[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4688527B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4688527B2
JP4688527B2 JP2005064877A JP2005064877A JP4688527B2 JP 4688527 B2 JP4688527 B2 JP 4688527B2 JP 2005064877 A JP2005064877 A JP 2005064877A JP 2005064877 A JP2005064877 A JP 2005064877A JP 4688527 B2 JP4688527 B2 JP 4688527B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
positive
electrode plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064877A
Other languages
Japanese (ja)
Other versions
JP2006252834A (en
Inventor
竹規 石津
亮 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2005064877A priority Critical patent/JP4688527B2/en
Publication of JP2006252834A publication Critical patent/JP2006252834A/en
Application granted granted Critical
Publication of JP4688527B2 publication Critical patent/JP4688527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明はリチウム二次電池に係り、特に、正極活物質が正極集電体に塗着された正極板と、負極板とが配置された電極群を備えたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery including an electrode group in which a positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector and a negative electrode plate are arranged.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高エネルギー密度を有する非水溶液系のリチウム二次電池が着目され、その研究、開発及び商品化が急速に進められた結果、現在では、携帯電話やノートパソコン向けに小型民生用リチウム二次電池が広く普及している。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, as electric devices have become smaller and lighter, non-aqueous lithium secondary batteries with high energy density have attracted attention, and as a result of rapid progress in research, development, and commercialization, mobile phones are now available. Small consumer lithium secondary batteries are widely used for telephones and laptop computers.

一方、地球温暖化や燃料枯渇の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカで開発され、その電源には、より高容量で高出力な二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有するリチウム二次電池が注目されている。ところが、HEVを駆動するモータは高出力であり、通常、モータの最大負荷時の電流が単電池の定格容量に対する1時間率放電電流値の5倍以上となる。このため、高電圧を特徴とするリチウム二次電池であっても、大電流充放電時に電池内での抵抗が増大して容量が極端に減少することとなる。小型民生用リチウム二次電池の発展がもたらした技術革新により、高容量化の技術は進んでいるが、大電流充放電に関する技術開発は遅れている状況であり、このことがHEV用リチウム二次電池開発の問題となっている。   On the other hand, electric vehicles (EV) and hybrid electric vehicles (HEV) that assist part of driving with electric motors have been developed by each automobile manufacturer due to the problems of global warming and fuel depletion. High output secondary batteries have been demanded. As a power source that meets such requirements, a lithium secondary battery having a high voltage has attracted attention. However, the motor driving the HEV has a high output, and the current at the maximum load of the motor is usually more than five times the hourly discharge current value with respect to the rated capacity of the unit cell. For this reason, even in the case of a lithium secondary battery characterized by a high voltage, the resistance in the battery increases at the time of large current charge / discharge, and the capacity decreases extremely. High-capacity technology is advancing due to technological innovation brought about by the development of small-sized consumer-use lithium secondary batteries, but technological development related to large-current charge / discharge has been delayed. This is the lithium secondary for HEVs. It is a problem of battery development.

また、リチウム二次電池では、使用される非水電解液の誘電率が、鉛電池やニッケル・カドミウム電池に使用される水溶液系電解液に比べ低いため、大電流充放電時に非水電解液からのリチウムイオンの供給が間に合わず抵抗となり、いわゆるIRドロップ(放電では電圧低下、充電では電圧上昇する現象)が生じる。このため、同一電圧範囲を低電流で放電したときに比べ容量が極端に減少する。この現象を防止するため、正極板及び負極板を大面積化しているが、HEV用の電池等で大電流充放電を効率よく行うにはさらに大面積化、すなわち薄型化することが効果的である。また、大電流充放電時に正極板及び負極板での抵抗を抑制するためには、正負極活物質をそれぞれ塗着する正極集電体、負極集電体が大電流充放電時に円滑に集電ないし放電可能な十分な断面積を有していることも重要である。   Also, in lithium secondary batteries, the dielectric constant of the non-aqueous electrolyte used is lower than the aqueous electrolyte used in lead batteries and nickel-cadmium batteries. The lithium ions are not supplied in time and become resistors, causing a so-called IR drop (a phenomenon in which the voltage drops during discharging and increases during charging). For this reason, the capacity is drastically reduced compared to when the same voltage range is discharged at a low current. In order to prevent this phenomenon, the positive electrode plate and the negative electrode plate have been increased in area. However, in order to efficiently charge and discharge a large current with a battery for HEV or the like, it is effective to further increase the area, that is, to reduce the thickness. is there. In addition, in order to suppress resistance at the positive electrode plate and the negative electrode plate during large current charging / discharging, the positive electrode current collector and the negative electrode current collector to which the positive and negative electrode active materials are applied respectively collect current smoothly during large current charging / discharging. It is also important to have a sufficient cross-sectional area that can be discharged.

大電流充放電時の容量低下を抑制するために、例えば、複数の集電タブを有するリチウム二次電池で集電タブあたりの正極面積を制限する技術が開示されている(特許文献1参照)。また、正負極板を捲回/積層した電極群を有するリチウム二次電池で正極板の捲回/積層ピッチに対して正極集電体の厚さを制限する技術が開示されている(例えば、特許文献2参照)。   In order to suppress capacity reduction during large current charge / discharge, for example, a technique for limiting the positive electrode area per current collecting tab in a lithium secondary battery having a plurality of current collecting tabs is disclosed (see Patent Document 1). . Further, a technique for limiting the thickness of the positive electrode current collector with respect to the winding / stacking pitch of the positive electrode plate in a lithium secondary battery having an electrode group obtained by winding / stacking the positive and negative electrode plates (for example, Patent Document 2).

特開2000−30744号公報JP 2000-30744 A 特開2004−253252号公報JP 2004-253252 A

しかしながら、特許文献1、特許文献2の技術では、集電タブあたりの正極面積や捲回/積層ピッチに対する正極集電体の厚さを制限しても、大電流充放電時に正負極板と正負極外部端子とをそれぞれ接続する接続部材等での抵抗のため、IRドロップが生じて容量低下を招く。大電流充放電時の容量を確保するためには、正極板及び負極板のみならず、正極板から正極外部端子までの正極リードや負極板から負極外部端子までの負極リードの接続部材等の電池内通電経路も大電流充放電時の抵抗を抑制することが重要である。リチウム二次電池を大電流充放電時の容量を確保可能とすることで、HEV用電源として利用できるため、HEVの普及も期待できる。   However, in the techniques of Patent Document 1 and Patent Document 2, even if the positive electrode area per current collecting tab and the thickness of the positive electrode current collector with respect to the winding / stacking pitch are limited, the positive and negative electrode plates and Due to the resistance at the connecting member or the like for connecting to the negative electrode external terminal, an IR drop occurs and the capacity is reduced. In order to secure the capacity at the time of large current charge / discharge, not only the positive electrode plate and the negative electrode plate, but also the positive electrode lead from the positive electrode plate to the positive electrode external terminal and the negative electrode lead connection member from the negative electrode plate to the negative electrode external terminal, etc. It is important to suppress the resistance when charging / discharging large currents in the internal energization path. Since it is possible to use the lithium secondary battery as a power source for HEV by making it possible to ensure the capacity at the time of charging and discharging a large current, the spread of HEV can be expected.

本発明は、上記事案に鑑み、大電流充放電時でも容量低下を抑制することができるリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery capable of suppressing a decrease in capacity even during large current charge / discharge.

上記課題を解決するために、本発明は、正極活物質が正極集電体に塗着された正極板と、負極板とが配置された電極群を備えたリチウム二次電池において、前記電極群から正負極外部端子までの電池内通電経路の許容電流値が定格容量に対する1時間率放電電流値の5倍以上であり、前記正極板の単位面積あたりの重量の100重量部に占める前記正極集電体の重量が13重量部以上であるとともに、前記定格容量をC(Ah)とし、前記正極板の前記正極活物質が塗着された面積をS(m )としたときに、比C/Sが25.0(Ah/m )以下であることを特徴とする。 In order to solve the above problems, the present invention provides a lithium secondary battery including an electrode group in which a positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector and a negative electrode plate are disposed. The allowable current value of the current-carrying path in the battery from the positive electrode to the negative electrode external terminal is 5 times or more the hourly discharge current value with respect to the rated capacity, and the positive electrode assembly occupies 100 parts by weight of the positive electrode plate per unit area. When the weight of the electric body is 13 parts by weight or more, the rated capacity is C (Ah), and the area of the positive electrode plate coated with the positive electrode active material is S (m 2 ). / S is 25.0 (Ah / m 2 ) or less .

本発明では、正極板と負極板とが配置された電極群から正負極外部端子までの電池内通電経路の許容電流値が定格容量に対する1時間率放電電流値の5倍以上のため、電池内通電経路で大電流通電が許容され抵抗が抑制されると共に、正極板の単位面積あたりの重量の100重量部に占める正極集電体の重量が13重量部以上、比C/Sが25.0以下のため、正極板の単位面積あたりで容量あたりの正極集電体の重量が大きくなり、大電流充放電時に正極集電体を介して円滑に集電ないし放電され正極板での抵抗が抑制されるので、電池内通電経路及び正極板でのIRドロップが低下して大電流充放電時でも容量低下を抑制することができる。 In the present invention, since the allowable current value of the current-carrying path in the battery from the electrode group in which the positive electrode plate and the negative electrode plate are arranged to the positive and negative external terminals is more than 5 times the 1 hour rate discharge current value with respect to the rated capacity, A large current is allowed to flow through the energization path and resistance is suppressed, and the weight of the positive electrode current collector accounting for 100 parts by weight of the weight per unit area of the positive electrode plate is 13 parts by weight or more , and the ratio C / S is 25.0. Because of the following , the weight of the positive electrode current collector per unit area of the positive electrode plate is increased, and current is smoothly collected or discharged through the positive electrode current collector during large current charging and discharging, thereby suppressing resistance at the positive electrode plate Therefore, the IR drop in the battery energization path and the positive electrode plate is reduced, and the capacity reduction can be suppressed even during large current charge / discharge.

この場合において、正極板の単位面積あたりの重量の100重量部に占める正極集電体の重量を20重量部以上としてもよい。このとき、比C/Sを18.6(Ah/m)以下とすることが好ましい。 In this case, the weight of the positive electrode current collector occupying the 100 parts of weight per unit area of the positive electrode plate may be used as more than 20 parts by weight. At this time, the ratio C / S is preferably 18.6 (Ah / m 2 ) or less.

本発明によれば、電極群から正負極外部端子までの電池内通電経路の許容電流値が定格容量に対する1時間率放電電流値の5倍以上のため、電池内通電経路で大電流通電が許容され抵抗が抑制されると共に、正極板の単位面積あたりの重量の100重量部に占める正極集電体の重量が13重量部以上、比C/Sが25.0以下のため、正極板の単位面積あたりで容量あたりの正極集電体の重量が大きくなり、大電流充放電時に正極集電体を介して円滑に集電ないし放電され正極板での抵抗が抑制されるので、電池内通電経路及び正極板でのIRドロップが低下して大電流充放電時でも容量低下を抑制することができる、という効果を得ることができる。 According to the present invention, since the allowable current value in the battery energization path from the electrode group to the positive and negative external terminals is more than five times the hourly rate discharge current value with respect to the rated capacity, large current energization is permitted in the battery energization path. together are resistance is suppressed, the weight of the positive electrode current collector occupying the 100 parts of weight per unit area of the positive electrode plate 13 parts by weight or more, the ratio C / S is for 25.0 or less, the unit of the positive electrode plate Since the weight of the positive electrode current collector per area per unit area increases and the current is smoothly collected or discharged through the positive electrode current collector during large current charge / discharge, the resistance at the positive electrode plate is suppressed, so the current path in the battery And the IR drop in a positive electrode plate falls and the effect that a capacity | capacitance fall can be suppressed also at the time of large current charge / discharge can be acquired.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

本実施形態の円筒型リチウムイオン二次電池20は、図1に示すように、電池容器となるニッケルメッキを施されたスチール製で有底円筒状の電池缶7及びポリプロピレン製で中空円筒状の軸芯1の周囲に帯状の正負極板がセパレータW5を介して断面渦巻状に捲回された捲回群6を有している。   As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment has a bottomed cylindrical battery can 7 made of nickel plated steel and a hollow cylindrical cylinder made of polypropylene. Around the shaft core 1, there is a wound group 6 in which a strip-like positive and negative electrode plate is wound in a spiral shape in cross section via a separator W 5.

捲回群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するための正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、正極外部端子となる円盤状の電池蓋18が配置されている。電池蓋18は、蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、開裂弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメることによって組立てられている。正極集電リング4の上部には、複数枚のアルミニウム製リボンを重ね合わせて構成した2本のリードをつなぎ合わせた正極リード9の一端が溶接で接合されている。正極リード9の他端は、電池蓋18の下面に溶接で接合されている。   On the upper side of the winding group 6, a positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed substantially on the extension line of the shaft core 1. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4. A disc-shaped battery lid 18 serving as a positive electrode external terminal is disposed above the positive electrode current collecting ring 4. The battery lid 18 includes a lid case 12, a lid cap 13, an airtight valve presser 14, and a cleavage valve 11, and these are stacked and assembled by crimping the periphery of the lid case 12. ing. One end of a positive electrode lead 9 formed by joining two leads formed by overlapping a plurality of aluminum ribbons is joined to the upper portion of the positive electrode current collecting ring 4 by welding. The other end of the positive electrode lead 9 is joined to the lower surface of the battery lid 18 by welding.

一方、捲回群6の下側には、負極板からの電位を集電するための負極集電リング5が配置されている。負極集電リング5は、軸芯1の下端部に固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が超音波溶接で接合されている。負極集電リング5の下部には負極リード板8が溶接で接合されており、負極リード板8は負極外部端子を兼ねる電池缶7の内底部に溶接で接合されている。   On the other hand, a negative electrode current collection ring 5 for collecting the electric potential from the negative electrode plate is disposed below the winding group 6. The negative electrode current collecting ring 5 is fixed to the lower end portion of the shaft core 1. The end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by ultrasonic welding. A negative electrode lead plate 8 is joined to the lower portion of the negative electrode current collecting ring 5 by welding, and the negative electrode lead plate 8 is joined to the inner bottom portion of the battery can 7 also serving as a negative electrode external terminal by welding.

正極板から正極外部端子(電池蓋18)までの正極通電経路となる正極集電リング4及び正極リード9、並びに、負極板から負極外部端子(電池缶7)までの負極通電経路となる負極集電リング5及び負極リード板8は、リチウムイオン二次電池20の定格容量に対する1時間率放電電流の5倍以上の電流での通電を許容する断面積を有している。換言すれば、正極通電経路及び負極通電経路の許容電流値が、定格容量に対する1時間率放電電流値の5倍以上に設定されている。   The positive electrode current collection ring 4 and the positive electrode lead 9 serving as a positive electrode energization path from the positive electrode plate to the positive electrode external terminal (battery lid 18), and the negative electrode current collector serving as a negative electrode energization path from the negative electrode plate to the negative electrode external terminal (battery can 7). The electricity ring 5 and the negative electrode lead plate 8 have a cross-sectional area that allows energization with a current that is five times or more of the hourly discharge current with respect to the rated capacity of the lithium ion secondary battery 20. In other words, the allowable current values of the positive electrode energizing path and the negative electrode energizing path are set to 5 times or more of the 1 hour rate discharge current value with respect to the rated capacity.

また、電池缶7内には図示を省略した非水電解液が注液されており、捲回群6はこの非水電解液に浸潤されている。非水電解液には、本例ではエチレンカーボネートとジメチルカーボネートとを体積比1:2の割合で混合した混合溶媒中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解させたものが使用されている。電池缶7の上部には、電池蓋18が電気絶縁性及び耐熱性のEPDM樹脂製ガスケット10を介してカシメ固定されている。このため、正極リード9は折りたたまれて電池缶7内に収容されており、リチウムイオン二次電池20が密封されている。リチウムイオン二次電池20は、定格容量Cが3.0〜9.0Ahに設定されている。 Further, a non-aqueous electrolyte (not shown) is injected into the battery can 7, and the wound group 6 is infiltrated with the non-aqueous electrolyte. In this example, in the nonaqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / liter in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. The ones used are used. A battery lid 18 is caulked and fixed to the upper portion of the battery can 7 via an electrically insulating and heat resistant EPDM resin gasket 10. For this reason, the positive electrode lead 9 is folded and accommodated in the battery can 7, and the lithium ion secondary battery 20 is sealed. The rated capacity C of the lithium ion secondary battery 20 is set to 3.0 to 9.0 Ah.

捲回群6は、正極板と負極板とがこれら両極板が直接接触しないように、微多孔質ポリエチレン製のセパレータW5を介して軸芯1の周囲に捲回されている。セパレータW5は、本例では幅90mm、厚さ40μmに設定されている。正極リード片2及び負極リード片3は、それぞれ捲回群6の互いに反対側の両端面から導出されている。捲回群6及び正極集電リング4の鍔部周面全周には、ポリイミド製の基材を用いた粘着テープで絶縁被覆が施されている。   In the winding group 6, the positive electrode plate and the negative electrode plate are wound around the shaft core 1 through a separator W5 made of microporous polyethylene so that the two electrode plates do not directly contact each other. In this example, the separator W5 has a width of 90 mm and a thickness of 40 μm. The positive electrode lead piece 2 and the negative electrode lead piece 3 are led out from opposite end surfaces of the wound group 6, respectively. The winding group 6 and the entire circumference of the collar peripheral surface of the positive electrode current collecting ring 4 are coated with an insulating tape using a polyimide base material.

捲回群6を構成する正極板は、正極集電体としてのアルミニウム箔W1を有している。アルミニウム箔W1の厚さは本例では20μmに設定されている。アルミニウム箔W1の両面には、正極活物質としてリチウム含有複酸化物粉末を含む正極合剤が略均等に塗着されて正極合剤層W2が形成されている。正極合剤には、例えば、正極活物質の85重量部に対して、導電剤として鱗片状黒鉛の10重量部及びバインダ(結着材)としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5重量部が配合されている。正極合剤をアルミニウム箔W1に塗布するときは、粘度調整溶媒としてN−メチルピロリドン(以下、NMPと略記する。)が使用される。正極板は、乾燥後、厚さ90〜250μmにプレスされ、幅80mm、所定長さに裁断される。アルミニウム箔W1の長寸方向一側の側縁には、正極合剤の未塗着部が形成されている。この未塗着部は櫛状に切り欠かれており、切り欠き残部で正極リード片2が形成されている。   The positive electrode plate constituting the wound group 6 has an aluminum foil W1 as a positive electrode current collector. The thickness of the aluminum foil W1 is set to 20 μm in this example. On both surfaces of the aluminum foil W1, a positive electrode mixture containing lithium-containing complex oxide powder as a positive electrode active material is applied substantially evenly to form a positive electrode mixture layer W2. In the positive electrode mixture, for example, 10 parts by weight of flake graphite as a conductive agent and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) with respect to 85 parts by weight of the positive electrode active material. 5 parts by weight is blended. When the positive electrode mixture is applied to the aluminum foil W1, N-methylpyrrolidone (hereinafter abbreviated as NMP) is used as a viscosity adjusting solvent. After drying, the positive electrode plate is pressed to a thickness of 90 to 250 μm and cut into a width of 80 mm and a predetermined length. An uncoated portion of the positive electrode mixture is formed on the side edge on one side in the longitudinal direction of the aluminum foil W1. This uncoated part is notched in a comb shape, and the positive electrode lead piece 2 is formed by the notch remaining part.

正極合剤の塗着量は、正極板の単位面積あたりの重量の100重量部に占めるアルミニウム箔W1の重量(以下、アルミニウム箔比率という。)が13重量部以上(13%以上)となるように調整されている。このとき、正極合剤層W2の厚さを小さくして正極合剤の塗着量を小さくすることで、アルミニウム箔比率が大きくなる。正極合剤の塗着量を小さくすると正極板の単位面積あたりの容量が小さくなるため、上述したリチウムイオン二次電池20の定格容量を得るには、正極板の長さを大きくして正極板の面積を大きくする。正極板の長さ(面積)は、正極板の活物質塗工面の面積S(m)に対する定格容量C(Ah)の比C/Sが25.0(Ah/m)以下となるように調整されている。 The coating amount of the positive electrode mixture is such that the weight of the aluminum foil W1 (hereinafter referred to as the aluminum foil ratio) in 100 parts by weight of the weight per unit area of the positive electrode plate is 13 parts by weight or more (13% or more). Has been adjusted. At this time, the ratio of the aluminum foil is increased by reducing the thickness of the positive electrode mixture layer W2 to reduce the amount of the positive electrode mixture applied. Since the capacity per unit area of the positive electrode plate decreases when the coating amount of the positive electrode mixture is reduced, the positive electrode plate can be obtained by increasing the length of the positive electrode plate in order to obtain the rated capacity of the lithium ion secondary battery 20 described above. Increase the area. The length (area) of the positive electrode plate is such that the ratio C / S of the rated capacity C (Ah) to the area S (m 2 ) of the active material coated surface of the positive electrode plate is 25.0 (Ah / m 2 ) or less. Has been adjusted.

一方、負極板は、負極集電体として圧延銅箔W3を有している。圧延銅箔W3の厚さは本例では10μmに設定されている。圧延銅箔W3の両面には、負極活物質として非晶質炭素粉末を含む負極合剤が塗着されて負極合剤層W4が形成されている。負極合剤には、例えば、負極活物質の90重量部に対して、バインダとしてPVDFの10重量部が配合されている。負極合剤を圧延銅箔W3に塗布するときは、粘度調整溶媒としてNMPが使用される。負極合剤の塗着量は、捲回群6内でセパレータW5を介して対向する正極板及び負極板の単位面積あたりの容量がほぼ同じとなるように調整されている。負極板は、乾燥後、厚さ90〜150μmにプレスされ、幅85mm、所定長さに裁断される。圧延銅箔W3の長寸方向一側の側縁には、正極板と同様に負極合剤の未塗着部が形成されており、負極リード片3が形成されている。   On the other hand, the negative electrode plate has a rolled copper foil W3 as a negative electrode current collector. The thickness of the rolled copper foil W3 is set to 10 μm in this example. On both surfaces of the rolled copper foil W3, a negative electrode mixture containing amorphous carbon powder as a negative electrode active material is applied to form a negative electrode mixture layer W4. In the negative electrode mixture, for example, 10 parts by weight of PVDF is blended as a binder with respect to 90 parts by weight of the negative electrode active material. When applying the negative electrode mixture to the rolled copper foil W3, NMP is used as a viscosity adjusting solvent. The coating amount of the negative electrode mixture is adjusted so that the capacities per unit area of the positive electrode plate and the negative electrode plate facing each other through the separator W5 in the wound group 6 are substantially the same. After drying, the negative electrode plate is pressed to a thickness of 90 to 150 μm and cut into a width of 85 mm and a predetermined length. An uncoated portion of the negative electrode mixture is formed on the side edge on one side in the longitudinal direction of the rolled copper foil W3, and the negative electrode lead piece 3 is formed.

(作用等)
以下、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Hereinafter, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池20では、正極接続部材の正極集電リング4及び正極リード9、並びに、負極接続部材の負極集電リング5及び負極リード板8が、リチウムイオン二次電池20の定格容量C(3.0〜9.0Ah)に対する1時間率放電電流値の5倍以上の電流値での通電を許容する十分な断面積を有している。このため、正極接続部材及び負極接続部材の許容電流値までの大電流で充放電が行われても、内部抵抗が小さいことから、捲回群6(正極板及び負極板)から正負極外部端子までの電池内通電経路で生じるIRドロップが減少する。従って、大電流充放電時に容量の低下を抑制して十分な充放電性能を発揮することができる。   In the lithium ion secondary battery 20 of the present embodiment, the positive electrode current collector ring 4 and the positive electrode lead 9 as the positive electrode connecting member, and the negative electrode current collector ring 5 and the negative electrode lead plate 8 as the negative electrode connecting member are the lithium ion secondary battery 20. It has a sufficient cross-sectional area that allows energization at a current value of 5 times or more of the hourly rate discharge current value with respect to the rated capacity C (3.0 to 9.0 Ah). For this reason, even if charging / discharging is performed with a large current up to the allowable current value of the positive electrode connecting member and the negative electrode connecting member, the internal resistance is small, so that the wound group 6 (positive electrode plate and negative electrode plate) is connected to the positive and negative external terminals. The IR drop generated in the battery energization path up to is reduced. Therefore, it is possible to exhibit sufficient charge / discharge performance by suppressing a decrease in capacity during large current charge / discharge.

また、本実施形態のリチウムイオン二次電池20では、正極合剤の塗着量は、アルミニウム箔比率が13%以上となるように調整されている。このため、正極板の単位面積あたりのアルミニウム箔W1の重量が大きくなる。また、本実施形態のリチウムイオン二次電池20では、正極板の面積は、比C/Sが25.0(Ah/m)以下となるように調整されている。このため、正極板の単位面積あたりの容量が小さくなる。これにより、正極板の単位面積あたりで容量あたりのアルミニウム箔W1の重量が大きくなることから、アルミニウム箔W1の断面積が大きくなる。従って、定格容量Cに対する1時間率放電電流値の5倍以上の大電流通電時でもアルミニウム箔W1を介して円滑に集電ないし放電されてIRドロップが減少するので、容量の低下を抑制して十分な充放電性能を発揮することができる。 Moreover, in the lithium ion secondary battery 20 of this embodiment, the coating amount of the positive electrode mixture is adjusted so that the aluminum foil ratio is 13% or more. For this reason, the weight of the aluminum foil W1 per unit area of the positive electrode plate is increased. In the lithium ion secondary battery 20 of the present embodiment, the area of the positive electrode plate is adjusted so that the ratio C / S is 25.0 (Ah / m 2 ) or less. For this reason, the capacity | capacitance per unit area of a positive electrode plate becomes small. Thereby, since the weight of the aluminum foil W1 per capacity | capacitance per unit area of a positive electrode plate becomes large, the cross-sectional area of the aluminum foil W1 becomes large. Therefore, even when a large current of 5 times the hourly rate discharge current value with respect to the rated capacity C is energized, the current is smoothly collected or discharged through the aluminum foil W1 and the IR drop is reduced. Sufficient charge / discharge performance can be exhibited.

更に、本実施形態のリチウムイオン二次電池20では、正極活物質にリチウム含有複酸化物粉末が使用され、負極活物質に非晶質炭素粉末が使用されている。単位重量あたりの容量は正極活物質より負極活物質が大きく、対向する正負極板の単位面積あたりの容量をほぼ同一としたリチウムイオン二次電池20では、正極活物質重量が負極活物質重量に比べ大きくなる。アルミニウム箔W1、圧延銅箔W3の厚さはいずれも8〜20μm程度に設定されているため、対向する正負極板において、負極板の単位面積あたりの重量の100重量部に占める圧延銅箔W3の重量(圧延銅箔比率)がアルミニウム箔比率より大きくなる。従って、アルミニウム箔比率を13%以上に設定すれば、圧延銅箔比率も13%以上となり圧延銅箔W3の断面積が確保されることから、負極板においても大電流通電時の集電ないし放電を円滑にすることができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, lithium-containing double oxide powder is used as the positive electrode active material, and amorphous carbon powder is used as the negative electrode active material. In the lithium ion secondary battery 20 in which the negative electrode active material is larger than the positive electrode active material and the capacity per unit area of the opposing positive and negative electrode plates is almost the same, the positive electrode active material weight is the negative electrode active material weight. Compared to larger. Since the thicknesses of the aluminum foil W1 and the rolled copper foil W3 are both set to about 8 to 20 μm, the rolled copper foil W3 occupies 100 parts by weight of the weight per unit area of the negative electrode plate in the opposing positive and negative electrode plates. The weight (rolled copper foil ratio) becomes larger than the aluminum foil ratio. Therefore, if the aluminum foil ratio is set to 13% or more, the rolled copper foil ratio also becomes 13% or more, and the cross-sectional area of the rolled copper foil W3 is ensured. Can be made smooth.

また更に、本実施形態のリチウムイオン二次電池20では、正極リード片2及び負極リード片3はそれぞれアルミニウム箔W1及び圧延銅箔W3の切り欠き残部で形成されている。このため、正極リード片2及び負極リード片3がそれぞれアルミニウム箔W1及び圧延銅箔W3と一体なので、正極リード片2及び負極リード片3でも大電流通電時の集電ないし放電を円滑にすることができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the positive electrode lead piece 2 and the negative electrode lead piece 3 are formed by the remaining portions of the aluminum foil W1 and the rolled copper foil W3, respectively. For this reason, since the positive electrode lead piece 2 and the negative electrode lead piece 3 are integral with the aluminum foil W1 and the rolled copper foil W3, respectively, the positive electrode lead piece 2 and the negative electrode lead piece 3 also facilitate current collection or discharge when energizing a large current. Can do.

従来リチウムイオン二次電池では、非水電解液を使用しているため、鉛電池等に使用される水溶液系電解液に比べ誘電率が低い。誘電率が低い電解液では大電流充放電時に電解液からのリチウムイオンの供給が間に合わずIRドロップ(放電では電圧低下、充電では電圧上昇する現象)が生じるため、同一電圧範囲を低電流で放電したときに比べ容量が極端に減少する。この現象を防止するため、正極板及び負極板を大面積化しているが、HEVに使用する電池では、HEV用モータの最大負荷時に定格容量に対する1時間率放電電流の5倍以上の大電流で通電されることから、さらなる大面積化が求められる。また、正極集電体、負極集電体も、大電流通電に十分な断面積を有している必要がある。正負極集電タブあたりの正極面積や正極集電体の厚さのみを制限しても、正負極接続部材等での抵抗のため、IRドロップが増大して容量低下を招く。大電流充放電をするためには、電極群のみならず電池内通電経路も大電流充放電可能な状態でなければならない。本実施形態のリチウムイオン二次電池20は、これらの問題を解決するものである。   Conventional lithium ion secondary batteries use a non-aqueous electrolyte, and therefore have a lower dielectric constant than aqueous electrolytes used in lead batteries and the like. In electrolytes with a low dielectric constant, the supply of lithium ions from the electrolyte does not keep up with large current charging / discharging, and an IR drop occurs (a phenomenon where the voltage drops during discharge and increases during charging), so the same voltage range is discharged at a low current. The capacity is drastically reduced compared to when In order to prevent this phenomenon, the positive electrode plate and the negative electrode plate are increased in area. However, in the battery used for HEV, at a maximum load of the HEV motor, the current is 5 times higher than the hourly discharge current with respect to the rated capacity. Since energization is performed, further increase in area is required. The positive electrode current collector and the negative electrode current collector also need to have a sufficient cross-sectional area for large current application. Even if only the positive electrode area per positive / negative current collecting tab and the thickness of the positive electrode current collector are limited, the IR drop increases due to the resistance at the positive / negative electrode connecting member and the like, resulting in a decrease in capacity. In order to charge and discharge a large current, not only the electrode group but also the current-carrying path in the battery must be in a state capable of charging and discharging a large current. The lithium ion secondary battery 20 of the present embodiment solves these problems.

なお、本実施形態では、正負極板を捲回して有底円筒状の電池缶に収容した円筒型リチウムイオン二次電池20を例示したが、本発明は電池の形状、構造やサイズ等に制限されるものではない。例えば、電池形状を角型、その他の多角形状等としてもよく、正極板及び負極板を捲回することなく積層した積層タイプの電池に適用することもできる。また、本発明の適用可能な電池の構造としては、例えば、正負極外部端子が電池蓋を貫通し電池容器内で捲き芯を介して押し合っている構造の電池を挙げることができる。   In the present embodiment, the cylindrical lithium ion secondary battery 20 is illustrated in which the positive and negative electrode plates are wound and accommodated in a bottomed cylindrical battery can. However, the present invention is limited to the shape, structure, size, etc. of the battery. Is not to be done. For example, the battery shape may be a square shape, other polygonal shapes, and the like, and can be applied to a stacked type battery in which the positive electrode plate and the negative electrode plate are stacked without winding. Moreover, as a battery structure to which the present invention can be applied, for example, a battery having a structure in which positive and negative external terminals penetrate through the battery lid and are pressed through the core in the battery container can be exemplified.

また、本実施形態では、正極集電体にアルミニウム箔W1、負極集電体に圧延銅箔W3をそれぞれ例示したが、本発明はこれらに限定されるものではなく、通常リチウムイオン二次電池に使用される材質、例えば、Al、Cu、Fe、Ni等の金属を主体とした正負極集電体を使用してもよい。また、正負極集電体の長寸方向一側の側縁に正極リード片2、負極リード片3をそれぞれ形成する例を示したが、本発明はこれに限定されるものではない。例えば、正負極集電体とそれぞれ同じ材質でリボン状の集電タブを別に作製して正負極集電体にそれぞれ溶接するようにしてもよい。この場合は、集電タブの断面積を、大電流通電を許容する大きさに設定しておくことが望ましい。   Further, in the present embodiment, the aluminum foil W1 is exemplified as the positive electrode current collector and the rolled copper foil W3 is exemplified as the negative electrode current collector. However, the present invention is not limited to these, and is generally applied to a lithium ion secondary battery. A material used, for example, a positive and negative electrode current collector mainly composed of a metal such as Al, Cu, Fe, or Ni may be used. Moreover, although the example which each forms the positive electrode lead piece 2 and the negative electrode lead piece 3 in the side edge of the longitudinal direction one side of the positive / negative electrode collector was shown, this invention is not limited to this. For example, a ribbon-like current collecting tab made of the same material as each of the positive and negative electrode current collectors may be separately manufactured and welded to the positive and negative electrode current collectors. In this case, it is desirable to set the cross-sectional area of the current collecting tab to a size that allows large current application.

更に、本実施形態のリチウムイオン二次電池20では、正極活物質にリチウム含有複酸化物を例示したが、本発明はこれに制限されるものではなく、通常リチウム二次電池に使用される正極活物質を使用してもよい。本実施形態以外で使用可能なリチウム含有複酸化物としては、リチウムを挿入・脱離可能な材料であり、予め十分な量のリチウムが挿入されていればよく、例えば、スピネル結晶構造や層状結晶構造のリチウムマンガン複酸化物や、結晶中のマンガンやリチウムの一部をそれら以外のFe、Co、Ni、Cr、A1、Mg、等の元素で置換又はドープした材料、結晶中の酸素の一部をS、P等の元素で置換又はドープした材料を挙げることができる。また、リチウムマンガン複酸化物以外に、マンガンに代えてコバルトやニッケルを複合したリチウムコバルト複酸化物やリチウムニッケル複酸化物を用いても本発明の効果に変わりはない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the lithium-containing double oxide is exemplified as the positive electrode active material, but the present invention is not limited to this, and a positive electrode that is normally used for a lithium secondary battery. An active material may be used. The lithium-containing complex oxide that can be used in other embodiments is a material into which lithium can be inserted and removed, and it is sufficient that a sufficient amount of lithium is inserted in advance. For example, a spinel crystal structure or a layered crystal Lithium manganese complex oxide having a structure, a material in which a part of manganese or lithium in a crystal is substituted or doped with other elements such as Fe, Co, Ni, Cr, A1, Mg, etc., oxygen in a crystal The material which substituted or doped the part with elements, such as S and P, can be mentioned. In addition to the lithium manganese complex oxide, the effect of the present invention is not changed by using lithium cobalt complex oxide or lithium nickel complex oxide in which cobalt or nickel is compounded instead of manganese.

また更に、本実施形態のリチウムイオン二次電池20では、負極活物質に非晶質炭素を例示したが、本発明はこれに制限されるものではなく、通常リチウム二次電池に使用される負極活物質を使用してもよい。本実施形態以外で使用可能な負極活物質としては、例えば、天然黒鉛や、人造の各種黒鉛材、コークス、等の炭素質材料を挙げることができ、その形状についても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, amorphous carbon is exemplified as the negative electrode active material, but the present invention is not limited to this, and the negative electrode normally used in a lithium secondary battery An active material may be used. Examples of the negative electrode active material that can be used other than the present embodiment include carbonaceous materials such as natural graphite, various types of artificial graphite materials, and coke. There are no particular restrictions on the shape or mass.

更にまた、本実施形態では、結着剤にPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体等を使用してもよい。   Furthermore, in this embodiment, PVDF is exemplified as the binder, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyano. Polymers such as ethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.

また、本実施形態では、エチレンカーボネート、ジメチルカーボネートの混合溶媒中にLiPFを溶解させた非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれらの2種以上の混合溶媒を用いることができ、混合配合比についても限定されるものではない。 In the present embodiment, a nonaqueous electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate is exemplified. However, a nonaqueous aqueous solution in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. An electrolytic solution may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propiontonyl and the like, or a mixed solvent of two or more of these can be used, and the mixing ratio is not limited.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、以下に説明する実施例のうち、実施例1は参考として示したものである。また、比較のために作製した比較例の電池についても併記する。 Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. Of the examples described below, Example 1 is shown for reference. In addition, a comparative example battery manufactured for comparison is also shown.

<実施例1>
実施例1では、下表1に示すように、正極板の長さを2.85m、厚さを150μmに調整してアルミニウム箔比率を13.0%とした。電池の定格容量Cは6.8Ahであった。正極面積Sが0.228mのため、比C/Sが29.8Ah/mとなる。なお、表1において、正極板単位面積あたりの正極集電体重量部はアルミニウム箔比率を示している。
<Example 1>
In Example 1, as shown in Table 1 below, the length of the positive electrode plate was adjusted to 2.85 m and the thickness was adjusted to 150 μm, so that the aluminum foil ratio was 13.0%. The rated capacity C of the battery was 6.8 Ah. Since the positive electrode area S of 0.228m 2, the ratio C / S is 29.8Ah / m 2. In Table 1, the weight part of the positive electrode current collector per unit area of the positive electrode plate represents the aluminum foil ratio.

Figure 0004688527
Figure 0004688527

<実施例2>
実施例2では、表1に示すように、正極板の長さを3.30m、厚さを133μmに調整してアルミニウム箔比率を15.0%とした。電池の定格容量Cは6.6Ahであった。正極面積Sが0.264mのため、比C/Sが25.0Ah/mとなる。
<Example 2>
In Example 2, as shown in Table 1, the length of the positive electrode plate was adjusted to 3.30 m and the thickness was adjusted to 133 μm, so that the aluminum foil ratio was 15.0%. The rated capacity C of the battery was 6.6 Ah. Since the positive electrode area S of 0.264m 2, the ratio C / S is 25.0Ah / m 2.

<実施例3>
実施例3では、表1に示すように、正極板の長さを3.35m、厚さを124μmに調整してアルミニウム箔比率を16.1%とした。電池の定格容量Cは6.4Ahであった。正極面積Sが0.268mのため、比C/Sが23.9Ah/mとなる。
<Example 3>
In Example 3, as shown in Table 1, the length of the positive electrode plate was adjusted to 3.35 m and the thickness was adjusted to 124 μm, so that the aluminum foil ratio was 16.1%. The rated capacity C of the battery was 6.4 Ah. Since the positive electrode area S of 0.268m 2, the ratio C / S is 23.9Ah / m 2.

<実施例4>
実施例4では、表1に示すように、正極板の長さを3.65m、厚さを112μmに調整してアルミニウム箔比率を17.9%とした。電池の定格容量Cは6.2Ahであった。正極面積Sが0.292mのため、比C/Sが21.2Ah/mとなる。
<Example 4>
In Example 4, as shown in Table 1, the length of the positive electrode plate was adjusted to 3.65 m, and the thickness was adjusted to 112 μm, so that the aluminum foil ratio was 17.9%. The rated capacity C of the battery was 6.2 Ah. Since the positive electrode area S of 0.292m 2, the ratio C / S is 21.2Ah / m 2.

<実施例5>
実施例5では、表1に示すように、正極板の長さを4.02m、厚さを100μmに調整してアルミニウム箔比率を20.0%とした。電池の定格容量Cは6.0Ahであった。正極面積Sが0.322mのため、比C/Sが18.6Ah/mとなる。
<Example 5>
In Example 5, as shown in Table 1, the length of the positive electrode plate was adjusted to 4.02 m and the thickness was adjusted to 100 μm, so that the aluminum foil ratio was 20.0%. The rated capacity C of the battery was 6.0 Ah. Since the positive electrode area S of 0.322m 2, the ratio C / S is 18.6Ah / m 2.

<実施例6>
実施例6では、表1に示すように、正極板の長さを4.2m、厚さを95μmに調整してアルミニウム箔比率を21.0%とした。電池の定格容量Cは5.8Ahであった。正極面積Sが0.336mのため、比C/Sが17.3Ah/mとなる。
<Example 6>
In Example 6, as shown in Table 1, the length of the positive electrode plate was adjusted to 4.2 m and the thickness was adjusted to 95 μm, so that the aluminum foil ratio was 21.0%. The rated capacity C of the battery was 5.8 Ah. Since the positive electrode area S of 0.336m 2, the ratio C / S is 17.3Ah / m 2.

<比較例1>
比較例1では、表1に示すように、正極板の長さを1.85m、厚さを240μmに調整してアルミニウム箔比率を8.0%とした。電池の定格容量Cは7.5Ahであった。正極面積Sが0.148mのため、比C/Sが50.7Ah/mとなる。
<Comparative Example 1>
In Comparative Example 1, as shown in Table 1, the length of the positive electrode plate was adjusted to 1.85 m and the thickness was adjusted to 240 μm, so that the aluminum foil ratio was 8.0%. The rated capacity C of the battery was 7.5 Ah. Since the positive electrode area S of 0.148m 2, the ratio C / S is 50.7Ah / m 2.

<試験・評価>
作製した実施例及び比較例の各電池について、次のような高率放電試験を実施した。各電池を満充電状態とし、満充電状態から定格容量に対する1時間率放電電流値(1C)で完全放電した。次に再度満充電状態とし、満充電状態から定格容量に対する1時間率放電電流値の3倍の電流値(3C)で完全放電した。その後同様に、各電池を満充電状態から、1時間率放電電流値の5倍の電流値(5C)、1時間率放電電流値の10倍の電流値(10C)、1時間率放電電流値の20倍の電流値(20C)でそれぞれ完全放電した。各電流値での放電容量の1C放電時容量を基準(100%)とする相対値を容量維持率として求めた。高率放電試験の結果を図2に示す。
<Test and evaluation>
The following high rate discharge tests were carried out for the batteries of the produced examples and comparative examples. Each battery was fully charged, and was completely discharged from the fully charged state at a 1 hour rate discharge current value (1C) with respect to the rated capacity. Next, the battery was again fully charged and fully discharged from the fully charged state at a current value (3C) that is three times the hourly discharge current value with respect to the rated capacity. Thereafter, in the same manner, from the fully charged state, each battery is 5 times the current value (5C) of the 1 hour rate discharge current value, 10 times the current value (10C) of the 1 hour rate discharge current value, and 1 hour rate discharge current value. Each of them was completely discharged at a current value (20C) that is 20 times the current value. The relative value based on the 1C discharge capacity of the discharge capacity at each current value as a reference (100%) was determined as the capacity retention rate. The result of the high rate discharge test is shown in FIG.

図2に示すように、アルミニウム箔比率を13%未満とした比較例1のリチウムイオン二次電池では、3C放電時の容量維持率が85%以下、5C放電時の容量維持率が20%となり大電流放電時に容量が極端に低下した。これに対して、アルミニウム箔比率を13%以上とした実施例1〜実施例6のリチウムイオン二次電池20では、5C放電時の容量維持率が95%以上を示した。また、正極板の活物質塗工面の面積S(m)に対する定格容量C(Ah)の比C/Sが25.0(Ah/m)以下の実施例2〜実施例5のリチウムイオン二次電池20では、10C放電時の容量維持率が85%以上を示した。更に、アルミニウム箔比率を20%以上とし、比C/Sが18.6(Ah/m)以下の実施例5、実施例6のリチウムイオン二次電池20では、20C放電時の容量維持率が80%以上を示し、大電流放電時に極めて優れた性能を示すことが確認できた。 As shown in FIG. 2, in the lithium ion secondary battery of Comparative Example 1 in which the aluminum foil ratio is less than 13%, the capacity maintenance rate at 3C discharge is 85% or less, and the capacity maintenance rate at 5C discharge is 20%. The capacity decreased drastically during large current discharge. On the other hand, in the lithium ion secondary batteries 20 of Examples 1 to 6 in which the aluminum foil ratio was 13% or more, the capacity retention rate during 5C discharge was 95% or more. Further, the lithium ion of Examples 2 to 5 in which the ratio C / S of the rated capacity C (Ah) to the area S (m 2 ) of the active material coated surface of the positive electrode plate is 25.0 (Ah / m 2 ) or less. In the secondary battery 20, the capacity retention rate during 10C discharge was 85% or more. Furthermore, in the lithium ion secondary batteries 20 of Example 5 and Example 6 in which the aluminum foil ratio is 20% or more and the ratio C / S is 18.6 (Ah / m 2 ) or less, the capacity retention rate at the time of 20C discharge Was 80% or more, and it was confirmed that extremely excellent performance was exhibited during large current discharge.

以上のことから、リチウムイオン二次電池の定格容量Cに対する1時間率放電電流値の5倍以上となるような大電流充放電の場合は、正負極板、特に正極板のアルミニウム箔比率を13%以上とすることで容量の低下を抑制することができることが判った。更に、比C/Sを25.0(Ah/m)以下とすることで大電流充放電を効率よく行うことができることが判った。中でも、アルミニウム箔比率20%以上、比C/S18.6以上が好ましいことが判明した。 From the above, in the case of large current charge / discharge that is 5 times or more of the hourly rate discharge current value with respect to the rated capacity C of the lithium ion secondary battery, the aluminum foil ratio of the positive and negative plates, particularly the positive plate, is 13 It has been found that a decrease in capacity can be suppressed by setting the ratio to at least%. Furthermore, it was found that large current charge / discharge can be efficiently performed by setting the ratio C / S to 25.0 (Ah / m 2 ) or less. Among these, it has been found that an aluminum foil ratio of 20% or more and a ratio C / S of 18.6 or more are preferable.

本発明は大電流充放電時でも容量低下を抑制することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するため、産業上の利用可能性を有する。   Since the present invention provides a lithium secondary battery capable of suppressing a decrease in capacity even during large current charge / discharge, it contributes to the manufacture and sale of lithium secondary batteries, and thus has industrial applicability.

本発明が適用可能な実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment which can apply this invention. リチウムイオン二次電池を電流値を変えて高率放電させたときの容量維持率の変化を示すグラフである。It is a graph which shows the change of a capacity | capacitance maintenance factor when a lithium ion secondary battery is discharged at a high rate by changing a current value.

符号の説明Explanation of symbols

4 正極集電リング
5 負極集電リング
6 捲回群(電極群)
7 電池缶(負極外部端子)
8 負極リード板
9 正極リード
18 電池蓋(正極外部端子)
20 円筒型リチウムイオン二次電池(リチウム二次電池)
4 Positive current collecting ring 5 Negative current collecting ring 6 Winding group (electrode group)
7 Battery can (negative electrode external terminal)
8 Negative lead plate 9 Positive lead 18 Battery cover (positive external terminal)
20 Cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (3)

正極活物質が正極集電体に塗着された正極板と、負極板とが配置された電極群を備えたリチウム二次電池において、前記電極群から正負極外部端子までの電池内通電経路の許容電流値が定格容量に対する1時間率放電電流値の5倍以上であり、前記正極板の単位面積あたりの重量の100重量部に占める前記正極集電体の重量が13重量部以上であるとともに、前記定格容量をC(Ah)とし、前記正極板の前記正極活物質が塗着された面積をS(m )としたときに、比C/Sが25.0(Ah/m )以下であることを特徴とするリチウム二次電池。 In a lithium secondary battery including an electrode group in which a positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector and a negative electrode plate are disposed, an in-battery energization path from the electrode group to a positive and negative electrode external terminal and the allowable current value is more than five times the 1 hour-rate discharging current value of the rated capacity, the together with the weight of the positive electrode current collector occupies in 100 parts by weight of the weight per unit area of the positive electrode plate is 13 parts by weight or more the rated capacity and C (Ah), wherein the area of the positive active material is Nurigi positive plate when the S (m 2), the ratio C / S is 25.0 (Ah / m 2) lithium secondary battery, characterized by at most. 前記正極板の単位面積あたりの重量の100重量部に占める前記正極集電体の重量が20重量部以上であることを特徴とする請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein a weight of the positive electrode current collector occupying 100 parts by weight of a weight per unit area of the positive electrode plate is 20 parts by weight or more. 前記比C/Sが18.6(Ah/m)以下であることを特徴とする請求項2に記載のリチウム二次電池。 The lithium secondary battery according to claim 2 , wherein the ratio C / S is 18.6 (Ah / m 2 ) or less.
JP2005064877A 2005-03-09 2005-03-09 Lithium secondary battery Active JP4688527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064877A JP4688527B2 (en) 2005-03-09 2005-03-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064877A JP4688527B2 (en) 2005-03-09 2005-03-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006252834A JP2006252834A (en) 2006-09-21
JP4688527B2 true JP4688527B2 (en) 2011-05-25

Family

ID=37093105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064877A Active JP4688527B2 (en) 2005-03-09 2005-03-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4688527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177841B2 (en) * 2007-09-05 2013-04-10 善三 橋本 Low resistance battery current collector
KR100947071B1 (en) 2007-11-23 2010-03-12 삼성에스디아이 주식회사 Secondary battery
WO2013146513A1 (en) * 2012-03-30 2013-10-03 三洋電機株式会社 Laminated battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311676A (en) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2001176499A (en) * 1999-10-04 2001-06-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003123753A (en) * 2001-10-10 2003-04-25 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311676A (en) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2001176499A (en) * 1999-10-04 2001-06-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2003123753A (en) * 2001-10-10 2003-04-25 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell

Also Published As

Publication number Publication date
JP2006252834A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4416770B2 (en) Assembled battery
JP5286200B2 (en) Lithium ion secondary battery
US6733925B2 (en) Non-aqueous electrolytic solution secondary battery with electrodes having a specific thickness and porosity
JP5300274B2 (en) Lithium secondary battery
JP2004006264A (en) Lithium secondary battery
JP2005108477A (en) Battery pack and electric automobile
JP5433164B2 (en) Lithium ion secondary battery
JP2001110453A (en) Nonaqueous electrolytic solution secondary battery
JP2009224070A (en) Lithium secondary battery
JP4688527B2 (en) Lithium secondary battery
JP4770426B2 (en) Winding type power storage device
JPH11238500A (en) Roll type cylindrical battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2000182656A (en) Lithium secondary battery
JP4548070B2 (en) Secondary battery
JP4026587B2 (en) Lithium ion battery
JP2007165114A (en) Lithium secondary battery
JP4956860B2 (en) Non-aqueous electrolyte secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP4211439B2 (en) Method for selecting composite oxide for positive electrode active material of lithium secondary battery
JP4644936B2 (en) Lithium secondary battery
JP4710214B2 (en) Lithium secondary battery
WO2016125770A1 (en) Electrolyte for lithium ion capacitor and lithium ion capacitor
JP2010080233A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4688527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250