[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4529349B2 - Nitride-based phosphor and light emitting device - Google Patents

Nitride-based phosphor and light emitting device Download PDF

Info

Publication number
JP4529349B2
JP4529349B2 JP2002326155A JP2002326155A JP4529349B2 JP 4529349 B2 JP4529349 B2 JP 4529349B2 JP 2002326155 A JP2002326155 A JP 2002326155A JP 2002326155 A JP2002326155 A JP 2002326155A JP 4529349 B2 JP4529349 B2 JP 4529349B2
Authority
JP
Japan
Prior art keywords
nitride
phosphor
light
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002326155A
Other languages
Japanese (ja)
Other versions
JP2004161807A (en
Inventor
寛人 玉置
忠 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002326155A priority Critical patent/JP4529349B2/en
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to EP03810675A priority patent/EP1560274B1/en
Priority to AT03810675T priority patent/ATE454718T1/en
Priority to US10/533,688 priority patent/US7511411B2/en
Priority to AU2003277627A priority patent/AU2003277627A1/en
Priority to PCT/JP2003/014233 priority patent/WO2004042834A1/en
Priority to DE60330892T priority patent/DE60330892D1/en
Publication of JP2004161807A publication Critical patent/JP2004161807A/en
Application granted granted Critical
Publication of JP4529349B2 publication Critical patent/JP4529349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物系蛍光体およびその窒化物系蛍光体を有する発光装置に関し、例えばLEDやLD等の半導体発光素子と、この半導体発光素子で発光された光の少なくとも一部を吸収するとともに、吸収した光とは異なる波長の光を発光する蛍光体を備える発光装置に関する。
【0002】
【従来の技術】
発光素子の光の一部を蛍光体により波長変換し、当該波長変換された光と波長変換されない発光素子の光とを混合等して放出することにより、発光素子の光と異なる発光色を発光する発光装置が開発されている。例えば、発光素子としてInGaN系材料を使った青色発光ダイオード(以下LEDともいう)を用い、その表面に(Y,Gd)(Al,Ga)12:Ceの組成式で表されるYAG:Ce系蛍光体を含むエポキシ樹脂等の透光性材料からなる蛍光部材をコーティングした白色LED発光装置が実用化されている。白色LED発光装置の発光色は、光の混色の原理によって得られる。発光素子から放出された青色光は、蛍光部材の中へ入射した後、層内で吸収と散乱を繰り返した後、外へ放出される。一方、蛍光体に吸収された青色光は励起源として働き、黄色の蛍光を発する。この黄色光と青色光が混ぜ合わされて人間の目には白色として見える。
【0003】
このようなLEDを用いたLED発光装置は、小型で電力効率が高く鮮やかな色の発光をする。また、LEDは半導体素子であるため球切れなどの心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、LED発光装置は各種の光源として利用されている。
【0004】
【特許文献1】
特許第2927279号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記の白色に発光する発光装置は、可視光領域の長波長側の発光が得られ難いため、赤み成分が不足したやや青白い白色の発光装置となっていた。特に、店頭のディスプレイ用の照明や、医療現場用の照明などおいては、やや赤みを帯びた暖色系の白色の発光装置が求められている。また、発光素子は電球と比べて、一般に寿命が長く、人の目に優しいため、電球色に近い白色の発光装置が強く求められている。
【0006】
通常、赤みが増すと、発光装置の発光特性が低下する。人間の目が感じる色みは、波長が380〜780nm領域の電磁波に明るさの感覚を生じる。これを表す指標の一つとしては、視感度特性が挙げられる。視感度特性は山型になっており、550nmがピークになっている。赤み成分の波長域である580nm〜680nm付近と、550nm付近に同じ電磁波が入射してきた場合、赤み成分の波長域の方が暗く感じる。そのため、緑色、青色領域と同じ程度の明るさを感じるためには、赤色領域は、高密度の電磁波の入射が必要となる。
【0007】
また、従来の赤色発光の蛍光体は、近紫外から青色光励起による効率及び耐久性が十分でなく、さらには高温になると急激に発光効率が低下するという問題があった。
【0008】
本発明は、このような問題点を解決するためになされたものである。本発明の主な目的は、耐熱性に優れ、黄から赤領域の発光が可能な窒化物系蛍光体およびその窒化物系蛍光体を有する発光装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の窒化物系蛍光体は、第1の発光スペクトルの少なくとも一部を波長変換し、前記第1の発光スペクトルと異なる領域に第2の発光スペクトルを少なくとも一以上有する蛍光体であって、前記蛍光体は、L{(2/3)x+(4/3)y}:R、またはL{(2/3)x+(4/3)y−(2/3)z}:R(x=2、y=5若しくはx=1、y=7であり、0.01<z<1.5、または、x=1、y=2、z=2である。LはCa、Sr、Baからなる群より選ばれる1種以上を含有する。MはSiである。Nは窒素である。RはEuである。)で表され、かつ結晶構造を有する窒化物系蛍光材料と、前記窒化物系蛍光材料を被覆する被覆材料と、から構成されることを特徴とする。
【0010】
前記被覆材料が窒化金属系材料もしくは酸窒化金属系材料である。この構成によって、より耐熱性に優れた黄から赤領域の発光が可能な窒化物系蛍光体が得られる。
【0011】
前記被覆材料がマイクロカプセルを形成することを特徴とする。この構成によって、より耐熱性に優れた黄から赤領域の発光が可能な窒化物系蛍光体が得られる。
【0012】
前記被覆材料が、複数の異なる材質からなる多層構造とすることを特徴とする。
【0013】
前記多層構造の被覆材料が、前記蛍光体側の屈折率を高く、表面側の屈折率を低くすることを特徴とする。
【0019】
前記蛍光材料の結晶構造が単斜晶または斜方晶であることを特徴とする。
【0020】
前記蛍光材料がB元素を含有することを特徴とする。B元素は蛍光材料の粒径を大きくする等の作用があるため、この構成によって、本発明の蛍光体は発光輝度の向上を図ることができる。
【0021】
前記窒化物系蛍光体を含む透光性材料からなる蛍光部材と、発光素子とを備え、前記発光素子からの光の少なくとも一部を前記蛍光部材が吸収し異なる波長を有する光を発光するよう構成されてなる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための窒化物系蛍光体およびその窒化物系蛍光体を有する発光装置を例示するものであって、本発明の窒化物系蛍光体およびその窒化物系蛍光体を有する発光装置を以下のものに特定するものではない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。なお各図面が示す部材の大きさや位置関係などは、説明を明確にするため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよい。
【0023】
[実施の形態1]
図1を用いて、本発明の実施の形態1に係る発光装置を説明する。実施の形態1の発光装置は、発光素子10と、L−M−N:R、または、L−M−O−N:R(Lは、Be、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上を含有する。Mは、C、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上を含有する。Nは窒素である。Oは酸素である。Rは希土類元素である。)で表される窒化物系蛍光材料およびN元素を含有するとともに窒化物系蛍光材料を被覆する被覆材料とから構成される窒化物系蛍光体11aと、窒化物系蛍光体11aを含む透光性材料11bからなる蛍光部材11とを備える。
【0024】
例えばLEDから構成される発光素子10が、マウントリード13a上部に配置されたカップのほぼ中央部にダイボンドすることによって載置される。発光素子10に形成された電極は導電性ワイヤ14によってリードフレーム13のマウントリード13aおよびインナーリード13bに導電接続される。発光素子10において発光された光の少なくとも一部を吸収するとともに吸収した光とは異なる波長の光を発光する窒化物系蛍光材料およびN元素を含有するとともに窒化物系蛍光材料を被覆する被覆材料とから構成される窒化物系蛍光体11aを透光性材料11bに含む蛍光部材11が、発光素子10が載置されたカップに配置される。このように発光素子10および蛍光部材11を配置したリードフレーム13が、LEDチップや蛍光物質を外部応力、水分および塵芥などから保護する目的でモールド部材15によってモールドされ、発光装置が構成される。
【0025】
(発光素子)
次に本発明に用いることができる発光素子10として、III属窒化物系半導体発光素子を説明する。発光素子10は、例えばサファイア基板上にGaNバッファ層を介して、SiがアンドープまたはSi濃度が低い第1のn型GaN層、SiがドープされまたはSi濃度が第1のn型GaN層よりも高いn型GaNからなるn型コンタクト層、アンドープまたはSi濃度がn型コンタクト層よりも低い第2のGaN層、多重量子井戸構造の発光層(GaN障壁層/InGaN井戸層の量子井戸構造)、Mgがドープされたp型GaNからなるp型GaNからなるpクラッド層、Mgがドープされたp型GaNからなるp型コンタクト層が順次積層された積層構造を有し、以下のように電極が形成されている。ただし、この構成と異なる発光素子10も使用できる。
【0026】
pオーミック電極は、p型コンタクト層上のほぼ全面に形成され、そのpオーミック電極上の一部にpパッド電極が形成される。
【0027】
また、n電極は、エッチングによりp型コンタクト層から第1のGaN層を除去してn型コンタクト層の一部を露出させ、その露出された部分に形成される。
【0028】
なお、本実施の形態では多重量子井戸構造の発光層を用いたが、本発明はこれに限定されるものではなく、例えばInGaNを利用した単一量子井戸構造や多重量子井戸構造としてもよいし、Si、ZnがドープされたGaNを利用してもよい。
【0029】
また、発光素子10の発光層は、Inの含有量を変化させることにより、420nmから490nmの範囲において主発光ピークを変更することができる。また、発光波長は、上記範囲に限定されるものではなく、360〜550nmに発光波長を有しているものを使用することができる。特に、本発明の発光装置を紫外光LED発光装置に適用した場合、励起光の吸収変換効率を高めることができ、透過紫外光を低減することができる。
【0030】
(蛍光材料)
また、実施の形態1の発光装置において、蛍光体には、Nを含み、Oを選択的に含み、かつBe、Mg、Ca、Sr、BaおよびZnから選択された少なくとも1つの元素と、C、Si、Ge、Sn、Ti、ZrおよびHfから選択された少なくとも1の元素とを含み、Euおよび/または希土類元素で付活された窒化物系蛍光体が好適に使用される。すなわち、簡易的にL−M−N:R、またはL−M−O−N:Rで構成元素が表される結晶質の蛍光体である。結晶構造は、例えば、CaSiは単斜晶、SrSi、(Sr0.5Ca0.5Srは斜方晶、BaSiは単斜晶をとる。
【0031】
より詳しくは、一般的にL{(2/3)x+(4/3)y}:R、またはL{(2/3)x+(4/3)y−(2/3)z}:Rで表され、LはBe、Mg、Ca、Sr、Ba、Znからなる群より選ばれる1種以上であり、MはC、Si、Ge、Sn、Ti、Zr、Hfからなる群より選ばれる1種以上であり、かつNは窒素、Oは酸素であって、Rは希土類元素で表される蛍光体であって、さらにその組成中にはEuの他、Mg、B、Mn、Cr、Ni等を含んでもよい。
【0032】
さらに本蛍光体は、その組成中60%以上、好ましくは80%以上が結晶質である。一般的にはx=2、y=5またはx=1、y=7であることが望ましいが、任意の値が使用できる。
【0033】
微量の添加物中、Bなどは発光特性を減ずることなく結晶性を上げることが可能であり、またMn、Cuなども同様な効果を示す。またLa、Prなども発光特性を改良する効果がある。その他Mg、Cr、Niなどは残光を短くする効果があり、適宜使用される。その他、本明細書に示されていない元素であっても、10〜1000ppm程度ならば、輝度を著しく減ずることなく添加できる。
【0034】
Rに含まれる希土類元素は、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうち1種以上が含有されていることが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。また上記元素以外にも、B、Mn等は輝度を改善する効果があり、含有されていてもよい。これらの希土類元素は、単体の他、酸化物、イミド、アミド等の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置等も有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり酸素を含有することにより発光輝度の低下を生じる場合もある。ただしMnを用いた場合は、MnとOとのフラックス効果により粒径を大きくし、発光輝度の向上を図ることができる。
【0035】
発光中心として希土類元素であるユウロピウムEuを好適に用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。本発明の蛍光体は、母体のアルカリ土類金属系窒化ケイ素に対して、Eu2+を付活剤として用いる。Eu2+は、酸化されやすく、3価のEuの組成で通常使用されている。しかし、このEuではOの関与が大きく、良好な蛍光体が得られにくい。そのため、EuからOを、系外へ除去したものを使用することがより好ましい。例えば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。但し、Mnを添加した場合は、その限りではない。
【0036】
具体的に基本構成元素の例を挙げると、Mu、Bが添加されたCaSi0.17.9:Eu、SrSi0.17.9:Eu、(CaSr1−aSi0.17.9:Eu、CaSi0.59.5:Eu、さらには希土類が添加されたCaSi0.57.9:Eu、SrSi0.57.7:Eu、(CaSr1−aSi0.17.9:Euなどがある。
【0037】
さらにSrSi:Eu,Pr、BaSi:Eu,Pr、MgSi:Eu,Pr、ZnSi:Eu,Pr、SrSi10:Eu,Pr、BaSi10:Eu,Ce、MgSi10:Eu,Ce、ZnSi10:Eu,Ce、SrGe:Eu,Ce、BaGe:Eu,Pr、MgGe:Eu,Pr、ZnGe:Eu,Pr、SrGe10:Eu,Ce、BaGe10:Eu,Pr、MgGe10:Eu,Pr、ZnGe10:Eu,Ce、Sr1.8Ca0.2Si:Eu,Pr、Ba1.8Ca0.2Si:Eu,Ce、Mg1.8Ca0.2Si:Eu,Pr、Zn1.8Ca0.2Si:Eu,Ce、Sr0.8Ca0.2Si10:Eu,La、Ba0.8Ca0.2Si10:Eu,La、Mg0.8Ca0.2Si10:Eu,Nd、Zn0.8Ca0.2Si10:Eu,Nd、Sr0.8Ca0.2Ge10:Eu,Tb、Ba0.8Ca0.2Ge10:Eu,Tb、Mg0.8Ca0.2Ge10:Eu,Pr、Zn0.8Ca0.2Ge10:Eu,Pr、Sr0.8Ca0.2SiGeN10:Eu,Pr、Ba0.8Ca0.2SiGeN10:Eu,Pr、Mg0.8Ca0.2SiGeN10:Eu,Y、Zn0.8Ca0.2SiGeN10:Eu,Y、SrSi:Pr、BaSi:Pr、SrSi:Tb、BaGe10:Ce、(Sr0.5Ca0.5Sr0.17.9:Eu、SrSi:Eu、CaSi:Euなどが製造できるが、これに限定されない。同様に、これらの一般式で記載された蛍光体に、所望に応じて第3成分、第4成分、第5成分等適宜、好適な元素を含有させることも当然考えられるものである。
【0038】
以上説明した窒化物系蛍光体は、発光素子によって発光された青色光の一部を吸収して黄色から赤色領域の光を発光する。この蛍光体を上記の構成を有する発光装置に使用して、発光素子により発光された青色光と、蛍光体の赤色光とが混色により暖色系の白色に発光する発光装置を提供することができる。特に白色発光装置においては、窒化物系蛍光体と、希土類アルミン酸塩蛍光体であるセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質が含有されていることが好ましい。前記イットリウム・アルミニウム酸化物蛍光物質を含有することにより、所望の色度に調節することができるからである。セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質は、発光素子により発光された青色光の一部を吸収して黄色領域の光を発光することができる。ここで、発光素子により発光された青色系光と、イットリウム・アルミニウム酸化物蛍光物質の発色光とが混色により青白い白色に発光することができる。したがって、このイットリウム・アルミニウム酸化物蛍光物質と前記蛍光体とを透光性部材と一緒に混合した蛍光体と、発光素子により発光された青色光とを組み合わせることにより暖色系の白色の発光装置を提供することができる。この暖色系の白色の発光装置は、平均演色評価数Raが75乃至95であり色温度が2000乃至8000Kとすることができる。特に好ましいのは、平均演色評価数Raが高く、色温度が色度図における黒体放射の軌跡上に位置する白色の発光装置である。但し、所望の色温度および平均演色評価数の発光装置を提供するため、イットリウム・アルミニウム酸化物蛍光物質および蛍光体の配合量や各蛍光体の組成比を、適宜変更することもできる。この暖色系の白色の発光装置は、特に特殊演色評価数R9の改善を図っている。従来の青色発光素子とセリウムで付括されたイットリウム・アルミニウム酸化物蛍光物質との組合せの白色に発光する発光装置は、特殊演色評価数R9が低く、赤み成分が不足していた。そのため特殊演色評価数R9を高めることが解決課題となっていたが、本発明に係る蛍光体をセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質中に含有することにより、特殊演色評価数R9を40乃至70まで高めることができる。
【0039】
一般に蛍光体は粒子成長が困難で、形状を球状に整える場合には平均粒径が3μm以下の微粒子しか得られなかった。また、大きく成長させた場合においても、処理により多くの微粒子を伴っていた。
【0040】
本発明の実施の形態1における蛍光体は、平均粒径が3μm以上、好ましくは5〜15μm、さらに好ましくは10μm〜12μmとする。微細な蛍光体は分級などの手段で分別し排除し、粒径が2μm以下の粒径の粒子は体積分布で10%以下となるようにする。これによって発光輝度の向上を図ることができるとともに、2μm以下の粒径の粒子数を低減することによって光の配向方向の色度ばらつきを低減することができる。
【0041】
(窒化物系蛍光体の製造方法)
次に、図2を用いて、窒化物系蛍光体として好適な(Sr、Ca1−aSi{(2/3)x+(4/3)y−(2/3)z}:Euでx=2、y=5の製造方法を説明する。ただ、本発明に用いられる窒化物系蛍光体は、この製造方法に限定されない。上記蛍光体には、より好適にはMnが含有されている。
【0042】
まず原料のSr、Caを粉砕する(P1)。原料のSr、Caは、単体を使用することが好ましいが、イミド化合物、アミド化合物などの化合物を使用することもできる。粉砕により得られたSr、Caは、平均粒径が約0.1μmから15μmであることが好ましいが、この範囲に限定されない。またSr、Caの純度は、2N以上であることが好ましいが、これに限定されない。
【0043】
一方、原料のSiを粉砕する(P2)。原料のSiは、単体を使用することが好ましいが、窒化物化合物、イミド化合物、アミド化合物などを使用することもできる。酸化マンガン、HBO、B、CuO、CuOなどの化合物が含有されていてもよい。Siも、原料のSr、Caと同様に、アルゴン雰囲気中、もしくは、窒素雰囲気中、グローブボックス内で粉砕を行う。Si化合物の平均粒径は、約0.1μmから15μmであることが好ましい。
【0044】
次に、原料のSr、Caを窒素雰囲気中で窒化する(P3)。この反応式を、化1に示す。
【0045】
【化1】
3Sr + N → Sr
3Ca + N → Ca
【0046】
Sr、Caを、窒素雰囲気中、600〜900℃で約5時間窒化する。Sr、Caは、混合して窒化してもよいし、それぞれ個々に窒化してもよい。これにより、Sr、Caの窒化物を得ることができる。Sr、Caの窒化物は、高純度のものが好ましいが、市販のものも使用することができる。
【0047】
原料のSiを、窒素雰囲気中で窒化する(P4)。この反応式を、化2に示す。
【0048】
【化2】
3Si + 2N → Si
【0049】
ケイ素Siも、窒素雰囲気中、800〜1200℃、約5時間、窒化する。これにより、窒化ケイ素を得る。本発明で使用する窒化ケイ素は、高純度のものが好ましいが、市販のものも使用することができる。
【0050】
Sr、CaもしくはSr−Caの窒化物を粉砕する(P5)。Sr、Ca、Sr−Caの窒化物を、アルゴン雰囲気中、もしくは、窒素雰囲気中、グローブボックス内で粉砕を行う。同様に、Siの窒化物を粉砕する(P6)。
【0051】
また、同様に、Euの化合物Eu、Laの化合物Laを粉砕する(P7)。粉砕後のアルカリ土類金属の窒化物、窒化ケイ素および酸化ユウロピウムの平均粒径は、約0.1μmから15μmであることが好ましい。
【0052】
上記原料中には、特性を損なわない程度の、および/もしくは結晶性を上げる効果のある少量の不純物元素が含まれていてもよい。上記粉砕を行った後、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Eu、Laの化合物La、Mn化合物を添加し、混合する(P8)。
【0053】
最後に、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Euの混合物、Laの化合物Laをアンモニア雰囲気中で、焼成する(P9)。焼成により、Mnが添加されたSr−Ca−Si−O−N:Eu,Laで表される蛍光体を得ることができる(P10)。この焼成による基本構成元素の反応式を、化3に示す。このときのMn含有量は、100ppm以下である。
【0054】
【化3】
(x/3)Sr+(1.96x/3)Ca
(5/3)Si+(0.03/2)Eu+(0.01/2)La
→SrCa1.96ーxEu0.03La0.01Si0.057.7
【0055】
ただし、各原料の配合比率を変更することにより、目的とする蛍光体の組成を変更することができる。
【0056】
焼成は、情勢温度が1200〜1700℃の範囲で行うことができるが、1400〜1700℃の焼成温度が好ましい。
【0057】
以上のように蛍光体を形成することにより、凝集した蛍光体焼成物が得られ、これを粉砕することで破断面を有する蛍光体粒子から構成される窒化物系蛍光体が得られる。ここで破断面とは、蛍光体が断裂し、不規則な多角形や球面、斜面などが部分的あるいはほぼ全面に形成された面をいう。本明細書では、破断面を有する蛍光体粒子を破断粒子と呼び、一方で破断面を有しない蛍光体粒子を成長粒子と呼ぶことがある。蛍光体に破断面を設けることにより、色度、輝度の配向ばらつきを抑えることができる。
【0058】
破断面は蛍光体粒子の全体もしくは部分的に形成される。ただ、破断面はすべての蛍光体に設ける必要はない。蛍光体の破砕の程度を調整し、破断面を備える蛍光体と破断面の形成されない蛍光体の混合とすることができる。あるいは、形成された破断粒子に成長粒子を混入してもよい。その際、破断粒子と成長粒子とで組成の異なる蛍光体としてもよい。結果的に蛍光体が部分的に破断面を含むように形成あるいは調整することによって、上述した色度、輝度の配向ばらつきを抑制する効果が得られる。このように形成した蛍光体をふるい、あるいは沈降特性の違い等により分級し、平均粒径を3μm以上とし、かつ粒度分布測定で2μm以下の粒径の粒子が体積分布で10%以下とすることが好ましい。
【0059】
(蛍光体)
上述の窒化物系蛍光材料は耐水性、耐酸性、耐アルカリ性に優れているものの、ベーク劣化しやすい。そのため、本発明の実施の形態に係る窒化物系蛍光体は窒化物系蛍光材料をN元素を含有する被覆材料によって被覆する。N元素を含有する被覆材料としては、窒素とアルミニウム、ケイ素、チタン、ホウ素、ジルコニウム等の金属を含む窒化金属系材料、ポリウレタン、ポリウレア等のN元素を含有する有機樹脂が用いられる。
【0060】
窒化金属系材料の場合、被覆材料の形成方法の一例として、米国特許第6,064,150号に記載されている窒化アルミニウムを形成するCVD(化学蒸着)が挙げられる。例えば、流動床付き加熱炉において、CVDを用いて、窒化物系蛍光材料にAlN等の窒化金属あるいはAlON等の金属酸窒化物などの窒化金属系材料からなる被覆材料を形成することができる。この他にも、アルキルシラン等の金属アルキル類、アンモニア等の窒素化合物などを用いて窒化物系蛍光体粒子に窒化金属系材料を被覆材料として形成できる。窒化ケイ素系材料の場合は、ケイ素供給源としてシランを用いることもできる。本明細書において、窒化金属系材料とは、窒化金属だけでなく、金属酸窒化物等のN元素を含むアルミニウム、ケイ素、チタン、ホウ素、ジルコニウム、ガリウム、ハウニウム等の金属の化合物をいう。組成式としては、AlN、GaN、Si、BN、Ti、Zr、Hf等が挙げられる。さらに、α−サイアロン、β−サイアロン系の酸窒化物、各種オキシナイトライドガラス、若しくは蛍光体組成と同型の材料を被覆材料として用いてもよいが、これらに限定されるものでない。
【0061】
また、溶媒中で尿素、アルミニウム水溶液および窒化物系蛍光材料を熱撹拌し、窒化物系蛍光材料の表面にこれらを付着させ、窒素雰囲気下で焼成し、窒化アルミニウムあるいはアルミニウム酸窒化物からなる被覆材料を膜状に形成することができる。さらに、溶媒中で尿素、アルミニウム水溶液および窒化物系蛍光材料を熱撹拌し、窒化物系蛍光材料の表面にこれらを付着させ、窒素雰囲気下でプラズマ焼成し、窒化アルミニウムあるいはアルミニウム酸窒化物からなる被覆材料を膜状に形成することもできる。
【0062】
また、窒化物系蛍光材料に窒化金属系材料膜と金属酸化物等の酸化物材料膜とを形成してもよい。この場合、窒化物系蛍光材料側に窒化金属系材料膜を形成し、外側に酸化物材料膜を形成することが好ましい。窒化物系蛍光材料に窒素をより効果的に供給できるからである。さらに、窒化物系蛍光材料側からAlN、AlON、Al等、窒化金属、金属酸窒化物、酸化物の順に形成し、特にこれらを傾斜膜として形成することより好ましい。また、窒化物系蛍光材料を、N元素を含む被覆材料膜を少なくとも一つ複数の被覆材料膜で被覆する場合、窒化物系蛍光材料から順に屈折率の高い材料を形成することが好ましい。蛍光材料で発生した光が外部に放出されやすくなるからである。
【0063】
また、金属−窒素結合を有する化合物を用いて低温CVD反応を行うことにより窒化金属系材料を形成することができる。金属−窒素結合を有する化合物としては、アルミニウム、ケイ素、チタン、ホウ素、ジルコニウムのメチルアミノ錯体(例えばテトラキスジメチルアミノチタニウム)が挙げられる。また、蒸着、スパッタリング、メカニカルアロイング、沈殿後の雰囲気焼成等の被覆方法を用いて窒化物金属系材料を被覆材料として形成してもよい。ポリウレア、ポリウレタンは、内部in−situ重合法、界面重合法によって形成することができる。
【0064】
上述の製造方法によって得られた窒化物系蛍光材料は、従来の赤色発光の蛍光体と比較して、近紫外から青色光励起による効率及び耐久性を向上できたものの、高温、特に200〜300℃あたりからと急激に発光効率が低下する。窒化物系蛍光材料が高温時に急激に発光効率が低下する原因として窒化物系蛍光材料の窒素が分解することが考えられ、これらN元素を含有する被覆材料は窒化物系蛍光材料の窒素の分解を、窒素を供給することによって低減することができる。被覆材料は、窒化物系蛍光体粒子の少なくとも一部を被覆すればよいが、特に粒子全体を被覆するマイクロカプセルとして形成することが好ましい。
【0065】
(蛍光部材)
蛍光部材11は、発光素子10の発光を変換する蛍光体11aと透光性材料11bとを混合し、好適にはマウントリード13aのカップ内に設けられるものである。透光性材料(コーティング部材)11bの具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコン樹脂などの温度特性、耐候性に優れた透明樹脂、シリカゾル、ガラス、無機バインダなどが用いられる。また、蛍光体とともにフィラー(拡散剤)として、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化ケイ素、炭酸カルシウムなどを含有させてもよい。また、光安定化材料、着色剤や紫外線吸収剤を含有させてもよい。
【0066】
蛍光部材11は平均粒径1μm以上10μm以下のフィラーをさらに含み、蛍光体の平均粒径が5μm以上15μm以下であることが好ましい。これによって、蛍光体の平均粒径を大きくすることにより発光輝度の向上を図ることができるとともに、蛍光体の平均粒径を大きくすることによる光の配向方向の色度ばらつきをフィラーによって低減することができる。
【0067】
(発光装置)
例えば少なくとも発光部が半導体から構成される発光素子(LEDチップ)10が、マウントリード13a上部に配置されたカップのほぼ中央部にダイボンドすることによって好適に載置される。リードフレーム13は例えば鉄入り銅によって構成される。発光素子10に形成された電極は導電性ワイヤ14によってリードフレームと導電接続される。導電性ワイヤ14には金を用いており、また電極と導電性ワイヤ14を導電接続するためのバンプにはNiめっきが好適に施される。
【0068】
上述の蛍光体11aと、例えばエポキシ樹脂からなる透光性材料11bをよく混合してスラリーとした蛍光部材11を、発光素子10が載置されたカップに注入する。このとき、蛍光部材11に含まれる蛍光体粒子に1μm以下の微粒子が透光性材料11bに多く含まれるとワイヤ、透光性部材11bのスラリー表面等の特定の部分にこの微粒子が凝集し、色度ばらつきの原因になる。この傾向は、特に破断面を備える比重の軽い蛍光体で顕著である。また、このような微粒子は自己吸収が高く、発光効率が低いことから、これらを排除することが望ましい。本発明の実施の形態1における発光装置では、蛍光部材11に含まれる蛍光体粒子を平均粒径が3μm以上、かつ2μm以下の粒径の粒子が体積分布で10%以下とすることによって、配向特性を向上させることができ、さらに発光効率を向上することができるという効果が得られる。
【0069】
その後、蛍光体11aが含まれたエポキシ樹脂を加熱し硬化させる。こうしてLEDチップ10上に蛍光体が含まれた透光性材料からなる蛍光部材11を形成しLEDチップ10を固定させる。その後、さらにLEDチップや蛍光体を外部応力、水分および塵芥などから保護する目的でモールド部材15として透光性エポキシ樹脂を好適に形成する。モールド部材15を、砲弾型の型枠の中に色変換部材が形成されたリードフレーム13を挿入し透光性エポキシ樹脂を混入後、硬化する。
【0070】
また、蛍光部材11は、LEDチップ10に直接接触させて被覆させることもできるし、透光性樹脂などを間に介して設けることもできる。この場合、耐光性の高い透光性樹脂を利用することが好ましいことは言うまでもない。
【0071】
本発明の実施の形態に係る窒化物系蛍光体は、発光装置のリフロー時のような高温に曝される場合においても、急激に発光効率が低下することを低減できる。特に、リードと蛍光部材が接触または近接し、リードを介して熱が蛍光体に伝達されやすい発光素子に対して、本発明の実施の形態に係る窒化物系蛍光体は有用である。
【0072】
(被覆材料)
図3に、蛍光体粒子を被覆材料で被覆した状態を示す。図3(a)は膜状の被覆材料12で蛍光体粒子11bを被覆した状態を、図3(b)は粒子状の被覆材料12bで蛍光体粒子11bを被覆した状態を、それぞれ示す。この図に示すように、被覆材料は膜状で被覆するマイクロカプセルとする他、粒子で覆うマイクロカプセルとすることもできる。さらに図3(c)は、これらのマイクロカプセルを多層膜で構成した例を示す。被膜材料を多層膜で構成する場合、上述のように蛍光体粒子11bに接する側の被膜材料12cの屈折率を高くする、あるいは外側の被膜材料12dの屈折率を低くすることで、蛍光体粒子11bで生じる光を外部に放出し易くできる。なお、図3(c)では被膜材料を2層で構成した例を示しているが、3層以上の構成とすることもできることは言うまでもない。さらに、上記の図の例では蛍光体粒子の断面図を略円形で示したが、本実施の形態はこの例に限られず、図3(d)に示すように様々な形状の蛍光体粒子11cに被覆材料12eを被膜して利用できる。例えば、蛍光体粒子の成長条件や成長具合等によっては、蛍光体粒子の形状が多角形状あるいは不揃い、不規則な形状となることがある。また破断面を有する蛍光体であっても、上記の実施形態に利用できる。
【0073】
[実施の形態2]
(発光装置)
次に、図4を用いて、本発明の実施の形態2に係る発光装置を説明する。実施の形態2に係る発光装置において用いられる蛍光部材は実施の形態1における蛍光部材と同じであり、実施の形態1に係る発光装置の違いは、発光装置の構造だけであるので、ここでは実施の形態2に係る発光装置の構造についてのみ説明する。
【0074】
発光層として発光ピークが青色領域にある460nmのInGaN系半導体層を有する発光素子101を用いる。発光素子101には、p型半導体層とn型半導体層とが形成されており(図示せず)、p型半導体層とn型半導体層にはリード電極102へ連結される導電性ワイヤ104が形成されている。リード電極102の外周を覆うように絶縁封止材103が形成され、短絡を防止している。発光素子101の上方には、パッケージ105の上部にあるリッド106から延びる透光性の窓部107が設けられている。透光性の窓部107の内面には、蛍光体108を均一に含む透光性材料109が蛍光部材110としてほぼ全面に塗布されている。
【0075】
以上説明した発光装置においては、蛍光部材に、N元素を含有する被覆材料によって被覆された窒化物系蛍光体を用いる例を示したが、(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体等の他の蛍光体を用いてもよい。この場合、他の蛍光体を適宜被覆材料によって被覆することも可能である。
【0076】
【発明の効果】
以上説明したように、本発明は、耐熱性に優れ、黄から赤領域の発光が可能な窒化物系蛍光体およびその窒化物系蛍光体を有する発光装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る発光装置を示す概略図である。
【図2】本発明の実施の形態1に係る窒化物系蛍光体の製造工程を示すフロー図である。
【図3】本発明の実施の形態1に係る蛍光体を示す断面図である。
【図4】本発明の実施の形態2に係る発光装置の概略図である。
【符号の説明】
10、101・・・発光素子
11・・・蛍光部材
11a、11b、11c、108・・・蛍光体
11b、109・・・透光性部材
12、12b、12c、12d、12e・・・被覆材料
13・・・リードフレーム
14、104・・・導電性ワイヤ
15・・・モールド部材
102・・・リード電極
103・・・絶縁封止部材
105・・・パッケージ
106・・・リッド
107・・・窓部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitride-based phosphor and a light-emitting device having the nitride-based phosphor, and for example, absorbs at least a part of light emitted from a semiconductor light-emitting element such as an LED or LD and the semiconductor light-emitting element. The present invention relates to a light emitting device including a phosphor that emits light having a wavelength different from that of absorbed light.
[0002]
[Prior art]
A part of the light of the light-emitting element is wavelength-converted by a phosphor, and the wavelength-converted light and the light of the light-emitting element that is not wavelength-converted are mixed and emitted to emit a light emission color different from that of the light-emitting element. A light emitting device has been developed. For example, a blue light emitting diode (hereinafter also referred to as LED) using an InGaN-based material as a light emitting element is used, and (Y, Gd) is formed on the surface thereof.3(Al, Ga)5O12A white LED light-emitting device coated with a fluorescent member made of a translucent material such as an epoxy resin containing a YAG: Ce-based phosphor represented by a composition formula of Ce: has been put into practical use. The emission color of the white LED light emitting device is obtained by the principle of light color mixing. The blue light emitted from the light emitting element is incident on the fluorescent member, and after being repeatedly absorbed and scattered in the layer, is emitted to the outside. On the other hand, blue light absorbed by the phosphor serves as an excitation source and emits yellow fluorescence. This yellow light and blue light are mixed and appear as white to the human eye.
[0003]
An LED light emitting device using such an LED emits light with a small size, high power efficiency, and vivid colors. In addition, since the LED is a semiconductor element, there is no worry about a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, LED light-emitting devices are used as various light sources.
[0004]
[Patent Document 1]
Japanese Patent No. 2927279
[0005]
[Problems to be solved by the invention]
However, since the light emitting device that emits white light does not easily emit light on the long wavelength side in the visible light region, the light emitting device has a slightly bluish white light that lacks a red component. In particular, a warm red light emitting device that is slightly reddish is required in store lighting or medical lighting. In addition, since light emitting elements generally have a longer life than human light bulbs and are easy on human eyes, a white light emitting device close to the color of a light bulb is strongly demanded.
[0006]
Usually, when redness increases, the light emission characteristics of the light emitting device deteriorate. The color perceived by the human eye produces a sense of brightness in electromagnetic waves having a wavelength of 380 to 780 nm. One of the indexes that express this is the visibility characteristic. The visibility characteristic has a mountain shape, and has a peak at 550 nm. When the same electromagnetic wave is incident in the vicinity of 580 nm to 680 nm, which is the wavelength range of the red component, and in the vicinity of 550 nm, the wavelength range of the red component is felt darker. Therefore, in order to feel the same level of brightness as the green and blue regions, the red region requires high-density electromagnetic wave incidence.
[0007]
Further, the conventional red light-emitting phosphors have a problem that the efficiency and durability due to excitation of blue light from near ultraviolet rays are not sufficient, and further, the light emission efficiency is drastically lowered at high temperatures.
[0008]
The present invention has been made to solve such problems. A main object of the present invention is to provide a nitride-based phosphor that has excellent heat resistance and can emit light in a yellow to red region, and a light-emitting device having the nitride-based phosphor.
[0009]
[Means for Solving the Problems]
  In order to achieve the above object, the nitride-based phosphor of the present invention wavelength-converts at least part of the first emission spectrum, and at least one second emission spectrum in a region different from the first emission spectrum. A phosphor having the above, wherein the phosphor is LxMyN{(2/3) x + (4/3) y}: R or LxMyOzN{(2/3) x + (4/3) y- (2/3) z}: R (x = 2, y = 5 or x = 1, y = 7, and 0.01 <z <1.5, or x = 1, y = 2, z = 2. L from Ca, Sr, BaOne or more selected from the group consisting of:M is Si.N is nitrogenis there. R is Eu.And a nitride-based fluorescent material having a crystal structure and a coating material that covers the nitride-based fluorescent material.
[0010]
  SaidThe coating material is a metal nitride-based material or a metal oxynitride-based material. With this configuration, a nitride-based phosphor capable of emitting light in the yellow to red region with better heat resistance can be obtained.
[0011]
  SaidThe coating material is characterized in that it forms microcapsules. With this configuration, a nitride-based phosphor capable of emitting light in the yellow to red region with better heat resistance can be obtained.
[0012]
  SaidThe coating material has a multilayer structure made of a plurality of different materials.
[0013]
  SaidThe coating material having a multilayer structure is characterized in that the refractive index on the phosphor side is high and the refractive index on the surface side is low.
[0019]
  SaidThe crystal structure of the fluorescent material is monoclinic or orthorhombic.
[0020]
  SaidThe fluorescent material contains B element. B element isFluorescent materialTherefore, the phosphor of the present invention can improve the light emission luminance.
[0021]
  SaidA fluorescent member made of a translucent material containing a nitride-based phosphor, a light-emitting element, and,And the fluorescent member absorbs at least a part of the light from the light emitting element and emits light having different wavelengths.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a nitride-based phosphor for embodying the technical idea of the present invention and a light-emitting device having the nitride-based phosphor, and the nitride of the present invention The light-emitting device having a phosphor based and a nitride phosphor is not specified as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. Note that the size and positional relationship of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element which comprises this invention is good also as an aspect which comprises several elements by the same member and combines several elements with one member.
[0023]
[Embodiment 1]
A light-emitting device according to Embodiment 1 of the present invention will be described with reference to FIG. The light-emitting device of Embodiment 1 includes the light-emitting element 10 and LMN: R or LMON: R (L is Be, Mg, Ca, Sr, Ba, Zn). Contains at least one selected from the group, M contains at least one selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf, N is nitrogen, and O is oxygen. R is a rare earth element), a nitride-based phosphor 11a that includes a nitride-based fluorescent material represented by the following formula: and a coating material that contains an N element and covers the nitride-based fluorescent material; A fluorescent member 11 made of a translucent material 11b including a physical phosphor 11a.
[0024]
For example, the light emitting element 10 composed of an LED is mounted by die-bonding at a substantially central portion of a cup disposed on the mount lead 13a. The electrodes formed on the light emitting element 10 are conductively connected to the mount leads 13 a and the inner leads 13 b of the lead frame 13 by the conductive wires 14. Nitride-based fluorescent material that absorbs at least part of the light emitted from light-emitting element 10 and emits light having a wavelength different from the absorbed light, and a coating material that contains N element and covers the nitride-based fluorescent material A fluorescent member 11 including a nitride-based phosphor 11a composed of the above in a translucent material 11b is disposed in a cup on which the light-emitting element 10 is placed. The lead frame 13 in which the light emitting element 10 and the fluorescent member 11 are arranged in this manner is molded by the molding member 15 for the purpose of protecting the LED chip and the fluorescent material from external stress, moisture, dust, and the like, thereby forming a light emitting device.
[0025]
(Light emitting element)
Next, a group III nitride semiconductor light emitting device will be described as the light emitting device 10 that can be used in the present invention. The light-emitting element 10 includes, for example, a first n-type GaN layer that is undoped or low in Si concentration on a sapphire substrate, and a Si-doped or Si concentration that is lower than the first n-type GaN layer. An n-type contact layer made of high n-type GaN, a second GaN layer whose undoped or Si concentration is lower than that of the n-type contact layer, a light emitting layer having a multiple quantum well structure (GaN barrier layer / quantum well structure of InGaN well layer), A p-clad layer made of p-type GaN made of p-type GaN doped with Mg and a p-type contact layer made of p-type GaN doped with Mg are sequentially laminated. Is formed. However, a light emitting element 10 different from this configuration can also be used.
[0026]
The p ohmic electrode is formed on almost the entire surface of the p-type contact layer, and the p pad electrode is formed on a part of the p ohmic electrode.
[0027]
The n-electrode is formed on the exposed portion by removing the first GaN layer from the p-type contact layer by etching to expose a part of the n-type contact layer.
[0028]
In the present embodiment, the light emitting layer having a multiple quantum well structure is used. However, the present invention is not limited to this, and for example, a single quantum well structure or a multiple quantum well structure using InGaN may be used. GaN doped with Si, Zn may be used.
[0029]
The light emitting layer of the light emitting element 10 can change the main light emission peak in the range of 420 nm to 490 nm by changing the In content. The emission wavelength is not limited to the above range, and those having an emission wavelength of 360 to 550 nm can be used. In particular, when the light-emitting device of the present invention is applied to an ultraviolet LED light-emitting device, the absorption conversion efficiency of excitation light can be increased, and transmitted ultraviolet light can be reduced.
[0030]
(Fluorescent material)
In the light-emitting device of Embodiment 1, the phosphor includes N, O selectively, and at least one element selected from Be, Mg, Ca, Sr, Ba, and Zn, and C A nitride-based phosphor containing at least one element selected from Si, Ge, Sn, Ti, Zr and Hf and activated by Eu and / or rare earth elements is preferably used. That is, it is a crystalline phosphor in which constituent elements are simply represented by LMNN: R or LMON: R. The crystal structure is, for example, Ca2Si5N8Is monoclinic, Sr2Si5N8, (Sr0.5Ca0.5)2Sr5N8Is orthorhombic, Ba2Si5N8Takes monoclinic crystals.
[0031]
More specifically, generally LxMyN{(2/3) x + (4/3) y}: R or LxMyOzN{(2/3) x + (4/3) y- (2/3) z}: R, L is at least one selected from the group consisting of Be, Mg, Ca, Sr, Ba, Zn, and M is from the group consisting of C, Si, Ge, Sn, Ti, Zr, Hf 1 or more selected, N is nitrogen, O is oxygen, R is a phosphor represented by rare earth elements, and in addition to Eu, Mg, B, Mn, Cr, Ni, etc. may be included.
[0032]
Further, the phosphor is crystalline in 60% or more, preferably 80% or more in the composition. In general, x = 2 and y = 5 or x = 1 and y = 7 are desirable, but any value can be used.
[0033]
Among trace amounts of additives, B and the like can increase the crystallinity without deteriorating the light emission characteristics, and Mn, Cu and the like also show the same effect. La, Pr, etc. also have an effect of improving the light emission characteristics. In addition, Mg, Cr, Ni and the like have an effect of shortening afterglow and are used as appropriate. In addition, even elements that are not shown in the present specification can be added without significantly reducing the luminance if they are about 10 to 1000 ppm.
[0034]
The rare earth element contained in R preferably contains one or more of Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, but Sc, Sm, Tm, Yb may be contained. In addition to the above elements, B, Mn, and the like have an effect of improving luminance and may be contained. These rare earth elements are mixed in the raw material in the form of oxides, imides, amides, etc. in addition to simple substances. Rare earth elements mainly have a stable trivalent electron configuration, while Yb, Sm, etc. also have a bivalent configuration, Ce, Pr, Tb, etc. also have a tetravalent electron configuration, etc. When the rare earth element of the oxide is used, the involvement of oxygen affects the light emission characteristics of the phosphor. In other words, the emission luminance may be reduced by containing oxygen. However, when Mn is used, the particle size can be increased by the flux effect of Mn and O, and the emission luminance can be improved.
[0035]
Europium Eu, which is a rare earth element, is preferably used as the emission center. Europium mainly has bivalent and trivalent energy levels. The phosphor of the present invention has Eu as a base material for alkaline earth metal silicon nitride.2+Is used as an activator. Eu2+Is easily oxidized and trivalent Eu2O3It is usually used in the composition. But this Eu2O3Then, the involvement of O is large and it is difficult to obtain a good phosphor. Therefore, Eu2O3It is more preferable to use a product obtained by removing O from the system. For example, it is preferable to use europium alone or europium nitride. However, this is not the case when Mn is added.
[0036]
Specific examples of basic constituent elements include Ca and Mu and B added.2Si5O0.1N7.9: Eu, Sr2Si5O0.1N7.9: Eu, (CaaSr1-a)2Si5O0.1N7.9: Eu, CaSi7O0.5N9.5: Eu, and further Ca added with rare earth2Si5O0.5N7.9: Eu, Sr2Si5O0.5N7.7: Eu, (CaaSr1-a)2Si5O0.1N7.9: Eu etc.
[0037]
Furthermore, Sr2Si5N8: Eu, Pr, Ba2Si5N8: Eu, Pr, Mg2Si5N8: Eu, Pr, Zn2Si5N8: Eu, Pr, SrSi7N10: Eu, Pr, BaSi7N10: Eu, Ce, MgSi7N10: Eu, Ce, ZnSi7N10: Eu, Ce, Sr2Ge5N8: Eu, Ce, Ba2Ge5N8: Eu, Pr, Mg2Ge5N8: Eu, Pr, Zn2Ge5N8: Eu, Pr, SrGe7N10: Eu, Ce, BaGe7N10: Eu, Pr, MgGe7N10: Eu, Pr, ZnGe7N10: Eu, Ce, Sr1.8Ca0.2Si5N8: Eu, Pr, Ba1.8Ca0.2Si5N8: Eu, Ce, Mg1.8Ca0.2Si5N8: Eu, Pr, Zn1.8Ca0.2Si5N8: Eu, Ce, Sr0.8Ca0.2Si7N10: Eu, La, Ba0.8Ca0.2Si7N10: Eu, La, Mg0.8Ca0.2Si7N10: Eu, Nd, Zn0.8Ca0.2Si7N10: Eu, Nd, Sr0.8Ca0.2Ge7N10: Eu, Tb, Ba0.8Ca0.2Ge7N10: Eu, Tb, Mg0.8Ca0.2Ge7N10: Eu, Pr, Zn0.8Ca0.2Ge7N10: Eu, Pr, Sr0.8Ca0.2Si6GeN10: Eu, Pr, Ba0.8Ca0.2Si6GeN10: Eu, Pr, Mg0.8Ca0.2Si6GeN10: Eu, Y, Zn0.8Ca0.2Si6GeN10: Eu, Y, Sr2Si5N8: Pr, Ba2Si5N8: Pr, Sr2Si5N8: Tb, BaGe7N10: Ce, (Sr0.5Ca0.5)2Sr5O0.1N7.9: Eu, SrSi2O2N2: Eu, CaSi2O2N2: Eu etc. can be manufactured, but it is not limited to this. Similarly, it is naturally conceivable that the phosphors described by these general formulas appropriately contain suitable elements such as the third component, the fourth component, and the fifth component as desired.
[0038]
The nitride-based phosphor described above absorbs part of the blue light emitted by the light emitting element and emits light in the yellow to red region. By using this phosphor in the light emitting device having the above-described configuration, it is possible to provide a light emitting device that emits warm white light by mixing the blue light emitted from the light emitting element and the red light of the phosphor. . In particular, the white light emitting device preferably contains a nitride-based phosphor and an yttrium-aluminum oxide phosphor activated by cerium, which is a rare-earth aluminate phosphor. This is because it can be adjusted to a desired chromaticity by containing the yttrium aluminum oxide phosphor. The yttrium / aluminum oxide phosphor activated with cerium can absorb part of the blue light emitted by the light emitting element and emit light in the yellow region. Here, the blue light emitted from the light emitting element and the colored light of the yttrium / aluminum oxide fluorescent material can be emitted into pale white by mixing colors. Accordingly, a warm white light-emitting device can be obtained by combining the phosphor obtained by mixing the yttrium / aluminum oxide phosphor and the phosphor together with the translucent member and the blue light emitted from the light-emitting element. Can be provided. This warm white light emitting device can have an average color rendering index Ra of 75 to 95 and a color temperature of 2000 to 8000K. Particularly preferred is a white light-emitting device having a high average color rendering index Ra and a color temperature located on the locus of black body radiation in the chromaticity diagram. However, in order to provide a light emitting device having a desired color temperature and average color rendering index, the blending amount of the yttrium / aluminum oxide phosphor and the phosphor and the composition ratio of each phosphor can be appropriately changed. This warm-colored white light-emitting device particularly improves the special color rendering index R9. A conventional light emitting device that emits white light in a combination of a blue light emitting element and an yttrium aluminum oxide fluorescent material attached with cerium has a low special color rendering index R9 and lacks a red component. For this reason, increasing the special color rendering index R9 has been a problem to be solved, but by including the phosphor according to the present invention in the yttrium aluminum oxide phosphor activated with cerium, the special color rendering index R9. Can be increased to 40-70.
[0039]
In general, phosphors are difficult to grow, and when the shape is adjusted to be spherical, only fine particles having an average particle diameter of 3 μm or less can be obtained. Further, even when the growth was large, many fine particles were accompanied by the treatment.
[0040]
The phosphor in the first embodiment of the present invention has an average particle size of 3 μm or more, preferably 5 to 15 μm, more preferably 10 μm to 12 μm. Fine phosphors are classified and removed by means of classification or the like, and particles having a particle size of 2 μm or less are made to have a volume distribution of 10% or less. As a result, the luminance of emitted light can be improved, and the chromaticity variation in the alignment direction of light can be reduced by reducing the number of particles having a particle size of 2 μm or less.
[0041]
(Nitride-based phosphor manufacturing method)
Next, referring to FIG. 2, (Sr suitable for a nitride-based phosphor)a, Ca1-a)xSiyOzN{(2/3) x + (4/3) y- (2/3) z}: A manufacturing method of Eu with x = 2 and y = 5 will be described. However, the nitride phosphor used in the present invention is not limited to this manufacturing method. The phosphor preferably contains Mn.
[0042]
First, raw materials Sr and Ca are pulverized (P1). The raw materials Sr and Ca are preferably used alone, but compounds such as imide compounds and amide compounds can also be used. Sr and Ca obtained by pulverization preferably have an average particle diameter of about 0.1 μm to 15 μm, but are not limited to this range. The purity of Sr and Ca is preferably 2N or higher, but is not limited thereto.
[0043]
On the other hand, the raw material Si is pulverized (P2). The raw material Si is preferably a simple substance, but a nitride compound, an imide compound, an amide compound, or the like can also be used. Manganese oxide, H3BO3, B2O3, Cu2Compounds such as O and CuO may be contained. Si is also pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere in the same manner as the raw materials Sr and Ca. The average particle size of the Si compound is preferably about 0.1 μm to 15 μm.
[0044]
Next, raw materials Sr and Ca are nitrided in a nitrogen atmosphere (P3). This reaction formula is shown in Chemical Formula 1.
[0045]
[Chemical 1]
3Sr + N2  → Sr3N2
3Ca + N2  → Ca3N2
[0046]
Sr and Ca are nitrided at 600 to 900 ° C. for about 5 hours in a nitrogen atmosphere. Sr and Ca may be mixed and nitrided, or may be individually nitrided. Thereby, a nitride of Sr and Ca can be obtained. Sr and Ca nitrides are preferably of high purity, but commercially available ones can also be used.
[0047]
The raw material Si is nitrided in a nitrogen atmosphere (P4). This reaction formula is shown in Chemical Formula 2.
[0048]
[Chemical 2]
3Si + 2N2  → Si3N4
[0049]
Silicon Si is also nitrided in a nitrogen atmosphere at 800 to 1200 ° C. for about 5 hours. Thereby, silicon nitride is obtained. The silicon nitride used in the present invention is preferably highly pure, but commercially available ones can also be used.
[0050]
Sr, Ca or nitride of Sr—Ca is pulverized (P5). Sr, Ca, and Sr—Ca nitrides are pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere. Similarly, Si nitride is pulverized (P6).
[0051]
Similarly, Eu compound Eu2O3La compound of La2O3Is pulverized (P7). The average particle size of the alkaline earth metal nitride, silicon nitride and europium oxide after pulverization is preferably about 0.1 μm to 15 μm.
[0052]
The raw material may contain a small amount of impurity elements that do not impair the properties and / or have the effect of increasing crystallinity. After the pulverization, Sr, Ca, Sr—Ca nitride, Si nitride, Eu compound Eu2O3La compound of La2O3Mn compound is added and mixed (P8).
[0053]
Finally, Sr, Ca, Sr—Ca nitride, Si nitride, Eu compound Eu2O3A mixture of La compound La2O3Is fired in an ammonia atmosphere (P9). By calcination, a phosphor represented by Sr—Ca—Si—ON: Eu, La added with Mn can be obtained (P10). The reaction formula of basic constituent elements by this firing is shown in Chemical Formula 3. The Mn content at this time is 100 ppm or less.
[0054]
[Chemical Formula 3]
(X / 3) Sr3N2+ (1.96x / 3) Ca3N2+
(5/3) Si3N4+ (0.03 / 2) Eu2O3+ (0.01 / 2) La2O3
→ SrxCa1.96-xEu0.03La0.01Si5O0.05N7.7 8
[0055]
However, the composition of the target phosphor can be changed by changing the blending ratio of each raw material.
[0056]
Firing can be performed at a temperature range of 1200 to 1700 ° C., but a firing temperature of 1400 to 1700 ° C. is preferred.
[0057]
By forming the phosphor as described above, an aggregated phosphor fired product is obtained, and by pulverizing this, a nitride-based phosphor composed of phosphor particles having a fractured surface is obtained. Here, the fracture surface refers to a surface in which a phosphor is torn and an irregular polygon, spherical surface, slope, or the like is partially or substantially entirely formed. In the present specification, phosphor particles having a fracture surface are sometimes referred to as fracture particles, while phosphor particles having no fracture surface are sometimes referred to as growth particles. By providing the phosphor with a fracture surface, variations in orientation of chromaticity and luminance can be suppressed.
[0058]
The fracture surface is formed entirely or partially on the phosphor particles. However, the fracture surface need not be provided for all phosphors. The degree of crushing of the phosphor can be adjusted to obtain a mixture of a phosphor having a fracture surface and a phosphor having no fracture surface. Alternatively, grown particles may be mixed into the formed broken particles. In that case, it is good also as a fluorescent substance from which a composition differs in a fracture | rupture particle and a growth particle. As a result, by forming or adjusting the phosphor so as to partially include the fractured surface, the effect of suppressing the above-described variation in chromaticity and luminance orientation can be obtained. The phosphors formed in this manner are sieved or classified according to differences in sedimentation characteristics, etc., so that the average particle size is 3 μm or more, and the particle size of 2 μm or less in the particle size distribution measurement is 10% or less by volume distribution. Is preferred.
[0059]
(Phosphor)
The nitride-based fluorescent material described above is excellent in water resistance, acid resistance, and alkali resistance, but is easily baked. Therefore, the nitride-based phosphor according to the embodiment of the present invention covers the nitride-based fluorescent material with a coating material containing N element. As the coating material containing N element, a metal nitride-based material containing nitrogen and metals such as aluminum, silicon, titanium, boron and zirconium, and an organic resin containing N element such as polyurethane and polyurea are used.
[0060]
In the case of a metal nitride-based material, CVD (chemical vapor deposition) for forming aluminum nitride described in US Pat. No. 6,064,150 is an example of a method for forming a coating material. For example, in a heating furnace with a fluidized bed, a coating material made of a nitride metal material such as a metal nitride such as AlN or a metal oxynitride such as AlON can be formed on the nitride fluorescent material using CVD. In addition, a metal nitride material can be formed as a coating material on the nitride phosphor particles using a metal alkyl such as alkylsilane, a nitrogen compound such as ammonia, or the like. In the case of a silicon nitride material, silane can also be used as a silicon source. In this specification, the metal nitride-based material means not only a metal nitride but also a metal compound such as aluminum, silicon, titanium, boron, zirconium, gallium, and haunium containing N element such as metal oxynitride. As the composition formula, AlN, GaN, Si3N4, BN, Ti3N4, Zr3N4, Hf3N4Etc. Furthermore, although α-sialon, β-sialon-based oxynitride, various oxynitride glasses, or a material having the same type as the phosphor composition may be used as the coating material, it is not limited thereto.
[0061]
Also, urea, aluminum aqueous solution and nitride fluorescent material are heated and stirred in a solvent, and these are attached to the surface of the nitride fluorescent material, fired in a nitrogen atmosphere, and coated with aluminum nitride or aluminum oxynitride The material can be formed into a film. Furthermore, urea, an aluminum aqueous solution and a nitride fluorescent material are thermally stirred in a solvent, and these are attached to the surface of the nitride fluorescent material, and then plasma-fired in a nitrogen atmosphere, and made of aluminum nitride or aluminum oxynitride. The coating material can also be formed into a film.
[0062]
Further, a metal nitride material film and an oxide material film such as a metal oxide may be formed on the nitride fluorescent material. In this case, it is preferable to form a metal nitride material film on the nitride fluorescent material side and an oxide material film on the outside. This is because nitrogen can be more effectively supplied to the nitride fluorescent material. Furthermore, from the nitride-based fluorescent material side, AlN, AlON, Al2O3It is more preferable to form a metal nitride, a metal oxynitride, and an oxide in this order, and particularly to form these as an inclined film. Further, when the nitride fluorescent material is coated with at least one coating material film containing an N element, it is preferable to form a material having a higher refractive index in order from the nitride fluorescent material. This is because light generated in the fluorescent material is easily emitted to the outside.
[0063]
In addition, a metal nitride-based material can be formed by performing a low temperature CVD reaction using a compound having a metal-nitrogen bond. Examples of the compound having a metal-nitrogen bond include a methylamino complex of aluminum, silicon, titanium, boron and zirconium (for example, tetrakisdimethylaminotitanium). Moreover, you may form a nitride metal-type material as a coating material using coating methods, such as vapor deposition, sputtering, mechanical alloying, and atmospheric baking after precipitation. Polyurea and polyurethane can be formed by an internal in-situ polymerization method or an interfacial polymerization method.
[0064]
Although the nitride-based fluorescent material obtained by the above-described manufacturing method has improved efficiency and durability by excitation of blue light from near ultraviolet as compared with the conventional phosphor emitting red light, it is high temperature, particularly 200 to 300 ° C. Luminous efficiency is drastically reduced from around. It is conceivable that the nitrogen of the nitride fluorescent material is decomposed as a cause of the sudden decrease in luminous efficiency when the nitride fluorescent material is at a high temperature, and the coating material containing these N elements decomposes the nitrogen of the nitride fluorescent material. Can be reduced by supplying nitrogen. The coating material may cover at least a part of the nitride-based phosphor particles, but it is particularly preferable to form the coating material as microcapsules that cover the entire particles.
[0065]
(Fluorescent material)
The fluorescent member 11 is a mixture of a phosphor 11a that converts the light emitted from the light emitting element 10 and a translucent material 11b, and is preferably provided in a cup of the mount lead 13a. As a specific material of the translucent material (coating member) 11b, a transparent resin, silica sol, glass, an inorganic binder, etc. having excellent temperature characteristics and weather resistance such as epoxy resin, urea resin, silicon resin and the like are used. Further, barium titanate, titanium oxide, aluminum oxide, silicon oxide, calcium carbonate and the like may be contained as a filler (diffusing agent) together with the phosphor. Further, a light stabilizing material, a colorant or an ultraviolet absorber may be contained.
[0066]
The fluorescent member 11 further includes a filler having an average particle size of 1 μm to 10 μm, and the average particle size of the phosphor is preferably 5 μm to 15 μm. As a result, the luminance can be improved by increasing the average particle diameter of the phosphor, and the chromaticity variation in the alignment direction of light caused by increasing the average particle diameter of the phosphor can be reduced by the filler. Can do.
[0067]
(Light emitting device)
For example, a light-emitting element (LED chip) 10 having at least a light-emitting portion made of a semiconductor is preferably placed by die-bonding at a substantially central portion of a cup disposed on the mount lead 13a. The lead frame 13 is made of, for example, copper containing iron. The electrode formed on the light emitting element 10 is conductively connected to the lead frame by the conductive wire 14. Gold is used for the conductive wire 14, and Ni plating is suitably applied to bumps for conductively connecting the electrode and the conductive wire 14.
[0068]
A phosphor member 11 in which the above-described phosphor 11a and a translucent material 11b made of, for example, an epoxy resin are mixed well and made into a slurry is injected into a cup on which the light emitting element 10 is placed. At this time, if the phosphor particles contained in the fluorescent member 11 contain a large amount of fine particles of 1 μm or less in the translucent material 11b, the fine particles agglomerate in specific portions such as the wire and the slurry surface of the translucent member 11b. It causes chromaticity variation. This tendency is particularly noticeable with a phosphor having a fracture surface and a light specific gravity. Moreover, since such fine particles have high self absorption and low luminous efficiency, it is desirable to exclude them. In the light emitting device according to Embodiment 1 of the present invention, the phosphor particles contained in the fluorescent member 11 are aligned by setting the average particle size to 3 μm or more and the particle size of 2 μm or less to 10% or less by volume distribution. The characteristics can be improved, and further the light emission efficiency can be improved.
[0069]
Thereafter, the epoxy resin containing the phosphor 11a is heated and cured. Thus, the fluorescent member 11 made of a translucent material containing the phosphor is formed on the LED chip 10 and the LED chip 10 is fixed. Thereafter, a translucent epoxy resin is suitably formed as the mold member 15 for the purpose of further protecting the LED chip and the phosphor from external stress, moisture, dust, and the like. The mold member 15 is cured after inserting the lead frame 13 in which the color conversion member is formed in the shell-shaped mold and mixing the translucent epoxy resin.
[0070]
Further, the fluorescent member 11 can be covered by being brought into direct contact with the LED chip 10 or can be provided with a translucent resin or the like interposed therebetween. In this case, it goes without saying that it is preferable to use a translucent resin having high light resistance.
[0071]
Even when the nitride-based phosphor according to the embodiment of the present invention is exposed to a high temperature such as during reflow of the light-emitting device, it is possible to reduce the sudden decrease in luminous efficiency. In particular, the nitride-based phosphor according to the embodiment of the present invention is useful for a light-emitting element in which a lead and a fluorescent member are in contact or close to each other and heat is easily transferred to the phosphor via the lead.
[0072]
(Coating material)
FIG. 3 shows a state where the phosphor particles are coated with a coating material. 3A shows a state in which the phosphor particles 11b are coated with the film-shaped coating material 12, and FIG. 3B shows a state in which the phosphor particles 11b are coated with the particle-shaped coating material 12b. As shown in this figure, the coating material can be microcapsules covered with particles as well as microcapsules covered with a film. Further, FIG. 3C shows an example in which these microcapsules are formed of a multilayer film. When the coating material is composed of a multilayer film, as described above, the refractive index of the coating material 12c on the side in contact with the phosphor particles 11b is increased, or the refractive index of the outer coating material 12d is decreased, so that the phosphor particles The light generated in 11b can be easily emitted to the outside. Although FIG. 3C shows an example in which the coating material is composed of two layers, it goes without saying that the structure can be composed of three or more layers. Furthermore, although the cross-sectional view of the phosphor particles is shown in a substantially circular shape in the example of the above figure, the present embodiment is not limited to this example, and the phosphor particles 11c having various shapes as shown in FIG. The coating material 12e can be used as a coating. For example, depending on the growth conditions, growth conditions, etc. of the phosphor particles, the phosphor particles may be irregularly shaped or polygonal in shape. Further, even a phosphor having a fracture surface can be used in the above embodiment.
[0073]
[Embodiment 2]
(Light emitting device)
Next, a light-emitting device according to Embodiment 2 of the present invention will be described with reference to FIG. The fluorescent member used in the light emitting device according to the second embodiment is the same as the fluorescent member in the first embodiment, and the only difference between the light emitting devices according to the first embodiment is the structure of the light emitting device. Only the structure of the light-emitting device according to Embodiment 2 will be described.
[0074]
As the light emitting layer, the light emitting element 101 having a 460 nm InGaN-based semiconductor layer whose emission peak is in the blue region is used. The light-emitting element 101 includes a p-type semiconductor layer and an n-type semiconductor layer (not shown), and a conductive wire 104 connected to the lead electrode 102 is formed on the p-type semiconductor layer and the n-type semiconductor layer. Is formed. An insulating sealing material 103 is formed so as to cover the outer periphery of the lead electrode 102 to prevent a short circuit. Above the light emitting element 101, a translucent window 107 extending from a lid 106 at the top of the package 105 is provided. On the inner surface of the translucent window 107, a translucent material 109 containing the phosphor 108 uniformly is applied as a fluorescent member 110 on almost the entire surface.
[0075]
In the light-emitting device described above, an example in which a nitride-based phosphor covered with a coating material containing N element is used as the fluorescent member has been shown. (Y, Gd)3(Al, Ga)5O12Other phosphors such as a YAG phosphor represented by the composition formula may be used. In this case, other phosphors can be appropriately coated with a coating material.
[0076]
【The invention's effect】
As described above, the present invention can provide a nitride phosphor having excellent heat resistance and capable of emitting light in the yellow to red region, and a light emitting device having the nitride phosphor.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a light emitting device according to Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing manufacturing steps of the nitride-based phosphor according to Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view showing a phosphor according to the first embodiment of the present invention.
FIG. 4 is a schematic view of a light emitting device according to Embodiment 2 of the present invention.
[Explanation of symbols]
10, 101 ... Light emitting element
11 ... Fluorescent member
11a, 11b, 11c, 108... Phosphor
11b, 109 ... translucent member
12, 12b, 12c, 12d, 12e ... coating material
13 ... Lead frame
14, 104 ... conductive wire
15 ... Mold member
102: Lead electrode
103 ... Insulating sealing member
105 ... Package
106 ... Lid
107 ... Window

Claims (6)

第1の発光スペクトルの少なくとも一部を波長変換し、前記第1の発光スペクトルと異なる領域に第2の発光スペクトルを少なくとも一以上有する蛍光体であって、
前記蛍光体は、L{(2/3)x+(4/3)y}:RまたはL{(2/3)x+(4/3)y−(2/3)z}:R(x=2、y=5若しくはx=1、y=7であり、0.01<z<1.5、または、x=1、y=2、z=2である。LはCa、Sr、Baからなる群より選ばれる1種以上を含有する。MはSiである。Nは窒素である。RはEuである。)で表され、かつ結晶構造を有する窒化物系蛍光材料と、
前記窒化物系蛍光材料を被覆する窒化金属系材料もしくは酸窒化金属系材料である被覆材料、または、前記窒化物系蛍光材料を被覆するマイクロカプセルを形成する被覆材料と、
から構成されることを特徴とする窒化物系蛍光体。
A phosphor that converts at least a part of the first emission spectrum and has at least one second emission spectrum in a region different from the first emission spectrum,
The phosphor, L x M y N {( 2/3) x + (4/3) y}: R or L x M y O z N { (2/3) x + (4/3) y- (2 / 3) z} : R ( x = 2, y = 5 or x = 1, y = 7, 0.01 <z <1.5, or x = 1, y = 2, z = 2 L contains at least one selected from the group consisting of Ca, Sr, and Ba, M is Si, N is nitrogen, R is Eu , and has a crystal structure. A nitride-based fluorescent material;
A coating material that is a metal nitride-based material or a metal oxynitride-based material that covers the nitride- based fluorescent material , or a coating material that forms a microcapsule that covers the nitride-based fluorescent material;
A nitride-based phosphor characterized by comprising:
前記被覆材料は、複数の異なる材質からなる多層構造とすることを特徴とする請求項1に記載の窒化物系蛍光体。2. The nitride-based phosphor according to claim 1, wherein the coating material has a multilayer structure made of a plurality of different materials. 前記多層構造の被覆材料は、前記蛍光体側の屈折率を高く、表面側の屈折率を低くすることを特徴とする請求項2に記載の窒化物系蛍光体。The nitride-based phosphor according to claim 2 , wherein the coating material having the multilayer structure has a high refractive index on the phosphor side and a low refractive index on the surface side. 前記蛍光材料の結晶構造が単斜晶または斜方晶であることを特徴とする請求項1に記載の窒化物系蛍光体。The nitride phosphor according to claim 1, wherein the crystal structure of the fluorescent material is monoclinic or orthorhombic. 前記蛍光材料がB元素を含有することを特徴とする請求項1に記載の窒化物系蛍光体。The nitride phosphor according to claim 1, wherein the fluorescent material contains an element B. 請求項1から5のいずれか一項に記載の窒化物系蛍光体を含む透光性材料からなる蛍光部材と、
発光素子と、を備え、
前記発光素子からの光の少なくとも一部を前記蛍光部材が吸収し異なる波長を有する光を発光するよう構成されてなる発光装置。
A fluorescent member made of a translucent material containing the nitride-based phosphor according to any one of claims 1 to 5,
A light emitting element,
A light emitting device configured to emit light having a different wavelength by the fluorescent member absorbing at least part of light from the light emitting element.
JP2002326155A 2002-11-08 2002-11-08 Nitride-based phosphor and light emitting device Expired - Fee Related JP4529349B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002326155A JP4529349B2 (en) 2002-11-08 2002-11-08 Nitride-based phosphor and light emitting device
AT03810675T ATE454718T1 (en) 2002-11-08 2003-11-07 LIGHT EMISSION COMPONENT, FLUORESCENT AND METHOD FOR PRODUCING A FLUORESCENT
US10/533,688 US7511411B2 (en) 2002-11-08 2003-11-07 Light emitting device, phosphor, and method for preparing phosphor
AU2003277627A AU2003277627A1 (en) 2002-11-08 2003-11-07 Light emitting device, phosphor and method for preparing phosphor
EP03810675A EP1560274B1 (en) 2002-11-08 2003-11-07 Light emitting device, phosphor and method for preparing phosphor
PCT/JP2003/014233 WO2004042834A1 (en) 2002-11-08 2003-11-07 Light emitting device, phosphor and method for preparing phosphor
DE60330892T DE60330892D1 (en) 2002-11-08 2003-11-07 LIGHT EMISSION ELEMENT, FLUORESIDE AND METHOD FOR PRODUCING A FLUOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326155A JP4529349B2 (en) 2002-11-08 2002-11-08 Nitride-based phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2004161807A JP2004161807A (en) 2004-06-10
JP4529349B2 true JP4529349B2 (en) 2010-08-25

Family

ID=32805145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326155A Expired - Fee Related JP4529349B2 (en) 2002-11-08 2002-11-08 Nitride-based phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP4529349B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880887B2 (en) 2004-09-02 2012-02-22 株式会社東芝 Semiconductor light emitting device
JP4792751B2 (en) * 2005-01-26 2011-10-12 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP4615625B2 (en) * 2005-02-23 2011-01-19 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
US7859006B2 (en) 2005-02-23 2010-12-28 Mitsubishi Chemical Corporation Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
CN101128564B (en) * 2005-02-28 2012-07-25 电气化学工业株式会社 Fluorophor and method for producing the same, and light-emitting device using the same
CN101982891A (en) * 2005-02-28 2011-03-02 电气化学工业株式会社 Fluorescent substance and process for producing the same, and luminescent element using the same
JP2006245020A (en) * 2005-02-28 2006-09-14 Sharp Corp Light emitting diode element and manufacturing method thereof
JP4760082B2 (en) * 2005-03-25 2011-08-31 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4707433B2 (en) * 2005-03-29 2011-06-22 京セラ株式会社 Light emitting device and lighting device
KR101142519B1 (en) 2005-03-31 2012-05-08 서울반도체 주식회사 Backlight panel employing white light emitting diode having red phosphor and green phosphor
KR101111747B1 (en) * 2005-05-16 2012-06-12 삼성엘이디 주식회사 A composite nano particle and electronic device using the same
WO2006126817A1 (en) 2005-05-24 2006-11-30 Seoul Semiconductor Co., Ltd. Green phosphor of thiogallate, red phosphor of alkaline earth sulfide and white light emitting device thereof
JP4967370B2 (en) * 2005-06-06 2012-07-04 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
KR100601200B1 (en) 2005-06-17 2006-07-13 서울반도체 주식회사 Red fluorescent substance and light-emitting diode using the same
DE102005041153A1 (en) * 2005-08-30 2007-03-01 Leuchtstoffwerk Breitungen Gmbh Phosphorescent material, useful in white light-emitting diode, comprises an activation-doped lattice
KR100724591B1 (en) 2005-09-30 2007-06-04 서울반도체 주식회사 Light emitting device and LCD backlight using the same
JP5326182B2 (en) * 2005-10-07 2013-10-30 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing the same
KR100735320B1 (en) 2005-12-27 2007-07-04 삼성전기주식회사 Formation method of phosphor film and fabrication method of light emitting diode package using the same
US8323529B2 (en) 2006-03-16 2012-12-04 Seoul Semiconductor Co., Ltd. Fluorescent material and light emitting diode using the same
TWI357435B (en) * 2006-05-12 2012-02-01 Lextar Electronics Corp Light emitting diode and wavelength converting mat
JP2007324475A (en) 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP2008007734A (en) * 2006-06-30 2008-01-17 Sony Corp Light-emitting composition, light source device, display unit, and manufacturing method of light-emitting composition
JP4802923B2 (en) * 2006-08-03 2011-10-26 日本電気硝子株式会社 Wavelength conversion member
JP4957110B2 (en) * 2006-08-03 2012-06-20 日亜化学工業株式会社 Light emitting device
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
US20100213822A1 (en) * 2007-08-01 2010-08-26 Satoshi Shimooka Phosphor and production method thereof, crystalline silicon nitride and production method thereof, phosphor-containing composition, and light emitting device, display and illuminating device using the phosphor
JP5353192B2 (en) * 2007-11-09 2013-11-27 三菱化学株式会社 Phosphor and method for producing the same
JP4980492B2 (en) 2010-03-10 2012-07-18 パナソニック株式会社 Manufacturing method of LED device
JP2012229373A (en) * 2011-04-27 2012-11-22 Panasonic Corp Coated fluorescent substance and light-emitting device
JP5845134B2 (en) * 2012-04-27 2016-01-20 株式会社東芝 Wavelength converter and semiconductor light emitting device
JP5915557B2 (en) * 2013-01-30 2016-05-11 住友金属鉱山株式会社 Coated phosphor particles, method for producing the same, and LED device using the same
JP5768846B2 (en) * 2013-08-23 2015-08-26 日亜化学工業株式会社 Phosphor and light emitting device using the same
CN111580334B (en) * 2019-02-19 2021-10-22 精工爱普生株式会社 Phosphor, wavelength conversion element, light source device, and projector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320645A (en) * 1994-05-20 1995-12-08 Fujitsu Ltd Plasma display panel
US5985175A (en) * 1998-08-19 1999-11-16 Osram Sylvania Inc. Boron oxide coated phosphor and method of making same
US6064150A (en) * 1998-01-12 2000-05-16 Osram Sylvania Inc. Nitride coated particle and composition of matter comprised of such particles
WO2001040403A1 (en) * 1999-11-30 2001-06-07 Osram Opto Semiconductors Gmbh & Co.Ohg Light source using a yellow-to-red-emitting phosphor
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002309247A (en) * 2001-04-16 2002-10-23 Nichia Chem Ind Ltd Gallium nitride luminescent substance and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320645A (en) * 1994-05-20 1995-12-08 Fujitsu Ltd Plasma display panel
US6064150A (en) * 1998-01-12 2000-05-16 Osram Sylvania Inc. Nitride coated particle and composition of matter comprised of such particles
US5985175A (en) * 1998-08-19 1999-11-16 Osram Sylvania Inc. Boron oxide coated phosphor and method of making same
WO2001040403A1 (en) * 1999-11-30 2001-06-07 Osram Opto Semiconductors Gmbh & Co.Ohg Light source using a yellow-to-red-emitting phosphor
WO2001039574A1 (en) * 1999-11-30 2001-06-07 Osram Opto Semiconductors Gmbh & Co. Ohg Pigment with day-light fluorescence
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002173675A (en) * 2000-12-06 2002-06-21 Sanken Electric Co Ltd Fluorescence particle having coated layer and method for producing the same
JP2002309247A (en) * 2001-04-16 2002-10-23 Nichia Chem Ind Ltd Gallium nitride luminescent substance and method for producing the same

Also Published As

Publication number Publication date
JP2004161807A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4529349B2 (en) Nitride-based phosphor and light emitting device
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4667803B2 (en) Light emitting device
JP4868685B2 (en) Phosphor
KR101065522B1 (en) Light-emitting device
JP3809760B2 (en) Light emitting diode
JP4222017B2 (en) Light emitting device
JP2003321675A (en) Nitride fluorophor and method for producing the same
JP2008227523A (en) Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor
WO2004042834A1 (en) Light emitting device, phosphor and method for preparing phosphor
JP4207537B2 (en) Phosphor and light emitting device
JP4214768B2 (en) Nitride phosphor and light emitting device using the same
JP2004210921A (en) Oxynitride fluorophor and method for producing the same and light-emitting device using the same
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4218328B2 (en) Nitride phosphor and light emitting device using the same
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP4221950B2 (en) Phosphor
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2005146172A (en) Light emitter and phosphor for light emitter
JP4009868B2 (en) Nitride phosphor and light emitting device using the same
JP4613546B2 (en) Light emitting device
JP4931372B2 (en) Light emitting device
JP4492189B2 (en) Light emitting device
JP5234080B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees