[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4683775B2 - Wafer mounting stage and semiconductor manufacturing apparatus using the same - Google Patents

Wafer mounting stage and semiconductor manufacturing apparatus using the same Download PDF

Info

Publication number
JP4683775B2
JP4683775B2 JP2001209523A JP2001209523A JP4683775B2 JP 4683775 B2 JP4683775 B2 JP 4683775B2 JP 2001209523 A JP2001209523 A JP 2001209523A JP 2001209523 A JP2001209523 A JP 2001209523A JP 4683775 B2 JP4683775 B2 JP 4683775B2
Authority
JP
Japan
Prior art keywords
wafer
recess
sheath
temperature measuring
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209523A
Other languages
Japanese (ja)
Other versions
JP2003023062A (en
Inventor
純司 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001209523A priority Critical patent/JP4683775B2/en
Publication of JP2003023062A publication Critical patent/JP2003023062A/en
Application granted granted Critical
Publication of JP4683775B2 publication Critical patent/JP4683775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CVD、PVD、スパッタリング等の成膜装置やエッチング装置において、半導体ウエハ等のウエハを保持するのに使用するウエハ載置ステージ及びそれを用いた半導体製造装置に関するものである。
【0002】
【従来の技術】
従来、半導体集積回路素子の製造工程では、真空処理室内に設置した板状セラミック体からなるウエハ載置ステージ上に半導体ウエハ(以下、ウエハという)を載せ、ウエハ上に膜付けやパターン形成等の加工を施すようになっていた。
【0003】
これらの加工では、ウエハの温度がウエハ上に形成する膜の品質やパターンの加工性に大きな影響を与えることから、ウエハ温度の均一性と安定性が要求されている。
【0004】
また、近年、半導体集積回路素子の微細化に伴って、高密度のプラズマを用いたり、高周波を印加してバイアスをかけたりするなどして配向性の高い加工や成膜を行うことが求められ、それに伴う発熱量が大きいため、ウエハの温度変動を抑えることが益々重要視されている。
【0005】
そこで、ウエハ載置ステージ上のウエハ温度を正確に測定するため、ウエハ載置ステージに温度測定手段として熱電対を設置したものが提示されている。
【0006】
図5に従来のウエハ載置ステージを備える半導体製造装置の概略断面図を示すように、この半導体製造装置は、ウエハ載置ステージ51を略円筒状の支持体57を介して真空処理室58内に気密に設置したもので、ウエハ載置ステージ51は、板状セラミック体52からなり、その上面をウエハWを載せる載置面53とするとともに、上記板状セラミック体52の内部に加熱手段として耐熱金属よりなる内部電極54を内蔵したもので、この内部電極54と電気的に接続された給電端子55に通電することにより内部電極54を発熱させ、載置面53上のウエハWを加熱するようになっていた。
【0007】
また、ウエハ載置ステージ51には、載置面53上のウエハWの温度を間接的に測定するため、板状セラミック体52の下面に凹部56を備え、この凹部56内に熱電対60を設置するようになっており、載置面53上のウエハWの温度を正確に測定するため、次のような取付構造が提案されている。
【0008】
特開平4−95832号公報には、図6に示すように、板状セラミック体52の下面に備える凹部56内に熱電対60を挿入し、ガラス59にて接合するようにした技術が提示されている。なお、63は熱電対60の素線62を保護するための絶縁管である。
【0009】
また、特開平4−84722号公報には、図7に示すように、板状セラミック体52の下面に備える凹部56内に、金属製中空シース64を挿入するとともに、ガラス59にて接合し、上記中空シース64内に熱電対60を収容するようにした技術が開示されている。
【0010】
さらに、特開平6−176855号公報には、図8に示すように、板状セラミック体52の下面に備える凹部56内に雌ねじ部56aを設け、この凹部56に雄ねじ部64aを有する金属製中空シース64を螺合し、この金属製中空シース64内に熱電対60を収容するようにした技術が開示されている。
【0011】
【発明が解決しようとする課題】
ところが、特開平4−95832号公報に開示された技術では、熱電対60の熱接点61の周囲が熱伝導率の小さいガラス59で覆われていることから、ウエハ載置ステージ51の温度を応答性良く測定することが難しいといった課題があった。
【0012】
また、板状セラミック体52の凹部56内に熱電対60を挿入してガラス59付けするにあたり、熱電対60の熱接点61を板状セラミック体52の凹部底面56aに確実に当接させた状態でガラス付けすることが難しく、熱電対60の取付にあたっての信頼性が低く、また、熱電対60の熱接点61が凹部底面56aから離れた状態でガラス付けされると、板状セラミック体52から熱接点61への熱の伝わりが悪くなり、載置面53上のウエハWの温度を正確に測定することができないといった課題があった。
【0013】
一方、特開平4−84722号公報に開示された技術では、板状セラミック体52の凹部56に金属製中空シース64を熱伝導率の小さなガラス59で接合した構造であることから、特開平4−95832号公報と同様にウエハ載置ステージ51の温度を応答性良く測定することが難しいといった課題があった。
【0014】
さらに、特開平6−176855号公報に開示された技術では、板状セラミック体52の凹部56内に雌ねじ56aを切る必要があるが、凹部56の径は5mm〜10mmと小さく、また凹部56を構成するセラミックスは硬度が大きく脆性材料であることから、凹部56内にねじ山を形成する際に欠け等が発生し易く、歩留まりが悪いといった課題があった。
【0015】
しかも、板状セラミック体56の凹部56内に、熱膨張差の大きい金属製中空シース64を螺合した構造であることから接触面積が大きく、ウエハ載置ステージ51に温度差の大きな熱サイクルが加わると、板状セラミック体52の凹部56と金属製中空シース64との間に大きな熱応力が作用し、凹部56内のネジの谷やコーナーを起点としてクラックが発生するといった課題もあった。
【0016】
その為、図6乃至図8に示すような熱電対の取付構造を有するウエハ載置ステージ51を半導体製造装置に用いて成膜処理やエッチング処理を施すと、ウエハ載置ステージ51上のウエハWの温度を正確に測定することができないため、ウエハW上に形成する膜の品質やパターンの加工性に大きな影響を与え、品質を高めることができず、また、歩留りも悪いといった課題があった。
【0017】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、板状セラミック体の一方の主面を、ウエハを載せる載置面とするとともに、上記板状セラミック体の他方の主面に凹部を設け、この凹部内にシース型温度測定器を配置したウエハ載置ステージを形成するとともに、上記シース型温度測定器は、上記凹部の側面との間にギャップを設けつつ先端部が上記凹部の底面に当接されており、上記凹部の最大幅を0.25mm〜5mm、上記凹部の底面の表面粗さを最大高さ(Rmax)で5μm以下であり、かつ上記凹部の底面から上記載置面までの距離0.3mm〜10.0mmであることを特徴とする。
【0018】
なお、上記板状セラミック体は加熱手段又は冷却手段を備えたものであっても構わない。
【0019】
また、本発明は、上記ウエハ載置ステージを真空処理室に設置して半導体製造装置を形成したことを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0021】
図1は本発明のウエハ載置ステージを備える半導体製造装置を示す概略断面図である。
【0022】
この半導体製造装置は、ウエハ載置ステージ1を、略円筒状の支持体7を介して真空処理室8内に気密に設置したもので、上記ウエハ載置ステージ1は、板状セラミック体2からなり、その一方の主面を、ウエハを載せる載置面3とするとともに、上記板状セラミック体2の内部に加熱手段としての内部電極4を埋設したもので、上記内部電極4と電気的に接続される給電端子5間に電圧を印加して内部電極4を発熱させることにより、載置面3上のウエハWを所定の温度に加熱するようになっている。
【0023】
また、このウエハ載置ステージ1を形成する板状セラミック体2の他方の主面には、その底面が載置面3の近傍にまで延びる円形の凹部6を形成してあり、この凹部6内にはシース型温度測定器10を挿入するとともに、その先端部10aが凹部底面6aと当接するように押圧手段15によって押し付けてあり、載置面3上のウエハWの温度をシース型温度測定器10によって間接的に測定するようになっている。
【0024】
次に、本発明のウエハ載置ステージ21の他の例を図2に示す。
【0025】
このウエハ載置ステージ21は、板状セラミック体22の一方の主面を、ウエハWを載せる載置面23とするとともに、上記板状セラミック体22中に静電吸着用としての内部電極24を備え、かつ上記板状セラミック体22の他方の主面に金属台座27をロウ付け等にて接合したもので、金属台座27には冷却手段として冷却水等の冷却媒体を通すための通路28を形成してあり、載置面23に保持したウエハWの温度が所定の加工温度となるように調整するようになっている。
【0026】
そして、内部電極24と電気的に接続された給電端子25とウエハWとの間に通電して内部電極24とウエハWとの間に静電吸着力を発現させることにより、ウエハWを載置面23上に吸着固定するようになっている。
【0027】
また、このウエハ載置ステージ21を形成する板状セラミック体22の他方の主面側には、その底面が載置面23の近傍にまで延びる円形の凹部26を金属台座27を貫通して形成してあり、この凹部26内にはシース型温度測定器10を挿入するとともに、その先端部10aが凹部底面26aと当接するように押圧手段15によって押し付けてあり、載置面23上のウエハWの温度をシース型温度測定器10によって測定するようになっている。
【0028】
次に、図1及び図2におけるウエハ載置ステージ1,21に備えるシース型温度測定器10の取付構造について説明する。なお、図1及び図2におけるウエハ載置ステージ1,21はほぼ同様の構造を有することから、図1のウエハ載置ステージ1における取付構造を例にとって説明する。
【0029】
図3は図1のウエハ載置ステージ1における取付構造を拡大した断面図である。
【0030】
シース型温度測定器10は、ステンレス鋼や耐熱鋼からなる金属製中空シース14内に温度検出素子として、ニッケル、クロム合金、銅、ニッケル合金等からなる熱電対11を挿入するとともに、熱電対11の熱接点12や素線13と金属製中空シース14とが短絡しないようにするため、その周囲に酸化マグネシウム粉末等を充填したもので、熱電対11の熱接点12は中空シース14の先端部近傍に位置するように設置してある。
【0031】
また、正確な温度測定を行うには、金属製中空シース14の外径が小さいものを用いることが良い。即ち、中空シース14の外径が大きいと、中空シース14と熱電対11の熱接点12の距離が離れ、その間に介在する酸化マグネシウム粉末が熱抵抗となり、正確な温度測定に影響するばかりでなく、中空シース14の熱容量が大きくなり、熱応答性を著しく阻害するからで、好ましくは直径が5mm以下、望ましくは直径が3mm以下であるものを用いることが良い。
【0032】
さらに、金属製中空シース14の肉厚が厚すぎると熱容量が大きくなり、応答性に悪影響を与えるため、好ましくは1.5mm以下、望ましくは1mm以下であるものを用いることが好ましい。
【0033】
そして、このシース型温度測定器10の先端部10aを、図3に示すように、押圧手段15によって板状セラミック体2の凹部底面6aと当接させるようにしたもので、上記押圧手段15は、板状セラミック体2の他方の主面に接合した有底筒状の支持具17と、この支持具17の底部17aと上記中空シース14の外周に備えるフランジ部14aとの間に配置したスプリング16とから構成してあり、このスプリング16の弾性作用によってシース型温度測定器10の先端部10aが板状セラミック体2の凹部底面6aと常に当接するよう押圧させてある。
【0034】
その為、本発明によれば、ウエハ載置ステージ1,21に大きな熱サイクルが加わったとしてもシース型温度測定器10の先端部10aが板状セラミック体2の凹部底面6aと部分的に当接しているだけであるため、熱膨張差の異なる板状セラミック体2と中空シース14との間に熱応力が作用してもその応力は小さく、板状セラミック体2にクラックを発生させることがない。特に、この取付構造においては、板状セラミック体2と中空シース14との間に大きな熱応力が作用してもスプリング16の弾性作用により吸収することもできるため、板状セラミック体2にクラックが発生することを確実に防止できる。しかも、外部の振動がウエハ載置ステージ1,21に作用したとしてもスプリング16の弾性作用により中空シース14の先端部10aを常に板状セラミック体2の凹部底面6aと当接させておくことができるため、載置面3上のウエハWの温度を正確に測定することができる。
【0035】
また、温度測定手段として、シース型温度測定器10を用いるようにしたことから、板状セラミック体2への組立時や使用時に熱電対11の素線13が折れたりすることが無く、組立時や使用時の信頼性を高めることができる。
【0036】
次に、シース型温度測定器10の他の取付構造を図4に示す。
【0037】
この取付構造は、板状セラミック体2の他方の主面側に有底筒状の支持具17を接合するとともに、支持具17の底部17aに備える雌ねじ部17bを切った開口部に、金属製中空シース14の外周に備える雄ねじ部14aを螺合させることにより、シース型温度測定器10の先端部10aを凹部底面6aに押圧した状態で当接させてある。
【0038】
この取付構造によれば、ウエハ載置ステージ1,21に大きな熱サイクルが加わったとしてもシース型温度測定器10の先端部10aが板状セラミック体2の凹部底面6aと部分的に当接しているだけであるため、熱膨張差の異なる板状セラミック体2と金属製中空シース14との間に熱応力が作用してもその応力は小さく、板状セラミック体2にクラックを発生させることがなく、この取付構造においても載置面3上のウエハWの温度を正確に測定することができる。
【0039】
その為、本発明のウエハ載置ステージ1,21を真空処理室8内に設置して半導体製造装置を製作し、成膜処理やエッチング処理に用いれば、ウエハ載置ステージ1,21上のウエハWの温度を正確にかつ応答性良く測定することができるため、成膜精度やエッチング精度を高め、品質を向上させることができるとともに、歩留りを向上させることができる。
【0040】
ところで、正確かつ迅速にウエハWの温度を測定するためには、シース型温度測定器10の先端部10aが凹部6の内壁面と密着していることが必要である。
【0041】
なぜなら、中空シース14と凹部6の内壁面との間に隙間があると、この隙間が断熱層として作用するため、凹部6の内壁面の温度がシース型温度測定器10の先端部10aに伝わりにくくなり、正確な温度測定ができなくなるからである。
【0042】
また、本発明のようにシース型温度測定器10の先端部10aを凹部底面6aに当接させる構造においては、少なくともシース型温度測定器10の先端部10aと当接する凹部底面6aの表面粗さを最大高さ(Rmax)で5μm以下とすることが重要である。
【0043】
即ち、シース型温度測定器10の先端部10aとの当接部Pの表面粗さが最大高さ(Rmax)で5μmを越えると、シース型温度測定器10との接触面積が小さくなり、金属製中空シース14とセラミックスとの間の熱伝導が悪くなり、応答性が劣るばかりでなく、ウエハWの実際の温度との差が大きくなり、正確な温度を測定できなくなるとともに、金属製中空シース14と板状セラミック体2との間にできたミクロ的な空間に介在する流体の圧力が変動すると、流体の熱伝導率が変化して応答性にバラツキが発生するからである。
【0044】
ただし、凹部6とシース型温度測定器10との当接部Pから載置面3までの距離(T)が0.3mm未満となると、載置面3から凹部底面6aにあるセラミック部が、シース型温度測定器10の押圧力に耐えられず破損する恐れがあり、逆に、凹部6とシース型温度測定器10との当接部Pから載置面3までの距離(T)が10mmを越えると、載置面3との間隔が離れすぎ、ウエハWの温度を迅速に測温することが難しくなり応答性が悪く、さらに板状セラミック体2の厚みが薄い場合、板状セラミック体2の他方の主面側の温度や圧力変化の影響を受け易くなり、正確かつ迅速な測温ができなくなる。
【0045】
その為、シース型温度測定器10と凹部6との当接部Pから載置面3までの距離(T)は0.3mm〜10mmとすることが重要である。なお、図3に示す取付構造において、載置面3から凹部底面6aにあるセラミック部を破損させることなく、十分な密着力を持たせるためには、シース型温度測定器10を凹部底面6aに押し付ける押圧力を1N〜9.8Nとすることが好ましい。
【0046】
さらに、シース型温度測定器10を挿入する凹部6の最大幅(W)(図3では直径)は0.25〜5mmとすることが好ましい。
【0047】
なぜなら、凹部6の最大幅(W)が5mmを超える場合、シース型温度測定器10として外径が5mm未満であるものを用いた場合、凹部6とシース型温度測定器10との間のギャップが大きくなり、ウエハ載置ステージ1,21の周辺における圧力変動など、外的変動によって測定温度が変動する恐れがあり、また、シース型温度測定器10として外径が5mmを超えるものを用いた場合、応答性が悪くなるとともに、正確な温度測定ができなくなる恐れがあり、逆に凹部6の最大幅(W)が0.25mm未満となると、凹部6内に挿入するシース型温度測定器10の径がさらに細いものとなり、取り扱い時等に破損させ易くなるからである。
【0048】
なお、このような凹部6を形成するには、種々の方法を用いることができ、例えば、番手が#100以下であるダイヤモンドなど高硬度な砥粒を金属又は樹脂で固定した砥石による機械加工によって板状セラミック体2の他方の主面に凹部6を形成した後、砥粒の番手を#150以上とした砥石による機械加工によって凹部6の内壁面を加工することにより、凹部6の内壁面を最大高さ(Rmax)で5μm以下に仕上げることができる。また、凹部6を形成する他の手段としては、ダイヤモンド、炭化珪素、アルミナ等の砥粒を高圧で吹き付けて加工するブラスト加工、レーザー加工、放電加工等を用いることもできる。
【0049】
また、凹部6の平面形状としては、円形をしたものだけに限らず、楕円形、三角形、四角形等様々な形状をしたものを採用することができるが、応答性を高めるには、シース型温度測定器10と凹部6との間のギャップが少ない方が良く、また、シース型温度測定器10の金属製中空シース14の平面形状は円形をしているため、凹部6の平面形状としては円形とすることが好ましく、シース型温度測定器10と凹部6との間のギャップは0.2mm以下、望ましくは0.1mm以下とすることが良い。
【0050】
さらに、正確かつ応答性良く温度を測定するためには、凹部6とシース型温度測定器10との当接部Pを加熱手段や冷却手段からできるだけ離すことが好ましく、例えば、板状セラミックス体2が熱伝導率50W/m・K以下であるセラミック焼結体からなる場合、凹部6とシース型温度測定器10との当接部Pから加熱手段としての内部電極4又は冷却手段としての金属台座27までの距離(L)を1mm以上とすることが好ましく、望ましくは2mm以上とすることが良い。ただし、板状セラミック体2が熱伝導率50W/m・K以上を有するセラミック焼結体からなる場合、凹部6とシース型温度測定器10との当接部Pから加熱手段としての内部電極4又は冷却手段としての金属台座27までの距離(L)が1mm未満であっても使用することができる。
【0051】
ところで、ウエハ載置ステージ1,21を形成する板状セラミック体2としては、アルミナ、窒化珪素、サイアロン等を主成分とするセラミック焼結体を用いることもできるが、加熱手段や冷却手段によって載置面3上のウエハWを短時間で所定の温度に調整するため、できるだけ熱伝導率の高い材質により形成することが好ましく、好ましくは50W/m・K以上の熱伝導率を有する窒化アルミニウムを主成分とするセラミック焼結体を用いることが好ましい。
【0052】
以上、本発明の実施形態について示したが、本発明はこれらの実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良や変更したものを含むことは言うまでもない。
【0053】
【実施例】
(実施例1)
ここで、凹部6の最大幅(W)、シース型温度測定器10との当接部Pにおける表面粗さ、及び凹部6とシース型温度測定器10との当接部Pから載置面3までの距離(T)をそれぞれ異ならせた図1に示すウエハ載置ステージ1を製作し、これらのウエハ載置ステージ1を用いてウエハを加熱させた時のウエハの実際の温度とシース型温度測定器の温度との温度差及びシース型温度測定器の応答性について調べる実験を行った。
【0054】
本実験では、ウエハ載置ステージ1を形成する板状セラミック体2を熱伝導率が80W・m/Kである窒化アルミニウム質焼結体により形成し、その寸法形状を、直径200mm、厚み12mmの円板状体とした。なお、板状セラミック体2中には加熱手段としてタングステンからなる内部電極4を埋設した。
【0055】
また、実験にあたっては、ウエハ載置ステージ1の載置面3上に、熱電対を取り付けた8インチのシリコンウエハを載せた後、内部電極4に通電してシリコンウエハに取着した熱電対による温度が100℃になるまで加熱した後、ウエハ載置ステージ1の凹部6内に、温度検出素子として熱電対11を備えるシース型温度測定器10を挿入、当接させ、シース型温度測定器10の飽和温度の90%になるまでの時間を応答時間として測定するとともに、飽和温度におけるウエハの実際の温度とシース型温度測定器10による温度との温度差を調べる実験を行った。
【0056】
なお、シース型温度測定器10を凹部6内に挿入、当接させる際の押圧力は、予め調整したバネ定数の異なるスプリング16を用いることにより設定し、また、シース型温度測定器10には、凹部6内に挿入した時、凹部6の側面とのギャップが0.1mmとなる大きさを有するものをそれぞれ用いた。
【0057】
そして、応答時間が20秒以下、温度差が40℃以下であるものを優れたものとして評価した。
【0058】
結果は表1に示す通りである。
【0059】
【表1】

Figure 0004683775
【0060】
この結果、表1より判るように、凹部6の最大幅(W)を0.25mm〜5mmとするとともに、シース型温度測定器10との当接部Pにおける表面粗さを最大高さ(Rmax)で5μm以下とし、かつ凹部6とシース型温度測定器10との当接部Pから載置面3までの距離(T)を0.3mm〜10.0mmとした試料No.3〜7,13〜18,23〜29は、応答時間が20秒以下と応答性に優れ、また、ウエハの実際の温度との温度差も40℃以下と小さく、正確に温度を測温できることが判る。
【0061】
特に、試料No.6,7,15〜17,24〜27のように、凹部6の最大幅を0.25mm〜5mmとするとともに、シース型温度測定器10との当接部Pにおける表面粗さを最大高さ(Rmax)で3μm以下とし、かつ凹部6とシース型温度測定器10との当接部Pから載置面3までの距離(T)を0.5mm〜3.0mmとしたものは、応答時間を10秒以下、ウエハの実際の温度との温度差を30℃以下とすることができ、応答性及び正確な温度ができる点で優れていた。
(実施例2)
次に、表1の試料No.28のウエハ載置ステージ1において、外径の異なるシース型温度測定器10を用い、このシース型温度測定器10と凹部6の側面とのギャップを異ならせた時の応答時間とウエハの実際の温度とシース型温度測定器10による温度との温度差を調べる実験を実施例1と同様の条件にて行った。
【0062】
結果は表2に示す通りである。
【0063】
【表2】
Figure 0004683775
【0064】
この結果、表2により判るように、シース型温度測定器10と凹部6の側面とのギャップが小さい程、応答性を高めることができ、かつ正確な測温ができることが判る。そして、シース型温度測定器10と凹部6の側面とのギャップを0.2mm以下とすれば、ウエハとの温度差を40℃以下、応答時間を20秒以下とできることが判る。
【0065】
従って、シース型温度測定器10と凹部6の側面とのギャップは0.2mm以下とすることが良いことが判る。
(実施例3)
さらに、表1の試料No.26のウエハ載置ステージ1において、シース型温度測定器10を凹部6内に押し付けるスプリング16のバネ定数を異ならせ、押圧力を変化させた時の応答時間とウエハとの温度差を調べる実験を実施例1と同様の条件にて行った。
【0066】
結果は表3に示す通りである。
【0067】
【表3】
Figure 0004683775
【0068】
この結果、表3より判るように、シース型温度測定器10の押圧力を大きくすることにより応答性を高めることができ、かつ正確な測温ができることが判る。
【0069】
【発明の効果】
以上のように、本発明によれば、板状セラミック体の一方の主面を、ウエハを載せる載置面とするとともに、上記板状セラミック体の他方の主面に凹部を設け、この凹部内にシース型温度測定器を配置したウエハ載置ステージを形成であって上記シース型温度測定器は、上記凹部の側面との間にギャップを設けつつ先端部が上記凹部の底面に当接されており、上記凹部の最大幅を0.25mm〜5mm、上記凹部の底面の表面粗さを最大高さ(Rmax)で5μm以下であり、かつ上記凹部の底面から上記載置面までの距離0.3mm〜10.0mmであることによって、ウエハ載置ステージに熱サイクルが加わり、板状セラミック体とシース型温度測定器との間に熱応力が作用したとしても、その応力を緩和し、板状セラミック体を破損させるようなことがなく、載置面上のウエハの温度を応答性良く、かつ正確に測定することができる。その為、板状セラミック体に加熱手段又は冷却手段を有するウエハ載置ステージにおいても応答性良くかつ正確に測温することができる。
【0070】
また、本発明のウエハ載置ステージを真空処理室内に設置して半導体製造装置を製作し、成膜処理やエッチング処理に用いれば、生産性を高めることができるとともに、成膜精度やエッチング精度を高め、品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明のウエハ載置ステージを備える半導体製造装置を示す概略断面図である。
【図2】本発明のウエハ載置ステージの他の例を示す概略断面図である。
【図3】本発明におけるシース型温度測定器の取付構造を拡大した断面図である。
【図4】本発明におけるシース型温度測定器の他の取付構造を拡大した断面図である。
【図5】従来のウエハ載置ステージを備える半導体製造装置を示す概略断面図である。
【図6】従来のウエハ載置ステージに備える熱電対の取付構造を示す拡大断面図である。
【図7】従来のウエハ載置ステージに備える熱電対の他の取付構造を示す拡大断面図である。
【図8】従来のウエハ載置ステージに備える熱電対のさらに他の取付構造を示す拡大断面図である。
【符号の説明】
1,21:ウエハ載置ステージ
2、22:板状セラミック体
3,23:載置面
4,24:内部電極
5,25:給電端子
6,26:凹部
6a,26a:凹部底面
7,57:支持体
8,58:真空処理室
10:シース型温度測定器
10a:先端部
11:熱電対
12:熱接点
13:素線
14:金属製中空シース
14a:フランジ部
14b:雄ねじ
15:押圧手段
16:スプリング
17:支持具
17a:雌ねじ
27:金属台座
51:ウエハ載置ステージ
52:板状セラミック体
53:載置面
54:内部電極
55:給電端子
56:凹部
56a:凹部底面
56b:雌ねじ
57:支持体
58:真空処理室
59:ガラス
60:シース型温度測定器
61:熱電対
62:素線
63:絶縁管
64:金属製中空シース
64a:雄ねじ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer mounting stage used for holding a wafer such as a semiconductor wafer in a CVD, PVD, sputtering, or other film forming apparatus or etching apparatus, and a semiconductor manufacturing apparatus using the same.
[0002]
[Prior art]
Conventionally, in the manufacturing process of a semiconductor integrated circuit device, a semiconductor wafer (hereinafter referred to as a wafer) is placed on a wafer mounting stage made of a plate-like ceramic body installed in a vacuum processing chamber, and film deposition, pattern formation, etc. are performed on the wafer. It was supposed to be processed.
[0003]
In these processes, since the temperature of the wafer greatly affects the quality of the film formed on the wafer and the processability of the pattern, uniformity and stability of the wafer temperature are required.
[0004]
In recent years, with the miniaturization of semiconductor integrated circuit elements, high-density plasma is used or a high frequency is applied to apply a bias. Fake Therefore, it is required to perform highly oriented processing and film formation, and the amount of heat generated by the processing is large, so that it is increasingly important to suppress the temperature variation of the wafer.
[0005]
Therefore, in order to accurately measure the wafer temperature on the wafer mounting stage, a thermocouple is provided as a temperature measuring means on the wafer mounting stage.
[0006]
As shown in a schematic cross-sectional view of a semiconductor manufacturing apparatus having a conventional wafer mounting stage in FIG. 5, this semiconductor manufacturing apparatus includes a wafer mounting stage 51 in a vacuum processing chamber 58 via a substantially cylindrical support 57. The wafer mounting stage 51 is composed of a plate-shaped ceramic body 52, and the upper surface thereof is a mounting surface 53 on which the wafer W is placed, and the inside of the plate-shaped ceramic body 52 serves as a heating means. An internal electrode 54 made of a refractory metal is incorporated. By energizing a power supply terminal 55 electrically connected to the internal electrode 54, the internal electrode 54 generates heat and the wafer W on the mounting surface 53 is heated. It was like that.
[0007]
Further, the wafer mounting stage 51 is provided with a recess 56 on the lower surface of the plate-like ceramic body 52 in order to indirectly measure the temperature of the wafer W on the mounting surface 53, and a thermocouple 60 is provided in the recess 56. In order to accurately measure the temperature of the wafer W on the mounting surface 53, the following mounting structure has been proposed.
[0008]
Japanese Patent Laid-Open No. 4-95832 discloses a technique in which a thermocouple 60 is inserted into a recess 56 provided on the lower surface of the plate-like ceramic body 52 and joined by a glass 59 as shown in FIG. ing. Reference numeral 63 denotes an insulating tube for protecting the strand 62 of the thermocouple 60.
[0009]
Further, in Japanese Patent Laid-Open No. 4-84722, as shown in FIG. 7, a metal hollow sheath 64 is inserted into a recess 56 provided on the lower surface of the plate-like ceramic body 52, and bonded with a glass 59, A technique is disclosed in which a thermocouple 60 is accommodated in the hollow sheath 64.
[0010]
Further, in Japanese Patent Laid-Open No. 6-176855, as shown in FIG. 8, a metallic hollow having a female screw portion 56 a provided in a concave portion 56 provided in the lower surface of the plate-like ceramic body 52 and a male screw portion 64 a in the concave portion 56. A technique is disclosed in which a sheath 64 is screwed and a thermocouple 60 is accommodated in the metal hollow sheath 64.
[0011]
[Problems to be solved by the invention]
However, in the technique disclosed in Japanese Patent Laid-Open No. 4-95832, since the periphery of the hot contact 61 of the thermocouple 60 is covered with the glass 59 having a low thermal conductivity, the temperature of the wafer mounting stage 51 is responded. There was a problem that it was difficult to measure with good quality.
[0012]
In addition, when the thermocouple 60 is inserted into the concave portion 56 of the plate-like ceramic body 52 and the glass 59 is attached, the heat contact 61 of the thermocouple 60 is reliably brought into contact with the bottom surface 56a of the concave portion of the plate-like ceramic body 52. It is difficult to attach the glass with the thermocouple 60, and the reliability in attaching the thermocouple 60 is low. Further, when the glass is attached with the hot contact 61 of the thermocouple 60 away from the recess bottom surface 56a, There is a problem that heat transfer to the hot junction 61 is deteriorated and the temperature of the wafer W on the mounting surface 53 cannot be measured accurately.
[0013]
On the other hand, the technique disclosed in Japanese Patent Laid-Open No. 4-84722 has a structure in which a metal hollow sheath 64 is joined to a concave portion 56 of a plate-like ceramic body 52 with a glass 59 having a low thermal conductivity. Similar to Japanese Patent No. -95832, there is a problem that it is difficult to measure the temperature of the wafer mounting stage 51 with good responsiveness.
[0014]
Furthermore, in the technique disclosed in Japanese Patent Application Laid-Open No. 6-176855, it is necessary to cut a female screw 56a in the concave portion 56 of the plate-like ceramic body 52. The diameter of the concave portion 56 is as small as 5 mm to 10 mm. Since the ceramics to be formed is a brittle material having a high hardness, there is a problem that chipping or the like is likely to occur when forming a thread in the concave portion 56 and the yield is poor.
[0015]
In addition, since the metal hollow sheath 64 having a large thermal expansion difference is screwed into the concave portion 56 of the plate-like ceramic body 56, the contact area is large, and a thermal cycle with a large temperature difference is applied to the wafer mounting stage 51. When applied, a large thermal stress acts between the concave portion 56 of the plate-like ceramic body 52 and the metal hollow sheath 64, and there is a problem that cracks are generated starting from the valleys and corners of the screw in the concave portion 56.
[0016]
Therefore, when the wafer mounting stage 51 having a thermocouple mounting structure as shown in FIGS. 6 to 8 is used in a semiconductor manufacturing apparatus and a film forming process or an etching process is performed, the wafer W on the wafer mounting stage 51 is processed. Since the temperature of the film cannot be measured accurately, the quality of the film formed on the wafer W and the processability of the pattern are greatly affected, the quality cannot be improved, and the yield is poor. .
[0017]
[Means for Solving the Problems]
Therefore, in view of the above problems, the present invention provides one main surface of the plate-shaped ceramic body as a mounting surface on which a wafer is placed, and a recess is provided on the other main surface of the plate-shaped ceramic body. Within Sheath type temperature measuring instrument Arrange Forming the placed wafer placement stage, The sheath-type temperature measuring device has a tip abutted against the bottom surface of the recess while providing a gap with the side surface of the recess. The maximum width of the recess is 0.25 mm to 5 mm, the above Recess On the bottom of Surface roughness is 5μm or less at maximum height (Rmax) And And the recess Bottom of From the above Distance to mounting surface But 0.3 mm to 10.0 mm Is It is characterized by that.
[0018]
The plate-like ceramic body may be provided with a heating means or a cooling means.
[0019]
Further, the present invention is characterized in that a semiconductor manufacturing apparatus is formed by installing the wafer mounting stage in a vacuum processing chamber.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0021]
FIG. 1 is a schematic sectional view showing a semiconductor manufacturing apparatus provided with a wafer mounting stage of the present invention.
[0022]
In this semiconductor manufacturing apparatus, a wafer mounting stage 1 is hermetically installed in a vacuum processing chamber 8 via a substantially cylindrical support 7. The wafer mounting stage 1 is formed from a plate-shaped ceramic body 2. One of the main surfaces is a mounting surface 3 on which a wafer is placed, and an internal electrode 4 as a heating means is embedded in the plate-like ceramic body 2, and is electrically connected to the internal electrode 4. By applying a voltage between the connected power supply terminals 5 to cause the internal electrode 4 to generate heat, the wafer W on the mounting surface 3 is heated to a predetermined temperature.
[0023]
Further, a circular recess 6 whose bottom surface extends to the vicinity of the mounting surface 3 is formed on the other main surface of the plate-like ceramic body 2 forming the wafer mounting stage 1. Is inserted with a sheath-type temperature measuring device 10 and pressed by the pressing means 15 so that the tip portion 10a contacts the bottom surface 6a of the recess, and the temperature of the wafer W on the mounting surface 3 is determined by the sheath-type temperature measuring device. 10 is indirectly measured.
[0024]
Next, another example of the wafer mounting stage 21 of the present invention is shown in FIG.
[0025]
In this wafer mounting stage 21, one main surface of the plate-shaped ceramic body 22 is used as a mounting surface 23 on which the wafer W is mounted, and an internal electrode 24 for electrostatic adsorption is provided in the plate-shaped ceramic body 22. A metal pedestal 27 is joined to the other main surface of the plate-like ceramic body 22 by brazing or the like, and the metal pedestal 27 has a passage 28 for passing a cooling medium such as cooling water as a cooling means. It is formed and adjusted so that the temperature of the wafer W held on the mounting surface 23 becomes a predetermined processing temperature.
[0026]
Then, the wafer W is placed by energizing the power supply terminal 25 electrically connected to the internal electrode 24 and the wafer W to develop an electrostatic adsorption force between the internal electrode 24 and the wafer W. Adsorption is fixed on the surface 23.
[0027]
Further, a circular concave portion 26 whose bottom surface extends to the vicinity of the mounting surface 23 is formed through the metal base 27 on the other main surface side of the plate-like ceramic body 22 that forms the wafer mounting stage 21. The sheath-type temperature measuring instrument 10 is inserted into the recess 26, and the tip 10a is pressed by the pressing means 15 so as to come into contact with the recess bottom surface 26a. Is measured by the sheath type temperature measuring device 10.
[0028]
Next, a mounting structure of the sheath type temperature measuring device 10 provided in the wafer mounting stages 1 and 21 in FIGS. 1 and 2 will be described. Since wafer mounting stages 1 and 21 in FIGS. 1 and 2 have substantially the same structure, the mounting structure on wafer mounting stage 1 in FIG. 1 will be described as an example.
[0029]
FIG. 3 is an enlarged cross-sectional view of the mounting structure in the wafer mounting stage 1 of FIG.
[0030]
The sheath type temperature measuring instrument 10 inserts a thermocouple 11 made of nickel, chromium alloy, copper, nickel alloy or the like as a temperature detecting element into a metal hollow sheath 14 made of stainless steel or heat-resistant steel, and the thermocouple 11. In order to prevent short circuit between the heat contact 12 or the wire 13 and the metal hollow sheath 14, the periphery thereof is filled with magnesium oxide powder or the like, and the heat contact 12 of the thermocouple 11 is the tip of the hollow sheath 14. It is installed so as to be located in the vicinity.
[0031]
In order to perform accurate temperature measurement, it is preferable to use a metal hollow sheath 14 having a small outer diameter. That is, when the outer diameter of the hollow sheath 14 is large, the distance between the hollow sheath 14 and the thermal contact 12 of the thermocouple 11 is increased, and the magnesium oxide powder interposed therebetween becomes a thermal resistance, which not only affects accurate temperature measurement. Since the heat capacity of the hollow sheath 14 is increased and the thermal responsiveness is remarkably inhibited, it is preferable to use a hollow sheath having a diameter of 5 mm or less, desirably 3 mm or less.
[0032]
Furthermore, if the thickness of the metal hollow sheath 14 is too thick, the heat capacity increases and adversely affects responsiveness. Therefore, it is preferable to use one having a thickness of 1.5 mm or less, desirably 1 mm or less.
[0033]
Then, as shown in FIG. 3, the distal end portion 10a of the sheath-type temperature measuring instrument 10 is brought into contact with the concave bottom surface 6a of the plate-like ceramic body 2 by the pressing means 15, and the pressing means 15 The bottomed cylindrical support 17 joined to the other main surface of the plate-like ceramic body 2 and a spring disposed between the bottom 17a of the support 17 and the flange 14a provided on the outer periphery of the hollow sheath 14 16, and the distal end portion 10 a of the sheath type temperature measuring instrument 10 is pressed by the elastic action of the spring 16 so as to always come into contact with the bottom surface 6 a of the concave portion of the plate-like ceramic body 2.
[0034]
Therefore, according to the present invention, even if a large thermal cycle is applied to the wafer mounting stages 1, 21, the distal end portion 10 a of the sheath type temperature measuring instrument 10 partially contacts the concave bottom surface 6 a of the plate-like ceramic body 2. Since they are only in contact with each other, even if thermal stress acts between the plate-shaped ceramic body 2 and the hollow sheath 14 having different thermal expansion differences, the stress is small, and cracks may be generated in the plate-shaped ceramic body 2. Absent. In particular, in this mounting structure, even if a large thermal stress acts between the plate-shaped ceramic body 2 and the hollow sheath 14, it can be absorbed by the elastic action of the spring 16. It can be surely prevented from occurring. In addition, even if external vibrations act on the wafer mounting stages 1 and 21, the distal end portion 10 a of the hollow sheath 14 can always be brought into contact with the concave bottom surface 6 a of the plate-like ceramic body 2 by the elastic action of the spring 16. Therefore, the temperature of the wafer W on the mounting surface 3 can be accurately measured.
[0035]
Further, since the sheath type temperature measuring device 10 is used as the temperature measuring means, the wire 13 of the thermocouple 11 is not broken at the time of assembling or using the plate-like ceramic body 2, and at the time of assembling. And reliability during use can be improved.
[0036]
Next, another mounting structure of the sheath type temperature measuring device 10 is shown in FIG.
[0037]
This attachment structure is made of metal in an opening formed by cutting a female threaded portion 17b provided on the bottom 17a of the support 17 while joining the bottomed cylindrical support 17 to the other main surface side of the plate-like ceramic body 2. By screwing a male screw portion 14a provided on the outer periphery of the hollow sheath 14, the distal end portion 10a of the sheath type temperature measuring device 10 is brought into contact with the concave bottom surface 6a in a pressed state.
[0038]
According to this mounting structure, even if a large thermal cycle is applied to the wafer mounting stages 1, 21, the distal end portion 10 a of the sheath-type temperature measuring device 10 is partially in contact with the concave bottom surface 6 a of the plate-like ceramic body 2. Therefore, even if a thermal stress acts between the plate-like ceramic body 2 and the metal hollow sheath 14 having different thermal expansion differences, the stress is small, and cracks may be generated in the plate-like ceramic body 2. In this mounting structure, the temperature of the wafer W on the mounting surface 3 can be accurately measured.
[0039]
Therefore, if the wafer mounting stages 1 and 21 of the present invention are installed in the vacuum processing chamber 8 to manufacture a semiconductor manufacturing apparatus and are used for film forming processing and etching processing, the wafers on the wafer mounting stages 1 and 21 are used. Since the temperature of W can be measured accurately and with high responsiveness, film formation accuracy and etching accuracy can be improved, quality can be improved, and yield can be improved.
[0040]
By the way, in order to accurately and quickly measure the temperature of the wafer W, it is necessary that the distal end portion 10a of the sheath type temperature measuring instrument 10 is in close contact with the inner wall surface of the recess 6.
[0041]
This is because, if there is a gap between the hollow sheath 14 and the inner wall surface of the recess 6, this gap acts as a heat insulating layer, so that the temperature of the inner wall surface of the recess 6 is transmitted to the distal end portion 10 a of the sheath type temperature measuring instrument 10. This is because it becomes difficult to measure the temperature accurately.
[0042]
Further, in the structure in which the distal end portion 10a of the sheath type temperature measuring device 10 is brought into contact with the concave portion bottom surface 6a as in the present invention, at least the surface roughness of the concave portion bottom surface 6a in contact with the distal end portion 10a of the sheath type temperature measuring device 10 is obtained. It is important that the maximum height (Rmax) is 5 μm or less.
[0043]
That is, when the surface roughness of the contact portion P with the tip portion 10a of the sheath type temperature measuring instrument 10 exceeds 5 μm at the maximum height (Rmax), the contact area with the sheath type temperature measuring instrument 10 becomes small, and the metal Not only is the heat conduction between the hollow sheath 14 made of ceramics and the ceramic worsened, the response is inferior, but the difference from the actual temperature of the wafer W is increased, making it impossible to accurately measure the temperature, and the metal hollow sheath This is because, if the pressure of the fluid intervening in the microscopic space formed between the plate-like ceramic body 2 and the plate-like ceramic body 2 fluctuates, the thermal conductivity of the fluid changes and the responsiveness varies.
[0044]
However, when the distance (T) from the contact portion P between the recess 6 and the sheath-type temperature measuring device 10 to the placement surface 3 is less than 0.3 mm, the ceramic portion on the recess bottom surface 6a from the placement surface 3 There is a risk that the sheath-type temperature measuring instrument 10 cannot withstand the pressing force and may be damaged. Conversely, the distance (T) from the contact portion P between the recess 6 and the sheath-type temperature measuring instrument 10 to the mounting surface 3 is 10 mm. If the thickness of the plate-shaped ceramic body 2 is too large, it is difficult to quickly measure the temperature of the wafer W and the responsiveness is poor. 2 is easily affected by temperature and pressure changes on the other main surface side, and accurate and quick temperature measurement cannot be performed.
[0045]
Therefore, it is important that the distance (T) from the contact portion P between the sheath-type temperature measuring instrument 10 and the recess 6 to the placement surface 3 is 0.3 mm to 10 mm. In the mounting structure shown in FIG. 3, the sheath-type temperature measuring device 10 is attached to the recess bottom surface 6a in order to give sufficient adhesion without damaging the ceramic portion on the recess bottom surface 6a from the mounting surface 3. The pressing force to be pressed is preferably 1N to 9.8N.
[0046]
Furthermore, it is preferable that the maximum width (W) (diameter in FIG. 3) of the recess 6 into which the sheath type temperature measuring device 10 is inserted is 0.25 to 5 mm.
[0047]
This is because when the maximum width (W) of the recess 6 exceeds 5 mm, when the sheath type temperature measuring instrument 10 has an outer diameter of less than 5 mm, the gap between the recess 6 and the sheath type temperature measuring instrument 10 is used. The measurement temperature may fluctuate due to external fluctuations such as pressure fluctuations around the wafer mounting stages 1 and 21, and a sheath type temperature measuring instrument 10 having an outer diameter exceeding 5 mm is used. In this case, the responsiveness may be deteriorated and accurate temperature measurement may not be possible. Conversely, when the maximum width (W) of the recess 6 is less than 0.25 mm, the sheath type temperature measuring instrument 10 inserted into the recess 6 is used. This is because the diameter of the film becomes thinner, and is easily damaged during handling.
[0048]
In addition, various methods can be used to form such a recess 6, for example, by machining with a grindstone in which high-hardness abrasive grains such as diamond having a count of # 100 or less are fixed with metal or resin. After forming the recess 6 on the other main surface of the plate-like ceramic body 2, the inner wall surface of the recess 6 is formed by machining the inner wall surface of the recess 6 by machining with a grindstone whose abrasive grain count is # 150 or more. The maximum height (Rmax) can be finished to 5 μm or less. Further, as other means for forming the recess 6, blasting, laser processing, electric discharge machining, or the like in which abrasive grains such as diamond, silicon carbide, and alumina are sprayed at a high pressure can be used.
[0049]
In addition, the planar shape of the recess 6 is not limited to a circular shape, and various shapes such as an ellipse, a triangle, and a quadrangle can be used. It is better that the gap between the measuring instrument 10 and the recess 6 is small, and the planar shape of the hollow metal sheath 14 of the sheath type temperature measuring instrument 10 is circular. Preferably, the gap between the sheath type temperature measuring device 10 and the recess 6 is 0.2 mm or less, preferably 0.1 mm or less.
[0050]
Furthermore, in order to measure the temperature accurately and with good responsiveness, it is preferable that the contact portion P between the recess 6 and the sheath-type temperature measuring device 10 be separated as much as possible from the heating means and the cooling means, for example, the plate-like ceramic body 2 Is made of a ceramic sintered body having a thermal conductivity of 50 W / m · K or less, the contact portion P between the recess 6 and the sheath-type temperature measuring device 10 is used as an internal electrode 4 as a heating means or a metal pedestal as a cooling means. The distance (L) up to 27 is preferably 1 mm or more, and desirably 2 mm or more. However, in the case where the plate-like ceramic body 2 is made of a ceramic sintered body having a thermal conductivity of 50 W / m · K or more, the internal electrode 4 as a heating means from the contact portion P between the concave portion 6 and the sheath type temperature measuring device 10. Or even if the distance (L) to the metal base 27 as a cooling means is less than 1 mm, it can be used.
[0051]
By the way, as the plate-like ceramic body 2 forming the wafer placement stages 1 and 21, a ceramic sintered body mainly composed of alumina, silicon nitride, sialon, or the like can be used. However, it is mounted by heating means or cooling means. In order to adjust the wafer W on the mounting surface 3 to a predetermined temperature in a short time, it is preferably formed of a material having as high a thermal conductivity as possible, preferably aluminum nitride having a thermal conductivity of 50 W / m · K or more. It is preferable to use a ceramic sintered body having a main component.
[0052]
As mentioned above, although embodiment of this invention was shown, this invention is not limited only to these embodiment, It cannot be overemphasized that what was improved and changed in the range which does not deviate from the summary of this invention.
[0053]
【Example】
Example 1
Here, the maximum width (W) of the recess 6, the surface roughness at the contact portion P with the sheath-type temperature measuring device 10, and the mounting surface 3 from the contact portion P between the recess 6 and the sheath-type temperature measuring device 10. Wafer mounting stages 1 shown in FIG. 1 having different distances (T) to each other are manufactured, and when the wafers are heated using these wafer mounting stages 1, the actual temperature of the wafer and the sheath type temperature Experiments were conducted to investigate the temperature difference from the temperature of the measuring device and the responsiveness of the sheath type temperature measuring device.
[0054]
In this experiment, the plate-like ceramic body 2 forming the wafer mounting stage 1 is formed of an aluminum nitride sintered body having a thermal conductivity of 80 W · m / K, and its dimensional shape is 200 mm in diameter and 12 mm in thickness. A disk-shaped body was obtained. In the plate-like ceramic body 2, an internal electrode 4 made of tungsten was embedded as a heating means.
[0055]
In the experiment, an 8-inch silicon wafer having a thermocouple mounted thereon was placed on the placement surface 3 of the wafer placement stage 1 and then the internal electrode 4 was energized to attach to the silicon wafer. After heating until the temperature reaches 100 ° C., a sheath type temperature measuring instrument 10 having a thermocouple 11 as a temperature detecting element is inserted into and brought into contact with the recess 6 of the wafer mounting stage 1. The time until the saturation temperature reaches 90% was measured as a response time, and an experiment was conducted to examine the temperature difference between the actual temperature of the wafer at the saturation temperature and the temperature by the sheath-type temperature measuring device 10.
[0056]
The pressing force when the sheath-type temperature measuring device 10 is inserted into and brought into contact with the recess 6 is set by using springs 16 having different spring constants adjusted in advance. When inserted into the recess 6, one having such a size that the gap with the side surface of the recess 6 is 0.1 mm was used.
[0057]
And the thing whose response time is 20 seconds or less and whose temperature difference is 40 degrees C or less was evaluated as excellent.
[0058]
The results are as shown in Table 1.
[0059]
[Table 1]
Figure 0004683775
[0060]
As a result, as can be seen from Table 1, the maximum width (W) of the recess 6 is set to 0.25 mm to 5 mm, and the surface roughness at the contact portion P with the sheath-type temperature measuring device 10 is set to the maximum height (Rmax). ), And the distance (T) from the contact portion P between the concave portion 6 and the sheath type temperature measuring device 10 to the placement surface 3 is 0.3 mm to 10.0 mm. 3-7, 13-18, 23-29 have excellent response time of 20 seconds or less, and the temperature difference from the actual temperature of the wafer is as small as 40 ° C. or less, and the temperature can be measured accurately. I understand.
[0061]
In particular, sample no. The maximum width of the concave portion 6 is set to 0.25 mm to 5 mm as in 6, 7, 15 to 17, and 24 to 27, and the surface roughness at the contact portion P with the sheath type temperature measuring device 10 is set to the maximum height. (Rmax) is 3 μm or less, and the distance (T) from the contact portion P between the recess 6 and the sheath type temperature measuring device 10 to the placement surface 3 is 0.5 mm to 3.0 mm. 10 seconds or less, and the temperature difference from the actual temperature of the wafer can be 30 ° C. or less, which is excellent in terms of responsiveness and accurate temperature.
(Example 2)
Next, sample Nos. In 28 wafer mounting stages 1, the sheath type temperature measuring device 10 having different outer diameters is used, and the response time when the gap between the sheath type temperature measuring device 10 and the side surface of the recess 6 is made different from the actual wafer. An experiment for examining the temperature difference between the temperature and the temperature by the sheath-type temperature measuring device 10 was performed under the same conditions as in Example 1.
[0062]
The results are as shown in Table 2.
[0063]
[Table 2]
Figure 0004683775
[0064]
As a result, as can be seen from Table 2, it can be seen that the smaller the gap between the sheath-type temperature measuring device 10 and the side surface of the recess 6, the higher the responsiveness and the more accurate temperature measurement. It can be seen that if the gap between the sheath-type temperature measuring instrument 10 and the side surface of the recess 6 is 0.2 mm or less, the temperature difference from the wafer can be 40 ° C. or less and the response time can be 20 seconds or less.
[0065]
Therefore, it can be seen that the gap between the sheath-type temperature measuring device 10 and the side surface of the recess 6 is preferably 0.2 mm or less.
(Example 3)
Furthermore, sample No. 26, in which the spring constant of the spring 16 that presses the sheath-type temperature measuring instrument 10 into the recess 6 is varied to examine the response time and the temperature difference between the wafer and the pressing force. The same conditions as in Example 1 were used.
[0066]
The results are as shown in Table 3.
[0067]
[Table 3]
Figure 0004683775
[0068]
As a result, as can be seen from Table 3, it can be seen that by increasing the pressing force of the sheath-type temperature measuring device 10, the responsiveness can be improved and the accurate temperature measurement can be performed.
[0069]
【The invention's effect】
As described above, according to the present invention, one main surface of the plate-shaped ceramic body is used as a mounting surface on which the wafer is placed, and a recess is provided on the other main surface of the plate-shaped ceramic body. Within Sheath type temperature measuring instrument Arrange Forming a placed wafer placement stage Because , The sheath-type temperature measuring device has a tip abutted against the bottom surface of the recess while providing a gap with the side surface of the recess. The maximum width of the recess is 0.25 mm to 5 mm, the above Recess On the bottom of Surface roughness is 5μm or less at maximum height (Rmax) And And the recess Bottom of From the above Distance to mounting surface But 0.3 mm to 10.0 mm Is As a result, even if a thermal cycle is applied to the wafer mounting stage and thermal stress acts between the plate-shaped ceramic body and the sheath type temperature measuring device, the stress is relaxed and the plate-shaped ceramic body is damaged. Therefore, the temperature of the wafer on the mounting surface can be accurately measured with good responsiveness. Therefore, the temperature can be measured accurately with good responsiveness even in a wafer mounting stage having a plate-like ceramic body having heating means or cooling means.
[0070]
In addition, if the wafer mounting stage of the present invention is installed in a vacuum processing chamber to manufacture a semiconductor manufacturing apparatus and used for a film forming process or an etching process, productivity can be improved and film forming accuracy or etching accuracy can be improved. Can enhance and improve the quality.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a semiconductor manufacturing apparatus including a wafer mounting stage according to the present invention.
FIG. 2 is a schematic sectional view showing another example of the wafer mounting stage of the present invention.
FIG. 3 is an enlarged cross-sectional view of a mounting structure for a sheath type temperature measuring device according to the present invention.
FIG. 4 is an enlarged cross-sectional view of another mounting structure of the sheath type temperature measuring device according to the present invention.
FIG. 5 is a schematic cross-sectional view showing a semiconductor manufacturing apparatus including a conventional wafer mounting stage.
FIG. 6 is an enlarged cross-sectional view showing a thermocouple mounting structure provided in a conventional wafer mounting stage.
FIG. 7 is an enlarged cross-sectional view showing another mounting structure of a thermocouple provided in a conventional wafer mounting stage.
FIG. 8 is an enlarged cross-sectional view showing still another attachment structure of a thermocouple provided in a conventional wafer mounting stage.
[Explanation of symbols]
1, 2: Wafer mounting stage
2, 22: Plate-shaped ceramic body
3, 23: Placement surface
4, 24: Internal electrode
5, 25: Feeding terminal
6, 26: recess
6a, 26a: bottom of recess
7, 57: Support
8, 58: Vacuum processing chamber
10: Sheath type temperature measuring device
10a: tip
11: Thermocouple
12: Thermal junction
13: Wire
14: Metallic hollow sheath
14a: Flange part
14b: Male thread
15: Pressing means
16: Spring
17: Support tool
17a: female thread
27: Metal base
51: Wafer mounting stage
52: Plate-shaped ceramic body
53: Placement surface
54: Internal electrode
55: Feeding terminal
56: recess
56a: concave bottom surface
56b: female thread
57: Support
58: Vacuum processing chamber
59: Glass
60: Sheath type temperature measuring device
61: Thermocouple
62: Wire
63: Insulating tube
64: Metal hollow sheath
64a: Male thread

Claims (3)

板状セラミック体の一方の主面を、ウエハを載せる載置面とするとともに、上記板状セラミック体の他方の主面に凹部を備え、該凹部内にシース型温度測定器を配置したウエハ載置ステージであって、
上記シース型温度測定器は、上記凹部の側面との間にギャップを設けつつ先端部が上記凹部の底面に当接されており、
上記凹部の最大幅が0.25mm〜5mmであるとともに、上記凹部の底面の表面粗さが最大高さ(Rmax)で5μm以下であり、かつ上記凹部の底面から上記載置面までの距離が0.3mm〜10.0mmであることを特徴とするウエハ載置ステージ。
The one main surface of the ceramic plate, with a mounting surface mounting the wafer, with a recess on the other main surface of the plate-shaped ceramic body was placed sheath type temperature measuring apparatus in the recess wafer A mounting stage,
The sheath-type temperature measuring device has a tip abutted against the bottom surface of the recess while providing a gap with the side surface of the recess.
The maximum width of the concave portion is 0.25 mm to 5 mm, the surface roughness of the bottom surface of the concave portion is 5 μm or less at the maximum height (Rmax), and the distance from the bottom surface of the concave portion to the placement surface is A wafer mounting stage having a thickness of 0.3 mm to 10.0 mm.
上記板状セラミック体に加熱手段又は冷却手段を有することを特徴とする請求項1に記載のウエハ載置ステージ。  The wafer mounting stage according to claim 1, wherein the plate-like ceramic body has heating means or cooling means. 請求項1又は請求項2に記載のウエハ載置ステージを真空処理室内に設置してあることを特徴とする半導体製造装置。  A semiconductor manufacturing apparatus, wherein the wafer mounting stage according to claim 1 is installed in a vacuum processing chamber.
JP2001209523A 2001-07-10 2001-07-10 Wafer mounting stage and semiconductor manufacturing apparatus using the same Expired - Fee Related JP4683775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209523A JP4683775B2 (en) 2001-07-10 2001-07-10 Wafer mounting stage and semiconductor manufacturing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209523A JP4683775B2 (en) 2001-07-10 2001-07-10 Wafer mounting stage and semiconductor manufacturing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003023062A JP2003023062A (en) 2003-01-24
JP4683775B2 true JP4683775B2 (en) 2011-05-18

Family

ID=19045165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209523A Expired - Fee Related JP4683775B2 (en) 2001-07-10 2001-07-10 Wafer mounting stage and semiconductor manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP4683775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980551B2 (en) 2011-07-13 2016-08-31 株式会社日立国際電気 Temperature detector, substrate processing apparatus, and semiconductor device manufacturing method
CN104296887B (en) * 2013-07-17 2017-04-05 中微半导体设备(上海)有限公司 A kind of temperature measuring equipment for realizing stable thermometric and its semiconductor equipment at place

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164626A (en) * 1991-12-11 1993-06-29 Kawasaki Steel Corp Temperature measuring method using thermocouple
JPH0624858A (en) * 1992-03-25 1994-02-01 Ngk Insulators Ltd Ceramic made structural member
JP2000058406A (en) * 1998-08-04 2000-02-25 Yamari Sangyo Kk Temperature measuring equipment of plate-like member and recessed part forming method of the plate-like member
JP2001068538A (en) * 1999-06-21 2001-03-16 Tokyo Electron Ltd Electrode structure, mounting base structure, plasma treatment system, and processing unit
JP2001085488A (en) * 1999-09-16 2001-03-30 Bridgestone Corp Thermometer wafer
JP2001085143A (en) * 1999-07-09 2001-03-30 Ibiden Co Ltd Ceramic heater
JP2001135715A (en) * 1999-08-24 2001-05-18 Ibiden Co Ltd Temperature measuring element and ceramic base material for semiconductor manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164626A (en) * 1991-12-11 1993-06-29 Kawasaki Steel Corp Temperature measuring method using thermocouple
JPH0624858A (en) * 1992-03-25 1994-02-01 Ngk Insulators Ltd Ceramic made structural member
JP2000058406A (en) * 1998-08-04 2000-02-25 Yamari Sangyo Kk Temperature measuring equipment of plate-like member and recessed part forming method of the plate-like member
JP2001068538A (en) * 1999-06-21 2001-03-16 Tokyo Electron Ltd Electrode structure, mounting base structure, plasma treatment system, and processing unit
JP2001085143A (en) * 1999-07-09 2001-03-30 Ibiden Co Ltd Ceramic heater
JP2001135715A (en) * 1999-08-24 2001-05-18 Ibiden Co Ltd Temperature measuring element and ceramic base material for semiconductor manufacturing apparatus
JP2001085488A (en) * 1999-09-16 2001-03-30 Bridgestone Corp Thermometer wafer

Also Published As

Publication number Publication date
JP2003023062A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
KR101099891B1 (en) Body having a junction and method of manufacturing the same
US6914222B2 (en) Wafer heating apparatus
JP3145664B2 (en) Wafer heating device
JP3810300B2 (en) Electrostatic chuck
JP2007258608A (en) Heating apparatus
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4569077B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4049172B2 (en) Wafer holder for wafer prober and wafer prober equipped with the same
JP4683775B2 (en) Wafer mounting stage and semiconductor manufacturing apparatus using the same
JP2006127900A (en) Annular heater
JP4539035B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP2007042959A (en) Wafer holder for wafer prober and wafer prober mounted with same
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP3909248B2 (en) Sample heating device
JP4462140B2 (en) Wafer prober chuck top, wafer holder, and wafer prober including the same
JP4646715B2 (en) Wafer holder for wafer prober and wafer prober equipped with the same
JP4744016B2 (en) Manufacturing method of ceramic heater
JP2007235171A (en) Wafer holder for wafer prober and wafer prober mounting the same
JP2003045765A (en) Wafer-supporting member
JP4127174B2 (en) Wafer holder and semiconductor manufacturing apparatus
JP4443556B2 (en) Method for manufacturing sample heating apparatus
JP3965470B2 (en) Electrostatic chuck and manufacturing method thereof
JP2007042909A (en) Wafer holder and wafer prober mounted with the same
JP4157541B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees