperature is low and the catalyst does not work sufficiently. Therefore, the exhaust gas temperature is raised by arranging the catalyst near the engine so that the catalyst works. On the other hand, when the catalyst is brought closer to the engine, the catalyst is exposed to exhaust gas reaching 800 ° C. and further 1000 ° C. during high-speed operation. For this reason, the request | requirement to the high heat resistance of a support | carrier is increasing further.

OSC材料としてのCeOは開発初期はBaOやLaをCeOに添加し、耐熱性およびOSCの改善が行われた。最近では、等モル比程度のCeOとZrOが固溶した材料が開発され、従来のCeO主体の材料に比べ大幅なOSCと耐熱性の改善が達成された(例えば、非特許文献1参照)。さらにこのCeOとZrOの固溶体をアルミナと混合したものが更に耐熱性が向上することが示されている(例えば、非特許文献1参照)。 CeO 2 as an OSC material was initially developed with BaO and La 2 O 3 added to CeO 2 to improve heat resistance and OSC. Recently, a material in which CeO 2 and ZrO 2 at an equimolar ratio are solid-dissolved has been developed, and a significant improvement in OSC and heat resistance has been achieved as compared with conventional CeO 2 -based materials (for example, Non-Patent Document 1). reference). Furthermore, it has been shown that heat resistance is further improved by mixing a solid solution of CeO 2 and ZrO 2 with alumina (for example, see Non-Patent Document 1).

ところが、上記したCeOとZrOの固溶体でも、OSCはまだ理論値に対して半分程度に留まり、さらなるOSCの向上が求められている。 However, even in the solid solution of CeO 2 and ZrO 2 described above, the OSC still remains about half of the theoretical value, and further improvement of the OSC is required.

そこで、セリウム(III)塩とジルコニウム塩を含む溶液から共沈法によって沈殿を生成し、その沈殿を不活性雰囲気又は非酸化雰囲気下で800〜1000℃に加熱保持することにより、パイロクロア相に帰属するX線回折ピークを有し、高いOSCを示すCeO−ZrO複合酸化物を得ることが提案されている(例えば、特許文献1参照)。 Therefore, a precipitate is produced from a solution containing a cerium (III) salt and a zirconium salt by a coprecipitation method, and the precipitate is heated and held at 800 to 1000 ° C. in an inert atmosphere or a non-oxidizing atmosphere, thereby belonging to the pyrochlore phase. It has been proposed to obtain a CeO 2 —ZrO 2 composite oxide having an X-ray diffraction peak that exhibits high OSC (see, for example, Patent Document 1).

しかしながら、パイロクロア相を有するCeO−ZrO複合酸化物は酸化雰囲気中、特に1000℃の条件に晒されるとパイロクロア相特有のCeとZrの規則配列が壊れ、OSCが低下するという不都合が生じる。 However, when the CeO 2 —ZrO 2 composite oxide having a pyrochlore phase is exposed to an oxidizing atmosphere, particularly at a temperature of 1000 ° C., the ordered arrangement of Ce and Zr peculiar to the pyrochlore phase is broken, resulting in a problem that OSC is lowered.

特開平11−165067号公報Japanese Patent Laid-Open No. 11-165067

マテリアルインテグレーション Vol.16、No.4(2003年)第3−14頁Material Integration Vol. 16, no. 4 (2003) pp. 3-14

特許文献1(特開平11−165067号公報)に記載の方法によれば、確かに高いOSCを有するCeO−ZrO複合酸化物が得られる。しかしながら該複合酸化物は酸化雰囲気中、特に1000℃の条件に晒されるとパイロクロア相特有のCeとZrの規則配列が壊れ、OSCが低下するという不都合が生じる。 According to the method described in Patent Document 1 (Japanese Patent Laid-Open No. 11-165067), a CeO 2 —ZrO 2 composite oxide having a high OSC can be obtained. However, when the composite oxide is exposed to an oxidizing atmosphere, particularly at a temperature of 1000 ° C., the ordered arrangement of Ce and Zr peculiar to the pyrochlore phase is broken, resulting in a disadvantage that OSC is lowered.

本発明はこのような事情に鑑みてなされたものであり、高いOSCと高い耐熱性を有するパイロクロア構造からなるCeとZrを含む複合酸化物を提供するとともに、該複合酸化物を担体とした優れた排ガス浄化用触媒を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a composite oxide containing Ce and Zr having a pyrochlore structure having high OSC and high heat resistance, and is excellent in using the composite oxide as a carrier. An object of the present invention is to provide an exhaust gas purification catalyst.

本発明の複合酸化物は、上記課題を解決したものであり、パイロクロア構造を有するCeとZrとを含む複合酸化物であって、該パイロクロア構造中のCeの一部を、Ce以外の希土類又はCa、Sr、Baの少なくとも1種類で置換したことを特徴とする複合酸化物である。より具体的には、CeとZrとを含む複合酸化物であって、Ceの価数が3価の時、以下の組成式で表されるパイロクロア構造を有することを特徴とする複合酸化物である。
(Ce1−x−y,RE,AE(Zr1−y,M
ここで、REはCe以外の希土類イオンの少なくとも1種類、AEはCa、Sr、Baの少なくとも1種類、MはNb、Taの少なくとも1種類,0≦x≦0.9,0≦y≦0.9,0.4≦x+y≦0.9である。
The composite oxide of the present invention is a solution of the above-mentioned problems, and is a composite oxide containing Ce and Zr having a pyrochlore structure, wherein a part of Ce in the pyrochlore structure is replaced with a rare earth other than Ce or The composite oxide is characterized by being substituted with at least one of Ca, Sr, and Ba. More specifically, it is a composite oxide containing Ce and Zr, and having a pyrochlore structure represented by the following composition formula when the valence of Ce is trivalent: is there.
(Ce 1-x-y, RE x, AE y) 2 (Zr 1-y, M y) 2 O 7
Here, RE is at least one kind of rare earth ions other than Ce, AE is at least one kind of Ca, Sr, and Ba, M is at least one kind of Nb and Ta, 0 ≦ x ≦ 0.9, 0 ≦ y ≦ 0 .9, 0.4 ≦ x + y ≦ 0.9.

本発明のパイロクロア構造とは、構成する金属元素がCeとZrのみから成るときは化学式CeZrで表され、CeとZrが酸素を挟んで交互に規則配列した構造である。この複合酸化物は還元状態では、Ceの価数が3+であり、パイロクロア相であるが、酸化状態では、Ceの価数が4+となり、化学式CeZrOで表されるκ構造となる。即ち、この複合酸化物では、酸化雰囲気では、パイロクロア構造のCe3+がCe4+に酸化され、化学式CeZrOで表されるκ構造に変化し、逆にκ構造は還元雰囲気ではCe4+がCe3+に還元され、化学式CeZrで表さるパイロクロア構造に変化する。このように、この複合酸化物は、酸化還元状態に応じて、パイロクロア構造とκ構造との間を可逆的に変化するCeとZrの複合酸化物であり、このパイロクロア構造とκ構造との間の変化に伴い、酸素が吸蔵又は放出される。この複合酸化物では、CeZr中のCeのほぼ100%が酸素の吸蔵に利用され、高いOSCを示す。 The pyrochlore structure of the present invention is a structure represented by the chemical formula Ce 2 Zr 2 O 7 when the constituent metal element is composed only of Ce and Zr, and Ce and Zr are alternately arranged regularly with oxygen interposed therebetween. In the reduced state, this composite oxide has a valence of Ce of 3+ and a pyrochlore phase. However, in the oxidized state, the valence of Ce becomes 4+ and has a κ structure represented by the chemical formula CeZrO 4 . That is, in this composite oxide, in an oxidizing atmosphere, Ce 3+ having a pyrochlore structure is oxidized to Ce 4+ to change to a κ structure represented by the chemical formula CeZrO 4. Conversely, in a κ structure, Ce 4+ is converted to Ce 3+ in a reducing atmosphere. To a pyrochlore structure represented by the chemical formula Ce 2 Zr 2 O 7 . As described above, this composite oxide is a composite oxide of Ce and Zr that reversibly changes between the pyrochlore structure and the κ structure according to the redox state, and between this pyrochlore structure and the κ structure. Oxygen is occluded or released in accordance with the change in. In this composite oxide, almost 100% of Ce in Ce 2 Zr 2 O 7 is used for oxygen storage and exhibits high OSC.

一方で、熱安定性に関しては、κ構造が1000℃付近の酸化処理で構造が壊れ、OSCが低下する問題がある。この原因として、κ構造ではCeの価数が4+となって、Zrの価数と同じとなり、そのイオン半径もZrのイオン半径に近くなる。また、配位数はパイロクロア構造ではCeが8配位、Zrが6配位であるが、κ構造ではともに8配位となる。このように、κ構造ではCeとZrの価数、イオン半径、配位数がほぼ同じとなり、CeとZrの置換が起こり、規則性が壊れ、OSCが低下すると推測する。   On the other hand, with respect to thermal stability, there is a problem that the κ structure is broken by oxidation treatment near 1000 ° C., and OSC is lowered. As a cause of this, in the κ structure, the valence of Ce becomes 4+, which is the same as the valence of Zr, and its ionic radius is also close to the ionic radius of Zr. In the pyrochlore structure, Ce is 8-coordinate and Zr is 6-coordinate, but both are 8-coordinate in the κ structure. Thus, in the κ structure, the valence, ion radius, and coordination number of Ce and Zr are almost the same, and substitution of Ce and Zr occurs, the regularity is broken, and it is assumed that OSC is lowered.

本発明者らは、上記のパイロクロア構造の酸化条件での熱安定性、つまりκ相の熱安定性は、パイロクロア構造中のCeの一部を、Ce以外の希土類イオン又はCa、Sr、Baの少なくとも1種類で置換することにより、著しく向上させ得ることを見出した。   The present inventors have stated that the thermal stability of the pyrochlore structure under the oxidation conditions, that is, the thermal stability of the κ phase is such that a part of Ce in the pyrochlore structure is replaced with rare earth ions other than Ce or Ca, Sr, Ba. It has been found that it can be remarkably improved by substitution with at least one kind.

価数変化のないCe以外の希土類イオンでパイロクロア構造中のCeの一部を置換することにより、Ceの価数が4+となるκ構造においては、前記により置換されたCeイオンの数の半分の数の酸素欠陥が生じる結果、κ構造中のZrサイトは7配位又は6配位となる。その結果、イオン半径の大きなCe4+は8配位のCeサイトを、イオン半径の小さなZr4+は7配位又は6配位のZrサイトを選択しやすくなる。これによりCeとZrの置換が生じにくくなり、CeとZrの規則配列が乱されることがなくなる、つまり、κ構造の熱安定性が向上すると考えられる。 By substituting a part of Ce in the pyrochlore structure with a rare earth ion other than Ce having no change in valence, in the κ structure in which the valence of Ce becomes 4+, half of the number of Ce ions substituted in the above manner. As a result of the occurrence of a number of oxygen defects, the Zr site in the κ structure becomes 7-coordinate or 6-coordinated. As a result, Ce 4+ having a large ionic radius can easily select an 8-coordinate Ce site, and Zr 4+ having a small ionic radius can easily select a 7-coordinate or 6-coordinate Zr site. This makes it difficult for the substitution of Ce and Zr to occur, so that the ordered arrangement of Ce and Zr is not disturbed, that is, the thermal stability of the κ structure is considered to be improved.

なお、パイロクロア構造中のCeの置換は、価数変化のないCa、Sr、Baの少なくとも1種類で行っても同様の効果が得られるが、この場合には、全体としての電荷を補償するために、Zrとイオン半径の類似したNb、Taの少なくとも1種類で、Ceの置換量と同量のZrを置換する。   Although the substitution of Ce in the pyrochlore structure can be performed with at least one of Ca, Sr, and Ba having no change in valence, the same effect can be obtained. In this case, however, the charge as a whole is compensated. In addition, at least one of Nb and Ta having an ionic radius similar to that of Zr is substituted with the same amount of Zr as that of Ce.

本発明の上記組成式で表されるパイロクロア構造を有する複合酸化物の特徴は、パイロクロア構造を構成するCeの40%から90%をCe以外の希土類イオンの少なくとも1種類、またはCa、Sr、Baのアルカリ土類金属イオンの少なくとも1種類で置換したことである。なお、上記のようにCeをCa、Sr、Baといったアルカリ土類金属で置換した場合は、置換量と同量のZrをNbまたはTaで置換する。   The feature of the composite oxide having a pyrochlore structure represented by the above composition formula of the present invention is that 40% to 90% of Ce constituting the pyrochlore structure is at least one kind of rare earth ions other than Ce, or Ca, Sr, Ba And at least one kind of alkaline earth metal ion. When Ce is replaced with an alkaline earth metal such as Ca, Sr, or Ba as described above, the same amount of Zr is replaced with Nb or Ta.

本発明の上記複合酸化物のパイロクロア相は酸化処理によりκ相になった場合、Ceを置換したイオンの数の半数の酸素イオン欠陥が生じ、Zrの配位数は大部分は7配位または6配位となる。組成式としては以下のようになる。
(Ce1−x−y,RE,AE(Zr1−y,M8−(x+y)
前記と同様、REはCe以外の希土類イオンの少なくとも1種類、AEはCa、Sr、Baの少なくとも1種類、MはNb、Taの少なくとも1種類,0≦x≦0.9,0≦y≦0.9,0.4≦x+y≦0.9である。
When the pyrochlore phase of the composite oxide of the present invention is converted to a κ phase by oxidation treatment, oxygen ion defects that are half the number of ions substituted with Ce occur, and the coordination number of Zr is mostly 7-coordinate or 6 coordination. The composition formula is as follows.
(Ce 1-x-y, RE x, AE y) 2 (Zr 1-y, M y) 2 O 8- (x + y)
As described above, RE is at least one rare earth ion other than Ce, AE is at least one of Ca, Sr, and Ba, M is at least one of Nb and Ta, 0 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.9, 0.4 ≦ x + y ≦ 0.9.

Ceのサイトは8配位であり、Zrのサイトは大部分が7配位または6配位であるために、イオン半径の大きなCe4+は8配位を、イオン半径の小さなZr4+は7配位または6配位を取りやすく、CeとZrの置換が起こりにくくなり、酸化条件での熱安定性が向上したものと推測される。 Ce sites are 8-coordinate, and most of the Zr sites are 7-coordinate or 6-coordinated. Therefore, Ce 4+ with a large ionic radius is 8-coordinated, and Zr 4+ with a small ionic radius is 7-coordinated. It is presumed that the position or hexacoordination is easy to take, the substitution of Ce and Zr hardly occurs, and the thermal stability under oxidation conditions is improved.

Ceサイトを置換するイオンとしては、Ce以外の希土類イオンの少なくとも1種類、またはCa、Sr、Baのアルカリ土類金属イオンの少なくとも1種類である。   The ions replacing the Ce site are at least one kind of rare earth ions other than Ce, or at least one kind of alkaline earth metal ions of Ca, Sr and Ba.

さらには希土類イオンの中ではLa、Nd、Sm、Gd、Yがイオン半径の関係からパイロクロア構造を形成し易いので好ましい。またコスト面を考えるとLa、Yが特に好ましい。アルカリ土類イオンとしてはCa、Srがイオン半径の関係からパイロクロア構造を形成し易いので好ましい。   Furthermore, among rare earth ions, La, Nd, Sm, Gd, and Y are preferable because they easily form a pyrochlore structure because of the relationship of the ionic radii. In view of cost, La and Y are particularly preferable. As alkaline earth ions, Ca and Sr are preferable because they can easily form a pyrochlore structure because of the ionic radius.

希土類イオンでの置換量xとアルカリ土類金属イオンでの置換量yは0≦x≦0.9,0≦y≦0.9,0.4≦x+y≦0.9である。前述のように、本発明の複合酸化物は、RE又はAEのいずれかでCeを置換することでも効果が得られるため、x及びyは各々単独では0であっても良い。ただし、置換量の合計(x+y)は0.4以上である。(x+y)が0.4より小さいとCeの置換量が少なく、酸化条件でのκ相の熱安定性が大きく低下するために好ましくない。また(x+y)が0.9を超えるとCeの量が少なくなり、OSC量が低下するために好ましくない。   The substitution amount x with rare earth ions and the substitution amount y with alkaline earth metal ions are 0 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.9, and 0.4 ≦ x + y ≦ 0.9. As described above, since the effect of the composite oxide of the present invention can be obtained by substituting Ce with either RE or AE, x and y may each be 0 alone. However, the total substitution amount (x + y) is 0.4 or more. When (x + y) is smaller than 0.4, the amount of Ce substitution is small, and the thermal stability of the κ phase under oxidation conditions is greatly reduced, which is not preferable. Further, when (x + y) exceeds 0.9, the amount of Ce decreases, and the OSC amount decreases, which is not preferable.

(x+y)のより好ましい範囲は0.5≦x+y≦0.8である。この範囲では酸化条件でのκ相の熱安定性が高く、またOSC量も多いため特に好ましい。   A more preferable range of (x + y) is 0.5 ≦ x + y ≦ 0.8. Within this range, the thermal stability of the κ phase under oxidizing conditions is high and the amount of OSC is also large, which is particularly preferable.

さらに、RE(Ce以外の希土類イオンの少なくとも1種類)のみによりCeの置換を行う場合、すなわち、y=0の場合は、0.4≦x≦0.9であることが好ましく、0.5≦x≦0.8であることがさらに好ましい。なお、原料の取り扱い、合成の簡便性を考慮するとCe置換イオンとしてはRE(Ce以外の希土類イオンの少なくとも1種類)が好ましい。   Further, when Ce is substituted only by RE (at least one kind of rare earth ions other than Ce), that is, when y = 0, it is preferable that 0.4 ≦ x ≦ 0.9, More preferably, ≦ x ≦ 0.8. In consideration of the handling of raw materials and the ease of synthesis, the Ce substitution ion is preferably RE (at least one kind of rare earth ions other than Ce).

本発明の複合酸化物のOSCは含まれるCeの量により決まるが、Ceのほぼ全量がガス雰囲気によりCe3+とCe4+の間で酸化還元に関与することができるため、高いOSCを示す。 The OSC of the composite oxide of the present invention is determined by the amount of Ce contained. However, since almost the entire amount of Ce can participate in redox between Ce 3+ and Ce 4+ in a gas atmosphere, high OSC is exhibited.

本発明の複合酸化物の製造方法は固相法、液相法、アルコキシド法等、特に制限されるものではない。以下に製造方法の一例を示す。本発明の複合酸化物の製造方法では、セリウム化合物とジルコニウム化合物の水溶液とRE(Ce以外の希土類イオン)化合物の水溶液、AE(Ca、Sr、Ba)化合物の水溶液、M(Nb、Ta)化合物の水溶液と沈殿剤の水溶液とを混合して沈殿物を生成し、生成した沈殿物を乾燥した後、還元性雰囲気にて焼成を行っている。   The method for producing the composite oxide of the present invention is not particularly limited, such as a solid phase method, a liquid phase method, and an alkoxide method. An example of a manufacturing method is shown below. In the method for producing a composite oxide of the present invention, an aqueous solution of a cerium compound and a zirconium compound, an aqueous solution of an RE (rare earth ion other than Ce) compound, an aqueous solution of an AE (Ca, Sr, Ba) compound, and an M (Nb, Ta) compound An aqueous solution of the above and an aqueous solution of a precipitant are mixed to form a precipitate, and the generated precipitate is dried and then fired in a reducing atmosphere.

セリウム化合物としては、例えば硝酸セリウム、塩化セリウムといった硝酸塩、硫酸塩、塩化物などの水溶性化合物を用いることができる。また、ジルコニウム化合物としては、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウムといった硝酸塩、硫酸塩、塩化物などの水溶性化合物を用いることができる。また、RE(Ce以外の希土類イオン)化合物としては硝酸塩、硫酸塩、塩化物などの水溶性化合物を用いることができる。また、AE(Ca、Sr、Ba)化合物としては、硝酸塩、硫酸塩、炭酸塩、塩化物などの水溶性化合物を用いることができる。また、M(Nb、Ta)化合物としては、硝酸塩、硫酸塩、炭酸塩、塩化物などの水溶性化合物を用いることができる。   As the cerium compound, for example, water-soluble compounds such as nitrates such as cerium nitrate and cerium chloride, sulfates, and chlorides can be used. As the zirconium compound, water-soluble compounds such as nitrates such as zirconium oxynitrate and zirconium oxychloride, sulfates and chlorides can be used. Moreover, as RE (rare earth ions other than Ce) compounds, water-soluble compounds such as nitrates, sulfates and chlorides can be used. As the AE (Ca, Sr, Ba) compound, water-soluble compounds such as nitrates, sulfates, carbonates, and chlorides can be used. As the M (Nb, Ta) compound, water-soluble compounds such as nitrates, sulfates, carbonates and chlorides can be used.

また沈殿剤は、アンモニア、水酸化ナトリウムなどのアルカリ金属の水酸化物、炭酸アンモニウムや炭酸ナトリウムなどのアルカリ金属の炭酸塩、尿素、蓚酸、蓚酸アンモニウムなどの蓚酸塩を用いることができる。   As the precipitant, alkali metal hydroxides such as ammonia and sodium hydroxide, alkali metal carbonates such as ammonium carbonate and sodium carbonate, and oxalates such as urea, oxalic acid, and ammonium oxalate can be used.

焼成により本発明の複合酸化物を生成するCeとZrを含む沈殿物の生成方法としては、セリウム化合物、ジルコニウム化合物、RE(Ce以外の希土類イオン)化合物、AE(Ca、Sr、Ba)化合物、M(Nb、Ta)化合物が共存する混合水溶液から共沈により共沈物として生成させることもできるし、Ceの沈殿、Zrの沈殿、RE(Ce以外の希土類イオン)化合物の沈殿、AE(Ca、Sr、Ba)化合物の沈殿、M(Nb、Ta)化合物の沈殿をそれぞれ形成し、これらの沈殿物を混合することによって生成することもできる。   Examples of the method for producing a precipitate containing Ce and Zr that form the composite oxide of the present invention by firing include cerium compounds, zirconium compounds, RE (rare earth ions other than Ce) compounds, AE (Ca, Sr, Ba) compounds, It can be produced as a coprecipitate from a mixed aqueous solution in which M (Nb, Ta) compound coexists, by coprecipitation, Ce precipitation, Zr precipitation, RE (rare earth ions other than Ce) compound, AE (Ca , Sr, Ba) compound precipitates and M (Nb, Ta) compound precipitates, respectively, and these precipitates may be mixed.

また、沈殿物の分散性や凝集の緩和の目的で原料中に陽イオン、陰イオン、ノニオン系の界面活性剤を添加してもよい。   Further, a cation, anion, or nonionic surfactant may be added to the raw material for the purpose of reducing the dispersibility of the precipitate and agglomeration.

沈殿の析出方法にはアンモニア水などの沈殿剤中にCeやZrを含む水溶液を添加する方法、逆に、CeやZrを含む水溶液にアンモニア水などの沈殿剤を瞬時に添加する方法がある。また、過酸化水素などを加えることで酸化物前駆体の沈殿し始めるpHを調節した後、アンモニア水などで沈殿を析出させる方法などもある。また沈殿剤として尿素を使用し、尿素の分解により生じるアンモニアにより徐々に中和する均一沈殿法、pHを段階的に変化させて中和する方法または特定のpHに保つような緩衝溶液を添加する方法などがある。本発明の複合酸化物の製造方法では、沈殿の析出方法として上記のいずれの方法を用いても良い。   The precipitation method includes a method of adding an aqueous solution containing Ce and Zr in a precipitant such as ammonia water, and conversely a method of instantly adding a precipitant such as ammonia water to an aqueous solution containing Ce and Zr. There is also a method of adjusting the pH at which the oxide precursor starts to precipitate by adding hydrogen peroxide or the like, and then depositing the precipitate with ammonia water or the like. Also, use urea as a precipitating agent, and add a uniform precipitation method that gradually neutralizes with ammonia generated by the decomposition of urea, a method that neutralizes by gradually changing the pH, or a buffer solution that maintains a specific pH. There are methods. In the method for producing a composite oxide of the present invention, any of the above methods may be used as a precipitation method.

また、上記のCeとZrを含む沈殿物を乾燥させる方法としては、従来から知られた方法が用いられる。特に乾燥粉末の凝集を緩和する方法として共沸脱水処理を行うこともできる。   As a method for drying the precipitate containing Ce and Zr, a conventionally known method is used. In particular, azeotropic dehydration can be performed as a method for alleviating the aggregation of the dry powder.

次に焼成処理により本発明のパイロクロア構造を有する複合酸化物を得る。焼成条件としては、還元性雰囲気中にて800℃〜1400℃で加熱保持することで行う。高い比表面積の複合酸化物を得る目的で、焼成温度としては800℃〜1100℃であることがさらに好ましい。加熱保持温度が800℃より低いとパイロクロア相の生成が困難となりOSCが低下する。   Next, a composite oxide having a pyrochlore structure of the present invention is obtained by a firing treatment. As firing conditions, it is performed by heating and holding at 800 ° C. to 1400 ° C. in a reducing atmosphere. For the purpose of obtaining a complex oxide having a high specific surface area, the firing temperature is more preferably 800 ° C. to 1100 ° C. When the heating and holding temperature is lower than 800 ° C., it is difficult to generate a pyrochlore phase and OSC is lowered.

還元性雰囲気は不活性ガス雰囲気又は非酸化性雰囲気とすることもできるが、H、COなどの還元性ガスを含む雰囲気とすることが望ましい。パイロクロア相の生成にはCe3+の生成が重要であり、還元性ガスを含まないとCe3+への還元が不十分で、その結果、パイロクロア相の生成が不十分となり、高いOSCが得られない場合がある。なお、κ相はパイロクロア相を酸化した場合にのみ生成する準安定相であり、酸化雰囲気での焼成により直接生成させることはできないため、高いOSCを得るためには、前記のように還元雰囲気によりパイロクロア相を十分に生成させることが必要である。 Although the reducing atmosphere can be an inert gas atmosphere or a non-oxidizing atmosphere, it is desirable to use an atmosphere containing a reducing gas such as H 2 or CO. The generation of Ce 3+ is important for the generation of the pyrochlore phase. If no reducing gas is contained, the reduction to Ce 3+ is insufficient, and as a result, the generation of the pyrochlore phase becomes insufficient and high OSC cannot be obtained. There is a case. The κ phase is a metastable phase that is generated only when the pyrochlore phase is oxidized, and cannot be directly generated by firing in an oxidizing atmosphere. Therefore, in order to obtain a high OSC, the reducing atmosphere is used as described above. It is necessary to produce a sufficient pyrochlore phase.

本発明で得られたパイロクロア構造を有する複合酸化物は大気中や酸素雰囲気などの酸化雰囲気中で500℃〜1000℃に保持することによりCeの価数が4+になったκ構造を有する複合酸化物にすることも可能である。   The composite oxide having a pyrochlore structure obtained in the present invention is a composite oxide having a κ structure in which the valence of Ce becomes 4+ by being held at 500 ° C. to 1000 ° C. in an oxidizing atmosphere such as air or an oxygen atmosphere. It is also possible to make it.

また、本発明の複合酸化物を触媒担体として使用する場合は、本発明の複合酸化物単独で使用することもできるし、アルミナ、セリア、ジルコニア、パイロクロア構造を有していないセリア−ジルコニア複合酸化物等と混合して使用することもできる。特にアルミナと複合化させることにより高い比表面積を達成できる。   When the composite oxide of the present invention is used as a catalyst carrier, the composite oxide of the present invention can be used alone, or a ceria-zirconia composite oxide having no alumina, ceria, zirconia, or pyrochlore structure. It can also be used by mixing with things. In particular, a high specific surface area can be achieved by combining with alumina.

さらに本発明の排ガス浄化用触媒は本発明の複合酸化物を担体とし、それに貴金属を担持してなる。本発明の複合酸化物を担体として使用する場合は、本発明の複合酸化物のみを担体としてもよいし、アルミナ等の他の酸化物と混合して用いても良い。貴金属としては、Pt、Rh、Pd、Ir、Ruなどから一種類又は複数種選択して用いることができ、その担持量は従来の排ガス浄化用触媒と同様で良い。また担持方法も吸着担持法、吸水担持法など従来の担持法を利用することができる。   Furthermore, the exhaust gas-purifying catalyst of the present invention comprises the composite oxide of the present invention as a support and supports a noble metal thereon. When the composite oxide of the present invention is used as a support, only the composite oxide of the present invention may be used as a support, or may be used by mixing with other oxides such as alumina. As the noble metal, one type or a plurality of types can be selected and used from Pt, Rh, Pd, Ir, Ru and the like, and the supported amount may be the same as that of the conventional exhaust gas purifying catalyst. As the loading method, a conventional loading method such as an adsorption loading method or a water absorption loading method can be used.

本発明の排ガス浄化用触媒は酸素吸蔵材料である本発明の複合酸化物が高い耐熱性を有するため、1000℃程度の高温での使用においても、高いOSCを維持し、その結果、十分に高い排ガス浄化特性が得られる。   In the exhaust gas purifying catalyst of the present invention, the composite oxide of the present invention, which is an oxygen storage material, has high heat resistance. Therefore, even when used at a high temperature of about 1000 ° C., high OSC is maintained, and as a result, it is sufficiently high. Exhaust gas purification characteristics can be obtained.

本発明によれば、高いOSCを有し、かつ、1000℃程度の高温での使用が可能な耐熱性の高いCe、Zrを含む複合酸化物を提供することができる。そしてこのような複合酸化物を担体として用いることにより、1000℃程度の高温での使用においても高いOSCを維持することが可能となり、その結果、排ガス浄化特性を著しく向上させた排ガス浄化用触媒を提供することができる。   According to the present invention, a composite oxide containing Ce and Zr having high OSC and high heat resistance that can be used at a high temperature of about 1000 ° C. can be provided. By using such a composite oxide as a carrier, it becomes possible to maintain a high OSC even when used at a high temperature of about 1000 ° C. As a result, an exhaust gas purification catalyst having remarkably improved exhaust gas purification characteristics can be obtained. Can be provided.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

実施例、比較例で得られた複合酸化物粉末の結晶構造の同定及びOSC測定は以下のようにして行った。   Identification of the crystal structure and OSC measurement of the composite oxide powders obtained in Examples and Comparative Examples were performed as follows.

(1)結晶構造
粉末の結晶構造は粉末X線回折装置(マック・サイエンス社製MPX3)により同定した。X線源としてはCu−Kα線を使用した。
(1) Crystal structure The crystal structure of the powder was identified by a powder X-ray diffractometer (MPX3 manufactured by Mac Science). Cu-Kα rays were used as the X-ray source.

(2)OSC測定
OSC測定は、自作の昇温還元装置(TPR)を用いて行った。H=20%雰囲気中で室温から900℃まで10℃/minで昇温し、室温〜900℃の範囲で消費されるH量を熱伝導度検出器(TCD)が付いたガスクロマトグラフィーで検出した。横軸に温度、縦軸にH消費量をプロットした曲線をTPR曲線と呼び、200〜700℃の範囲で消費されたH量からOSCを算出した。サンプルは予め、大気中、500℃で1時間酸化処理を行った後、測定を実施した。
(2) OSC measurement The OSC measurement was performed using a self-made temperature-reduction apparatus (TPR). Gas chromatography with a thermal conductivity detector (TCD) for the amount of H 2 that is heated from room temperature to 900 ° C. at a rate of 10 ° C./min in an H 2 = 20% atmosphere and consumed in the range of room temperature to 900 ° C. Detected with. A curve in which temperature is plotted on the horizontal axis and H 2 consumption is plotted on the vertical axis is called a TPR curve, and OSC was calculated from the amount of H 2 consumed in the range of 200 to 700 ° C. The sample was previously subjected to an oxidation treatment in the atmosphere at 500 ° C. for 1 hour, and then the measurement was performed.

(実施例1)
0.5mol/L(以下、リットルをLと表記する)の硝酸セリウム水溶液0.5Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.5Lを混合し、この水溶液に31%の過酸化水素水30gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水430mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図1(図1中1を付したプロファイル)に示す。また、OSC値を表1に示す。
(Example 1)
A 0.5 mol / L (hereinafter referred to as L) cerium nitrate aqueous solution 0.5 L, a 0.5 mol / L zirconium oxynitrate aqueous solution 1 L, and a 0.5 mol / L lanthanum nitrate aqueous solution 0.5 L were mixed. The aqueous solution was mixed with 30 g of 31% hydrogen peroxide solution and stirred. To this mixed aqueous solution, 430 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained composite oxide is shown in FIG. 1 (profile indicated by 1 in FIG. 1). The OSC values are shown in Table 1.

Figure 2005231951
(実施例2)
0.5mol/Lの硝酸セリウム水溶液0.6Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.4Lを混合し、この水溶液に31%の過酸化水素水36gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水440mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1100℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折結果及びOSC値を表1に示す。
Figure 2005231951
(Example 2)
A 0.5 mol / L cerium nitrate aqueous solution (0.6 L), a 0.5 mol / L zirconium oxynitrate aqueous solution (1 L), and a 0.5 mol / L lanthanum nitrate aqueous solution (0.4 L) were mixed. 36 g of water was mixed and stirred. To this mixed aqueous solution, 440 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1100 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. Table 1 shows the X-ray diffraction results and OSC values of the obtained composite oxide.

(実施例3)
0.5mol/Lの硝酸セリウム水溶液0.1Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液0.4Lと0.5mol/Lの硝酸ランタン水溶液0.3Lを混合し、この水溶液に0.5mol/Lの蓚酸水溶液1Lを添加し、1時間攪拌した。得られた沈殿物を含む水溶液を蒸発乾固し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて900℃で4時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折結果及びOSC値を表1に示す。
(Example 3)
A 0.5 mol / L cerium nitrate aqueous solution (0.1 L), a 0.5 mol / L zirconium oxynitrate aqueous solution (0.4 L), and a 0.5 mol / L lanthanum nitrate aqueous solution (0.3 L) were mixed. 1 L of oxalic acid aqueous solution of L was added and stirred for 1 hour. The obtained aqueous solution containing the precipitate was evaporated to dryness and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 900 ° C. for 4 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. Table 1 shows the X-ray diffraction results and OSC values of the obtained composite oxide.

(実施例4)
0.5mol/Lの硝酸セリウム水溶液0.5Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ネオジウム溶液0.5Lを用いて、実施例1と同様にして得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図1(図1中2を付したプロファイル)に示す。また、OSC値を表1に示す。
Example 4
Obtained in the same manner as in Example 1 using 0.5 L of 0.5 mol / L cerium nitrate aqueous solution, 1 L of 0.5 mol / L zirconium oxynitrate aqueous solution and 0.5 L of 0.5 mol / L neodymium nitrate solution. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained complex oxide is shown in FIG. 1 (profile with 2 in FIG. 1). The OSC values are shown in Table 1.

(実施例5)
0.5mol/Lの硝酸セリウム水溶液0.5Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸サマリウム水溶液0.5Lを用いて、実施例1と同様にして得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図1(図1中3を付したプロファイル)に示す。また、OSC値を表1に示す。
(Example 5)
It was obtained in the same manner as Example 1 using 0.5 L of 0.5 mol / L cerium nitrate aqueous solution, 1 L of 0.5 mol / L zirconium oxynitrate aqueous solution and 0.5 L of 0.5 mol / L samarium nitrate aqueous solution. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained composite oxide is shown in FIG. 1 (profile indicated by 3 in FIG. 1). The OSC values are shown in Table 1.

(実施例6)
0.5mol/Lの硝酸セリウム水溶液0.5Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの塩化ガドリニウム水溶液0.5Lを用いて、実施例1と同様にして得られた粉末をHを4%含むN気流中にて1300℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図1(図1中4を付したプロファイル)に示す。また、OSC値を表1に示す。
(Example 6)
Obtained in the same manner as in Example 1, using 0.5 L of 0.5 mol / L cerium nitrate aqueous solution, 1 L of 0.5 mol / L zirconium oxynitrate aqueous solution and 0.5 L of 0.5 mol / L gadolinium chloride aqueous solution. The obtained powder was subjected to reduction treatment at 1300 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained complex oxide is shown in FIG. 1 (profile indicated by 4 in FIG. 1). The OSC values are shown in Table 1.

(実施例7)
0.5mol/Lの硝酸セリウム水溶液0.4Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.4Lと0.5mol/Lの硝酸イットリウム水溶液0.2Lを混合し、この水溶液に31%の過酸化水素水24gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水420mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折結果及びOSC値を表1に示す。
(Example 7)
0.5 mol / L cerium nitrate aqueous solution 0.4 L, 0.5 mol / L zirconium oxynitrate aqueous solution 1 L, 0.5 mol / L lanthanum nitrate aqueous solution 0.4 L and 0.5 mol / L yttrium nitrate aqueous solution 0.2 L The aqueous solution was mixed with 24 g of 31% hydrogen peroxide solution and stirred. To this mixed aqueous solution, 420 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. Table 1 shows the X-ray diffraction results and OSC values of the obtained composite oxide.

(実施例8)
0.5mol/Lの硝酸セリウム水溶液0.4Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.5Lと0.5mol/Lの硝酸カルシウム水溶液0.1Lと0.1mol/Lの五塩化ニオブ水溶液0.5Lを用いて、実施例7と同様にして得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折結果及びOSC値を表1に示す。
(Example 8)
0.5 mol / L cerium nitrate aqueous solution 0.4 L, 0.5 mol / L zirconium oxynitrate aqueous solution 1 L, 0.5 mol / L lanthanum nitrate aqueous solution 0.5 L and 0.5 mol / L calcium nitrate aqueous solution 0.1 L And 0.5 mol of a 0.1 mol / L niobium pentachloride aqueous solution, the powder obtained in the same manner as in Example 7 was reduced at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2. Thus, a composite oxide powder of the present invention was obtained. Table 1 shows the X-ray diffraction results and OSC values of the obtained composite oxide.

(実施例9)
0.5mol/Lの硝酸セリウム水溶液0.5Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.45Lと0.5mol/Lの硝酸ストロンチウム水溶液0.05Lと0.1mol/Lの五塩化ニオブ水溶液0.25Lを用いて、実施例1と同様にして得られた粉末をHを4%含むN気流中にて1300℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折結果及びOSC値を表1に示す。
Example 9
0.5 mol / L cerium nitrate aqueous solution 0.5 L, 0.5 mol / L zirconium oxynitrate aqueous solution 1 L, 0.5 mol / L lanthanum nitrate aqueous solution 0.45 L and 0.5 mol / L strontium nitrate aqueous solution 0.05 L And a 0.1 mol / L niobium pentachloride aqueous solution (0.25 L), the powder obtained in the same manner as in Example 1 was reduced at 1300 ° C. for 2 hours in an N 2 stream containing 4% of H 2. Thus, a composite oxide powder of the present invention was obtained. Table 1 shows the X-ray diffraction results and OSC values of the obtained composite oxide.

(比較例1)
0.5mol/Lの硝酸セリウム水溶液1Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lを混合し、この水溶液に31%の過酸化水素水60gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水470mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、CeとZrの複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図2(図2中5を付したプロファイル)に示す。また、OSC値を表1に示す。
(Comparative Example 1)
1 L of 0.5 mol / L cerium nitrate aqueous solution and 1 L of 0.5 mol / L zirconium oxynitrate aqueous solution were mixed, and 60 g of 31% hydrogen peroxide solution was mixed and stirred in this aqueous solution. To this mixed aqueous solution, 470 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a complex oxide powder of Ce and Zr. The X-ray diffraction data of the obtained composite oxide is shown in FIG. 2 (profile with 5 in FIG. 2). The OSC values are shown in Table 1.

(比較例2)
0.5mol/Lの硝酸セリウム水溶液0.7Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸ランタン水溶液0.3Lを混合し、この水溶液に31%の過酸化水素水42gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水450mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図2(図2中6を付したプロファイル)に示す。また、OSC値を表1に示す。
(Comparative Example 2)
A 0.5 mol / L cerium nitrate aqueous solution (0.7 L), a 0.5 mol / L zirconium oxynitrate aqueous solution (1 L) and a 0.5 mol / L lanthanum nitrate aqueous solution (0.3 L) were mixed, and 31% hydrogen peroxide was added to the aqueous solution. 42 g of water was mixed and stirred. To this mixed aqueous solution, 450 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained composite oxide is shown in FIG. 2 (profile indicated by 6 in FIG. 2). The OSC values are shown in Table 1.

(比較例3)
0.5mol/Lの硝酸セリウム水溶液0.75Lと0.5mol/Lのオキシ硝酸ジルコニウム水溶液1Lと0.5mol/Lの硝酸イットリウム水溶液0.25Lを混合し、この水溶液に31%の過酸化水素水45gを混合し攪拌した。この混合水溶液に7mol/Lのアンモニア水450mLを添加し、2時間攪拌した。得られた沈殿をろ過・水洗し、110℃の乾燥器中で一晩乾燥し、乾燥粉末を得た。得られた粉末をHを4%含むN気流中にて1200℃で2時間還元処理をして、本発明の複合酸化物粉末を得た。得られた複合酸化物のX線回折データを図2(図2中7を付したプロファイル)に示す。また、OSC値を表1に示す。
(Comparative Example 3)
0.75 L of 0.5 mol / L cerium nitrate aqueous solution, 1 L of 0.5 mol / L zirconium oxynitrate aqueous solution and 0.25 L of 0.5 mol / L yttrium nitrate aqueous solution were mixed, and 31% hydrogen peroxide was added to this aqueous solution. 45 g of water was mixed and stirred. To this mixed aqueous solution, 450 mL of 7 mol / L aqueous ammonia was added and stirred for 2 hours. The obtained precipitate was filtered and washed with water, and dried overnight in a dryer at 110 ° C. to obtain a dry powder. The obtained powder was subjected to reduction treatment at 1200 ° C. for 2 hours in an N 2 stream containing 4% of H 2 to obtain a composite oxide powder of the present invention. The X-ray diffraction data of the obtained composite oxide is shown in FIG. 2 (profile with 7 in FIG. 2). The OSC values are shown in Table 1.

<耐熱性試験>
実施例1から9、比較例1から3の試料粉末をアルミナるつぼに入れ、電気炉中、大気雰囲気で1000℃で5時間保持した。熱処理後の試料について結晶構造測定とOSC測定を行った。結晶構造測定ではパイロクロア構造、κ構造のカチオンの規則配列に起因する2θ=37°付近の(331)面のピークの存在の有無について観察した。また、OSCは耐熱処理前後でのOSC値から以下のOSC維持率で評価した。
<Heat resistance test>
The sample powders of Examples 1 to 9 and Comparative Examples 1 to 3 were placed in an alumina crucible and held at 1000 ° C. for 5 hours in an electric furnace in an air atmosphere. The crystal structure measurement and OSC measurement were performed on the sample after the heat treatment. In the crystal structure measurement, the presence or absence of a peak on the (331) plane near 2θ = 37 ° due to the ordered arrangement of cations of pyrochlore structure and κ structure was observed. Moreover, OSC was evaluated by the following OSC maintenance rate from the OSC value before and after heat-resistant treatment.

OSC維持率(%)=(耐熱性試験後のOSC)/(耐熱性試験前のOSC)×100

耐熱性試験後の実施例1、実施例4、実施例5、実施例6の試料粉末のX線回折データを図3に示す(実施例1:図3中8を付したプロファイル、実施例4:図3中9を付したプロファイル、実施例5:図3中10を付したプロファイル、実施例6:図3中11を付したプロファイル)。
OSC retention rate (%) = (OSC after heat resistance test) / (OSC before heat resistance test) × 100

The X-ray diffraction data of the sample powders of Example 1, Example 4, Example 5, and Example 6 after the heat resistance test are shown in FIG. 3 (Example 1: Profile marked with 8 in FIG. 3, Example 4) : Profile with 9 in FIG. 3, Example 5: Profile with 10 in FIG. 3, Example 6: Profile with 11 in FIG.

耐熱性試験後の比較例1、比較例2、比較例3の試料粉末のX線回折データを図4に示す(比較例1:図4中12を付したプロファイル、比較例2:図4中13を付したプロファイル、比較例3:図4中13を付したプロファイル)。   The X-ray diffraction data of the sample powders of Comparative Example 1, Comparative Example 2, and Comparative Example 3 after the heat resistance test are shown in FIG. 4 (Comparative Example 1: Profile with 12 in FIG. 4, Comparative Example 2: in FIG. 4) Profile with 13 and Comparative Example 3: Profile with 13 in FIG.

また、耐熱性試験後のX線回折結果及びOSC測定結果を表2に示す。   Table 2 shows the X-ray diffraction results and OSC measurement results after the heat resistance test.

Figure 2005231951
<評価結果の比較>
図1、図2より実施例1から9、比較例1から3の試料は還元性雰囲気焼成によりすべてパイロクロア構造を有する複合酸化物が得られている。図1、図2の2θ=37°付近の(331)ピークがパイロクロア構造であることを示している。表1にOSC評価結果を示したが、実施例1から9、比較例1から3の試料はすべてCe含有量のほぼ100%近くがOSCに関与する結果であった。
Figure 2005231951
<Comparison of evaluation results>
1 and 2, all of the samples of Examples 1 to 9 and Comparative Examples 1 to 3 were obtained as complex oxides having a pyrochlore structure by firing in a reducing atmosphere. The (331) peak in the vicinity of 2θ = 37 ° in FIGS. 1 and 2 indicates a pyrochlore structure. Table 1 shows the results of the OSC evaluation. In all of the samples of Examples 1 to 9 and Comparative Examples 1 to 3, almost 100% of the Ce content was related to OSC.

また、耐熱性試験後の結果を図3、図4、表2に示した。図3より実施例1から9の試料は耐熱処理後もCeの価数が4+に酸化されたκ構造を維持している。また表2にOSC維持率を示したが、実施例1から9の試料はどれも85%以上の高い維持率を示した。一方、図4より比較例1から3の試料は耐熱処理後、(331)ピークが消失し、κ構造が壊れていることが確認された。表2にOSC維持率を示したが、比較例1から3の試料は維持率が65%以下と低い結果であった。   The results after the heat resistance test are shown in FIGS. From FIG. 3, the samples of Examples 1 to 9 maintain the κ structure in which the valence of Ce is oxidized to 4+ even after the heat-resistant treatment. Table 2 shows the OSC maintenance rate, and all of the samples of Examples 1 to 9 showed a high maintenance rate of 85% or more. On the other hand, it was confirmed from FIG. 4 that the samples of Comparative Examples 1 to 3 lost the (331) peak after the heat treatment and the κ structure was broken. Table 2 shows the OSC retention rate, but the samples of Comparative Examples 1 to 3 had a low retention rate of 65% or less.

上記の結果から、実施例1から9の複合酸化物はパイロクロア構造を有し、高いOSCと高い耐熱性を有するCeとZrを含む複合酸化物である。   From the above results, the composite oxides of Examples 1 to 9 have a pyrochlore structure and are a composite oxide containing Ce and Zr having high OSC and high heat resistance.

実施例1、実施例4、実施例5、実施例6で得られた複合酸化物のX線回折パターンを示す図である(1:実施例1、2:実施例4、3:実施例5、4:実施例6)。It is a figure which shows the X-ray-diffraction pattern of the complex oxide obtained in Example 1, Example 4, Example 5, and Example 6 (1: Example 1, 2: Example 4, 3: Example 5). 4: Example 6). 比較例1、比較例2、比較例3で得られた複合酸化物のX線回折パターンを示す図である(5:比較例1、6:比較例2、7:比較例3)。It is a figure which shows the X-ray-diffraction pattern of the complex oxide obtained by the comparative example 1, the comparative example 2, and the comparative example 3 (5: Comparative example 1, 6: Comparative example 2, 7: Comparative example 3). 実施例1、実施例4、実施例5、実施例6で得られた複合酸化物の耐熱性試験後のX線回折パターンを示す図である(8:実施例1、9:実施例4、10:実施例5、11:実施例6)。It is a figure which shows the X-ray-diffraction pattern after the heat resistance test of the complex oxide obtained in Example 1, Example 4, Example 5, and Example 6 (8: Example 1, 9: Example 4, 10: Example 5, 11: Example 6). 比較例1、比較例2、比較例3で得られた複合酸化物の耐熱性試験後のX線回折パターンを示す図である(12:比較例1、13:比較例2、14:比較例3)。It is a figure which shows the X-ray-diffraction pattern after the heat resistance test of the composite oxide obtained by the comparative example 1, the comparative example 2, and the comparative example 3 (12: Comparative example 1, 13: Comparative example 2, 14: Comparative example) 3).

Claims (4)

CeとZrとを含む複合酸化物であって、Ceの価数が3価の時、以下の組成式で表されるパイロクロア構造を有することを特徴とする複合酸化物。
(Ce1−x−y,RE,AE(Zr1−y,M
REはCe以外の希土類イオンの少なくとも1種類、AEはCa、Sr、Baの少なくとも1種類、MはNb、Taの少なくとも1種類,0≦x≦0.9,0≦y≦0.9,0.4≦x+y≦0.9。
A composite oxide containing Ce and Zr, wherein the composite oxide has a pyrochlore structure represented by the following composition formula when the valence of Ce is trivalent.
(Ce 1-x-y, RE x, AE y) 2 (Zr 1-y, M y) 2 O 7
RE is at least one kind of rare earth ions other than Ce, AE is at least one kind of Ca, Sr and Ba, M is at least one kind of Nb and Ta, 0 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.9, 0.4 ≦ x + y ≦ 0.9.
0.4≦x≦0.9,y=0であることを特徴とする請求項1記載の複合酸化物。 The composite oxide according to claim 1, wherein 0.4 ≦ x ≦ 0.9 and y = 0. REがLa、Nd、Sm、Gd、Yのすくなくとも1種類からなることを特徴とする請求項1又は請求項2に記載の複合酸化物。 The composite oxide according to claim 1 or 2, wherein RE comprises at least one of La, Nd, Sm, Gd, and Y. 請求項1乃至請求項3のいずれか1項に記載の複合酸化物に貴金属を担持してなることを特徴とする排ガス浄化用触媒。
An exhaust gas purification catalyst comprising a noble metal supported on the composite oxide according to any one of claims 1 to 3.
JP2004043549A 2004-02-19 2004-02-19 Multiple oxide and catalyst for purification of exhaust gas Pending JP2005231951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043549A JP2005231951A (en) 2004-02-19 2004-02-19 Multiple oxide and catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043549A JP2005231951A (en) 2004-02-19 2004-02-19 Multiple oxide and catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JP2005231951A true JP2005231951A (en) 2005-09-02

Family

ID=35015295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043549A Pending JP2005231951A (en) 2004-02-19 2004-02-19 Multiple oxide and catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JP2005231951A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144413A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
JP2007222868A (en) * 2006-01-27 2007-09-06 Mitsui Mining & Smelting Co Ltd Oxygen scavenger and process for producing oxygen scavenger
JP2007270245A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
JP2008024581A (en) * 2006-06-20 2008-02-07 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-based mixed oxide and production process thereof
JP2009084061A (en) * 2007-09-27 2009-04-23 Toyota Central R&D Labs Inc Ceria-zirconia mixed oxide, method for producing the same, and exhaust gas cleaning catalyst using the same
JP2009530091A (en) * 2006-03-21 2009-08-27 ロデイア・オペラシヨン Compositions based on zirconium oxide and cerium oxide with high reducibility and stable specific surface area, preparation methods and use in the treatment of exhaust gases
JP2009538736A (en) * 2007-01-09 2009-11-12 田中貴金属工業株式会社 High temperature ammonia SCR catalyst and its use
JP2010255119A (en) * 2010-07-15 2010-11-11 Mitsubishi Heavy Ind Ltd Heat shield coating member and process for producing the same, and heat shield coat material, gas turbine and sintered body
JP2011520745A (en) * 2008-04-23 2011-07-21 ロデイア・オペラシヨン Zirconium oxide, cerium oxide, and yttrium oxide-containing catalyst composition and use thereof in exhaust gas treatment
WO2012105454A1 (en) 2011-02-01 2012-08-09 株式会社アイシーティー Catalyst for cleaning exhaust gas
JP2012239982A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst for internal combustion engine
JP2014105132A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Ceria-zirconia composite oxide material and production method thereof
JP2015000818A (en) * 2013-06-13 2015-01-05 株式会社豊田中央研究所 Ceria-zirconia composite oxide and method for manufacturing the same as well as exhaust gas cleaning catalyst using the same ceria-zirconia composite oxide
WO2015087780A1 (en) * 2013-12-09 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
WO2015145788A1 (en) * 2014-03-25 2015-10-01 第一稀元素化学工業株式会社 Cerium-zirconium-based composite oxide and method for producing same
JP2015182931A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof
JP2015182932A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof
JP2016044108A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN107224971A (en) * 2016-03-24 2017-10-03 丰田自动车株式会社 Oxygen occluded material and its manufacture method
JP2019072696A (en) * 2017-10-19 2019-05-16 株式会社豊田中央研究所 Oxygen storage material and production method thereof
JP2020167052A (en) * 2019-03-29 2020-10-08 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using the same, and solid oxide fuel cell using the same
CN115582122A (en) * 2021-07-06 2023-01-10 丰田自动车株式会社 Catalyst for exhaust gas purification
WO2023047459A1 (en) * 2021-09-21 2023-03-30 国立大学法人東北大学 Oxygen storage material, catalyst for purification of exhaust gas, and method for producing oxygen storage material

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144413A (en) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning exhaust gas
JP2007222868A (en) * 2006-01-27 2007-09-06 Mitsui Mining & Smelting Co Ltd Oxygen scavenger and process for producing oxygen scavenger
JP2009530091A (en) * 2006-03-21 2009-08-27 ロデイア・オペラシヨン Compositions based on zirconium oxide and cerium oxide with high reducibility and stable specific surface area, preparation methods and use in the treatment of exhaust gases
JP2007289921A (en) * 2006-03-28 2007-11-08 Toyota Central Res & Dev Lab Inc Exhaust-gas cleaning catalyst and its regeneration method
US8586169B2 (en) 2006-03-31 2013-11-19 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body
JP2007270245A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
WO2007116547A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Industries, Ltd. Heat shield coating member, process for producing the same, heat shield coat material, gas turbine and sintered body
US20090176059A1 (en) * 2006-03-31 2009-07-09 Mitsubishi Heavy Industries, Ltd. Thermal Barrier Coating Member, Method for Producing the Same, Thermal Barrier Coating Material, Gas Turbine, and Sintered Body
JP2008024581A (en) * 2006-06-20 2008-02-07 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-based mixed oxide and production process thereof
JP2009538736A (en) * 2007-01-09 2009-11-12 田中貴金属工業株式会社 High temperature ammonia SCR catalyst and its use
JP2009084061A (en) * 2007-09-27 2009-04-23 Toyota Central R&D Labs Inc Ceria-zirconia mixed oxide, method for producing the same, and exhaust gas cleaning catalyst using the same
JP2011520745A (en) * 2008-04-23 2011-07-21 ロデイア・オペラシヨン Zirconium oxide, cerium oxide, and yttrium oxide-containing catalyst composition and use thereof in exhaust gas treatment
JP2010255119A (en) * 2010-07-15 2010-11-11 Mitsubishi Heavy Ind Ltd Heat shield coating member and process for producing the same, and heat shield coat material, gas turbine and sintered body
WO2012105454A1 (en) 2011-02-01 2012-08-09 株式会社アイシーティー Catalyst for cleaning exhaust gas
US9539542B2 (en) 2011-02-01 2017-01-10 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying exhaust gas
JP2012239982A (en) * 2011-05-19 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst for internal combustion engine
JP2014105132A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Ceria-zirconia composite oxide material and production method thereof
JP2015000818A (en) * 2013-06-13 2015-01-05 株式会社豊田中央研究所 Ceria-zirconia composite oxide and method for manufacturing the same as well as exhaust gas cleaning catalyst using the same ceria-zirconia composite oxide
US9931614B2 (en) 2013-06-13 2018-04-03 Toyota Jidosha Kabushiki Kaisha Ceria-zirconia-based composite oxide and method for producing same, and catalyst for exhaust gas purification including ceria-zirconia-based composite oxide
WO2015087780A1 (en) * 2013-12-09 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
US9724644B2 (en) 2013-12-09 2017-08-08 Cataler Corporation Exhaust gas purifying catalyst
JPWO2015087780A1 (en) * 2013-12-09 2017-03-16 株式会社キャタラー Exhaust gas purification catalyst
WO2015145788A1 (en) * 2014-03-25 2015-10-01 第一稀元素化学工業株式会社 Cerium-zirconium-based composite oxide and method for producing same
JP2015182932A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof
JP2015182931A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof
US9962684B2 (en) 2014-03-25 2018-05-08 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium-based composite oxide and method for producing same
JP2016044108A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN107224971B (en) * 2016-03-24 2020-04-24 丰田自动车株式会社 Oxygen-occluding material and method for producing same
CN107224971A (en) * 2016-03-24 2017-10-03 丰田自动车株式会社 Oxygen occluded material and its manufacture method
US10220368B2 (en) 2016-03-24 2019-03-05 Toyota Jidosha Kabushiki Kaisha Oxygen storage material and method of producing the same
JP2019072696A (en) * 2017-10-19 2019-05-16 株式会社豊田中央研究所 Oxygen storage material and production method thereof
JP2020167052A (en) * 2019-03-29 2020-10-08 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using the same, and solid oxide fuel cell using the same
JP7091278B2 (en) 2019-03-29 2022-06-27 株式会社豊田中央研究所 Electrode material for solid oxide fuel cell, anode electrode for solid oxide fuel cell using it, and solid oxide fuel cell using it
CN115582122A (en) * 2021-07-06 2023-01-10 丰田自动车株式会社 Catalyst for exhaust gas purification
CN115582122B (en) * 2021-07-06 2024-02-06 丰田自动车株式会社 Exhaust gas purifying catalyst
WO2023047459A1 (en) * 2021-09-21 2023-03-30 国立大学法人東北大学 Oxygen storage material, catalyst for purification of exhaust gas, and method for producing oxygen storage material
WO2023048184A1 (en) * 2021-09-21 2023-03-30 国立大学法人東北大学 Oxygen storage material, catalyst for purifying exhaust gas, and method for producing oxygen storage material

Similar Documents

Publication Publication Date Title
JP2005231951A (en) Multiple oxide and catalyst for purification of exhaust gas
US7956005B2 (en) Exhaust gas-purifying catalyst
JP2005170774A (en) Compound oxide, method for producing the same, and exhaust gas cleaning catalyst
EP2039425B1 (en) Process for production of an exhaust gas clean-up catalyst
US7504085B2 (en) Alumina-based perovskite catalysts and catalyst supports
US20100227758A1 (en) Alumina-Based Perovskite Catalysts and Catalyst Supports
US20200316565A1 (en) Ceria-containing mixed oxides for oxygen storage
US20100298132A1 (en) Exhaust gas-purifying catalyst
JPWO2007113981A1 (en) Catalyst composition
JP3956733B2 (en) Cerium-zirconium composite metal oxide for exhaust gas purification catalyst
JP2010069471A (en) Compound oxide catalyst for burning pm, slurry prepared by using the same, and filter for cleaning exhaust gas
US20090208396A1 (en) Alumina-Based Perovskite Catalysts and Catalyst Supports
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP2015080736A (en) Oxygen absorbing/releasing material and exhaust gas purification catalyst containing the same
JP2006169035A (en) Heat resistant oxide
JP6710181B2 (en) Oxygen storage material and manufacturing method thereof
JP4771681B2 (en) Method for producing noble metal-containing heat-resistant oxide
JP6863799B2 (en) Exhaust gas purification catalyst
EP1928788B1 (en) Method for preparing metal oxide containing precious metals
EP3260199B1 (en) Catalyst for purification of exhaust gas and method for producing the catalyst
JP3556839B2 (en) Oxygen storage cerium-based composite oxide
JP6799885B2 (en) Ceria-zirconia oxide-based oxygen absorption / release material in which rare earth oxide phases are hybridized
JP4972868B2 (en) Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use thereof
JP2004181435A (en) Heat-resistant compound oxide, exhaust gas cleaning catalyst and production method for the same
JP6759272B2 (en) Oxygen storage material and its manufacturing method