[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4665410B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP4665410B2
JP4665410B2 JP2004072489A JP2004072489A JP4665410B2 JP 4665410 B2 JP4665410 B2 JP 4665410B2 JP 2004072489 A JP2004072489 A JP 2004072489A JP 2004072489 A JP2004072489 A JP 2004072489A JP 4665410 B2 JP4665410 B2 JP 4665410B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
compound
reaction
polyacetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004072489A
Other languages
Japanese (ja)
Other versions
JP2005255935A (en
Inventor
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2004072489A priority Critical patent/JP4665410B2/en
Publication of JP2005255935A publication Critical patent/JP2005255935A/en
Application granted granted Critical
Publication of JP4665410B2 publication Critical patent/JP4665410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は流動性、溶剤溶解性が良好であり、耐熱性等に優れる硬化物を与えることが出来るエポキシ樹脂組成物に関する。 The present invention is flowable, a solvent solubility is satisfactory, relates to an epoxy resin composition capable of giving a cured product having excellent heat resistance and the like.

エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に硬化時の低収縮性(寸法安定性)、電気絶縁性、耐薬品性などに優れた硬化物となるが、最近のエレクトロニクス分野や高機能塗料分野などの技術革新により、さらに優れた耐熱性が求められている。この耐熱性向上手段としては、例えば、高核体数型(高分子量型)のフェノールノボラック樹脂を硬化剤として使用する方法があるが、それ自身の粘度が高く、得られるエポキシ樹脂組成物の流動性が悪くなり、先端半導体や基板などの微細構造部品への適用が難しい。また対称性が高い結晶性多官能フェノール化合物を硬化剤に用いることも検討されているが、優れた耐熱性が期待できる4官能型以上の化合物の場合は、ほぼ例外なく融点が150℃以上であり、エポキシ樹脂との相溶性や溶剤溶解性が極めて悪く、硬化剤としての適性がない。   Epoxy resins can be cured with various curing agents, resulting in cured products that are generally excellent in low shrinkage (dimensional stability), electrical insulation, and chemical resistance during curing. Due to technological innovation in the field of high-performance paints, even better heat resistance is required. As this heat resistance improving means, for example, there is a method of using a high-nuclear number type (high molecular weight type) phenol novolac resin as a curing agent, but its own viscosity is high, and the resulting epoxy resin composition flows. It becomes difficult to apply to fine structure parts such as advanced semiconductors and substrates. In addition, the use of a crystalline polyfunctional phenol compound having high symmetry as a curing agent has been studied, but in the case of a tetrafunctional or higher compound that can be expected to have excellent heat resistance, the melting point is almost 150 ° C. or more without exception. Yes, the compatibility with the epoxy resin and the solvent solubility are extremely poor, and it is not suitable as a curing agent.

また、燐原子を含有したフェノール化合物の水酸基をアセタール化し、それを多官能エポキシ樹脂の硬化剤として利用して、難燃性の高い硬化物を得る技術が提案されている(例えば、特許文献1参照。)が、実施例で使用されているフェノール化合物は2官能であることから耐熱性に優れた硬化物を得ることが難しく、更なる改良が必要である。   In addition, a technique has been proposed in which a hydroxyl group of a phenol compound containing a phosphorus atom is acetalized and used as a curing agent for a polyfunctional epoxy resin to obtain a cured product having high flame retardancy (for example, Patent Document 1). However, since the phenol compound used in the examples is bifunctional, it is difficult to obtain a cured product having excellent heat resistance, and further improvement is required.

特開2003−286293号公報(第3〜6頁)JP 2003-286293 A (pages 3 to 6)

上記のような実状に鑑み、本発明の課題は、流動性、溶剤溶解性に優れ、得られる硬化物の耐熱性等に優れる硬化剤を開発し、上記の課題を解決できるエポキシ樹脂組成物を提供することにある。 In view of the actual situation as described above, an object of the present invention is to develop an epoxy resin composition that can solve the above problems by developing a curing agent that is excellent in fluidity, solvent solubility, and heat resistance of a cured product to be obtained. It is to provide.

本発明者は、前記の課題を解決するため鋭意研究した結果、分子中に2個より多い芳香族性水酸基を含有し、かつ融点150℃以上の結晶性化合物であるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%がアセタール化されたポリアセタール化合物(A)を硬化剤として用いることによって、前記課題を解決できることを見出し、本発明を完成した。 The present inventor has intensively studied to solve the above problems, contain more than two aromatic hydroxyl groups in the molecule and having a melting point 0.99 ° C. or more crystalline compounds der Ru polyhydroxy compound (a) The present inventors have found that the above-mentioned problems can be solved by using a polyacetal compound (A) in which 10 to 100 mol% of the aromatic hydroxyl group therein is acetalized as a curing agent, and the present invention has been completed.

即ち本発明は、1分子中に2個より多い芳香族性水酸基を含有し、かつ融点150℃以上の結晶性化合物であるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%がアセタール化されたポリアセタール化合物(A)とエポキシ樹脂(B)とを含有することを特徴とするエポキシ樹脂組成物を提供するものである。 That is, the present invention contains 10 to 100 mol% of the aromatic hydroxyl group in the polyhydroxy compound (a) which is a crystalline compound containing more than two aromatic hydroxyl groups in one molecule and having a melting point of 150 ° C. or higher. It contains an acetalized polyacetal compound (A) and an epoxy resin (B) to provide an epoxy resin composition.

本発明で用いるポリアセタール化合物は、低粘度であり流動性が高く、エポキシ樹脂との相溶性や溶剤溶解性に優れ、得られる硬化物は、最近のエレクトロニクス分野や高機能塗料分野などで要求されている高度な耐熱性を満足できる。またこの技術により、剛直骨格や高対称性を有し超高耐熱性硬化剤として期待されるが、そのあまりにも高い融点や、相溶性、溶剤溶解性の悪さから従来エポキシ樹脂用硬化剤として適用不可であった結晶性多価フェノール化合物を、大きな性能劣化なく改質して硬化剤適合性を高めることができる。   The polyacetal compound used in the present invention has low viscosity, high fluidity, excellent compatibility with epoxy resins and solvent solubility, and the resulting cured product is required in the recent electronics field and high-performance paint field. Satisfy high heat resistance. In addition, this technology is expected as an ultra-high heat-resistant curing agent with a rigid skeleton and high symmetry, but it has been applied as a curing agent for conventional epoxy resins due to its too high melting point, compatibility and solvent solubility. It is possible to improve the compatibility of the curing agent by modifying the crystallizable polyhydric phenol compound, which has been impossible, without significant performance deterioration.

以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物は、1分子中に2個より多い芳香族性水酸基を含有し、かつ融点150℃以上の結晶性化合物であるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%がアセタール化されたポリアセタール化合物(A)とエポキシ樹脂(B)とを必須成分とするエポキシ樹脂組成物である。
Hereinafter, the present invention will be described in detail.
The epoxy resin composition of the present invention contain more than two aromatic hydroxyl groups per molecule and having a melting point 0.99 ° C. or more crystalline compounds der Ru polyhydroxy compound (a) in an aromatic hydroxyl group It is an epoxy resin composition comprising a polyacetal compound (A) and an epoxy resin (B) in which 10 to 100 mol% are acetalized as essential components.

該ポリアセタール化合物(A)は、1分子中に2個より多い芳香族性水酸基を含有し、かつ融点150℃以上の結晶性化合物であるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%をアセタール基にすることができる化合物と反応させて得られるものであり、工業的入手容易性の観点から、ビニルエーテル類を用いてアセタール化反応させる方法が好ましい。該ポリヒドロキシ化合物(a)中の芳香族性水酸基の数は、得られる硬化物の耐熱性の観点から2個以下であると好ましくない。更に1分子中に3個より多くの芳香族性水酸基を有するポリヒドロキシ化合物(a)を用いると、硬化物の耐熱性をより向上させることが可能となり、本発明の効果をより一層実現できる点から好ましいものである。 The polyacetal compound (A) contains more than two aromatic hydroxyl groups per molecule and having a melting point 0.99 ° C. or more crystalline compounds der Ru polyhydroxy compound (a) 10 of aromatic hydroxyl groups in It is obtained by reacting ˜100 mol% with a compound capable of forming an acetal group, and from the viewpoint of industrial availability, a method of acetalization reaction using vinyl ethers is preferred. The number of aromatic hydroxyl groups in the polyhydroxy compound (a) is not preferably 2 or less from the viewpoint of the heat resistance of the resulting cured product. Furthermore, when the polyhydroxy compound (a) having more than 3 aromatic hydroxyl groups in one molecule is used, the heat resistance of the cured product can be further improved, and the effects of the present invention can be further realized. To preferred.

ビニルエーテル類を用いたアセタール化反応は、下記化学反応式(1)   The acetalization reaction using vinyl ethers is represented by the following chemical reaction formula (1)

Figure 0004665410
で表される反応である。この反応により、ポリヒドロキシ化合物(a)中の芳香族性水酸基がビニルエーテル類によりブロックされ、該ポリヒドロキシ化合物(a)の粘度、溶剤溶解性等を改善することが出来る。更にこのアセタール化反応は可逆反応であることから、得られるポリアセタール化合物(A)と後述するエポキシ樹脂(B)とを混合した場合には、脱ブロックによってアセタール基が水酸基に戻り、エポキシ基との硬化反応を行わせることが可能となるものである。
Figure 0004665410
It is a reaction represented by By this reaction, the aromatic hydroxyl group in the polyhydroxy compound (a) is blocked with vinyl ethers, and the viscosity and solvent solubility of the polyhydroxy compound (a) can be improved. Furthermore, since this acetalization reaction is a reversible reaction, when the polyacetal compound (A) obtained and the epoxy resin (B) described below are mixed, the acetal group returns to a hydroxyl group by deblocking, and It is possible to cause a curing reaction.

アセタール化率は、それが高い程、低粘度化効果が大きくなる。従って、ポリヒドロキシ化合物(a)中の芳香族性水酸基のアセタール化率が10モル%未満の場合には、低粘度化効果が小さいことから好ましくない。またアセタール化率が高いとエポキシ樹脂(B)との硬化反応性が低下する傾向があるので、所望の特性を考慮して適宜アセタール化率を調整することが好ましい。   The higher the acetalization rate, the greater the effect of reducing the viscosity. Therefore, when the acetalization rate of the aromatic hydroxyl group in the polyhydroxy compound (a) is less than 10 mol%, the effect of reducing the viscosity is small, which is not preferable. Moreover, since there exists a tendency for hardening reactivity with an epoxy resin (B) to fall when an acetalization rate is high, it is preferable to adjust an acetalization rate suitably considering a desired characteristic.

1分子中に2個より多い芳香族性水酸基を含有するポリヒドロキシ化合物(a)、得られる硬化物の耐熱性を高められることから、融点が150℃以上の結晶性化合物でる。更に、結晶性化合物の中では特に4価ヒドロキシ化合物が好ましい。具体的には、2,7−ジヒドロキシナフタレンが1位同士でメチレン基を介して結合した2量体、1,1’,2,2’−テトラヒドロキシフェニロールエタンなどが優れた耐熱性を提供するベース化合物として挙げられる。 Polyhydroxy compounds containing more than two aromatic hydroxyl groups in the molecule (a), since it enhances the heat resistance of the resulting cured product, melting point Ru Ah at above 0.99 ° C. Crystalline Compound . Furthermore, in particular a tetravalent hydroxy compound in the crystal compound is preferred. Specifically, 2, 7-dimers dihydroxynaphthalene is bonded via a methylene group at the 1-position to each other, 1,1 ', provides such superior heat resistance 2,2'-tetrahydroxy-trishydroxyphenylmethane As a base compound.

また前記ビニルエーテル類としては、1分子中に1個以上のビニルエーテル基を含有する化合物であれば、特に限定されないが、得られるポリアセタール化合物(A)の流動性を高める観点から、モノビニルエーテル類を主成分として使用することが好ましく、例えば、脂肪族モノビニルエーテル、脂環式モノビニルエーテル、環状ビニルエーテル化合物等が挙げられる。脂肪族モノビニルエーテルの具体例としては、例えば、メチルビニルエーテル、エチルビニルエーテル、イソプロピルビニルエーテル、n−プロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、2−エチルヘキシルビニルエーテル等が挙げられる。脂環式ビニルエーテルとしては、例えば、シクロヘキシルモノビニルエーテル等が挙げられる。環状ビニルエーテル化合物として、例えば、2,3−ジヒドロフラン、3,4−ジヒドロフラン、2,3−ジヒドロ−2H−ピラン、3,4−ジヒドロ−2H−ピラン、3,4−ジヒドロ−2−メトキシ−2H−ピラン、3,4−ジヒドロ−4,4−ジメチル−2H−ピラン−2−オン、3,4−ジヒドロ−2−エトキシ−2H−ピラン、3,4−ジヒドロ−2H−ピラン−2−カルボン酸ナトリウム等が挙げられ、単独でも2種以上の混合物としても使用することが出来る。これらの中でも、工業的入手が容易であり、後述するエポキシ樹脂(B)との反応時における脱ブロック化の解離温度が低く、反応性が良好となる点からn−プロピルビニルエーテル、n−ブチルビニルエーテル、2−エチルヘキシルビニルエーテルが好ましい。また、得られるポリアセタール化合物(A)の改質効果を目的として前記モノビニルエーテル類以外のビニルエーテル類を使用しても良く、このときの使用割合としては、前記モノビニルエーテル類に対して20モル%以下で使用することが好ましい。その他のビニルエーテル類としては、例えばジビニルエーテル類として、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,4−ブタンジジオールジビニルエーテル、1,4−シクロヘキサンジメタノールジビニルエーテル等が挙げられ、1種類でも、2種類以上を併用して用いても良い。   The vinyl ethers are not particularly limited as long as they are compounds containing one or more vinyl ether groups in one molecule, but monovinyl ethers are mainly used from the viewpoint of improving the fluidity of the resulting polyacetal compound (A). It is preferable to use as a component, for example, an aliphatic monovinyl ether, an alicyclic monovinyl ether, a cyclic vinyl ether compound, etc. are mentioned. Specific examples of the aliphatic monovinyl ether include methyl vinyl ether, ethyl vinyl ether, isopropyl vinyl ether, n-propyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, 2-ethylhexyl vinyl ether and the like. Examples of the alicyclic vinyl ether include cyclohexyl monovinyl ether. Examples of cyclic vinyl ether compounds include 2,3-dihydrofuran, 3,4-dihydrofuran, 2,3-dihydro-2H-pyran, 3,4-dihydro-2H-pyran, and 3,4-dihydro-2-methoxy. -2H-pyran, 3,4-dihydro-4,4-dimethyl-2H-pyran-2-one, 3,4-dihydro-2-ethoxy-2H-pyran, 3,4-dihydro-2H-pyran-2 -Sodium carboxylate etc. are mentioned, It can use individually or as a mixture of 2 or more types. Among these, n-propyl vinyl ether and n-butyl vinyl ether are easy to obtain industrially, have a low deblocking dissociation temperature upon reaction with the epoxy resin (B) described later, and have good reactivity. 2-ethylhexyl vinyl ether is preferred. Moreover, you may use vinyl ethers other than the said monovinyl ether for the purpose of the modification effect of the polyacetal compound (A) obtained, As a use ratio at this time, 20 mol% or less with respect to the said monovinyl ether Is preferably used. Examples of the other vinyl ethers include, for example, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,4-butanedidiol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, and the like as divinyl ethers. One type or two or more types may be used in combination.

次いで、本発明で用いるポリアセタール化合物(A)の製造方法に関して説明する。反応方法としては、用いるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%がアセタール化される方法であれば、芳香族性水酸基とビニルエーテル基との反応条件にのっとればよく、特に限定されるものではないが、例えば、ポリヒドロキシ化合物(a)と適量のビニルエーテル類とを仕込み、撹拌混合しながら加熱する方法が挙げられる。この場合、必要に応じて、有機溶媒や触媒を使用することができる。使用できる有機溶媒としては、特に限定されるものではないが、ベンゼン、トルエン、キシレンなどの芳香族性有機溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系有機溶媒等が挙げられる。アルコール性水酸基を含有する溶剤は、条件によってはビニルエーテル類と反応してしまうため好ましくない。これらの有機溶媒としては、用いる原料や生成物の溶解度などの性状や反応条件、経済性等を考慮して適宜選択すればよい。有機溶媒の量としては、原料重量に対して、5〜500重量%の範囲で用いることが好ましい。   Subsequently, the manufacturing method of the polyacetal compound (A) used by this invention is demonstrated. As a reaction method, as long as 10 to 100 mol% of the aromatic hydroxyl group in the polyhydroxy compound (a) to be used is acetalized, it is sufficient to follow the reaction conditions of the aromatic hydroxyl group and the vinyl ether group, Although not particularly limited, for example, a method in which a polyhydroxy compound (a) and an appropriate amount of vinyl ether are charged and heated while stirring and mixing can be mentioned. In this case, an organic solvent and a catalyst can be used as needed. The organic solvent that can be used is not particularly limited, and examples thereof include aromatic organic solvents such as benzene, toluene, and xylene, and ketone-based organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. A solvent containing an alcoholic hydroxyl group is not preferable because it reacts with vinyl ethers depending on conditions. These organic solvents may be appropriately selected in consideration of properties such as solubility of raw materials to be used and products, reaction conditions, economy, and the like. The amount of the organic solvent is preferably 5 to 500% by weight based on the raw material weight.

通常、この反応は無触媒系においても十分反応は進行するが、用いる原料の種類や得られるポリアセタール化合物(A)の所望の特性、所望の反応速度等によっては、触媒を使用してもよい。その触媒の種類としては、通常、水酸基とビニルエーテル基の反応に用いられる触媒であれば特に限定されるものではないが、例えば、硫酸、塩酸、硝酸、リン酸などの無機酸、トルエンスルホン酸、メタンスルホン酸、キシレンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸など有機酸、塩化アルミニウム、塩化鉄、塩化スズ、塩化ガリウム、塩化チタン、臭化アルミニウム、臭化ガリウム、三弗化ホウ素エーテル錯体、三弗化ホウ素フェノール錯体などのルイス酸等が挙げられるが、反応速度向上効果や副反応抑制効果を考慮すると、燐酸エステル類が特に好ましい。添加量としては特に限定されないが、原料全重量に対して10ppm〜1重量%の範囲で用いることができる。但し、触媒添加系においては、芳香環に対するビニル基の核付加反応を起こさないように、その種類や添加量、及び反応条件を選択する必要がある。   Usually, this reaction proceeds sufficiently even in a catalyst-free system, but a catalyst may be used depending on the kind of raw material used, the desired characteristics of the resulting polyacetal compound (A), the desired reaction rate, and the like. The type of the catalyst is not particularly limited as long as it is a catalyst usually used for the reaction of a hydroxyl group and a vinyl ether group. For example, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, toluenesulfonic acid, Methanesulfonic acid, xylenesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, trifluoroacetic acid and other organic acids, aluminum chloride, iron chloride, tin chloride, gallium chloride, titanium chloride, aluminum bromide, gallium bromide Lewis acids such as boron trifluoride ether complex and boron trifluoride phenol complex can be mentioned, but in view of the reaction rate improving effect and side reaction suppressing effect, phosphate esters are particularly preferable. Although it does not specifically limit as addition amount, It can use in the range of 10 ppm-1 weight% with respect to the raw material total weight. However, in the catalyst addition system, it is necessary to select the type, addition amount, and reaction conditions so as not to cause a vinyl group nucleus addition reaction to the aromatic ring.

反応条件としては、通常、室温〜200℃、好ましくは、50〜150℃の温度で、0.5〜30時間程度、加熱撹拌すればよい。この際、ビニルエーテル類の自己重合を防止するため、酸素含有雰囲気下での反応の方が好ましい。反応の進行程度は、ガスクロマトグラフィーや液体クロマトグラフィー等を用いて、原料の残存量を測定することによって追跡できる。また有機溶媒を使用した場合は、蒸留等でそれを除去し、触媒を使用した場合は、必要によって失活剤等で失活させて、水洗や濾過操作によって除去することが好ましい。   The reaction conditions are usually room temperature to 200 ° C., preferably 50 to 150 ° C., and may be heated and stirred for about 0.5 to 30 hours. At this time, in order to prevent the self-polymerization of vinyl ethers, the reaction in an oxygen-containing atmosphere is preferable. The progress of the reaction can be traced by measuring the residual amount of the raw material using gas chromatography, liquid chromatography or the like. Further, when an organic solvent is used, it is preferably removed by distillation or the like. When a catalyst is used, it is preferably deactivated with a deactivator or the like as necessary, and then removed by washing with water or filtering.

上記反応におけるポリヒドロキシ化合物(a)とビニルエーテル類の仕込み比率としては、最終的にポリヒドロキシ化合物(A)中の芳香族性水酸基の10〜100モル%がアセタール化できる量であれば、特に限定されるものではないが、通常、ポリヒドロキシ化合物(a)中の芳香族性水酸基1モルに対して、ビニルエーテル基が0.1〜3モルになるような範囲で使用することが好ましい。好適な反応条件を用いれば、所望のアセタール化率を化学量論的な仕込み比率で達成することが出来る。   The charging ratio of the polyhydroxy compound (a) and the vinyl ether in the above reaction is particularly limited as long as 10 to 100 mol% of the aromatic hydroxyl group in the polyhydroxy compound (A) can be finally acetalized. However, it is usually preferred that the vinyl ether group be used in a range of 0.1 to 3 moles per mole of the aromatic hydroxyl group in the polyhydroxy compound (a). If suitable reaction conditions are used, the desired acetalization rate can be achieved with a stoichiometric charge ratio.

本発明で用いるエポキシ樹脂(B)としては、特に限定されず全てのエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。またエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。   The epoxy resin (B) used in the present invention is not particularly limited, and any epoxy resin can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type Epoxy resin, resorcinol type epoxy resin, hydroquinone type epoxy resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenyl Methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphtholno Rack type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy resin, biphenyl modified novolac type epoxy resin Tetrabromobisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, alicyclic epoxy resin and the like. Moreover, an epoxy resin may be used independently and may mix 2 or more types.

本発明のエポキシ樹脂組成物は、前述のポリアセタール化合物(A)とエポキシ樹脂(B)とを必須とすること意外に特に制限されるものではないが、後述する各用途に適応した作業性等を付与するために、有機溶剤(C)を用いることが好ましい。   The epoxy resin composition of the present invention is not particularly limited to the above-described polyacetal compound (A) and the epoxy resin (B) as essential, but the workability and the like adapted to each application described later are provided. In order to give, it is preferable to use an organic solvent (C).

前記有機溶剤(C)としては、ポリアセタール化合物(A)及びエポキシ樹脂(B)、更に必要に応じて併用される後述するその他の硬化剤、硬化促進剤、各種添加剤等を均一に溶解・分散することが出来るものであれば、特に制限されるものではないが、例えば、アルコール性水酸基を含有しないメチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。アルコール性水酸基を含有する溶剤は、条件によってはビニルエーテル類と反応してしまうため好ましくない。   As the organic solvent (C), the polyacetal compound (A) and the epoxy resin (B), and other curing agents, curing accelerators, various additives, etc., which are used in combination as necessary, are uniformly dissolved and dispersed. However, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, dimethylformamide or the like, which does not contain an alcoholic hydroxyl group. It can also be used as a mixed solvent of two or more kinds. A solvent containing an alcoholic hydroxyl group is not preferable because it reacts with vinyl ethers depending on conditions.

本発明のエポキシ樹脂組成物においては、ポリアセタール化合物(A)をエポキシ樹脂(B)の硬化剤として使用するものであるが、本発明の効果を損なわない範囲において、必要に応じて、その他の種々の硬化剤を併用することが出来る。   In the epoxy resin composition of the present invention, the polyacetal compound (A) is used as a curing agent for the epoxy resin (B), but various other kinds are necessary as long as the effects of the present invention are not impaired. These curing agents can be used in combination.

併用できる硬化剤としては、特に限定されないが、例えば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物等が挙げられ、アミン系化合物としては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミンなどの脂肪族ポリアミン類、メタキシリレンジアミン、ジアミノジフェニルメタン、フェニレンジアミンなどの芳香族ポリアミン類、1,3−ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルナンジアミンなどの脂環族ポリアミン類等、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。   Although it does not specifically limit as a hardening | curing agent which can be used together, For example, an amine compound, an acid anhydride type compound, an amide type compound, a phenol type compound etc. are mentioned, As an amine type compound, ethylenediamine, propylenediamine, butylene is mentioned. Aliphatic polyamines such as diamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, pentaethylenehexamine, aromatic polyamines such as metaxylylenediamine, diaminodiphenylmethane, phenylenediamine, 1,3-bis (aminomethyl) cyclohexane, Examples thereof include alicyclic polyamines such as isophorone diamine and norbornane diamine, polyamide resins synthesized from dicyandiamide and a dimer of linolenic acid and ethylene diamine.

また、酸無水物系化合物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸などが挙げられる。   Examples of the acid anhydride compound include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride. And methyl hexahydrophthalic anhydride.

また、フェノール系化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂やこれらの変性物等が挙げられる。また潜在性硬化剤として、イミダゾール、BFーアミン錯体、グアニジン誘導体なども挙げられる。 Examples of phenolic compounds include phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition resins, phenol aralkyl resins, naphthol aralkyl resins, trimethylol methane resins, tetra Examples include phenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin, aminotriazine-modified phenol resin, and modified products thereof. Examples of the latent curing agent include imidazole, BF 3 -amine complex, and guanidine derivative.

また、これらのその他の硬化剤としては単独で用いてもよく、2種以上を混合してもよい。   Moreover, as these other hardening | curing agents, you may use independently and may mix 2 or more types.

本発明のエポキシ樹脂組成物において硬化剤の使用量は、硬化が円滑に進行し、良好な硬化物の物性が得られることから、エポキシ樹脂(B)中のエポキシ基1当量に対して、ポリアセタール化合物(A)中のアセタール基と芳香族性水酸基との合計、その他の硬化剤を用いた場合には、更にその硬化剤中の活性基との合計が、0.7〜1.5当量になる量が好ましい。   In the epoxy resin composition of the present invention, the amount of the curing agent used is such that curing proceeds smoothly and good physical properties of the cured product can be obtained, so that polyacetal is equivalent to 1 equivalent of epoxy group in the epoxy resin (B). When the total of the acetal group and the aromatic hydroxyl group in the compound (A) and other curing agents are used, the total of the active groups in the curing agent is 0.7 to 1.5 equivalents. Is preferred.

また、本発明のエポキシ樹脂組成物には、更に硬化促進剤を適宜使用することもできる。硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。例えば、半導体封止材料用途としては、リン系ではトリフェニルホスフィン、アミン系では1,8−ジアザビシクロ−[5,4,0]−ウンデセン(DBU)などが、硬化性が良好であり、耐熱性、電気特性、耐湿信頼性などが優れる硬化物が得られるために好ましい。その添加量は特に限定されないが、エポキシ樹脂と硬化剤との合計量に対して、0.05〜10重量%の範囲が好ましい。   Moreover, a hardening accelerator can also be further used for the epoxy resin composition of this invention suitably. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Can be used in combination. For example, as a semiconductor encapsulating material, triphenylphosphine for phosphorus-based materials and 1,8-diazabicyclo- [5,4,0] -undecene (DBU) for amine-based materials have good curability and heat resistance. It is preferable because a cured product having excellent electrical characteristics and moisture resistance reliability can be obtained. The addition amount is not particularly limited, but is preferably in the range of 0.05 to 10% by weight with respect to the total amount of the epoxy resin and the curing agent.

本発明のエポキシ樹脂組成物には、無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物の全体量に対して65重量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be blended in the epoxy resin composition of the present invention. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 65% by weight or more with respect to the total amount of the epoxy resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明のエポキシ樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   Various compounding agents, such as a silane coupling agent, a mold release agent, a pigment, an emulsifier, can be added to the epoxy resin composition of this invention as needed.

本発明のエポキシ樹脂組成物には、必要に応じて難燃付与剤も添加できる。前記難燃付与剤としては種々のものが使用できるが、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールAなどのハロゲン化合物、赤リンや各種燐酸エステル化合物などの燐原子含有化合物、メラミン或いはその誘導体などの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウムなどの無機系難燃化合物等が挙げられる。   A flame retardant imparting agent can be added to the epoxy resin composition of the present invention as necessary. Various flame retardants can be used, for example, halogen compounds such as decabromodiphenyl ether and tetrabromobisphenol A, phosphorus atom-containing compounds such as red phosphorus and various phosphoric acid ester compounds, melamine or derivatives thereof, etc. Inorganic flame retardant compounds such as nitrogen atom-containing compounds, aluminum hydroxide, magnesium hydroxide, zinc borate, calcium borate and the like can be mentioned.

本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は種々の方法で容易に硬化物とすることができる。   The epoxy resin composition of this invention is obtained by mixing each component uniformly. The epoxy resin composition of the present invention in which the epoxy resin of the present invention, a curing agent, and, if necessary, a curing accelerator are blended can be easily made into a cured product by various methods.

本発明のエポキシ樹脂組成物の使用用途としては、特に制限されるものではなく、例えば、プリント基板用、電子部品の封止材用、レジストインキ、導電ペースト、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、得られる硬化物の誘電特性や低吸湿率性に優れる点から、電子部品の封止材用樹脂組成物、プリント基板用樹脂組成物、レジストインキ、導電ペースト、層間絶縁材料の用途に好適に用いることができる。   The use of the epoxy resin composition of the present invention is not particularly limited, and for example, for printed circuit boards, electronic component sealing materials, resist inks, conductive pastes, resin casting materials, adhesives, and insulation. Examples thereof include coating materials such as paints, and among these, the cured product obtained has excellent dielectric properties and low moisture absorption properties, so that it is a resin composition for encapsulants for electronic components, a resin composition for printed circuit boards, and a resist. It can be suitably used for inks, conductive pastes, and interlayer insulating materials.

例えば、塗料用エポキシ樹脂組成物を作製するためには、エポキシ樹脂、硬化剤、必要に応じて有機溶媒、充填剤、顔料等の配合物を均一になるまでペイントシェーカー等の分散器を用いて混合する方法が挙げられる。また粉体塗料用には、後述の半導体封止材と同様にして得られた混合物を粉砕器等によって粉体化することによって、得ることができる。   For example, in order to prepare an epoxy resin composition for paints, use a disperser such as a paint shaker until a compound such as an epoxy resin, a curing agent, and if necessary, an organic solvent, a filler, and a pigment is uniform. The method of mixing is mentioned. Moreover, for powder coatings, it can be obtained by pulverizing a mixture obtained in the same manner as a semiconductor sealing material described later with a pulverizer or the like.

半導体封止材用のエポキシ樹脂組成物を作製するためには、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して溶融混合型のエポキシ樹脂組成物を得ればよい。その際、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100重量部当たり、充填剤を30〜95重量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70重量部以上が特に好ましく、それらの効果を格段に上げるためには、80重量部以上が一層その効果を高めることができる。   In order to produce an epoxy resin composition for a semiconductor encapsulant, it is sufficient until the epoxy resin and a compounding agent such as a curing agent and a filler are uniform using an extruder, a kneader, a roll or the like as necessary. What is necessary is just to obtain a melt-mixing type epoxy resin composition by mixing them. At that time, silica is usually used as the filler, and the filling rate is preferably in the range of 30 to 95% by weight per 100 parts by weight of the epoxy resin composition. In order to improve moisture resistance and solder crack resistance and to reduce the linear expansion coefficient, it is particularly preferably 70 parts by weight or more, and in order to significantly increase these effects, 80 parts by weight or more further enhances the effect. be able to.

半導体パッケージ成形としては、前記樹脂組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物を得ることができる。   As semiconductor package molding, the resin composition can be molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 50 to 200 ° C. for 2 to 10 hours to obtain a molded product. it can.

またテープ状封止材として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100〜150℃に加熱して軟化させ成形し、170〜250℃で完全に硬化させる方法を挙げることができる。   Moreover, when using as a tape-shaped sealing material, after heating the resin composition obtained by the above-mentioned method and producing a semi-hardened sheet and using it as a sealing agent tape, this sealing agent tape is used as a semiconductor chip. Examples of the method include placing it on top, heating to 100 to 150 ° C, softening and molding, and completely curing at 170 to 250 ° C.

更にポッティング型液状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を半導体チップや電子部品上に塗布し、直接、硬化させればよい。   Furthermore, when using as a potting type liquid sealing agent, the resin composition obtained by the above-mentioned method may be applied on a semiconductor chip or an electronic component and directly cured.

また、アンダーフィル樹脂として使用する方法についても特に限定されないが、特開平9−266221号公報や「エレクトロニクス分野のプラスチック」(工業調査会発行、1999年、27〜34頁)に記載されるような方法を採用できる。より具体的には、フリップチップ実装時に電極のついた半導体素子と半田のついたプリント配線基板との空隙に、本発明のエポキシ樹脂組成物を毛細管現象を利用してキャピラリーフロー法によって注入し硬化させる方法、予め基板ないし半導体素子上に本発明のエポキシ樹脂組成物を半硬化させてから、加熱して半導体素子と基板を密着させ、完全硬化させるコンプレッションフロー法等が挙げられる。この場合、本発明のエポキシ樹脂組成物は、有機溶剤を含有しない液状の樹脂組成物の形態で使用するのが好ましい。特にキャピラリーフロー法を用いる場合には低粘度である必要があり、5000mPa・s以下の粘度であることが好ましい。当該樹脂組成物がこれを超える粘度であれば、室温〜100℃以下に加温して注入することもできる。   Also, the method used as an underfill resin is not particularly limited, but it is described in JP-A-9-266221 and “Plastics in the Electronics Field” (published by Industrial Research Council, 1999, pages 27 to 34). The method can be adopted. More specifically, the epoxy resin composition of the present invention is injected into the gap between the semiconductor element with electrodes and the printed wiring board with solder during flip-chip mounting by a capillary flow method using a capillary phenomenon and cured. And a compression flow method in which the epoxy resin composition of the present invention is semi-cured on a substrate or a semiconductor element in advance, and then the semiconductor element and the substrate are brought into close contact with each other to be completely cured. In this case, the epoxy resin composition of the present invention is preferably used in the form of a liquid resin composition containing no organic solvent. In particular, when the capillary flow method is used, the viscosity needs to be low, and the viscosity is preferably 5000 mPa · s or less. If the said resin composition is a viscosity exceeding this, it can also inject | pour after heating to room temperature-100 degrees C or less.

本発明のエポキシ樹脂組成物をプリント基板用プリプレグ用樹脂組成物とするには、該樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、アルコール性水酸基を含有しないメチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。アルコール性水酸基を含有する溶剤は、条件によってはビニルエーテル類と反応してしまうため好ましくない。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の重量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60重量%となるように調整することが好ましい。   In order to make the epoxy resin composition of the present invention into a resin composition for a prepreg for a printed circuit board, it can be used without a solvent depending on the viscosity of the resin composition, but for prepreg by varnishing with an organic solvent. A resin composition is preferred. As the organic solvent, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, dimethylformamide or the like which does not contain an alcoholic hydroxyl group, and it can be used alone or as a mixed solvent of two or more kinds. A solvent containing an alcoholic hydroxyl group is not preferable because it reacts with vinyl ethers depending on conditions. The obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 By heating at ˜170 ° C., a prepreg that is a cured product can be obtained. The weight ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by weight.

本発明のエポキシ樹脂組成物から銅張り積層板用樹脂組成物を得るには、上記プリプレグ用樹脂組成物とする方法と同じであり、得られたプリプレグを、例えば特開平7−41543号公報に記載されているように積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   In order to obtain a resin composition for a copper-clad laminate from the epoxy resin composition of the present invention, it is the same as the method for preparing the resin composition for prepreg, and the obtained prepreg is disclosed in, for example, JP-A-7-41543. A copper-clad laminate can be obtained by laminating as described, stacking copper foils as appropriate, and thermocompression bonding at 170-250 ° C. for 10 minutes to 3 hours under a pressure of 1-10 MPa.

本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば特開平5−186567号公報に記載の方法に準じて、レジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When the epoxy resin composition of the present invention is used as a resist ink, for example, according to the method described in JP-A No. 5-186567, a resist ink composition is prepared and then printed on a printed circuit board by a screen printing method. The method of making it a resist ink hardened | cured material after apply | coating to is mentioned.

本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、特開平3−46707号公報に記載の微細導電性粒子を該樹脂組成物中に分散させ異方性導電膜用組成物とする方法、特開昭62−40183号公報、特開昭62−76215号公報、特開昭62−176139号公報などに開示されているような室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When using the epoxy resin composition of the present invention as a conductive paste, for example, fine conductive particles described in JP-A-3-46707 are dispersed in the resin composition, and the composition for anisotropic conductive film is used. And a paste resin composition for circuit connection which is liquid at room temperature as disclosed in JP-A-62-240183, JP-A-62-276215, JP-A-62-176139, etc. And an anisotropic conductive adhesive.

本発明のエポキシ樹脂組成物を半導体の層間絶縁材料として使用する場合は、例えば特開平6−85091号公報の記載の方法が採用できる。層間絶縁膜に用いる場合は半導体に直接接することになるため、高温環境下において線膨張率の差によるクラックが生じないよう、絶縁材の線膨張率を半導体の線膨張率に近づけることが要求される。また、半導体の微細化、多層化、高密度化による信号遅延の問題に対応するため、絶縁材の低容量化技術が求められており、絶縁材を低誘電化することによってこの問題を解決することができる。当該樹脂組成物は、これらの要求を満たす特性を有するため好ましい。   When the epoxy resin composition of the present invention is used as a semiconductor interlayer insulating material, for example, the method described in JP-A-6-85091 can be employed. When used as an interlayer insulating film, it will be in direct contact with the semiconductor, so it is required that the linear expansion coefficient of the insulating material be close to the linear expansion coefficient of the semiconductor so that cracks due to the difference in linear expansion coefficient do not occur in a high temperature environment. The In addition, in order to deal with the problem of signal delay due to miniaturization, multilayering, and high density of semiconductors, there is a demand for technology for reducing the capacity of insulating materials, and this problem can be solved by reducing the dielectric of insulating materials. be able to. The resin composition is preferable because it has characteristics satisfying these requirements.

本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては特に限定されないが、例えば特公平4−6116号公報、特開平7−304931号公報、特開平8−64960号公報、特開平9−71762号公報、特開平9−298369号公報などに記載の各種方法を採用できる。より具体的には、ゴム、フィラーなどを適宜配合した当該樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   Although it does not specifically limit as a method of obtaining the interlayer insulation material for buildup boards from the epoxy resin composition of the present invention, for example, Japanese Patent Publication No. 4-6116, Unexamined-Japanese-Patent No. 7-304931, Unexamined-Japanese-Patent No. 8-64960, Various methods described in JP-A-9-71762, JP-A-9-298369 and the like can be employed. More specifically, the resin composition appropriately blended with rubber, filler, and the like is applied to a wiring board on which a circuit is formed using a spray coating method, a curtain coating method, or the like, and then cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up substrate can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

発明のエポキシ樹脂組成物を熱硬化させて、成型物、積層物、注型物、接着剤、塗膜、フィルムなどの形態をもつ硬化物を得ることができる。例えば、溶融混合型の組成物の場合は、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに80〜250℃で2〜10時間に加熱することにより成形硬化物を得ることができる。またワニス状組成物の場合は、それを基材に塗装し加熱乾燥するなどして塗膜を得ることができ、塗料はこれに該当する。また、それをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て、それを熱プレス成形して得ることができ、プリント配線基板用やCFRP用の積層材料はこれに該当する。

The epoxy resin composition of the present invention is thermally cured, molded product, laminate, cast material, adhesive, coating, it is possible to obtain a cured product having a form such as a film. For example, in the case of a melt-mixed type composition, the composition is molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 80 to 250 ° C. for 2 to 10 hours. A cured product can be obtained. In the case of a varnish-like composition, a coating film can be obtained by coating it on a substrate and drying it by heating, and the paint corresponds to this. In addition, it can be obtained by impregnating a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating to obtain a prepreg, which can be obtained by hot press molding This is the case for laminated materials for substrates and CFRP.

次に本発明を実施例、比較例により具体的に説明する。尚、以下に記載の「部」及び「%」は、特に断りがない限り重量基準である。   Next, the present invention will be specifically described with reference to examples and comparative examples. “Parts” and “%” described below are based on weight unless otherwise specified.

合成例1[下記構造式(a−1)のポリアセタール化合物(A−1)、アセタール化率100%の合成]   Synthesis Example 1 [Synthesis of polyacetal compound (A-1) of the following structural formula (a-1), acetalization rate of 100%]

Figure 0004665410
(式中のnは繰り返し数を表し、約3である。)
Figure 0004665410
(In the formula, n represents the number of repetitions and is about 3.)

温度計、撹拌機を取り付けたフラスコに前記構造式(a−1)で表されるフェノールノボラック樹脂(大日本インキ化学工業株式会社製;フェノライトTD−2131、軟化点80℃のアモルファス状化合物、水酸基当量104g/eq)200gとn−ブチルビニルエーテル400gとメチルイソブチルケトン600gを仕込み、それに燐酸エステル触媒(大八化学製;AP−8)1gを添加して、80℃常圧で10時間撹拌して反応させた。次いで真空下でその温度で未反応のn−ブチルビニルエーテルとメチルイソブチルケトンを回収し、粘凋液体の目的物質を得た。得られた物質重量397gと未反応n−ブチルビニルエーテル重量201gから判断して、実質的に100%の水酸基がアセタール化されたと推定された。   Phenol novolak resin represented by the structural formula (a-1) on a flask equipped with a thermometer and a stirrer (Dainippon Ink Chemical Co., Ltd .; Phenolite TD-2131, amorphous compound having a softening point of 80 ° C., (Hydroxyl equivalent: 104 g / eq) 200 g, n-butyl vinyl ether 400 g and methyl isobutyl ketone 600 g were added, and 1 g of a phosphoric acid ester catalyst (manufactured by Daihachi Chemical; AP-8) was added thereto, followed by stirring at 80 ° C. and normal pressure for 10 hours. And reacted. Subsequently, unreacted n-butyl vinyl ether and methyl isobutyl ketone were recovered at that temperature under vacuum to obtain a viscous liquid target substance. Judging from the obtained material weight of 397 g and unreacted n-butyl vinyl ether weight of 201 g, it was estimated that substantially 100% of the hydroxyl groups were acetalized.

合成例2[前記構造式(a−1)のポリアセタール化合物(A−2)、アセタール化率50%の合成]
合成例1において、n−ブチルビニルエーテルの仕込量を100gに変更した以外は、合成例1と同様にして反応し、半固形状の目的物質295gを得た。また反応終了後、未反応のn−ブチルビニルエーテル回収量は0.5gであったことから、原料中の約50%の水酸基がアセタール化されたと推定された。
Synthesis Example 2 [Synthesis of Polyacetal Compound (A-2) of Structural Formula (a-1), Acetalization Rate 50%]
In Synthesis Example 1, the reaction was performed in the same manner as in Synthesis Example 1 except that the amount of n-butyl vinyl ether charged was changed to 100 g, to obtain 295 g of a semisolid target substance. Further, after the reaction was completed, the amount of unreacted n-butyl vinyl ether recovered was 0.5 g, so that it was estimated that about 50% of the hydroxyl groups in the raw material were acetalized.

合成例3[下記構造式(a−3)のポリアセタール化合物(A−3)、アセタール化率100%の合成]   Synthesis Example 3 [Synthesis of polyacetal compound (A-3) of the following structural formula (a-3), acetalization rate of 100%]

Figure 0004665410
Figure 0004665410

合成例1においてフェノールノボラック樹脂を前記構造式(a−3)で表される1,1’−ビス(2,7−ジヒドロキシ)ナフチルメタン(融点274℃の結晶化合物)166gに、n−ブチルビニルエーテルを260gに変更した以外は合成例1と同様にして、粘凋液体状の目的物質339gを得た。反応終了後に蒸留回収されたn−ブチルビニルエーテルが64gであったことから、実質的に100%の水酸基がアセタール化されたと推定された。   In Synthesis Example 1, the phenol novolak resin was added to 166 g of 1,1′-bis (2,7-dihydroxy) naphthylmethane (crystalline compound having a melting point of 274 ° C.) represented by the structural formula (a-3), and n-butyl vinyl ether. Was changed to 260 g in the same manner as in Synthesis Example 1 to obtain 339 g of viscous target substance. Since n-butyl vinyl ether distilled and recovered after completion of the reaction was 64 g, it was estimated that substantially 100% of the hydroxyl groups were acetalized.

合成例4[下記構造式(a−4)のポリアセタール化合物(A−4)、アセタール化率100%の合成]   Synthesis Example 4 [Synthesis of Polyacetal Compound (A-4) of Structural Formula (a-4) below, Acetalization Rate of 100%]

Figure 0004665410
Figure 0004665410

合成例1において、フェノールノボラック樹脂を前記構造式(a−4)で表される1,1’,2,2’−テトラフェニロールエタン(融点315℃の結晶化合物)199gに変更した以外は、合成例1と同様にして、粘凋液体状の目的物質380gを得た。反応終了後に蒸留回収されたn−ブチルビニルエーテルが61gであったことから、実質的に100%の水酸基がアセタール化されたと推定された。   In Synthesis Example 1, except that the phenol novolak resin was changed to 199 g of 1,1 ′, 2,2′-tetraphenylolethane (crystalline compound having a melting point of 315 ° C.) represented by the structural formula (a-4), In the same manner as in Synthesis Example 1, 380 g of viscous target substance was obtained. Since 61 g of n-butyl vinyl ether recovered by distillation after the reaction was completed, it was estimated that substantially 100% of the hydroxyl group was acetalized.

得られた4種類のポリアセタール化合物(A−1)〜(A−4)を、前記構造式(a−1)で表されるフェノールノボラック樹脂[大日本インキ化学工業株式会社製 フェノライトTD−2131;軟化点80℃、水酸基当量104g/eq。以下(a−1)と記す。]と、結晶性ポリヒドロキシ化合物である前記構造式(a−3)で表される1,1’−ビス(2,7−ジヒドロキシ)ナフチルメタン[融点274℃結晶性化合物、水酸基当量83g/eq。以下(a−3)と記す。]と前記構造式(a−4)で表される1,1’,2,2’−テトラフェニロールエタン(融点315℃の結晶化合物、水酸基当量100g/eq。以下(a−4)と記す。)の3種と比較を行った。これらの室温(25℃)における外観を表1にまとめて記す。   The four types of polyacetal compounds (A-1) to (A-4) thus obtained were converted into phenol novolak resins represented by the structural formula (a-1) [Phenolite TD-2131 manufactured by Dainippon Ink & Chemicals, Inc. Softening point 80 ° C., hydroxyl group equivalent 104 g / eq. Hereinafter referred to as (a-1). And 1,1′-bis (2,7-dihydroxy) naphthylmethane represented by the structural formula (a-3) which is a crystalline polyhydroxy compound [melting point: 274 ° C. crystalline compound, hydroxyl group equivalent: 83 g / eq . Hereinafter referred to as (a-3). And 1,1 ′, 2,2′-tetraphenylolethane represented by the structural formula (a-4) (a crystalline compound having a melting point of 315 ° C., a hydroxyl group equivalent of 100 g / eq. Hereinafter referred to as (a-4). .)). The appearance at room temperature (25 ° C.) is summarized in Table 1.

Figure 0004665410
Figure 0004665410

表1より明らかに、ポリアセタール化合物は原料として用いたポリヒドロキシ化合物よりも低粘度化しており、流動性が良好であることを確認した。   Obviously from Table 1, it was confirmed that the polyacetal compound had a lower viscosity than the polyhydroxy compound used as a raw material and had good fluidity.

1)化合物の溶剤溶解性評価
上記によって得られたポリアセタール化合物(A−1)〜(A−4)及びポリヒドロキシ化合物(a−1)、(a−3)、(a−4)の、一般的なエポキシ樹脂組成物ワニス製品に使用する溶剤であるメチルエチルケトン(MEK)、及びトルエンに対する溶解性評価を行った。具体的方法としては、上記化合物100部と溶剤100部を混合し、70℃に加温して攪拌して均一にした後、室温(25℃)まで冷却した際の外観を目視によって観測することにより、溶解性評価を行った。結果を表2に示す。
1) Solvent solubility evaluation of compounds Generality of polyacetal compounds (A-1) to (A-4) and polyhydroxy compounds (a-1), (a-3) and (a-4) obtained as described above The solubility evaluation with respect to methyl ethyl ketone (MEK) which is a solvent used for a typical epoxy resin composition varnish product, and toluene was performed. As a specific method, 100 parts of the above compound and 100 parts of the solvent are mixed, heated to 70 ° C., stirred and homogenized, and then visually observed when cooled to room temperature (25 ° C.). Thus, the solubility was evaluated. The results are shown in Table 2.

Figure 0004665410
Figure 0004665410

表2に示したとおり、結晶性化合物の(a−3)と(a−4)は、一般的なエポキシ樹脂ワニス製品に使用する溶剤に対して溶解せず、均一組成物を調製できなかった。一方ポリアセタール化合物(A−1)〜(A−4)は全て、アモルファス状硬化剤であるフェノールノボラック樹脂(a−1)と同様の溶解性を示し、均一組成物を調製できた。   As shown in Table 2, the crystalline compounds (a-3) and (a-4) were not dissolved in the solvent used for general epoxy resin varnish products, and a uniform composition could not be prepared. . On the other hand, all the polyacetal compounds (A-1) to (A-4) showed the same solubility as the phenol novolak resin (a-1) which is an amorphous curing agent, and a uniform composition could be prepared.

2)エポキシ樹脂との相溶性評価
エポキシ樹脂(B)として、ビスフェノールA型液状エポキシ樹脂(大日本インキ化学工業株式会社製;EPICLON 850S、エポキシ当量188g/eq)とクレゾールノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製;EPICLON N−665−EXP、エポキシ当量204g/eq)を用いて、相溶性評価を行った。
2) Compatibility evaluation with epoxy resin As epoxy resin (B), bisphenol A type liquid epoxy resin (Dainippon Ink & Chemicals, Inc .; EPICLON 850S, epoxy equivalent 188 g / eq) and cresol novolac type epoxy resin (Dainippon) Ink Chemical Industries, Ltd .; EPICLON N-665-EXP, epoxy equivalent 204 g / eq) was used for compatibility evaluation.

具体的方法としては、上記によって得られたポリアセタール化合物(A−1)〜(A−4)及びポリヒドロキシ化合物(a−1)、(a−3)、(a−4)とエポキシ樹脂(B)とを表3〜4に示した配合比に従って混合し、80℃に加温して攪拌混合して、エポキシ樹脂組成物を得た。この後、これを室温(25℃)まで冷却した際の該組成物の外観を観測することにより、相溶性評価を行った。   Specifically, the polyacetal compounds (A-1) to (A-4) and polyhydroxy compounds (a-1), (a-3) and (a-4) obtained as described above and an epoxy resin (B ) Were mixed according to the blending ratios shown in Tables 3 to 4, heated to 80 ° C., and mixed by stirring to obtain an epoxy resin composition. Thereafter, compatibility was evaluated by observing the appearance of the composition when it was cooled to room temperature (25 ° C.).

Figure 0004665410
Figure 0004665410

Figure 0004665410
Figure 0004665410

表3〜4に示したとおり、結晶性化合物の(a−3)と(a−4)は、ビスフェノールA型、クレゾールノボラック型の両エポキシ樹脂に対して相溶せず、均一組成物を調製できなかった。一方ポリアセタール化合物(A−1)〜(A−4)は全て、アモルファス状硬化剤であるフェノールノボラック樹脂(a−1)と同様の相溶性を示し、均一組成物を調製できた。   As shown in Tables 3 to 4, crystalline compounds (a-3) and (a-4) are incompatible with both bisphenol A type and cresol novolak type epoxy resins, and a uniform composition is prepared. could not. On the other hand, all the polyacetal compounds (A-1) to (A-4) showed the same compatibility as the phenol novolak resin (a-1) which is an amorphous curing agent, and a uniform composition could be prepared.

3)硬化物の耐熱性評価
エポキシ樹脂(B)として、相溶性評価試験と同様にEPICLON 850S及びEPICLON N−665−EXPを用い、更に硬化促進剤として2−エチル−4−メチルイミダゾールを樹脂量全体に対して2重量%用いて、表5〜表6に示す配合比にて混合し、エポキシ樹脂組成物を得た。得られた組成物を200℃の熱風循環型乾燥機中で7時間静置することにより硬化反応を行い、得られた試験片を用いて動的粘弾性測定装置(DMA)により、ガラス転移温度を測定した。結果を表5〜6に示す。
3) Evaluation of heat resistance of cured product As epoxy resin (B), EPICLON 850S and EPICLON N-665-EXP were used in the same manner as in the compatibility evaluation test, and 2-ethyl-4-methylimidazole was used as the curing accelerator. Using 2% by weight with respect to the whole, mixing was carried out at a blending ratio shown in Tables 5 to 6, to obtain an epoxy resin composition. The composition obtained was allowed to stand for 7 hours in a 200 ° C. hot-air circulating drier for a curing reaction, and the glass transition temperature was measured by a dynamic viscoelasticity measuring device (DMA) using the obtained test piece. Was measured. The results are shown in Tables 5-6.

Figure 0004665410
Figure 0004665410

Figure 0004665410
Figure 0004665410

表5〜6に示した通り、フェノールノボラック樹脂(a−1)を原料として用いたポリアセタール化合物(A−1)及び(A−2)を硬化剤として用いた場合は、いずれの場合も、フェノールノボラック樹脂(a−1)同様のガラス転移温度を示し、アセタール化による性能劣化が認められず、脱ブロック化による硬化反応が十分に進行していることを確認した。また、従来、エポキシ樹脂の硬化剤としての適正に欠けていた結晶性化合物の(a−3)、(a−4)を原料とし、ポリアセタール化によって低粘度化してから硬化剤として用いた場合は、従来のフェノールノボラック樹脂を硬化剤としたときよりも大きく上回るガラス転移温度を有する硬化物が得られることを確認した。   As shown in Tables 5 to 6, when polyacetal compounds (A-1) and (A-2) using phenol novolac resin (a-1) as a raw material were used as curing agents, phenol was used in either case. The glass transition temperature was similar to that of the novolak resin (a-1), no performance deterioration due to acetalization was observed, and it was confirmed that the curing reaction by deblocking was sufficiently advanced. In addition, when a crystalline compound (a-3) or (a-4), which has been lacking properly as a curing agent for an epoxy resin, is used as a raw material and the viscosity is reduced by polyacetalization, it is used as a curing agent. It was confirmed that a cured product having a glass transition temperature much higher than when a conventional phenol novolac resin was used as a curing agent was obtained.

Claims (9)

1分子中に2個より多い芳香族性水酸基を含有し、かつ融点150℃以上の結晶性化合物であるポリヒドロキシ化合物(a)中の芳香族性水酸基の10〜100モル%がアセタール化されたポリアセタール化合物(A)とエポキシ樹脂(B)とを含有することを特徴とするエポキシ樹脂組成物。   10 to 100 mol% of the aromatic hydroxyl group in the polyhydroxy compound (a), which is a crystalline compound containing more than two aromatic hydroxyl groups in one molecule and having a melting point of 150 ° C. or higher, was acetalized. An epoxy resin composition comprising a polyacetal compound (A) and an epoxy resin (B). 前記結晶性化合物が4価ヒドロキシ化合物である請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the crystalline compound is a tetravalent hydroxy compound. 4価ヒドロキシ化合物が、下記式(a−3)又は(a−4)で表される化合物である請求項2記載のエポキシ樹脂組成物。
Figure 0004665410
Figure 0004665410
The epoxy resin composition according to claim 2, wherein the tetravalent hydroxy compound is a compound represented by the following formula (a-3) or (a-4).
Figure 0004665410
Figure 0004665410
更に有機溶剤(C)を含有する請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, further comprising an organic solvent (C). 電子部品の封止材用樹脂組成物の用途に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。   The epoxy resin composition of any one of Claims 1-4 prepared for the use of the resin composition for sealing materials of an electronic component. プリント基板用樹脂組成物の用途に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。   The epoxy resin composition of any one of Claims 1-4 prepared for the use of the resin composition for printed circuit boards. レジストインキの用途に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, which is prepared for use as a resist ink. 導電ペーストの用途に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 4, which is prepared for use as a conductive paste. 層間絶縁材料の用途に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 4, which is prepared for use as an interlayer insulating material.
JP2004072489A 2004-03-15 2004-03-15 Epoxy resin composition Expired - Lifetime JP4665410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072489A JP4665410B2 (en) 2004-03-15 2004-03-15 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072489A JP4665410B2 (en) 2004-03-15 2004-03-15 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2005255935A JP2005255935A (en) 2005-09-22
JP4665410B2 true JP4665410B2 (en) 2011-04-06

Family

ID=35081982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072489A Expired - Lifetime JP4665410B2 (en) 2004-03-15 2004-03-15 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4665410B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656374B2 (en) * 2004-06-28 2011-03-23 Dic株式会社 Epoxy resin composition and cured product thereof
JP5783248B2 (en) * 2011-04-28 2015-09-24 日立化成株式会社 RESIN COMPOSITION FOR ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641277A (en) * 1992-07-22 1994-02-15 Toto Kasei Kk Epoxy resin composition
JP2003292580A (en) * 2002-03-29 2003-10-15 Nof Corp Epoxy resin composition for sealing semiconductor
JP2005029634A (en) * 2003-07-09 2005-02-03 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641277A (en) * 1992-07-22 1994-02-15 Toto Kasei Kk Epoxy resin composition
JP2003292580A (en) * 2002-03-29 2003-10-15 Nof Corp Epoxy resin composition for sealing semiconductor
JP2005029634A (en) * 2003-07-09 2005-02-03 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product

Also Published As

Publication number Publication date
JP2005255935A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP6160775B2 (en) Epoxy resin composition for electronic material, cured product thereof and electronic member
JP2010001427A (en) Epoxy resin, epoxy resin composition, and its cured product
JP6540259B2 (en) Epoxy resin composition for heat conductive material, cured product thereof and electronic member
JP6176412B2 (en) Epoxy resin composition for electronic material, cured product thereof and electronic member
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP6785125B2 (en) Epoxy resin composition, cured product, semiconductor device, resin sheet, prepreg and carbon fiber reinforced composite material
JP4474891B2 (en) Epoxy resin composition, cured product thereof and epoxy resin
JP4650663B2 (en) Epoxy resin composition, cured product thereof, method for producing epoxy resin, and epoxy resin
JP4665410B2 (en) Epoxy resin composition
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP4844796B2 (en) 1-pack type epoxy resin composition and cured product thereof
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP4656374B2 (en) Epoxy resin composition and cured product thereof
JP4474890B2 (en) Epoxy resin composition, cured product thereof and polyvalent hydroxy compound
JP2005307032A (en) One-component epoxy resin composition and its cured product
JP4636307B2 (en) Epoxy resin composition and cured product thereof
JP4665444B2 (en) Production method of epoxy resin
JP4670269B2 (en) Epoxy resin composition and cured product thereof
JP4766295B2 (en) Epoxy resin composition and laminate using the same
JP2006257137A (en) Epoxy resin composition and cured product thereof
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6043602B2 (en) Resin composition
JP2006111810A (en) Epoxy resin, epoxy resin composition, cured product thereof and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term