JP4519510B2 - Stretch molding of aliphatic polyester resin composition - Google Patents
Stretch molding of aliphatic polyester resin composition Download PDFInfo
- Publication number
- JP4519510B2 JP4519510B2 JP2004130382A JP2004130382A JP4519510B2 JP 4519510 B2 JP4519510 B2 JP 4519510B2 JP 2004130382 A JP2004130382 A JP 2004130382A JP 2004130382 A JP2004130382 A JP 2004130382A JP 4519510 B2 JP4519510 B2 JP 4519510B2
- Authority
- JP
- Japan
- Prior art keywords
- aliphatic polyester
- polyester resin
- resin composition
- molded product
- stretch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Epoxy Resins (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ポリグリコール酸などの脂肪族ポリエステルを主成分とする樹脂組成物、特にその耐加水分解性を調節した組成物ならびにその延伸成形物に関する。 The present invention relates to a resin composition containing an aliphatic polyester such as polyglycolic acid as a main component, in particular, a composition with adjusted hydrolysis resistance and a stretched molded product thereof.
ポリグリコール酸やポリ乳酸等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。また、脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。 Aliphatic polyesters such as polyglycolic acid and polylactic acid have been attracting attention as biodegradable polymer materials that have a low environmental impact because they are decomposed by microorganisms or enzymes existing in nature such as soil and sea. In addition, since aliphatic polyester has biodegradable absorbability, it is also used as a medical polymer material such as surgical sutures and artificial skin.
脂肪族ポリエステルの中でも、ポリグリコール酸は、酸素ガスバリア性、炭酸ガスバリア性、水蒸気バリア性などのガスバリア性に優れ、耐熱性や機械的強度にも優れているので、包装材料などの分野において、単独で、あるいは他の樹脂材料などと複合化して用途展開が図られている。 Among aliphatic polyesters, polyglycolic acid is excellent in gas barrier properties such as oxygen gas barrier properties, carbon dioxide gas barrier properties, and water vapor barrier properties, and is excellent in heat resistance and mechanical strength. Or, it is being used in combination with other resin materials.
しかしながら、ポリグリコール酸を含む脂肪族ポリエステルは一般に加水分解性であり、その加水分解に伴い、バリア性や強度が低下するという問題がある。 However, aliphatic polyesters containing polyglycolic acid are generally hydrolyzable, and there is a problem that barrier properties and strength are reduced with the hydrolysis.
これに対し、本発明者等の研究によれば、脂肪族ポリエステルを、1軸又は2軸に、例えば各方向において4倍以上というような強度の延伸に付すことにより、配向度を高めると、バリア性や強度に加えて耐水性の改善も得られることが判明している(特許文献1)。ただし、より低い延伸倍率では、その耐水性の改善も不充分という結果も見出されている。
しかしながら、包装材料としての用途展開を考えた場合、延伸倍率を高くできない場合もあり、低い延伸倍率で高い耐水性および高い配向性の延伸成形物が得られれば、それに越したことはない。 However, considering application development as a packaging material, the draw ratio may not be high, and if a stretched product with high water resistance and high orientation can be obtained at a low draw ratio, it will not be exceeded.
従って、本発明の目的は、一般に耐水性の改善された脂肪族ポリエステル系樹脂組成物の延伸成形物を得ることにある。 Accordingly, an object of the present invention is generally to obtain a stretch-molded product of an aliphatic polyester resin composition having improved water resistance.
本発明のより具体的な目的は、比較的低い延伸倍率でバリア性等の特性の改善が得られ且つ耐水性の改善および高配向性が得られる脂肪族ポリエステル系樹脂組成物の延伸成形物を得ることにある。 A more specific object of the present invention, stretching of the relatively low draw ratio in the aliphatic polyester resin composition improved and highly oriented and water resistance improvement is obtained in the characteristic of the barrier properties and the like can be obtained a There is to get.
本発明の延伸成形物は上記目的を達成するために開発されたものであり、脂肪族ポリエステル樹脂に三官能性のエポキシ化合物を配合してなる脂肪族ポリエステル樹脂組成物からなり、少なくとも1方向の動的粘弾性測定による主分散ピーク温度が67℃以上である延伸成形物である。 The stretched molded product of the present invention has been developed in order to achieve the above-mentioned object, and is composed of an aliphatic polyester resin composition obtained by blending a trifunctional epoxy compound with an aliphatic polyester resin, and is at least in one direction. This is a stretched molded product having a main dispersion peak temperature of 67 ° C. or higher by dynamic viscoelasticity measurement .
本発明の延伸成形物は、上記脂肪族ポリエステル系樹脂組成物を1軸又は2軸に延伸して得られるものである。 The stretched molded product of the present invention is obtained by stretching the above aliphatic polyester resin composition uniaxially or biaxially.
本発明の脂肪族ポリエステル系樹脂組成物が、低い延伸倍率で高い耐水性および高配向度の延伸成形物を与える理由は必ずしも明らかでないが、エポキシ化合物の持つ三つのエポキシ基が脂肪族ポリエステル樹脂のカルボキシル基末端と結合して、これを封鎖して耐水性を向上するとともに、生成した高度の三次元綱状構造が低倍率での延伸配向効果を向上していることが考えられる。 The reason why the aliphatic polyester resin composition of the present invention provides a stretched product having high water resistance and high degree of orientation at a low stretch ratio is not necessarily clear, but the three epoxy groups of the epoxy compound are the same as those of the aliphatic polyester resin. It is conceivable that the carboxyl group terminal is bonded and blocked to improve the water resistance, and the generated high-dimensional three-dimensional rope-like structure improves the stretching orientation effect at a low magnification.
本発明の脂肪族ポリエステル系樹脂組成物を構成する脂肪族ポリエステル樹脂は、グリコール酸およびグリコール酸の2分子間環状エステルであるグリコリド(GL)を含むグリコール酸類、シュウ酸エチレン(即ち、1,4−ジオキサン−2,3−ジオン)、ラクチド類、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン等)、カーボネート類(例えばトリメチレンカーボネート等)、エーテル類(例えば1,3−ジオキサン等)、エーテルエステル類(例えばジオキサノン等)、アミド類(εカプロラクタム等)などの環状モノマー;乳酸、3−ヒドロキシプロパン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4−ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族カルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;等の脂肪族エステルモノマー類の単独または共重合体が含まれる。なかでも、耐熱性の観点でヒドロキシカルボン酸の単独または共重合体が好ましく、特に耐熱性、ガスバリア性、機械的強度に優れたグリコール酸の単独または共重合体を含むポリグリコール酸樹脂が好ましく用いられる。 The aliphatic polyester resin constituting the aliphatic polyester resin composition of the present invention is glycolic acid and glycolic acid containing glycolide (GL), which is a bimolecular cyclic ester of glycolic acid, ethylene oxalate (that is, 1,4). -Dioxane-2,3-dione), lactides, lactones (for example, β-propiolactone, β-butyrolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε- Cyclic monomers such as caprolactone, carbonates (such as trimethylene carbonate), ethers (such as 1,3-dioxane), ether esters (such as dioxanone), amides (such as ε-caprolactam); lactic acid, 3 -Hydroxypropanoic acid, 4-hydroxybutanoic acid, 6-hydride Hydroxycarboxylic acid such as roxicaproic acid or alkyl ester thereof; substantially aliphatic diols such as ethylene glycol and 1,4-butanediol and aliphatic carboxylic acids such as succinic acid and adipic acid or alkyl esters thereof In addition, an equimolar mixture; a homo- or copolymer of aliphatic ester monomers such as Of these, hydroxycarboxylic acid homopolymers or copolymers are preferable from the viewpoint of heat resistance, and polyglycolic acid resins containing glycolic acid homopolymers or copolymers having excellent heat resistance, gas barrier properties, and mechanical strength are particularly preferably used. It is done.
より詳しくは、本発明で使用するポリグリコール酸樹脂は、式−(−O−CH2−C(O)−)−で表わされる繰り返し単位(グリコール酸単位)を含有する単独重合体または共重合体である。ポリグリコール酸樹脂中の上記式で表わされる繰り返し単位の含有割合は、60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上であり、その上限は、100重量%である。上記式で表わされる繰り返し単位の含有割合が少なすぎると、ガスバリア性や耐熱性が低下する。 More specifically, the polyglycolic acid resin used in the present invention is a homopolymer or copolymer containing a repeating unit (glycolic acid unit) represented by the formula — (— O—CH 2 —C (O) —) —. It is a coalescence. The content ratio of the repeating unit represented by the above formula in the polyglycolic acid resin is 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and the upper limit is 100% by weight. When there is too little content rate of the repeating unit represented by the said Formula, gas barrier property and heat resistance will fall.
ポリグリコール酸樹脂には、上記式で表わされるグリコール酸単位に加えて、グリコール酸と共重合可能なコモノマーの重合単位を含有させてグリコール酸共重合体とすることができる。 In addition to the glycolic acid unit represented by the above formula, the polyglycolic acid resin can contain a polymerization unit of a comonomer copolymerizable with glycolic acid to obtain a glycolic acid copolymer.
コモノマーとしては、上記した脂肪族ポリエステル樹脂を構成するモノマーのうちグリコール酸以外のもの、特にα−ヒドロキシカルボン酸、なかでも乳酸(あるいはそのラクチド)が好ましく用いられる。 As the comonomer, monomers other than glycolic acid, particularly α-hydroxycarboxylic acid, particularly lactic acid (or lactide thereof) are preferably used among the monomers constituting the aliphatic polyester resin.
本発明で使用するグリコール酸(共)重合体は、温度240℃及び剪断速度100sec−1の条件下で測定した溶融粘度が、100〜10,000Pa・s、より好ましくは300〜8,000Pa・s、特に好ましくは400〜5,000Pa・sの範囲内にあることが好ましい。 The glycolic acid (co) polymer used in the present invention has a melt viscosity of 100 to 10,000 Pa · s, more preferably 300 to 8,000 Pa · s, measured at a temperature of 240 ° C. and a shear rate of 100 sec −1. s, particularly preferably in the range of 400 to 5,000 Pa · s.
本発明に従い、上述したポリグリコール酸樹脂を含む脂肪族ポリエステル樹脂に三官能性のエポキシ化合物を配合する三官能性のエポキシ化合物としては、トリグリシジルイソシアヌレートが特に好ましく用いられる。 According to the present invention, triglycidyl isocyanurate is particularly preferably used as the trifunctional epoxy compound in which the trifunctional epoxy compound is blended with the aliphatic polyester resin containing the polyglycolic acid resin described above.
本発明の脂肪族ポリエステル系樹脂組成物を与えるためには、脂肪族ポリエステル樹脂100重量部に対して、0.1〜10重量部の三官能性のエポキシ化合物を配合することが好ましい。0.1重量部未満では配合効果が乏しく、10重量部を超えると、溶融粘度が増大し、成形が困難になる。0.1〜5重量部の添加が、成形性の良い組成物を与えるために好ましい。 In order to give the aliphatic polyester resin composition of the present invention, it is preferable to blend 0.1 to 10 parts by weight of a trifunctional epoxy compound with respect to 100 parts by weight of the aliphatic polyester resin. If the amount is less than 0.1 parts by weight, the blending effect is poor, and if it exceeds 10 parts by weight, the melt viscosity increases and molding becomes difficult. Addition of 0.1 to 5 parts by weight is preferable in order to give a composition with good moldability.
三官能性のエポキシ化合物を脂肪族ポリエステル樹脂に配合するに当っては、両者を押出機を用いて溶融・混練することが好ましい。これにより、脂肪族ポリエステル樹脂のカルボキシ末端とエポキシ化合物のエポキシ基との反応による結合構造が形成される。特に二軸押出機を用いて温度200〜300℃で溶融・混練することが好ましい。 In blending the trifunctional epoxy compound into the aliphatic polyester resin, it is preferable to melt and knead both using an extruder. Thereby, the bond structure by reaction of the carboxy terminal of aliphatic polyester resin and the epoxy group of an epoxy compound is formed. In particular, it is preferable to melt and knead at a temperature of 200 to 300 ° C. using a twin screw extruder.
本発明の脂肪族ポリエステル系樹脂組成物には、上記三官能性のエポキシ化合物に加えて、例えば脂肪族ポリエステル樹脂100重量部当り0.003〜1重量部のペンタエリスリトール骨格構造を有するリン酸エステル及び/又はリン酸アルキルエステル等の熱安定剤、その他の添加剤を添加することも好ましい。これら添加剤も、上記エポキシ化合物とともに、押出機を用いて、脂肪族ポリエステル樹脂と溶融混練することが好ましい。 In addition to the trifunctional epoxy compound, the aliphatic polyester resin composition of the present invention includes, for example, a phosphate ester having a pentaerythritol skeleton structure of 0.003 to 1 part by weight per 100 parts by weight of the aliphatic polyester resin. It is also preferable to add a heat stabilizer such as alkyl phosphate ester and other additives. These additives are also preferably melt kneaded with the aliphatic polyester resin together with the epoxy compound using an extruder.
本発明の脂肪族ポリエステル系樹脂組成物の単独層、あるいは他の熱可塑性樹脂層との積層物を、適当な条件下での強延伸に付すことにより延伸成形物が得られる。 A stretch-molded product can be obtained by subjecting a single layer of the aliphatic polyester resin composition of the present invention or a laminate with another thermoplastic resin layer to strong stretching under appropriate conditions.
他の熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、熱可塑性ポリエステル系樹脂、ポリスチレン系樹脂、塩素含有樹脂、ポリアミド系樹脂、ポリカーボネート樹脂、環状オレフィン系樹脂、ポリウレタン樹脂、ポリ塩化ビニリデン樹脂、エチレン・ビニルアルコール共重合体(EVOH)、脂肪族ポリエステル系樹脂などが挙げられる。 Other thermoplastic resins include, for example, polyolefin resins, thermoplastic polyester resins, polystyrene resins, chlorine-containing resins, polyamide resins, polycarbonate resins, cyclic olefin resins, polyurethane resins, polyvinylidene chloride resins, ethylene Examples include vinyl alcohol copolymer (EVOH) and aliphatic polyester resin.
積層体において、層間剥離強度を高めるなどの目的で、各層間に接着性樹脂層を介在させることができる。接着性樹脂(単に、「接着剤」ともいう)としては、押出加工が可能で、かつ、各樹脂層に良好な接着性を示すものであることが好ましい。 In the laminate, an adhesive resin layer can be interposed between the respective layers for the purpose of increasing the delamination strength. The adhesive resin (also simply referred to as “adhesive”) is preferably one that can be extruded and exhibits good adhesion to each resin layer.
接着性樹脂としては、例えば、無水マレイン酸変性ポリオレフィン樹脂(三菱樹脂社製モディックS525)、グリシジル基含有エチレンコポリマー(日本石油化学社製レクスパールRA3150、住友化学社製ボンドファースト2C、E、B)、熱可塑性ポリウレタン(クラレ社製クラミロン1195L)、ポリアミド・アイオノマー(三井デュポン社製AM7926)、ポリアクリルイミド樹脂(ローム・アンド・ハース社製XHTA)、三井化学社製アドマーNF550〔酸変性線状低密度ポリエチレン、MFR=6.2g/10分(温度190℃、荷重2160g荷重)〕、三菱化学社製モディックS525などを挙げることができる。 Examples of the adhesive resin include maleic anhydride-modified polyolefin resin (Modic S525 manufactured by Mitsubishi Plastics), glycidyl group-containing ethylene copolymer (Lex Pearl RA3150 manufactured by Nippon Petrochemical Co., Ltd., Bond Fast 2C, E, B manufactured by Sumitomo Chemical Co., Ltd.) , Thermoplastic polyurethane (Kuraray 1950L), polyamide ionomer (Mitsui DuPont AM7926), polyacrylimide resin (Rohm and Haas XHTA), Mitsui Chemicals Admer NF550 [acid-modified linear low Density polyethylene, MFR = 6.2 g / 10 min (temperature 190 ° C., load 2160 g load)], Mitsubishi Chemical Corporation Modic S525, and the like.
本発明の脂肪族ポリエステル系樹脂組成物は、1軸または2軸に延伸して配向度を高めることにより、ガスバリア性、機械特性および耐水性等の特性が向上する。延伸にあたっては、条件の適切な設定が重要である。延伸温度は80℃未満が好ましく、45〜65℃がより好ましい。本発明の脂肪族ポリエステル系樹脂組成物は、特に低い延伸倍率において高い耐水性および高い配向性を持つのが特徴的である。よって延伸倍率としては、1軸(縦)または2軸(縦・横)の各方向において、それぞれ2〜4.5倍が好ましく、2〜3倍がより好ましい。 The aliphatic polyester-based resin composition of the present invention is stretched uniaxially or biaxially to increase the degree of orientation, thereby improving properties such as gas barrier properties, mechanical properties, and water resistance. In stretching, proper setting of conditions is important. The stretching temperature is preferably less than 80 ° C, and more preferably 45 to 65 ° C. The aliphatic polyester resin composition of the present invention is characterized by high water resistance and high orientation, particularly at a low draw ratio. Accordingly, the draw ratio is preferably 2 to 4.5 times and more preferably 2 to 3 times in each direction of uniaxial (vertical) or biaxial (vertical / horizontal).
上記の延伸処理後、延伸成形物を100〜200℃で10秒〜20分間保持し、熱処理を行うことが、成形物の寸法安定性、耐熱性、ガスバリア性の更なる向上等の観点で好ましい。 After the above stretching treatment, it is preferable to hold the stretched molded product at 100 to 200 ° C. for 10 seconds to 20 minutes and perform heat treatment from the viewpoint of further improvement of the dimensional stability, heat resistance, gas barrier property, etc. of the molded product. .
上記延伸成形の結果として、本発明の脂肪族ポリエステル樹脂延伸成形物は、少なくとも一方向(すなわち延伸の際の縦方向および横方向の少なくとも一方)の動的粘弾性測定による主分散のピーク温度が67℃以上となる。また少なくとも一方向の広角X線回折測定による結晶配向度が85%以上となる。 As a result of the above stretch molding, the aliphatic polyester resin stretch molded product of the present invention has a peak temperature of main dispersion by dynamic viscoelasticity measurement in at least one direction (that is, at least one of the longitudinal direction and the transverse direction during stretching). It becomes 67 ° C or higher. In addition, the degree of crystal orientation by wide-angle X-ray diffraction measurement in at least one direction is 85% or more.
上記で得られた脂肪族ポリエステル樹脂の単層または他の熱可塑性樹脂との積層状態の延伸成形物は、更に他の熱可塑性樹脂層と必要に応じて接着剤を用いることにより、共押出加工、あるいはラミネート加工することもできる。本発明の脂肪族ポリエステル樹脂延伸成形物は、このような積層形態の成形物をも包含するものである。 The above-obtained stretched molded product of the aliphatic polyester resin monolayer or other thermoplastic resin is co-extruded by using another thermoplastic resin layer and an adhesive as necessary. Alternatively, it can be laminated. The stretched molded article of the aliphatic polyester resin of the present invention includes such a molded article having a laminated form.
本発明の脂肪族ポリエステル樹脂の延伸成形物は、全体形状として、フィルム若しくはシート、ブロー成形容器若しくはボトル、シート成形によるトレイ若しくはカップ若しくは蓋、袋状容器、または筒状包材などの形態を採り得る。フィルム若しくはシートは、通常、更に加工されて、カップ、トレイ、袋状容器などに成形される。 The stretch-molded product of the aliphatic polyester resin of the present invention takes the form of a film or sheet, a blow-molded container or bottle, a tray or cup or lid by sheet molding, a bag-shaped container, or a tubular packaging material as an overall shape. obtain. The film or sheet is usually further processed and formed into a cup, tray, bag-like container or the like.
従って、上記した脂肪族ポリエステル樹脂の単層または他の熱可塑性樹脂との積層による一次成形体は、押出または射出による平板シートあるいはパリソンもしくはプリフォーム等の形態を採ることができ、これをテンター処理あるいはブロー成形あるいは真空成形に付す過程において、上記延伸が実現される。 Therefore, the primary molded body obtained by laminating the above-mentioned aliphatic polyester resin with a single layer or other thermoplastic resin can take the form of a flat sheet by extrusion or injection, or a parison or preform, and this can be treated with a tenter. Alternatively, the stretching is realized in the process of blow molding or vacuum molding.
本発明の延伸成形物の具体的な応用例には、EVOHなどのガスバリア性樹脂からなる層を含有する多層構成のボトルや包装体において、ガスバリア性樹脂を脂肪族ポリエステル樹脂に置き換えた多様な形態が採り得る。 Specific examples of application of the stretch-molded product of the present invention include various forms in which a gas barrier resin is replaced with an aliphatic polyester resin in a multilayer bottle or package containing a layer made of a gas barrier resin such as EVOH. Can be taken.
以下に実施例及び比較例を挙げて、本発明について具体的に説明する。物性等の測定方法は、次の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The measuring method of physical properties etc. is as follows.
(1)動的粘弾性測定による主分散ピーク温度
試料を23℃、50%RH(相対湿度)の雰囲気中で24時間放置した後、レオメトリックス社製の動的粘弾性測定装置「RSA II」を用いて、測定周波数10Hzで、30℃から2℃/分の昇温速度で100℃まで昇温し、損失正接tanδを各温度で測定した。この温度分散曲線が極大を示す温度を主分散のピーク温度(℃)とした。
(1) Main dispersion peak temperature by dynamic viscoelasticity measurement After leaving a sample in an atmosphere of 23 ° C. and 50% RH (relative humidity) for 24 hours, a dynamic viscoelasticity measuring device “RSA II” manufactured by Rheometrics Co., Ltd. The temperature was raised from 30 ° C. to 100 ° C. at a rate of temperature increase of 2 ° C./min at a measurement frequency of 10 Hz, and the loss tangent tan δ was measured at each temperature. The temperature at which the temperature dispersion curve shows a maximum was defined as the main dispersion peak temperature (° C.).
(2)広角X線回折により測定される結晶配向度
試料フィルムの延伸方向を揃えて、幅1mm、長さ20mm、厚み3mmになるように重ね、シアノアクリレート系接着剤で固定して試料フィルム面に平行にX線を入射(Edge方向)して、イメージングプレートにより撮影した。X線発生装置として理学電機社製の「ロータフレックスRU−200B」を用い、40kV−200mAでNiフィルターを通したCuKα線をX線源とした。イメージングプレートとして富士フィルム社製「BAS−SR 127」を用いて、試料−イメージングプレート間距離60mm、露出時間20分間で露出した。理学電機社製「R−AXIS DS3」を用いて回折像の読みとりを行い、ポリグリコール酸結晶(110)面からの回折方位角(β角)強度分布曲線を作成した。このβ角強度分布曲線から、理学電機株式会社発行のX線の手引き改訂第三版(1985年6月30日発行)第81頁に記載の配向度の測定方法に従って、赤道線上の2点(β角が90°及び270°)についての半値幅Wi(度)の合計値W90+W270(度)から、次式により配向度(%)を求めた:
[数1]
配向度[(360−(W90+W270))/360]×100
(2) Degree of crystal orientation measured by wide-angle X-ray diffraction Sample film surface is aligned with the stretching direction of the sample film, stacked so as to have a width of 1 mm, a length of 20 mm, and a thickness of 3 mm, and fixed with a cyanoacrylate adhesive X-rays were incident in parallel (Edge direction) and photographed with an imaging plate. As the X-ray generator, “Rotaflex RU-200B” manufactured by Rigaku Corporation was used, and CuKα rays passed through a Ni filter at 40 kV-200 mA were used as an X-ray source. Using “BAS-SR 127” manufactured by Fuji Film Co., Ltd. as an imaging plate, exposure was performed with a distance between the sample and the imaging plate of 60 mm and an exposure time of 20 minutes. The diffraction image was read using “R-AXIS DS3” manufactured by Rigaku Corporation, and a diffraction azimuth (β angle) intensity distribution curve from the polyglycolic acid crystal (110) plane was prepared. From this β-angle intensity distribution curve, two points on the equator line (according to the method for measuring the degree of orientation described in page 81 of the third edition of the X-ray handbook issued by Rigaku Corporation (issued June 30, 1985)) From the total value W 90 + W 270 (degrees) of the full width at half maximum Wi (degrees) for β angles of 90 ° and 270 °, the degree of orientation (%) was determined by the following formula:
[Equation 1]
Degree of orientation [(360− (W 90 + W 270 )) / 360] × 100
(3)酸素ガスバリア性の維持時間
試料フィルムを温度60℃、相対湿度100%RHの高温恒湿槽に静置し、一定時間経過後の酸素ガスバリア性をモダンコントロール社製「OX−TRAN 2/20」を用いて温度23℃、相対湿度80%の条件下で測定し、測定した酸素透過係数が1×10−13cm3・cm/cm2・sec・cmHg以下を維持する時間を「酸素ガスバリア性の維持時間」とした。
(3) Oxygen gas barrier property maintenance time The sample film is allowed to stand in a high temperature and humidity chamber with a temperature of 60 ° C. and a relative humidity of 100% RH. 20 ”was measured under the conditions of a temperature of 23 ° C. and a relative humidity of 80%, and the time during which the measured oxygen permeability coefficient was maintained at 1 × 10 −13 cm 3 · cm 2 · sec · cmHg or less was expressed as“ oxygen ”. The maintenance time of gas barrier property ”.
(実施例1)
ポリグリコール酸(温度270℃、せん断速度120sec−1で測定した溶融粘度が1200Pa・secのホモポリマーに0.1重量部の熱安定剤(旭電化工業株式会社製「アデカスタブAX−71」を添加)100重量部に対して、トリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)を0.25重量部添加し、2軸押出し機により溶融、混練し、ペレット化した。このポリグリコール酸ペレットを、押出し機から220℃〜270℃の温度で溶融し、Tダイ法により、厚さ100μmのシートを作成した。得られたシートを東洋精機社製の二軸延伸機を用いて、温度60℃で20〜30秒予熱後、延伸速度を7m/分、延伸倍率として縦横方向各3倍に同時二軸延伸した。その後120℃で1分間の熱処理を行い厚さ10μmの延伸フィルムを得た。
Example 1
Polyglycolic acid (added 0.1 parts by weight of heat stabilizer (Adeka Stub AX-71 manufactured by Asahi Denka Kogyo Co., Ltd.) to a homopolymer having a melt viscosity of 1200 Pa · sec measured at a temperature of 270 ° C. and a shear rate of 120 sec-1 ) 0.25 parts by weight of triglycidyl isocyanurate (“TEPIC” manufactured by Nissan Chemical Industries, Ltd.) was added to 100 parts by weight, and the mixture was melted, kneaded and pelletized by a twin screw extruder. The pellets were melted from an extruder at a temperature of 220 ° C. to 270 ° C., and a sheet having a thickness of 100 μm was prepared by a T-die method, and the obtained sheet was heated to a temperature using a biaxial stretching machine manufactured by Toyo Seiki Co., Ltd. After preheating at 60 ° C. for 20 to 30 seconds, the film was simultaneously biaxially stretched at a stretching speed of 7 m / min and a stretching ratio of 3 times in each of the longitudinal and transverse directions, followed by heat treatment at 120 ° C. for 1 minute. To obtain a stretched film having a thickness of 10μm.
(実施例2)
縦横の延伸倍率を各4倍に変更して同時二軸延伸を行う以外は、実施例1と同様にして厚さ6μmの延伸フィルムを得た。
(Example 2)
A stretched film having a thickness of 6 μm was obtained in the same manner as in Example 1 except that the longitudinal and transverse stretching ratios were changed to 4 times and simultaneous biaxial stretching was performed.
(比較例1)
トリグリシジルイソシアヌレートを添加せずに、ポリグリコール酸のみを実施例1と同様にしてペレット化、シート作成、二軸延伸熱処理して、厚さ10μmの延伸フィルムを得た。
(Comparative Example 1)
Without adding triglycidyl isocyanurate, only polyglycolic acid was pelletized, sheeted and biaxially stretched in the same manner as in Example 1 to obtain a stretched film having a thickness of 10 μm.
(比較例2)
トリグリシジルイソシアヌレートを添加せずに、ポリグリコール酸のみを実施例2と同様にしてペレット化、シート作成、二軸延伸熱処理して、厚さ6μmの延伸フィルムを得た。
(Comparative Example 2)
Without adding triglycidyl isocyanurate, only polyglycolic acid was pelletized, sheeted and biaxially stretched in the same manner as in Example 2 to obtain a stretched film having a thickness of 6 μm.
(比較例3)
上記実施例1の延伸前のシートをそのまま試料フィルムとした。
(Comparative Example 3)
The sheet before stretching in Example 1 was directly used as a sample film.
(比較例4)
上記比較例1の延伸前のシートをそのまま試料フィルムとした。
(Comparative Example 4)
The sheet before stretching in Comparative Example 1 was directly used as a sample film.
上記実施例、比較例で得られた各フィルムについて、広角X線回折による結晶配向度(%)、動的粘弾性測定による主分散ピーク温度、酸素ガスバリア性の維持時間の測定を行った。結果を下表1に示す。
実施例1と比較例1を比べると、結晶配向度、主分散ピーク温度、酸素ガスバリア性維持の時間のいずれも実施例1の方が高いことがわかる。一方、実施例2と比較例2を比べると、これら特性値の顕著な変化はない。これら表1の結果より、本発明に従い、3官能性エポキシ化合物を添加して得られた脂肪族ポリエステル系樹脂組成物は、低い延伸倍率で、高い配向度、高い耐加水分解性を示す延伸成形物を与えることがわかる。 Comparing Example 1 and Comparative Example 1, it can be seen that Example 1 has a higher degree of crystal orientation, main dispersion peak temperature, and time for maintaining the oxygen gas barrier property. On the other hand, when Example 2 and Comparative Example 2 are compared, there is no significant change in these characteristic values. From the results shown in Table 1, the aliphatic polyester resin composition obtained by adding the trifunctional epoxy compound according to the present invention has a low stretch ratio, a high degree of orientation, and a high hydrolysis resistance. I know that I give things.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004130382A JP4519510B2 (en) | 2004-04-26 | 2004-04-26 | Stretch molding of aliphatic polyester resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004130382A JP4519510B2 (en) | 2004-04-26 | 2004-04-26 | Stretch molding of aliphatic polyester resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005314444A JP2005314444A (en) | 2005-11-10 |
JP4519510B2 true JP4519510B2 (en) | 2010-08-04 |
Family
ID=35442208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004130382A Expired - Fee Related JP4519510B2 (en) | 2004-04-26 | 2004-04-26 | Stretch molding of aliphatic polyester resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4519510B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5686396B2 (en) * | 2005-03-29 | 2015-03-18 | 東レ株式会社 | Fiber and manufacturing method |
JP5732710B2 (en) * | 2007-07-09 | 2015-06-10 | 東レ株式会社 | Method for producing polylactic acid resin |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728133A (en) * | 1980-06-13 | 1982-02-15 | Ciba Geigy Ag | Use of partially crystalline polymer as insulator for low temperature technique |
JPH02276820A (en) * | 1989-02-17 | 1990-11-13 | General Electric Co <Ge> | Manufacture of polyester composition having high melt index by reaction with polyepoxide |
WO1998044019A1 (en) * | 1997-04-02 | 1998-10-08 | Djk Techno Science Laboratories Inc. | Polyester resin and process for producing molded article |
JP2000044701A (en) * | 1998-07-27 | 2000-02-15 | Toyobo Co Ltd | Lactic acid-based polymer biaxially oriented film |
JP2005179446A (en) * | 2003-12-17 | 2005-07-07 | Toray Ind Inc | Resin composition and molded product made of the same |
-
2004
- 2004-04-26 JP JP2004130382A patent/JP4519510B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728133A (en) * | 1980-06-13 | 1982-02-15 | Ciba Geigy Ag | Use of partially crystalline polymer as insulator for low temperature technique |
JPH02276820A (en) * | 1989-02-17 | 1990-11-13 | General Electric Co <Ge> | Manufacture of polyester composition having high melt index by reaction with polyepoxide |
WO1998044019A1 (en) * | 1997-04-02 | 1998-10-08 | Djk Techno Science Laboratories Inc. | Polyester resin and process for producing molded article |
JP2000044701A (en) * | 1998-07-27 | 2000-02-15 | Toyobo Co Ltd | Lactic acid-based polymer biaxially oriented film |
JP2005179446A (en) * | 2003-12-17 | 2005-07-07 | Toray Ind Inc | Resin composition and molded product made of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2005314444A (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4972012B2 (en) | Sequential biaxially stretched polyglycolic acid film, method for producing the same, and multilayer film | |
WO2009084391A1 (en) | Polypropylene resin composition, molded article produced from the resin composition, and method for production of the molded article | |
JP4925555B2 (en) | Polyglycolic acid resin composition and molded product thereof | |
JP4965431B2 (en) | Aliphatic polyester resin composition | |
US20100330382A1 (en) | Biaxially oriented polylactic acid film with improved moisture barrier | |
JP2007126653A (en) | Method for producing aliphatic polyester composition | |
KR101970847B1 (en) | Biodegradable film | |
JPWO2004007197A1 (en) | Biodegradable laminated sheet and molded body using this biodegradable laminated sheet | |
WO2012023465A1 (en) | Porous film | |
JP2003170560A (en) | Polylactate biaxially stretched laminated film having heat sealability | |
WO2011152199A1 (en) | Polyglycolic acid-containing resin composition with improved water resistance | |
KR101775070B1 (en) | Biodegradable barrier film | |
JP3978070B2 (en) | Multilayer film or sheet | |
JP2004162046A (en) | Polyester film | |
WO2004028783A1 (en) | Strongly stretched aliphatic polyester moldings | |
JP4519510B2 (en) | Stretch molding of aliphatic polyester resin composition | |
JP2009293044A (en) | Polyglygolic acid-based resin composition and molded article of the same | |
JP3997102B2 (en) | Multilayer blow molded container | |
JPWO2010005043A1 (en) | Polylactic acid resin film | |
JP2007023100A (en) | Aliphatic polyester resin composition | |
JPWO2010010803A1 (en) | Anti-peeling gas barrier laminate | |
JP4669890B2 (en) | Method for producing thermoformed body | |
US12103281B2 (en) | Biaxially oriented compostable composite film | |
WO2011096395A1 (en) | Method for producing multilayered stretch-molded article | |
JP4987260B2 (en) | Polyglycolic acid resin molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070410 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100519 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140528 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |