[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4686964B2 - Connection structure of booster circuit to battery - Google Patents

Connection structure of booster circuit to battery Download PDF

Info

Publication number
JP4686964B2
JP4686964B2 JP2003275605A JP2003275605A JP4686964B2 JP 4686964 B2 JP4686964 B2 JP 4686964B2 JP 2003275605 A JP2003275605 A JP 2003275605A JP 2003275605 A JP2003275605 A JP 2003275605A JP 4686964 B2 JP4686964 B2 JP 4686964B2
Authority
JP
Japan
Prior art keywords
battery
terminal
booster circuit
connection
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275605A
Other languages
Japanese (ja)
Other versions
JP2005038756A (en
Inventor
豊 森
隆則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003275605A priority Critical patent/JP4686964B2/en
Publication of JP2005038756A publication Critical patent/JP2005038756A/en
Application granted granted Critical
Publication of JP4686964B2 publication Critical patent/JP4686964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、昇圧回路のバッテリへの接続構造に関し、特に、電子制御装置の昇圧回路のバッテリへの接続構造に関する。   The present invention relates to a connection structure of a booster circuit to a battery, and more particularly to a connection structure of a booster circuit of an electronic control device to a battery.

従来から、車両に搭載されるECU100(電子制御装置)は、図10に示すようにバッテリBから配線110を介して電力が供給されるようにされている。そして、ECU100は昇圧回路200を備えており、同昇圧回路200にて昇圧した電圧をモータMに印加して、モータMを駆動制御するようにされている。   Conventionally, an ECU 100 (electronic control unit) mounted on a vehicle is supplied with electric power from a battery B via a wiring 110 as shown in FIG. The ECU 100 is provided with a booster circuit 200, and a voltage boosted by the booster circuit 200 is applied to the motor M so as to drive and control the motor M.

しかし、従来の昇圧回路200は、ECU100内に組み込まれて、バッテリBから配線110を介して接続されているため、バッテリBと昇圧回路200間の配線抵抗及びその配線に流れる大電流によって大きな電圧ドロップ(電圧降下)が発生し、昇圧回路200の出力電圧上昇を妨げる原因となっていた。   However, since the conventional booster circuit 200 is incorporated in the ECU 100 and connected from the battery B via the wiring 110, a large voltage is generated by the wiring resistance between the battery B and the booster circuit 200 and a large current flowing through the wiring. A drop (voltage drop) occurred, which hindered an increase in the output voltage of the booster circuit 200.

本発明の目的は、バッテリから昇圧回路までの配線を不要にして、昇圧回路の動作時の配線抵抗及び大電流による電圧ドロップを解消し、この結果、昇圧回路の出力電圧上昇幅を大幅に改善できる昇圧回路のバッテリへの接続構造を提供することにある。   The object of the present invention is to eliminate the wiring from the battery to the booster circuit, eliminate the voltage drop due to the wiring resistance and large current during the operation of the booster circuit, and as a result, greatly improve the output voltage rise width of the booster circuit An object of the present invention is to provide a connection structure of a booster circuit that can be connected to a battery.

上記問題点を解決するために、請求項1に記載の発明は、バッテリのバッテリ端子に対して、電線の一端が接続された接続部材を着脱自在に取付けし、前記接続部材にて、バッテリ電圧を昇圧する昇圧回路に接続された接続端子がバッテリ端子に直付けされていることを特徴とする昇圧回路のバッテリへの接続構造を要旨とするものである。 In order to solve the above-mentioned problem, the invention according to claim 1 detachably attaches a connecting member to which one end of an electric wire is connected to a battery terminal of a battery. The connection terminal connected to the booster circuit for boosting the voltage is directly attached to the battery terminal .

請求項2の発明は、請求項1において、前記昇圧回路はアクチュエータを制御する制御部を備える電子制御装置を収納するハウジングとは別のハウジングに収納され、前記接続端子は、前記昇圧回路を収納するハウジングから外部に突設されて、前記バッテリ端子と直付けされていることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the booster circuit is housed in a housing different from the housing housing the electronic control device including a control unit that controls the actuator, and the connection terminal houses the booster circuit. And projecting from the housing to the outside and directly attached to the battery terminal.

請求項の発明は、請求項において、前記接続端子は、前記バッテリ端子との接続時に同バッテリ端子の外周面と当接する接触面は粗面に形成されていることを特徴とする。
請求項の発明は、請求項において、前記バッテリ端子は、円柱形状に形成され、前記接続端子は、前記バッテリ端子の円柱形状の外周面に沿って断面円弧状に凹設された接触面を備えたことを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention, the contact surface of the connection terminal that comes into contact with the outer peripheral surface of the battery terminal when connected to the battery terminal is formed into a rough surface.
The invention of claim 4 is the contact surface according to claim 3 , wherein the battery terminal is formed in a cylindrical shape, and the connection terminal is recessed in a circular arc shape along the outer peripheral surface of the battery terminal. It is provided with.

(作用)
請求項1によれば、接続端子がバッテリ端子に対して直付けされて、長い配線で接続することがないため、配線抵抗及び大電流による電圧ドロップが防止される。又、バッテリ端子に対する電線の接続と接続端子とが、共に共通の接続部材にて電気的に接続される。
(Function)
According to the first aspect, since the connection terminal is directly attached to the battery terminal and is not connected by a long wiring, voltage drop due to wiring resistance and a large current is prevented. Further, the connection of the electric wire to the battery terminal and the connection terminal are both electrically connected by a common connection member.

請求項2によれば、電子制御装置のハウジングとは別のハウジング内に昇圧回路が収納されたものにおいて、請求項1と同様にバッテリ端子に対して接続端子が直付けされ、長い配線で接続することがないため、配線抵抗及び大電流による電圧ドロップが防止される。   According to claim 2, in the case where the booster circuit is housed in a housing different from the housing of the electronic control unit, the connection terminal is directly attached to the battery terminal in the same manner as in claim 1, and the connection is made with a long wiring. Therefore, voltage drop due to wiring resistance and large current is prevented.

又、昇圧回路は使用部品が大きいため、電子制御装置のハウジングともに昇圧回路を収納した場合、電子制御装置自体のサイズが大きくなる。この場合、車両搭載時には、搭載のレイアウトが制限され自由度がなくなるが、請求項2によれば、昇圧回路と電子制御装置は別々のハウジングに収納されるため、電子制御装置自体が小さくなり、車両搭載の自由度が広がり、電子制御装置の車両搭載に有利となる。   In addition, since the booster circuit uses large parts, when the booster circuit is housed together with the housing of the electronic control unit, the size of the electronic control unit itself increases. In this case, when the vehicle is mounted, the layout of the mounting is limited and the degree of freedom is lost. However, according to claim 2, since the booster circuit and the electronic control device are housed in separate housings, the electronic control device itself becomes small, The degree of freedom for mounting the vehicle is widened, which is advantageous for mounting the electronic control device on the vehicle.

請求項3によれば、粗面により、接触面はバッテリ端子に対して食い込み、接触強度を上げることができる。 According to claim 3, due to the rough surface, the contact surface can bite into the battery terminal and the contact strength can be increased.

請求項によれば、接続端子の接触面は、バッテリ端子の円柱形状に沿って断面円弧状に凹設されているため、接触面積を確保でき、接触抵抗の増加を防止する。 According to the fourth aspect, the contact surface of the connection terminal is recessed in a circular arc shape along the cylindrical shape of the battery terminal, so that a contact area can be ensured and an increase in contact resistance is prevented.

以上詳述したように、本発明によれば、バッテリから昇圧回路までの配線を不要にして、昇圧回路の動作時に配線抵抗及び大電流による電圧ドロップを解消し、この結果、昇圧回路の出力電圧上昇幅を大幅に改善できる効果を奏する。又、バッテリ端子に対する電線の接続と接続端子とが、共に共通の接続部材にて電気的に接続できる。 As described above in detail, according to the present invention, wiring from the battery to the booster circuit is not necessary, and voltage drop due to wiring resistance and large current is eliminated during operation of the booster circuit. As a result, the output voltage of the booster circuit is reduced. There is an effect that the rise is greatly improved. Moreover, the connection of the electric wire to the battery terminal and the connection terminal can be electrically connected together by a common connection member.

(実施形態)
以下、本発明を、自動車に搭載されるモータ制御装置、例えば、電動パワーステアリング制御装置の昇圧回路のバッテリへの接続構造に具体化した一実施形態を図1〜図7に従って説明する。
(Implementation form)
Hereinafter, an embodiment in which the present invention is embodied in a motor control device mounted on an automobile, for example, a structure for connecting a booster circuit of an electric power steering control device to a battery will be described with reference to FIGS.

図1は昇圧回路の接続構造を示す全体概略図、図2は昇圧回路を内蔵したハウジングのバッテリへの接続構造を示す斜視図である。図3は同じく接続構造の平面図、図4は昇圧回路のバッテリへの接続構造を示す斜視図である。図5は昇圧回路の電気回路図である。   FIG. 1 is an overall schematic diagram showing a connection structure of a booster circuit, and FIG. 2 is a perspective view showing a connection structure of a housing incorporating a booster circuit to a battery. 3 is a plan view of the connection structure, and FIG. 4 is a perspective view showing the connection structure of the booster circuit to the battery. FIG. 5 is an electric circuit diagram of the booster circuit.

昇圧回路用のハウジング10は、図1に示すように四角箱形に形成され、バッテリ本体Bhの上面に載置されている。前記昇圧回路用のハウジング10内には、昇圧回路20が収納されている。昇圧回路20は公知の回路から構成されているため、図5を参照して簡単に説明する。図5に示すように、昇圧回路20は、スイッチング素子21、制御回路23、コイル22、ダイオードD、及びコンデンサC1,C2等により構成されている。本実施形態では、スイッチング素子21は、MOSFETから構成されている。コンデンサC1,C2は、アルミ電解コンデンサにて構成されている。   As shown in FIG. 1, the booster circuit housing 10 is formed in a square box shape and placed on the upper surface of the battery body Bh. A booster circuit 20 is accommodated in the booster circuit housing 10. Since the booster circuit 20 is composed of a known circuit, it will be briefly described with reference to FIG. As shown in FIG. 5, the booster circuit 20 includes a switching element 21, a control circuit 23, a coil 22, a diode D, capacitors C1 and C2, and the like. In this embodiment, the switching element 21 is comprised from MOSFET. Capacitors C1 and C2 are composed of aluminum electrolytic capacitors.

昇圧回路20には、バッテリBの直流電圧がコイル22に印加される。制御回路23の出力端子はスイッチング素子21の制御端子(図5においては、ゲート端子)に接続されている。前記制御回路23は、昇圧のためのパルス電圧を制御端子に出力し、このパルス電圧によって、スイッチング素子21をチョッパ制御する。スイッチング素子21は、前記パルス電圧によりオンオフを繰返し、コイル22は地絡/開放を繰返す。これによって、コイル22からは前記パルス電圧の周期と同周期の高電圧が発生する。この高電圧はコンデンサC2によって平滑化され、出力端子25から後述するECU80に供給される。   The DC voltage of the battery B is applied to the coil 22 in the booster circuit 20. The output terminal of the control circuit 23 is connected to the control terminal (the gate terminal in FIG. 5) of the switching element 21. The control circuit 23 outputs a pulse voltage for boosting to a control terminal, and chopper-controls the switching element 21 with this pulse voltage. The switching element 21 is repeatedly turned on and off by the pulse voltage, and the coil 22 repeats grounding / opening. As a result, a high voltage having the same cycle as that of the pulse voltage is generated from the coil 22. This high voltage is smoothed by the capacitor C2 and supplied from the output terminal 25 to the ECU 80 described later.

ハウジング10の長手方向に沿った一側面からは一対の接続端子30,40が側方へ突設されている。接続端子30の一端は、バッテリBのバッテリ端子としてのプラス端子Baに接続され、他端はコイル22に接続されている。接続端子40の一端はバッテリ端子としてのマイナス端子Bbに接続され、他端はスイッチング素子21の端子に接続されている。   A pair of connection terminals 30, 40 project laterally from one side surface along the longitudinal direction of the housing 10. One end of the connection terminal 30 is connected to a plus terminal Ba as a battery terminal of the battery B, and the other end is connected to the coil 22. One end of the connection terminal 40 is connected to a minus terminal Bb as a battery terminal, and the other end is connected to a terminal of the switching element 21.

ここで、接続端子30と、バッテリ端子であるプラス端子Baとの接続構造について説明する。なお、バッテリ端子であるプラス端子Ba、及びマイナス端子Bbは、円柱形状に形成されて、バッテリ本体Bhの上面から上方に突設されている。   Here, a connection structure between the connection terminal 30 and the plus terminal Ba which is a battery terminal will be described. The positive terminal Ba and the negative terminal Bb, which are battery terminals, are formed in a cylindrical shape and project upward from the upper surface of the battery body Bh.

接続端子30の一端である接触部31は、ハウジング10から突設した平板部分の先端から図2に示すように上方に突設されている。接触部31は円筒を軸心方向に沿って半割した形状とされ、側面には断面半円弧状の接触面32が凹設されている。接触面32の断面円弧部分の曲率半径は、プラス端子Baの円柱形状の外周面に沿うようにプラス端子Baの外周面の曲率半径と同じにされている。そして、接触面32には多数の突起32aが形成されている。図2及び図3に示すように、接触部31はプラス端子Baに対して接触面32にて当接され、この状態で、接続部材としてのクランプ部材50にて接触部31と、プラス端子Baとが共締めされている。   As shown in FIG. 2, the contact portion 31 that is one end of the connection terminal 30 protrudes upward from the tip of the flat plate portion protruding from the housing 10. The contact portion 31 has a shape in which a cylinder is divided in half along the axial direction, and a contact surface 32 having a semicircular cross section is provided in a side surface. The radius of curvature of the cross-section arc portion of the contact surface 32 is the same as the radius of curvature of the outer peripheral surface of the plus terminal Ba along the cylindrical outer peripheral surface of the plus terminal Ba. A large number of protrusions 32 a are formed on the contact surface 32. As shown in FIGS. 2 and 3, the contact portion 31 is brought into contact with the plus terminal Ba at the contact surface 32. In this state, the contact portion 31 and the plus terminal Ba are clamped by the clamp member 50 as a connecting member. And are tightened together.

クランプ部材50は、基部が互いに一体に連結された一対の挟着片52,54を備えて、全体が二股状に形成されており、挟着片52,54の基部は弾性を備えている。挟着片52,54の互いに相対する基端側内面は、略円弧形状に凹設された挟着面53,55を備えている。そして、挟着片52を貫通して挟着片54の先端に螺合したボルト56の螺合量を前記基部の弾性に抗して調節すると、接触部31とプラス端子Baは挟着片52,54の挟着面53,55に挟み付けられることにより、共締めされている。なお、挟着片54に対してボルト56を螺退すると、前記基部の弾性力により、両挟着片が反挟着方向に広がり、クランプ部材50の取り外しが可能である。クランプ部材50の基部には、電線L1が接続され、同電線Lを介してECU80に対して電力を供給可能である。   The clamp member 50 includes a pair of sandwiching pieces 52 and 54 whose base portions are integrally connected to each other, and is formed in a bifurcated shape as a whole. The base portions of the sandwiching pieces 52 and 54 have elasticity. The mutually opposing proximal end inner surfaces of the sandwiching pieces 52 and 54 are provided with sandwiching surfaces 53 and 55 that are recessed in a substantially arc shape. When the screwing amount of the bolt 56 that passes through the pinching piece 52 and screwed to the tip of the pinching piece 54 is adjusted against the elasticity of the base portion, the contact portion 31 and the plus terminal Ba are connected to the pinching piece 52. , 54 are fastened together by being sandwiched between the sandwiching surfaces 53, 55. When the bolt 56 is screwed with respect to the sandwiching piece 54, both the sandwiching pieces spread in the anti-pinching direction by the elastic force of the base portion, and the clamp member 50 can be removed. An electric wire L1 is connected to the base of the clamp member 50, and electric power can be supplied to the ECU 80 via the electric wire L.

接続端子40と、バッテリ端子であるマイナス端子Bbとの接続構造については、接続端子30とプラス端子Baとの接続構造と同様である。このため、接続端子40において、接続端子30と同一構成については、40の符号に、接続端子30の1桁の符号を加算したものを付して説明を省略する。又、接続端子40とマイナス端子Bbとの接続に使用するクランプ部材50は、接続端子30とプラス端子Baとの接続構造と同様であるため、図3に示すように同一符号を付してその説明を省略する。なお、図2においては、接続端子40とマイナス端子Bbの接続用のクランプ部材50については省略している。   The connection structure between the connection terminal 40 and the minus terminal Bb which is a battery terminal is the same as the connection structure between the connection terminal 30 and the plus terminal Ba. For this reason, in the connection terminal 40, about the same structure as the connection terminal 30, what added the 1-digit code | symbol of the connection terminal 30 to the code | symbol of 40 is attached | subjected, and description is abbreviate | omitted. Further, the clamp member 50 used for connecting the connection terminal 40 and the minus terminal Bb is the same as the connection structure of the connection terminal 30 and the plus terminal Ba. Therefore, the same reference numerals are given as shown in FIG. Description is omitted. In FIG. 2, the connection clamping member 50 for connecting the connection terminal 40 and the minus terminal Bb is omitted.

ハウジング10の一側面には、コネクタ58が設けられており、出力端子25と接地端子26とが内蔵されている。なお、接地端子26は図5に示すように接続端子40に接続されている。コネクタ58内の出力端子25と接地端子26には図示しないプラグを介して電線L2がそれぞれ接続され(図1参照)、同電線L2によりECU80に昇圧した電力が供給される。なお、ECU80は、図示はしないがハウジング10とは、離間した位置に配置されているため、ハウジング10とは別の図示しないハウジングに収納されている。   A connector 58 is provided on one side of the housing 10, and the output terminal 25 and the ground terminal 26 are built in. The ground terminal 26 is connected to the connection terminal 40 as shown in FIG. An electric wire L2 is connected to the output terminal 25 and the ground terminal 26 in the connector 58 through a plug (not shown) (see FIG. 1), and the boosted electric power is supplied to the ECU 80 by the electric wire L2. Although not shown, the ECU 80 is housed in a housing (not shown) separate from the housing 10 because the ECU 80 is disposed at a position separated from the housing 10.

ECU80にはバッテリBから電線L1を介してバッテリ電圧の電力が供給される。このバッテリ電圧の電力は、ECU80を構成する図示しない各種回路の電力源となる。又、ECU80には昇圧回路20から電線L2を介して昇圧された電力が供給される。この昇圧された電圧の電力は、ECU80内に設けられたモータ駆動回路(図示しない)に供給され、同モータ駆動回路がECU80内の制御部(図示しない)により制御されることにより、アクチュエータとしてのモータMを駆動制御する。   The ECU 80 is supplied with battery voltage power from the battery B via the electric wire L1. The electric power of the battery voltage is a power source for various circuits (not shown) constituting the ECU 80. Further, the ECU 80 is supplied with the boosted power from the booster circuit 20 via the electric wire L2. The boosted voltage power is supplied to a motor drive circuit (not shown) provided in the ECU 80, and the motor drive circuit is controlled by a control unit (not shown) in the ECU 80, thereby The motor M is driven and controlled.

さて、本実施形態によれば、以下のような特徴がある。
(1) 本実施形態では、バッテリ電圧を昇圧する昇圧回路20に接続された接続端子30,40を、バッテリBのプラス端子Ba、マイナス端子Bb(バッテリ端子)に直付けした。この結果、バッテリBから昇圧回路20までの配線が不要となり、昇圧回路20の動作時に配線抵抗及び大電流による電圧ドロップが解消できる。又、昇圧回路20の出力電圧上昇幅を大幅に改善できる。
Now, according to this embodiment, there are the following features.
(1) In this embodiment, the connection terminals 30 and 40 connected to the booster circuit 20 that boosts the battery voltage are directly attached to the plus terminal Ba and the minus terminal Bb (battery terminal) of the battery B. As a result, wiring from the battery B to the booster circuit 20 becomes unnecessary, and voltage drop due to wiring resistance and a large current can be eliminated during the operation of the booster circuit 20. Moreover, the output voltage increase width of the booster circuit 20 can be greatly improved.

すなわち、昇圧回路20の昇圧作動時に、従来に比してより少ないバッテリ電流で、昇圧が可能となる。
図6はECU入力電圧別の昇圧電圧グラフの特性図である。横軸は、昇圧回路20のスイッチング素子21のデューティ比、縦軸は昇圧電圧である。同図に示すように、バッテリ電圧が11V,12V,13Vのそれぞれの場合、デューティ比に応じて、バッテリ電圧が昇圧する。しかし、いずれのデューティ比においても、昇圧電圧は、同じデューティ比の場合、バッテリ電圧が高いほど大きくなることが分かる。すなわち、従来は、配線抵抗及び大電流による電圧ドロップのために、昇圧回路に印加されるバッテリ電圧は低くなるが、本実施形態では、配線による電圧ドロップが解消されているため、同じデューティ比の場合、従来よりも大きな昇圧電圧が得られる。又、従来の配線抵抗及び大電流による電圧ドロップが発生していた場合に比べて、同じ電圧に昇圧する場合を考えた場合、昇圧動作時に、より少ないバッテリ電流で昇圧することができる。従って、従来に比して、スイッチング素子21の発熱も少なくなり、スイッチング素子21や、コンデンサC1,C2の小型化、低コスト化が可能となる。さらに、従来は、スイッチング素子が発生した熱を放熱するためのヒートシンクも大型のものを使用する必要があるが、本実施形態によれば、発熱が少なくなるため、ヒートシンクを小型化ができる。
That is, at the time of boosting operation of the booster circuit 20, boosting is possible with a smaller battery current than in the prior art.
FIG. 6 is a characteristic diagram of a boosted voltage graph for each ECU input voltage. The horizontal axis represents the duty ratio of the switching element 21 of the booster circuit 20, and the vertical axis represents the boost voltage. As shown in the figure, when the battery voltages are 11V, 12V, and 13V, the battery voltage is boosted according to the duty ratio. However, it can be seen that at any duty ratio, the boosted voltage increases as the battery voltage increases for the same duty ratio. That is, conventionally, the battery voltage applied to the booster circuit is low due to the voltage drop due to the wiring resistance and the large current, but in this embodiment, the voltage drop due to the wiring is eliminated, so the same duty ratio is used. In this case, a boosted voltage larger than the conventional one can be obtained. Further, when considering the case where the voltage is boosted to the same voltage as compared with the case where the voltage drop due to the conventional wiring resistance and large current has occurred, the voltage can be boosted with a smaller battery current during the boosting operation. Therefore, the heat generation of the switching element 21 is reduced as compared with the conventional case, and the switching element 21 and the capacitors C1 and C2 can be reduced in size and cost. Further, conventionally, it is necessary to use a large heat sink for dissipating the heat generated by the switching element. However, according to the present embodiment, heat generation is reduced, so that the heat sink can be downsized.

図7は昇圧効率グラフとバッテリ電流グラフの特性図である。同図に示すように、スイッチング素子21のチョッパ駆動のデューティ比は、デューティ比を上げるほど、昇圧効率は低下する。従来は、配線抵抗及び大電流による電圧ドロップのため、昇圧電圧を上げるためには、バッテリ電流を多く流す必要があり、その結果、昇圧効率が低下する問題がある。本実施形態では、配線抵抗及び大電流による電圧ドロップが解消して、電圧ドロップは接続端子30のものだけで良くなるため、昇圧効率も向上する効果がある。   FIG. 7 is a characteristic diagram of the boosting efficiency graph and the battery current graph. As shown in the figure, the duty ratio of the chopper drive of the switching element 21 increases as the duty ratio increases. Conventionally, due to voltage drop due to wiring resistance and large current, in order to increase the boost voltage, it is necessary to flow a large amount of battery current, and as a result, there is a problem that boost efficiency is lowered. In the present embodiment, the voltage drop due to the wiring resistance and the large current is eliminated, and the voltage drop only needs to be that of the connection terminal 30, so that the boosting efficiency is also improved.

従来は、配線抵抗及び大電流による電圧ドロップする分を見込んで、昇圧電圧を上げるために、コイル22のインダクタンスを増やしたり、回路基板のパターン抵抗を極力減らすために、バスバーにする等の対策を取る必要がある。このため、コストアップとなる問題があった。それに対して、本実施形態では、そのような対策を取る必要がなくなり、コスト低減を図ることができる。   Conventionally, in anticipation of voltage drop due to wiring resistance and large current, measures such as increasing the inductance of the coil 22 in order to increase the boost voltage, or using a bus bar to reduce the circuit board pattern resistance as much as possible. I need to take it. For this reason, there has been a problem of cost increase. On the other hand, in the present embodiment, it is not necessary to take such measures, and the cost can be reduced.

(2) 本実施形態では、昇圧回路20はモータM(アクチュエータ)を制御する制御部(図示しない)を備えるECU80を収納するハウジング(図示しない)とは別のハウジング10に収納されている。そして、接続端子30,40は、昇圧回路20を収納するハウジング10から外部に突設されて、バッテリBのプラス端子Baとマイナス端子Bbと直付けされている。この結果、ECU80のハウジングとは異なる昇圧回路20のハウジング10を備えたものにおいて、上記(1)と同様の効果を奏する。   (2) In the present embodiment, the booster circuit 20 is housed in a housing 10 different from a housing (not shown) that houses an ECU 80 that includes a control unit (not shown) that controls the motor M (actuator). The connection terminals 30 and 40 project outward from the housing 10 that houses the booster circuit 20, and are directly attached to the plus terminal Ba and the minus terminal Bb of the battery B. As a result, in the case where the housing 10 of the booster circuit 20 different from the housing of the ECU 80 is provided, the same effect as the above (1) is obtained.

又、昇圧回路20は使用部品が大きいため、ECU80のハウジング(図示しない)ともに昇圧回路を収納すると、ECU80自体のサイズが大きくなる。この場合、車両搭載時には、搭載のレイアウトが制限され自由度がなくなる問題がある。しかし、本実施形態では、ECU80と昇圧回路20は別々のハウジングに収納されるため、ECU80自体が小さくなり、ECU80の車両搭載の自由度が広がり、ECU80の車両搭載を有利にすることができる。   Further, since the booster circuit 20 uses large parts, the size of the ECU 80 itself increases when the booster circuit is housed together with the housing (not shown) of the ECU 80. In this case, when the vehicle is mounted, there is a problem that the mounting layout is limited and the degree of freedom is lost. However, in the present embodiment, since the ECU 80 and the booster circuit 20 are housed in separate housings, the ECU 80 itself is small, and the degree of freedom of mounting the ECU 80 on the vehicle is widened, which makes it advantageous to mount the ECU 80 on the vehicle.

(3) 本実施形態では、バッテリBのプラス端子Baとマイナス端子Bbに対して、電線L1の一端が接続されたクランプ部材50を着脱自在に取付け、クランプ部材50にて、接続端子30,40をバッテリBのプラス端子Baとマイナス端子Bbに挟着した。この結果、バッテリBのプラス端子Baとマイナス端子Bbに対する電線L1の接続と接続端子30,40とが、共に共通のクランプ部材50にて電気的に接続することができる。   (3) In the present embodiment, the clamp member 50 to which one end of the electric wire L1 is connected is detachably attached to the positive terminal Ba and the negative terminal Bb of the battery B, and the connection terminals 30 and 40 are attached by the clamp member 50. Was sandwiched between the positive terminal Ba and the negative terminal Bb of the battery B. As a result, the connection of the electric wire L1 to the plus terminal Ba and the minus terminal Bb of the battery B and the connection terminals 30 and 40 can be electrically connected by the common clamp member 50.

(4) 本実施形態では、プラス端子Baとマイナス端子Bbの外周面と当接する接続端子30,40の接触面32,42は粗面に形成した。この結果、粗面により、接触面32,42がプラス端子Baとマイナス端子Bbの外周面に食い込み、接触強度を上げることができる。又、接触強度を上げることができるため、自動車の走行時の振動にも強くなり、すなわち、耐振動性を上げることができる。   (4) In the present embodiment, the contact surfaces 32 and 42 of the connection terminals 30 and 40 that are in contact with the outer peripheral surfaces of the plus terminal Ba and the minus terminal Bb are formed rough. As a result, due to the rough surface, the contact surfaces 32 and 42 bite into the outer peripheral surfaces of the plus terminal Ba and the minus terminal Bb, and the contact strength can be increased. In addition, since the contact strength can be increased, the vehicle is also resistant to vibration during driving of the automobile, that is, vibration resistance can be increased.

(5) 本実施形態では、バッテリBのプラス端子Baとマイナス端子Bbは、円柱形状に形成した。一方、接続端子30,40は、プラス端子Baとマイナス端子Bbの円柱形状の外周面に沿って断面円弧状に凹設した接触面32,42を備える。この結果、接続端子30,40と、バッテリBのプラス端子Baとマイナス端子Bbとの接触面積を確保でき、接触抵抗の増加を防止することができる。   (5) In this embodiment, the plus terminal Ba and the minus terminal Bb of the battery B are formed in a cylindrical shape. On the other hand, the connection terminals 30 and 40 include contact surfaces 32 and 42 that are recessed in a circular arc shape along the cylindrical outer peripheral surfaces of the plus terminal Ba and the minus terminal Bb. As a result, a contact area between the connection terminals 30 and 40 and the plus terminal Ba and minus terminal Bb of the battery B can be secured, and an increase in contact resistance can be prevented.

参考例
次に、参考例を図8及び図9を参照して説明する。なお、前記実施形態と同一構成については、同一符号を付して、その説明を省略し、異なるところを中心に説明する。
( Reference example )
Next, a reference example will be described with reference to FIGS. In addition, about the same structure as the said embodiment, the same code | symbol is attached | subjected, the description is abbreviate | omitted and it demonstrates centering on a different location.

参考例では接続端子の構成が前記実施形態と異なっている。図9に示すように接続端子60,70は、ハウジング10の長手方向の両端面から、それぞれ突設されている。接続端子60,70の先端には、クランプ部150が設けられている。クランプ部150の構成は、前記実施形態のクランプ部材50の構成において、挟着片52,54の基部に電線L1を備えた構成が省略された構成であり、他の構成は同一構成である。このため、参考例のクランプ部150において、前記実施形態のクランプ部材50の各構成に相当する構成については、前記実施形態でクランプ部材50の各構成に付した符号に100を加算した符号を付してその説明を省略する。従って、クランプ部150は、挟着片152,154,ボルト156を備えている。 In the reference example , the configuration of the connection terminal is different from that of the above embodiment. As shown in FIG. 9, the connection terminals 60 and 70 protrude from both end surfaces of the housing 10 in the longitudinal direction. A clamp portion 150 is provided at the distal ends of the connection terminals 60 and 70. The configuration of the clamp unit 150 is a configuration in which the configuration in which the electric wires L1 are provided at the base portions of the sandwiching pieces 52 and 54 in the configuration of the clamp member 50 of the above embodiment is omitted, and the other configurations are the same. Therefore, with the clamping portion 150 of the reference example, the configuration corresponding to the configuration of the clamp member 50 of the embodiment, the code obtained by adding code to 100 as those in the configuration of the clamp member 50 in the embodiment Therefore, the description is omitted. Accordingly, the clamp unit 150 includes sandwiching pieces 152 and 154 and bolts 156.

挟着片154の外側部には、連結部160が側方に突出されている。連結部160の先端には、接続部161が上方へ突設されている。接続部161はプラス端子Ba,及びマイナス端子Bbと同形状及び同一の径を有するように円柱状に形成されている。   A connecting portion 160 protrudes laterally from the outer side of the sandwiching piece 154. A connecting portion 161 protrudes upward from the distal end of the connecting portion 160. The connecting portion 161 is formed in a cylindrical shape so as to have the same shape and the same diameter as the plus terminal Ba and the minus terminal Bb.

各接続部161には、図示はしないが、前記実施形態のクランプ部材50が着脱自在に取り付けされ、ECU80に対してバッテリBから電線L1を介してバッテリ電圧の電力が供給される。 Although not shown in the drawing, the clamp member 50 of the above embodiment is detachably attached to each connection portion 161, and battery voltage power is supplied from the battery B to the ECU 80 via the electric wire L <b> 1.

さて、参考例によれば、前記実施形態の(1)、(2)の作用効果の他、以下のような特徴がある。
(1) 参考例では、接続端子60,70には、プラス端子Ba及びマイナス端子Bbに着脱自在に取り付けされるクランプ部150を設け、プラス端子Ba及びマイナス端子Bbと同じ形状の接続部161を備えるようにした。この結果、プラス端子Ba及びマイナス端子Bbとの接続用に設けられたクランプ部材50をそのまま使用することができる。
Now, according to the reference example, (1) of the embodiment, there are other, the following features of the advantages of the (2).
(1) In the reference example , the connection terminals 60 and 70 are provided with a clamp portion 150 that is detachably attached to the plus terminal Ba and the minus terminal Bb, and the connection portion 161 having the same shape as the plus terminal Ba and the minus terminal Bb is provided. I prepared. As a result, the clamp member 50 provided for connection with the plus terminal Ba and the minus terminal Bb can be used as it is.

(2) 参考例では、接続部161をバッテリ本体Bhから突出するプラス端子Ba及びマイナス端子Bbの突出方向と同方向に延出した。この結果、接続部161がプラス端子Ba及びマイナス端子Bbの突出方向と同方向に延出されていることにより、従来と同様に、他の電力供給対象から延出された電線L1を接続でき、配線の変更を極力抑えることができる。 (2) In the reference example , the connecting portion 161 extends in the same direction as the protruding direction of the plus terminal Ba and the minus terminal Bb protruding from the battery body Bh. As a result, the connecting portion 161 is extended in the same direction as the protruding direction of the plus terminal Ba and the minus terminal Bb, so that the electric wire L1 extended from another power supply target can be connected as in the prior art. Wiring changes can be minimized.

なお、本発明の実施形態は以下のように変更してもよい。
○ 前記実施形態では昇圧回路20のスイッチング素子21をMOSFETとしたが、パイポーラトランジスタに代えても良い。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, the switching element 21 of the booster circuit 20 is a MOSFET, but it may be replaced with a bipolar transistor.

○ 接続部材としてクランプ部材50に限定するものではなく、直付けできるものであればよい。特に、バッテリ端子に対して着脱自在に直付けされるものが好ましい。   ○ The connecting member is not limited to the clamp member 50, and any connecting member may be used. In particular, those that are detachably attached directly to the battery terminal are preferable.

本発明を具体化した実施形態の昇圧回路の接続構造を示す全体概略図。 1 is an overall schematic diagram showing a connection structure of a booster circuit according to an embodiment embodying the present invention. 実施形態の昇圧回路のバッテリへの接続構造を示す斜視図。 The perspective view which shows the connection structure to the battery of the booster circuit of one Embodiment. 同じく接続構造の平面図。The top view of a connection structure similarly. 同じく昇圧回路のバッテリへの接続構造を示す斜視図。The perspective view which similarly shows the connection structure to the battery of a booster circuit. 昇圧回路の電気回路図。The electric circuit diagram of a booster circuit. ECU入力電圧別の昇圧電圧グラフの特性図。The characteristic figure of the step-up voltage graph according to ECU input voltage. 昇圧効率グラフとバッテリ電流グラフの特性図。The characteristic figure of a boosting efficiency graph and a battery current graph. 参考例の昇圧回路のバッテリへの接続構造を示す斜視図。 The perspective view which shows the connection structure to the battery of the booster circuit of a reference example . 同じく接続構造の平面図。The top view of a connection structure similarly. 従来の昇圧回路とバッテリとの接続を示す説明図。Explanatory drawing which shows the connection of the conventional booster circuit and a battery.

符号の説明Explanation of symbols

Ba…プラス端子(バッテリ端子)
Bb…マイナス端子(バッテリ端子)
L1…電線
10…ハウジング
20…昇圧回路
30,40…接続端子
32,42…接触面
50…クランプ部材(接続部材)
150…クランプ部
161…接続部
Ba ... Plus terminal (battery terminal)
Bb ... Negative terminal (battery terminal)
L1 ... Electric wire 10 ... Housing 20 ... Booster circuit 30, 40 ... Connection terminal 32, 42 ... Contact surface 50 ... Clamp member (connection member)
150 ... Clamp part 161 ... Connection part

Claims (4)

バッテリのバッテリ端子に対して、電線の一端が接続された接続部材を着脱自在に取付けし、前記接続部材にて、バッテリ電圧を昇圧する昇圧回路に接続された接続端子がバッテリ端子に直付けされていることを特徴とする昇圧回路のバッテリへの接続構造。 A connecting member connected to one end of the electric wire is detachably attached to the battery terminal of the battery, and the connecting terminal connected to the booster circuit for boosting the battery voltage is directly attached to the battery terminal by the connecting member. A structure for connecting a booster circuit to a battery. 前記昇圧回路はアクチュエータを制御する制御部を備える電子制御装置を収納するハウジングとは別のハウジングに収納され、前記接続端子は、前記昇圧回路を収納するハウジングから外部に突設されて、前記バッテリ端子と直付けされていることを特徴とする請求項1に記載の昇圧回路のバッテリへの接続構造。 The booster circuit is housed in a housing separate from a housing housing an electronic control device including a control unit that controls an actuator, and the connection terminal protrudes from the housing housing the booster circuit to the battery. 2. The structure for connecting a booster circuit to a battery according to claim 1, wherein the structure is directly attached to a terminal. 前記接続端子は、前記バッテリ端子との接続時に同バッテリ端子の外周面と当接する接触面は粗面に形成されていることを特徴とする請求項2に記載の昇圧回路のバッテリへの接続構造。3. The structure for connecting a booster circuit to a battery according to claim 2, wherein the connection terminal has a rough contact surface that contacts the outer peripheral surface of the battery terminal when connected to the battery terminal. . 前記バッテリ端子は、円柱形状に形成され、前記接続端子は、前記バッテリ端子の円柱形状の外周面に沿って断面円弧状に凹設された接触面を備えたことを特徴とする請求項3に記載の昇圧回路のバッテリへの接続構造。The said battery terminal is formed in the column shape, The said connection terminal was provided with the contact surface dented in the cross-sectional arc shape along the column-shaped outer peripheral surface of the said battery terminal. A structure for connecting the described booster circuit to a battery.
JP2003275605A 2003-07-16 2003-07-16 Connection structure of booster circuit to battery Expired - Fee Related JP4686964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275605A JP4686964B2 (en) 2003-07-16 2003-07-16 Connection structure of booster circuit to battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275605A JP4686964B2 (en) 2003-07-16 2003-07-16 Connection structure of booster circuit to battery

Publications (2)

Publication Number Publication Date
JP2005038756A JP2005038756A (en) 2005-02-10
JP4686964B2 true JP4686964B2 (en) 2011-05-25

Family

ID=34212202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275605A Expired - Fee Related JP4686964B2 (en) 2003-07-16 2003-07-16 Connection structure of booster circuit to battery

Country Status (1)

Country Link
JP (1) JP4686964B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010148A1 (en) * 2009-02-23 2010-08-26 Li-Tec Battery Gmbh Galvanic cell and contact element for contacting
JP5636865B2 (en) * 2010-10-19 2014-12-10 株式会社豊田自動織機 Power supply unit and power supply
JP2016024965A (en) * 2014-07-22 2016-02-08 八洲電業株式会社 Battery case unit
KR102217985B1 (en) * 2015-07-17 2021-02-19 엘에스엠트론 주식회사 Booster Integrated Ultra Capacitor Module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637363U (en) * 1979-08-30 1981-04-09
JP2000048851A (en) * 1998-07-31 2000-02-18 Ntt Power & Building Facilities Inc Washer
JP2002036980A (en) * 2000-07-21 2002-02-06 Toshiba Corp Car motor driving method and system
JP2003157827A (en) * 2001-11-26 2003-05-30 Auto Network Gijutsu Kenkyusho:Kk Battery connection method and structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637363U (en) * 1979-08-30 1981-04-09
JP2000048851A (en) * 1998-07-31 2000-02-18 Ntt Power & Building Facilities Inc Washer
JP2002036980A (en) * 2000-07-21 2002-02-06 Toshiba Corp Car motor driving method and system
JP2003157827A (en) * 2001-11-26 2003-05-30 Auto Network Gijutsu Kenkyusho:Kk Battery connection method and structure

Also Published As

Publication number Publication date
JP2005038756A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US7542318B2 (en) Capacitor mounting type inverter unit having a recessed cover
US9912212B2 (en) Motor drive device for electric power steering including heat sink and external connector
JP4442593B2 (en) Power converter
EP3162660B1 (en) Integrated electric power steering device, and manufacturing method thereof
US20180093698A1 (en) Integrated electric power steering apparatus and manufacturing method therefor
JP2010063242A (en) Electric power steering controller
JPH0670469U (en) Electrode connection structure between units
US11178753B2 (en) Switch device
US6778001B2 (en) Semiconductor circuit components for supplying power to a load
JP2016197684A (en) Electronic control device
JP4686964B2 (en) Connection structure of booster circuit to battery
JP2020001667A (en) Electric drive unit and electric power steering device
JP4857997B2 (en) Electric circuit structure
CN113544963A (en) Electronic control device and method for assembling electronic control device
US6548993B1 (en) Power supply module having internal energy storage circuit for stable oscillation
KR20040069319A (en) Power supply
JP2006269702A (en) Power converter
JP3951210B2 (en) control unit
CN113169472A (en) Electronic control device and electric power steering device
JP4662033B2 (en) DC-DC converter
JP2020150749A (en) Inverter assembly structure
JP2004178923A (en) Ion generating electrode and ion generator using the same
JP2009012631A (en) Electric power steering device
CN109074109B (en) Power conversion device and electric power steering device using same
JP5007501B2 (en) Electric power steering unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Ref document number: 4686964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees