[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4644936B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4644936B2
JP4644936B2 JP2000400070A JP2000400070A JP4644936B2 JP 4644936 B2 JP4644936 B2 JP 4644936B2 JP 2000400070 A JP2000400070 A JP 2000400070A JP 2000400070 A JP2000400070 A JP 2000400070A JP 4644936 B2 JP4644936 B2 JP 4644936B2
Authority
JP
Japan
Prior art keywords
copper
separator
positive electrode
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000400070A
Other languages
Japanese (ja)
Other versions
JP2002203531A (en
Inventor
智博 井口
晃二 東本
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000400070A priority Critical patent/JP4644936B2/en
Publication of JP2002203531A publication Critical patent/JP2002203531A/en
Application granted granted Critical
Publication of JP4644936B2 publication Critical patent/JP4644936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に係り、特に、充放電によりリチウムイオンの放出・吸蔵が可能な正極活物質用いた正極と、充放電によりリチウムイオンの吸蔵・放出が可能な負極活物質を用いた負極と、をセパレータを介して捲回し電解液に浸潤させたリチウム二次電池に関する。
【0002】
【従来の技術】
リチウム二次電池に代表される非水電解液二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話などのポータブル機器に使用されている。特に近年は、負極に炭素材料等のリチウムイオンの吸蔵・放出が可能な材料を用いたリチウム二次電池が普及している。通常、リチウム二次電池の内部構造は捲回式とされている。すなわち、金属箔に活物質を塗布した正極及び負極がセパレータを挟んで捲回され、この捲回体(捲回群)を容器となる円筒状の電池缶に収納し、電解液を注液した後、キャップをつけて封口している。
【0003】
負極活物質として用いられる炭素材は、電池組立時にリチウムイオンがいわば放出しきった状態、すなわち放電状態にある。従って、通常は正極にも放電状態の活物質、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が用いられる。このような正極活物質には十分な電子伝導性がないので、リチウム二次電池の正極では、一般に、正極活物質に、導電剤として黒鉛やカーボンブラック等の低コストかつ電池内で安定な導電性粉末を含有させ、更にバインダ(結着剤)を加え、混合して作製した正極合剤が用いられる。そして、リチウム二次電池は、組立後の初充電によって、電池としての機能が付与される。
【0004】
また、リチウム二次電池は、高容量、高出力という利点を有している。このため、近時、電気自動車や内燃機関と電気モータとを併用したハイブリッド電気自動車(以下、両者を電気自動車という。)の電源としても使用されるに至っている。リチウム二次電池を電気自動車の電源とする場合には、高電圧を確保するために、電池モジュールとして複数個のリチウム二次電池を電気的に直列に繋いで使用され、直列に接続された箇々のリチウム二次電池は電池ジュール内の制御回路により電圧等が制御されている。
【0005】
【発明が解決しようとする課題】
しかしながら、リチウム二次電池の寿命特性に大きな影響を与える要因の一つとして、マンガン酸リチウム中に含まれる遷移金属の量により、充放電に伴いその遷移金属が溶解し、負極表面上に析出しデンドライトとなってセパレータを貫通し、電圧不良を発生させる割合が変化することが判明している。
【0006】
また、電池モジュールを構成するリチウム二次電池のうち、一つでも他のリチウム二次電池と電圧や容量等の電池特性が異なったり、充放電や、放置等による経時変化等により電池特性の低下を招くと、その異常特性のリチウム二次電池が他のリチウム二次電池の負荷となって電池モジュール全体の特性を悪化させる。特に、電池間で自己放電が異なると、各リチウム二次電池の電圧低下にバラツキが生じ、電池モジュール全体の特性が劣り、寿命が非常に短くなる、という問題がある。
【0007】
更に、各リチウム二次電池の電圧低下のバラツキが大きすぎると、上述した制御回路ではリチウム二次電池の電圧等の調整制御ができなくなり、最悪の場合には制御回路内のCPUが暴走して電池モジュールの信頼性の低下を招く、という問題がある。
【0008】
本発明は、このような問題を解決するために、電圧低下の抑制が可能で寿命特性に優れ信頼性の高いリチウム二次電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、充放電によりリチウムイオンの放出・吸蔵が可能な正極活物質用いた正極と、充放電によりリチウムイオンの吸蔵・放出が可能な負極活物質を用いた負極と、をセパレータを介して捲回し電解液に浸潤させたリチウム二次電池において、前記正極活物質に含まれる銅量が2.5〜4.0ppmの範囲であり、前記セパレータの厚さが35〜45μmの範囲であり、前記正極活物質に含まれる銅量(単位:ppm)に対する前記セパレータの厚さ(単位:μm)の比が10以上であることを特徴とする。
【0010】
本発明では、正極活物質中の遷移金属元素が負極で結晶成長して析出し正負極間に微小短絡(自己放電)を引き起こすことが電圧低下の原因の一つであり、かつ、リチウム二次電池間に電圧のバラツキを生じさせる結果となることに着目し、正極活物質に含まれる銅量を分析して正極活物質に含まれる銅量を2.5〜4.0ppmの範囲に設定すると共に、セパレータの厚さを35〜45μmの範囲とし、銅量とセパレータの厚さとの比(セパレータの厚さ:μm)/(銅量:ppm))を10以上とすることにより、負極での銅の析出を抑制するものである。本発明によれば、負極での銅金属又は銅イオンの析出が抑制されるので、微少短絡による電圧低下を抑制することができると共に、電圧低下が抑制されるので、寿命特性に優れ信頼性の高いリチウム二次電池を得ることができる。また、リチウム二次電池(単電池)を組み、電池モジュールとした場合にも、単電池間のバラツキが抑えられ信頼性を高めることができる。この場合において、セパレータはポリプロピレン及びポリエチレンの少なくとも一つを材質として含むことが好ましい。
【0011】
【発明の実施の形態】
以下、図面を参照して、本発明を電気自動車用の密閉円筒型リチウム二次電池に適用した実施の形態について説明する。
【0012】
<正極の作製>
充放電によりリチウムイオンの放出・吸蔵が可能な正極活物質としてのマンガン酸リチウム(LiMnO)粉末80重量%(以下、wt%と表記する。)と、導電剤として炭素粉末15wt%と、バインダとしてポリフッ化ビニリデン(PVDF)5wt%とを、分散溶媒のN−メチル−2−ピロリドン(以下、NMPという。)に溶解し、混練してスラリを得る。得られたスラリを、コンマロールを用いてアルミニウム箔(正極集電体)の両面に塗布、乾燥させて正極活物質層を形成する。
【0013】
図2(A)に示すように、コンマロールによるスラリ塗工時に、正極として必要な長さを連続的にかつ塗工位置が表裏面で一致するように塗工し、正極活物質層2をカットしないように、アルミニウム箔1の一側(正極タブ端子8の形成部分)を30mm残し、アルミニウム箔1の反対側を3mm残してスリットする。次に、図2(B)に示すように、30mm残したアルミニウム箔1の一側を矩形状の打ち抜きで切り取って、正極タブ端子8を形成する。そして、正極を80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧(線圧)200〜500kg/cmで正極活物質層2のかさ密度が2.6g/cmとなるまで圧縮して帯状のフープを作製する。
【0014】
<負極の作製>
充放電によりリチウムイオンの吸蔵・放出が可能な負極活物質として非晶質炭素粉末を用い、この炭素粉末90wt%とPVDF10wt%とからなる混合物にNMPを加え、混練してスラリを得る。得られたスラリを、正極と同様に、コンマロールを用いて、銅箔3(負極集電体)の両面に負極として必要な長さを連続的にかつ塗工位置が表裏面で一致するように塗布し、乾燥させて負極活物質層4を形成する。
【0015】
図2(A)に示すように、コンマロールによるスラリ塗工時に、負極活物質層4をカットしないように、銅箔3の一側(負極タブ端子9の形成部分)を30mm残し、銅箔3の反対側を3mm残してスリットする。次に、図2(B)に示すように、30mm残した銅箔3の一側を矩形状の打ち抜きで切り取って、負極タブ端子9を形成する。そして、負極を80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧(線圧)200〜500kg/cmで負極活物質層4のかさ密度が1.0g/cmとなるまで圧縮して帯状のフープを作製する。
【0016】
<電池の組立>
得られた帯状の正、負極フープを、正極タブ端子8と負極タブ端子9とが上下方向で反対側両端となるように配置し、リチウムイオンが通過可能な帯状のセパレータを介して重ね、捲回する。このとき、正負極が接触しないように、長さ、幅方向において、正極タブ端子8及び負極タブ端子9を除く正、負極フープの端部が、セパレータの外寸から外へはみ出さないように断面渦巻き状に捲回する。必要な極板長さを捲回して正、負極フープを切断して、捲回群を形成する。なお、セパレータには、ポリプロピレン(PP)及びポリエチレン(PE)の少なくとも一つを材質として含む微孔多孔性シートを用いた。このようなセパレータの態様としては、PP、PE単独の微多孔性シートとしても、PPとPEとの複数層の微多孔性シートとしてもよい。
【0017】
図1に示すように、捲回群の上下に位置する正極タブ端子8、負極タブ端子9をそれぞれ円環状導体である正極集電リング11、負極集電リング12に溶接し、正極集電リング11を、安全弁を内蔵し外部端子となる電池蓋7に、負極集電リング12を、外部端子となる円筒状の有底電池缶6にそれぞれ導体リードを介して溶接する。次に、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比で1:2の割合で混合した混合溶液に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解した非水電解液を電池缶6に注入した後、電池缶6の開口部を、ガスケット10を介して電池蓋7で封口して、リチウム二次電池20を組み立てる。そして、所定電圧及び電流で初充電を行うことにより、リチウム二次電池20に電池としての機能を付与する。
【0018】
【実施例】
次に、上記実施形態に従って、マンガン酸リチウムに含まれる銅量とセパレータの厚さとをそれぞれ変更して作製した実施例のリチウム二次電池について説明する。マンガン酸リチウムに含まれる銅量は、正極スラリの混練前にマンガン酸リチウムを分析することにより確認した。なお、比較のために作製した比較例のリチウム二次電池についても併記する。
【0019】
(実施例1、2)
下表1に示すように、実施例1、2では、上述した実施形態のリチウム二次電池20に従って、銅の含有率が4.0ppmのマンガン酸リチウムを用い、セパレータにPPとPEとの3層構造でそれぞれ厚さ40μm、45μmの微多孔性シートA、B(下表2参照)を用いて電池を組み立てた。実施例1、2の電池の、(セパレータの厚さ:単位μm)/(マンガン酸リチウムに含まれる銅量:単位ppm)(以下、厚さ/銅量比という。)は、それぞれ10.00、11.25である。
【0020】
【表1】

Figure 0004644936
【0021】
【表2】
Figure 0004644936
【0022】
(実施例3〜実施例5)
表1及び表2に示すように、実施例3〜5では、銅の含有率:2.5ppmのマンガン酸リチウムを用いると共に、セパレータにPPとPEとの3層構造でそれぞれ厚さ35μm、40μm、45μmの微多孔性シートC、A、Bを用い、厚さ/銅量比を14.00、16.00、18.00として電池を組み立てた。
【0023】
(実施例6〜実施例7)
表1及び表2に示すように、実施例6、7では、銅の含有率:4.0ppmのマンガン酸リチウムを用いると共に、セパレータにPE単層でそれぞれ厚さ40μm、45μmの微多孔性シートDを用い、厚さ/銅量比を10.00、11.25として電池を組み立てた。
【0024】
(実施例8〜実施例10)
表1及び表2に示すように、実施例8〜10では、銅の含有率:2.5ppmのマンガン酸リチウムを用いると共に、セパレータにPE単層でそれぞれ厚さ35μm、40μm、45μmの微多孔性シートDを用い、厚さ/銅量比を14.00、16.00、18.00として電池を組み立てた。
【0025】
(比較例1〜4)
表1及び表2に示すように、比較例1では、銅の含有率:4.0ppmのマンガン酸リチウムを用いると共に、セパレータにPPとPEとの3層構造で厚さ35μmの微多孔性シートCを用い、厚さ/銅量比を8.75とした電池を組み立てた。比較例2〜4では、銅の含有率:5.0ppmのマンガン酸リチウムを用いると共に、セパレータにPPとPEとの3層構造でそれぞれ厚さ35μm、40μm、45μmの微多孔性シートC、B、Aを用い、厚さ/銅量比を7.00、8.00、9.00として電池を組み立てた。
【0026】
(比較例5〜8)
表1及び表2に示すように、比較例5では、銅の含有率:4.0ppmのマンガン酸リチウムを用いると共に、セパレータにPE単層で厚さ35μmの微多孔性シートDを用い、厚さ/銅量比を8.75とした電池を組み立てた。比較例6〜8では、銅の含有率:5.0ppmのマンガン酸リチウムを用いると共に、セパレータにPE単層でそれぞれ厚さ35μm、40μm、45μmの微多孔性シートDを用い、厚さ/銅量比を7.00、8.00、9.00として電池を組み立てた。
【0027】
<初充電及び試験>
次に、以上のように組み立てた実施例及び比較例の各電池について、下記の条件で初充電を行い、電圧低下率を測定する電圧低下率測定試験を実施した。
【0028】
1.初充放電条件
(1)充電:定電圧充電4.1V、制限電流2000mA、4h、25°C
(2)放電:定電流放電3000mA、終止電圧2.7V、25°C
(3)充電:定電圧充電4.1V、制限電流4000mA、3h、25°C
(4)放電:定電流放電4000mA、終止電圧2.7V、25°C
(5)充電:定電圧充電3.7V、制限電流4000mA、3h、25°C
【0029】
2.電圧低下率測定試験
各電池を初充電後に放置し、放置二週間目から三週間目までに低下した電圧を7で割り、一日あたりの(絶対)電圧低下率(mV/day)を算出した。表1に電圧低下率測定試験の試験結果を示す。
【0030】
表1から明らかなように、セパレータの材質にかかわらず、厚さ/銅量比、すなわち、(セパレータの厚さ)/(マンガン酸リチウムに含まれる銅量)、が10以上となると、電圧低下率が2mV/dayと小さくなる。また、マンガン酸リチウムに含まれる銅量が同じでもセパレータの厚さが大きくなると電圧低下率は小さくなる。更に、セパレータの厚さが同じでもマンガン酸リチウムに含まれる銅量が少なくなることによっても電圧低下率は小さくなる。これは、マンガン酸リチウムに含まれる銅量が少なくなり、及び/又は、セパレータの厚さが大きくなると、銅金属や銅金属イオンが負極に結晶成長して正極及び負極間に微小短絡が生じにくくなり、電池の電圧低下の発生が抑えられることを示している。従って、厚さ/銅量比が大きくなると、負極での銅金属や銅金属イオンの析出が抑制され、微少短絡による電圧低下を抑制することができることが分かる。
【0031】
図3に、25°Cにおける厚さ/銅量比と10万サイクル後の容量維持率の関係を示す。図3から明らかなように、厚さ/銅量比が10以上の場合には10万サイクル後の容量維持率の変化が小さいことがわかる。これに対し、厚さ/銅量比が10を下回る場合には、容量維持率が大幅に悪くなる。これは、セパレータの厚さ対して銅量が多くなることで、充放電サイクル中に析出したデンドライトが更に溶解析出を繰り返し、デンドライトがより大きくなることに起因するものである。一方、電池容量、出力など実用を考慮すると、マンガン酸リチウムに含まれる遷移金属である銅量は少ないほうが、銅の溶解析出による微小短絡は小さくなり、セパレータの厚さは薄いほうが、限られた電池缶容積内では好ましく、出力も大きくなる。しかしながら、セパレータを薄くすることは、過充電、過放電時等の安全性を考えた場合には好ましくない。このため、電圧低下を実用的な範囲に抑制するには、試験結果及び電池の寿命や信頼性を考慮すると、実施例に示すようなセパレータの厚さで、かつ、マンガン酸リチウムに含まれる銅量とセパレータの厚さの比が10以上であることが好ましい。
【0032】
以上のように、本実施形態のリチウム二次電池では、マンガン酸リチウムに含まれる銅量とセパレータの厚さの比を10以上にすることにより、負極での銅金属や銅金属イオンの析出が抑制されるので、微少短絡による電圧低下を抑制することができる。微少短絡が抑制された電池は、経時による電圧低下も小さいので、長寿命となり、信頼性を確保することができる。このようなリチウム二次電池は、電圧低下が小さく、かつ、電池間のバラツキが小さいので、電池モジュールを構成する電池には好適である。
【0033】
なお、上記実施例では、非水電解液の電解質としてLiPFを用いた例を示したが、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができ、また、有機溶媒としてエチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液を用いた例を示したが、これら以外にプロピレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等又はこれら2種類以上の混合溶媒を用いることができ、更に、混合配合比についても限定されるものではない。非水電解液を用いることにより電池容量の向上や寒冷地での使用にも適合させることが可能となる。
【0034】
また、本実施形態では、正極活物質にリチウムマンガン複合酸化物であるマンガン酸リチウムを用いた例を示したが、正極活物質にリチウムコバルト複合酸化物やリチウムニッケル複合酸化物を用いてもよい。しかしながら、結晶構造にスピネル構造を有するマンガン酸リチウムは、結晶構造がスピネル構造を有するので、コバルト酸リチウムやニッケル酸リチウムと比べて熱的安定性や安全性に優れるという利点があるので、電力貯蔵用や電気自動車用等の、大形のリチウム二次電池にはマンガン酸リチウムを正極活物質に用いることが好ましい。
【0035】
更に、本実施形態では、負極活物質に、結晶質の炭素材料に比べ非晶質であることから負極集電体への密着性に優れる非晶質炭素を用いた例を示したが、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素材料等を使用してもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。炭素材を負極活物質に用いると、断面渦巻き状に捲回して捲回群を形成するときに可とう性に優れ負極からの負極活物質層4の剥離離脱を防止することができる。
【0036】
そして、本実施形態では、本発明を円筒型のリチウム二次電池に適用した例について説明したが、本発明は円筒型の電池に限られるものではなく、角型、スタッキング型等の電池についても適用可能である。
【0037】
【発明の効果】
以上説明したように、本発明によれば、正極活物質に含まれる銅量を2.5〜4.0ppmの範囲とし、セパレータの厚さを35〜45μmの範囲として、正極活物質に含まれる銅量(単位:ppm)に対するセパレータの厚さ(単位:μm)の比を10以上とすることにより、負極での銅金属又は銅イオンの析出が抑制されるので、微少短絡による電圧低下を抑制することができると共に、電圧低下が抑制されるので、寿命特性に優れ信頼性の高いリチウム二次電池を得ることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の密閉円筒型リチウム二次電池の縦断面図である。
【図2】実施形態の正極及び負極の帯状フープを示す平面図であり、(A)はスラリ塗工後の状態を示し、(B)はタブ端子形成後の状態を示す。
【図3】マンガン酸リチウムに含まれる銅量とセパレータの厚さとの比と、10万サイクル後の容量維持率の関係を示すグラフである。
【符号の説明】
1 アルミニウム箔
2 正極活物質層(正極合剤)
3 銅箔
4 負極活物質層
5 セパレータ
6 電池缶
7 電池蓋
8 正極タブ端子
9 負極タブ端子
10 ガスケット
11 正極集電リング
12 負極集電リング
20 リチウム二次電池(リチウム二次電池)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, use particularly, a positive electrode using a positive electrode active material capable of release-occluding lithium ions by charging and discharging, charging and discharging the negative electrode active material capable of intercalating and deintercalating lithium ions The present invention relates to a lithium secondary battery in which a negative electrode that has been wound is wound through a separator and infiltrated into an electrolyte solution.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. Particularly in recent years, lithium secondary batteries using a material capable of occluding and releasing lithium ions, such as a carbon material, for the negative electrode have become widespread. Usually, the internal structure of a lithium secondary battery is a winding type. That is, a positive electrode and a negative electrode coated with an active material on a metal foil are wound with a separator interposed therebetween, and the wound body (wound group) is stored in a cylindrical battery can serving as a container, and an electrolyte solution is injected. After that, it is sealed with a cap.
[0003]
The carbon material used as the negative electrode active material is in a state where lithium ions are completely released during battery assembly, that is, in a discharged state. Accordingly, an active material in a discharged state is usually used for the positive electrode, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Since such a positive electrode active material does not have sufficient electronic conductivity, the positive electrode of a lithium secondary battery generally has a low-cost and stable conductive property in the battery such as graphite or carbon black as a conductive agent. A positive electrode mixture prepared by adding a conductive powder, adding a binder (binder) and mixing them is used. And the function as a battery is provided to the lithium secondary battery by the first charge after assembly.
[0004]
In addition, lithium secondary batteries have the advantages of high capacity and high output. For this reason, recently, it has also been used as a power source for electric vehicles, hybrid electric vehicles using both an internal combustion engine and an electric motor (hereinafter, both are referred to as electric vehicles). When a lithium secondary battery is used as a power source for an electric vehicle, in order to ensure a high voltage, a plurality of lithium secondary batteries are used in series as a battery module and connected in series. The voltage of the lithium secondary battery is controlled by a control circuit in the battery module.
[0005]
[Problems to be solved by the invention]
However, one of the factors that greatly affects the life characteristics of lithium secondary batteries is that the amount of transition metal contained in the lithium manganate dissolves and deposits on the negative electrode surface with charge and discharge. It has been found that the rate at which the dendrites pass through the separator and cause voltage failures changes.
[0006]
In addition, even if one of the lithium secondary batteries constituting the battery module is different from other lithium secondary batteries in battery characteristics such as voltage and capacity, or the battery characteristics are deteriorated due to charging / discharging, aging, etc. When this occurs, the lithium secondary battery having the abnormal characteristics becomes a load on the other lithium secondary battery and deteriorates the characteristics of the entire battery module. In particular, when the self-discharge is different between batteries, there is a problem that the voltage drop of each lithium secondary battery varies, the characteristics of the entire battery module are inferior, and the life is very short.
[0007]
Furthermore, if the variation in the voltage drop of each lithium secondary battery is too large, the control circuit described above cannot adjust and control the voltage of the lithium secondary battery. In the worst case, the CPU in the control circuit runs out of control. There is a problem that the reliability of the battery module is lowered.
[0008]
In order to solve such a problem, an object of the present invention is to provide a lithium secondary battery that can suppress a voltage drop and has excellent life characteristics and high reliability.
[0009]
[Means for Solving the Problems]
Use in order to achieve the above object, the present invention includes a positive electrode using a positive electrode active material capable of release-occluding lithium ions by charging and discharging, charging and discharging the negative electrode active material capable of intercalating and deintercalating lithium ions In the lithium secondary battery in which the negative electrode was wound through a separator and infiltrated into the electrolyte solution, the amount of copper contained in the positive electrode active material was in the range of 2.5 to 4.0 ppm, and the thickness of the separator Is in the range of 35 to 45 μm, and the ratio of the thickness (unit: μm) of the separator to the amount of copper (unit: ppm) contained in the positive electrode active material is 10 or more.
[0010]
In the present invention, the transition metal element in the positive electrode active material crystallizes and precipitates on the negative electrode and causes a micro short circuit (self-discharge) between the positive and negative electrodes. Focusing on the result of voltage variation between the batteries, the amount of copper contained in the positive electrode active material is analyzed, and the amount of copper contained in the positive electrode active material is set in the range of 2.5 to 4.0 ppm. In addition, the thickness of the separator is in the range of 35 to 45 μm, and the ratio of the copper amount to the separator thickness (separator thickness: μm) / (copper amount: ppm)) is 10 or more, It suppresses copper precipitation. According to the present invention, since precipitation of copper metal or copper ions at the negative electrode is suppressed, it is possible to suppress a voltage drop due to a minute short circuit, and a voltage drop is suppressed. A high lithium secondary battery can be obtained. Further, when a lithium secondary battery (single cell) is assembled to form a battery module, the variation between the single cells can be suppressed and the reliability can be improved. In this case, the separator preferably contains at least one of polypropylene and polyethylene as a material.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments in which the present invention is applied to a sealed cylindrical lithium secondary battery for an electric vehicle will be described below with reference to the drawings.
[0012]
<Preparation of positive electrode>
Lithium manganate (LiMn 2 O 4 ) powder 80 wt% (hereinafter referred to as wt%) as a positive electrode active material capable of releasing and occluding lithium ions by charging and discharging, and carbon powder 15 wt% as a conductive agent Polyvinylidene fluoride (PVDF) 5 wt% as a binder is dissolved in a dispersion solvent N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and kneaded to obtain a slurry. The obtained slurry is applied to both surfaces of an aluminum foil (positive electrode current collector) using a comma roll and dried to form a positive electrode active material layer.
[0013]
As shown in FIG. 2 (A), at the time of slurry coating with a comma roll, the length necessary for the positive electrode is continuously applied so that the coating positions coincide on the front and back surfaces, and the positive electrode active material layer 2 is formed. In order not to cut, 30 mm of one side of the aluminum foil 1 (formation part of the positive electrode tab terminal 8) is left, and 3 mm of the opposite side of the aluminum foil 1 is left and slit. Next, as shown in FIG. 2B, one side of the aluminum foil 1 left 30 mm is cut out by rectangular punching to form the positive electrode tab terminal 8. And the bulk density of the positive electrode active material layer 2 is 2.6 g / cm 3 at a press pressure (linear pressure) of 200 to 500 kg / cm in a roll press having a roll in which the positive electrode is heated to 80 ° C. to 120 ° C. The band-shaped hoop is produced by compression until
[0014]
<Production of negative electrode>
An amorphous carbon powder is used as a negative electrode active material capable of occluding and releasing lithium ions by charging and discharging, and NMP is added to a mixture of 90 wt% of the carbon powder and 10 wt% of PVDF and kneaded to obtain a slurry. As with the positive electrode, the obtained slurry is continuously used to form the necessary length as the negative electrode on both sides of the copper foil 3 (negative electrode current collector) using a comma roll so that the coating positions coincide on the front and back surfaces. The negative electrode active material layer 4 is formed by applying and drying.
[0015]
As shown in FIG. 2A, 30 mm of one side of the copper foil 3 (formation portion of the negative electrode tab terminal 9) is left so as not to cut the negative electrode active material layer 4 during slurry coating with a comma roll. Slit leaving 3 mm on opposite side of 3. Next, as shown in FIG. 2B, one side of the copper foil 3 left 30 mm is cut out by rectangular punching to form the negative electrode tab terminal 9. Then, a roll by a press machine, pressing pressure (linear pressure) 200~500kg / anode active bulk density of the material layer 4 in cm is 1.0 g / cm 3 with a roll heated to the negative electrode to 80 ° C~120 ° C The band-shaped hoop is produced by compression until
[0016]
<Battery assembly>
The obtained belt-like positive and negative hoops are arranged so that the positive electrode tab terminal 8 and the negative electrode tab terminal 9 are opposite opposite ends in the vertical direction, and are stacked via a belt-like separator through which lithium ions can pass. Turn. At this time, in order to prevent the positive and negative electrodes from contacting each other, the ends of the positive and negative hoops excluding the positive electrode tab terminal 8 and the negative electrode tab terminal 9 do not protrude from the outer dimension of the separator in the length and width directions. Wind in a spiral shape. The necessary electrode plate length is wound to cut positive and negative electrode hoops to form a wound group. In addition, the microporous sheet | seat which contains at least one of polypropylene (PP) and polyethylene (PE) as a material was used for the separator. As a mode of such a separator, it is good also as a microporous sheet of PP and PE alone, or a multi-layered microporous sheet of PP and PE.
[0017]
As shown in FIG. 1, a positive electrode tab terminal 8 and a negative electrode tab terminal 9 positioned above and below the winding group are welded to a positive electrode current collector ring 11 and a negative electrode current collector ring 12 which are annular conductors, respectively. 11 is welded to a battery lid 7 having a safety valve and serving as an external terminal, and a negative electrode current collecting ring 12 is welded to a cylindrical bottomed battery can 6 serving as an external terminal via a conductor lead. Next, non-aqueous electrolysis in which 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2. After injecting the liquid into the battery can 6, the opening of the battery can 6 is sealed with the battery lid 7 through the gasket 10 to assemble the lithium secondary battery 20. And the function as a battery is provided to the lithium secondary battery 20 by performing initial charge with a predetermined voltage and electric current.
[0018]
【Example】
Next, a lithium secondary battery of an example produced by changing the amount of copper contained in lithium manganate and the thickness of the separator according to the above embodiment will be described. The amount of copper contained in the lithium manganate was confirmed by analyzing the lithium manganate before kneading the positive electrode slurry. In addition, it describes together about the lithium secondary battery of the comparative example produced for the comparison.
[0019]
(Examples 1 and 2)
As shown in Table 1 below, in Examples 1 and 2, in accordance with the lithium secondary battery 20 of the embodiment described above, lithium manganate having a copper content of 4.0 ppm was used, and 3 separators of PP and PE were used as separators. A battery was assembled using microporous sheets A and B (see Table 2 below) having a layer structure and thicknesses of 40 μm and 45 μm, respectively. In the batteries of Examples 1 and 2, (thickness of separator: unit μm) / (copper amount contained in lithium manganate: unit ppm) (hereinafter referred to as thickness / copper amount ratio) was 10.00. 11.25.
[0020]
[Table 1]
Figure 0004644936
[0021]
[Table 2]
Figure 0004644936
[0022]
(Example 3 to Example 5)
As shown in Tables 1 and 2, in Examples 3 to 5, the copper content: 2.5 ppm of lithium manganate was used, and the separators had a three-layer structure of PP and PE, with thicknesses of 35 μm and 40 μm, respectively. , 45 μm microporous sheets C, A, and B were used, and the batteries were assembled with thickness / copper ratios of 14.00, 16.00, and 18.00.
[0023]
(Example 6 to Example 7)
As shown in Tables 1 and 2, in Examples 6 and 7, a copper content: 4.0 ppm of lithium manganate is used, and a microporous sheet having a PE monolayer thickness of 40 μm and 45 μm, respectively. A battery was assembled using D with a thickness / copper ratio of 10.00 and 11.25.
[0024]
(Examples 8 to 10)
As shown in Tables 1 and 2, in Examples 8 to 10, copper content: 2.5 ppm of lithium manganate was used, and the separator was a PE single layer with a thickness of 35 μm, 40 μm, and 45 μm, respectively. The battery was assembled using the conductive sheet D and the thickness / copper ratios being 14.00, 16.00, and 18.00.
[0025]
(Comparative Examples 1-4)
As shown in Tables 1 and 2, in Comparative Example 1, a copper content: 4.0 ppm of lithium manganate is used, and the separator is a microporous sheet having a three-layer structure of PP and PE and a thickness of 35 μm. A battery having a thickness / copper ratio of 8.75 was assembled using C. In Comparative Examples 2 to 4, a copper content: 5.0 ppm of lithium manganate is used, and the separator is a three-layer structure of PP and PE, and the microporous sheets C and B having a thickness of 35 μm, 40 μm, and 45 μm, respectively. A was used, and the batteries were assembled with thickness / copper ratios of 7.00, 8.00, 9.00.
[0026]
(Comparative Examples 5 to 8)
As shown in Table 1 and Table 2, in Comparative Example 5, the copper content: 4.0 ppm of lithium manganate was used, and a microporous sheet D having a thickness of 35 μm and a PE single layer was used as the separator. A battery having a thickness / copper ratio of 8.75 was assembled. In Comparative Examples 6 to 8, the copper content: 5.0 ppm of lithium manganate was used, and a microporous sheet D having a thickness of 35 μm, 40 μm, and 45 μm was used as the separator for the PE single layer, and the thickness / copper Batteries were assembled with a mass ratio of 7.00, 8.00, and 9.00.
[0027]
<First charge and test>
Next, the batteries of the examples and comparative examples assembled as described above were subjected to initial charge under the following conditions, and a voltage drop rate measurement test was performed to measure the voltage drop rate.
[0028]
1. Initial charging / discharging conditions (1) Charging: constant voltage charging 4.1V, limiting current 2000mA, 4h, 25 ° C
(2) Discharge: constant current discharge 3000 mA, final voltage 2.7 V, 25 ° C.
(3) Charging: constant voltage charging 4.1V, limiting current 4000mA, 3h, 25 ° C
(4) Discharge: constant current discharge 4000 mA, final voltage 2.7 V, 25 ° C.
(5) Charging: constant voltage charging 3.7V, limiting current 4000mA, 3h, 25 ° C
[0029]
2. Voltage drop rate measurement test Each battery was allowed to stand after the initial charge, and the voltage dropped from the second to third week was divided by 7 to calculate the (absolute) voltage drop rate (mV / day) per day. . Table 1 shows the test results of the voltage drop rate measurement test.
[0030]
As is apparent from Table 1, the voltage / voltage drop when the thickness / copper amount ratio, that is, (separator thickness) / (copper amount contained in lithium manganate) is 10 or more, regardless of the separator material. The rate is reduced to 2 mV / day. Moreover, even if the amount of copper contained in the lithium manganate is the same, the voltage drop rate decreases as the thickness of the separator increases. Furthermore, even if the thickness of the separator is the same, the voltage drop rate is reduced by reducing the amount of copper contained in the lithium manganate. This is because when the amount of copper contained in lithium manganate decreases and / or the thickness of the separator increases, copper metal and copper metal ions grow on the negative electrode, and micro short-circuits are unlikely to occur between the positive electrode and the negative electrode. This indicates that the occurrence of a battery voltage drop can be suppressed. Therefore, it can be seen that when the thickness / copper amount ratio is increased, the precipitation of copper metal and copper metal ions at the negative electrode is suppressed, and the voltage drop due to the minute short circuit can be suppressed.
[0031]
FIG. 3 shows the relationship between the thickness / copper ratio at 25 ° C. and the capacity retention rate after 100,000 cycles. As can be seen from FIG. 3, when the thickness / copper ratio is 10 or more, the change in the capacity retention rate after 100,000 cycles is small. On the other hand, when the thickness / copper amount ratio is less than 10, the capacity retention rate is significantly deteriorated. This is because the dendrite deposited during the charge / discharge cycle repeats further dissolution and precipitation and the dendrite becomes larger as the amount of copper increases with respect to the thickness of the separator. On the other hand, considering practical use such as battery capacity and output, the smaller the amount of copper, the transition metal contained in lithium manganate, the smaller the short-circuiting due to copper dissolution and precipitation, and the thinner the separator, the more limited It is preferable within the battery can volume, and the output is also increased. However, it is not preferable to make the separator thin in consideration of safety during overcharge and overdischarge. For this reason, in order to suppress the voltage drop to a practical range, considering the test results and the life and reliability of the battery, the thickness of the separator as shown in the example and the copper contained in the lithium manganate The ratio of the amount to the thickness of the separator is preferably 10 or more.
[0032]
As described above, in the lithium secondary battery of the present embodiment, the ratio of the amount of copper contained in lithium manganate and the thickness of the separator is set to 10 or more, so that copper metal and copper metal ions are deposited on the negative electrode. Since it is suppressed, the voltage drop by a micro short circuit can be suppressed. A battery in which a micro short circuit is suppressed has a small voltage drop with time, and thus has a long life and can ensure reliability. Such a lithium secondary battery is suitable for the battery constituting the battery module because the voltage drop is small and the variation between the batteries is small.
[0033]
In the above embodiment, an example of using LiPF 6 as an electrolyte of the non-aqueous electrolyte, LiClO 4, LiAsF 6, LiBF 4, LiB (C 6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li or a mixture thereof can be used, and examples of using a mixed solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2 as an organic solvent are shown. In addition to propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, Methyl sulfolane, acetonitrile, propionitrile, etc. or a mixture of two or more of these Medium can be used, further, is not intended to be limited for mixing compounding ratio. By using a non-aqueous electrolyte, it is possible to improve battery capacity and adapt to use in cold regions.
[0034]
In this embodiment, an example in which lithium manganate, which is a lithium manganese composite oxide, is used as the positive electrode active material. However, a lithium cobalt composite oxide or a lithium nickel composite oxide may be used as the positive electrode active material. . However, lithium manganate having a spinel structure in the crystal structure has the advantage of superior thermal stability and safety compared with lithium cobaltate and lithium nickelate because the crystal structure has a spinel structure. Lithium manganate is preferably used as the positive electrode active material for large-sized lithium secondary batteries such as batteries and electric vehicles.
[0035]
Furthermore, in the present embodiment, an example in which amorphous carbon, which is more amorphous than a crystalline carbon material and has excellent adhesion to the negative electrode current collector, is used as the negative electrode active material. Graphite, various artificial graphite materials, carbon materials such as coke, etc. may be used, and the particle shape is not particularly limited, such as scaly, spherical, fibrous or massive. When a carbon material is used for the negative electrode active material, the negative electrode active material layer 4 can be prevented from peeling off from the negative electrode with excellent flexibility when wound into a spiral cross section to form a wound group.
[0036]
In the present embodiment, an example in which the present invention is applied to a cylindrical lithium secondary battery has been described. However, the present invention is not limited to a cylindrical battery, and the present invention is also applicable to batteries of a square type, a stacking type, and the like. Applicable.
[0037]
【The invention's effect】
As described above, according to the present invention, the amount of copper contained in the positive electrode active material is in the range of 2.5 to 4.0 ppm, and the thickness of the separator is in the range of 35 to 45 μm. By setting the ratio of the thickness (unit: μm) of the separator to the copper content (unit: ppm) to 10 or more, the precipitation of copper metal or copper ions at the negative electrode is suppressed, so the voltage drop due to a minute short circuit is suppressed. In addition, since the voltage drop is suppressed, it is possible to obtain an effect that a lithium secondary battery having excellent life characteristics and high reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a sealed cylindrical lithium secondary battery according to an embodiment to which the present invention is applicable.
FIGS. 2A and 2B are plan views showing strip-like hoops of the positive electrode and the negative electrode of the embodiment, in which FIG. 2A shows a state after slurry coating, and FIG. 2B shows a state after tab terminal formation.
FIG. 3 is a graph showing the relationship between the ratio of the amount of copper contained in lithium manganate and the thickness of the separator and the capacity retention rate after 100,000 cycles.
[Explanation of symbols]
1 Aluminum foil 2 Positive electrode active material layer (positive electrode mixture)
DESCRIPTION OF SYMBOLS 3 Copper foil 4 Negative electrode active material layer 5 Separator 6 Battery can 7 Battery cover 8 Positive electrode tab terminal 9 Negative electrode tab terminal 10 Gasket 11 Positive electrode current collection ring 12 Negative electrode current collection ring 20 Lithium secondary battery (lithium secondary battery)

Claims (2)

充放電によりリチウムイオンの放出・吸蔵が可能な正極活物質用いた正極と、充放電によりリチウムイオンの吸蔵・放出が可能な負極活物質を用いた負極と、をセパレータを介して捲回し電解液に浸潤させたリチウム二次電池において、前記正極活物質に含まれる銅量が2.5〜4.0ppmの範囲であり、前記セパレータの厚さが35〜45μmの範囲であり、前記正極活物質に含まれる銅量(単位:ppm)に対する前記セパレータの厚さ(単位:μm)の比が10以上であることを特徴とするリチウム二次電池。A positive electrode using a positive electrode active material capable of release-occluding lithium ions by charging and discharging, the negative electrode using the negative electrode active material capable of intercalating and deintercalating lithium ions by charging and discharging, the turning wound via a separator electrolyte In the lithium secondary battery infiltrated in the liquid, the amount of copper contained in the positive electrode active material is in the range of 2.5 to 4.0 ppm, the thickness of the separator is in the range of 35 to 45 μm, and the positive electrode active material A lithium secondary battery, wherein a ratio of a thickness (unit: μm) of the separator to a copper amount (unit: ppm) contained in the substance is 10 or more. 前記セパレータはポリプロピレン及びポリエチレンの少なくとも一つを材質として含むことを特徴とする請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the separator includes at least one of polypropylene and polyethylene as a material.
JP2000400070A 2000-12-28 2000-12-28 Lithium secondary battery Expired - Fee Related JP4644936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400070A JP4644936B2 (en) 2000-12-28 2000-12-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400070A JP4644936B2 (en) 2000-12-28 2000-12-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002203531A JP2002203531A (en) 2002-07-19
JP4644936B2 true JP4644936B2 (en) 2011-03-09

Family

ID=18864734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400070A Expired - Fee Related JP4644936B2 (en) 2000-12-28 2000-12-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4644936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068953A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Accumulator system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112306A (en) * 1996-10-07 1998-04-28 Sony Corp Secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112306A (en) * 1996-10-07 1998-04-28 Sony Corp Secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2002203531A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
JP4626105B2 (en) Lithium ion secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP2009081049A (en) Nonaqueous electrolyte battery and packed battery
JP2001143762A (en) Cylindrical lithium ion battery
JP4305111B2 (en) Battery pack and electric vehicle
JP7166265B2 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
JP2007257862A (en) Electrode for secondary battery, and secondary battery
WO2017007015A1 (en) Nonaqueous electrolyte battery and battery pack
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2002170567A (en) Nonaqueous electrolyte cell
JP4106856B2 (en) Non-aqueous electrolyte secondary battery
US20240120484A1 (en) Negative electrode
JP2001229970A (en) Cylindrical lithium battery
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2002075460A (en) Lithium secondary cell
CN202839842U (en) Multiplying power lithium ion battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP2001185220A (en) Cylindrical lithium ion battery
JPH11238500A (en) Roll type cylindrical battery
JP4644936B2 (en) Lithium secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees