JP4593006B2 - Method for producing a billet free from crack defects - Google Patents
Method for producing a billet free from crack defects Download PDFInfo
- Publication number
- JP4593006B2 JP4593006B2 JP2001151943A JP2001151943A JP4593006B2 JP 4593006 B2 JP4593006 B2 JP 4593006B2 JP 2001151943 A JP2001151943 A JP 2001151943A JP 2001151943 A JP2001151943 A JP 2001151943A JP 4593006 B2 JP4593006 B2 JP 4593006B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- slab
- steel
- temperature
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、連続鋳造法で製造した鋳片を幅圧下して鋼片を製造する方法に関し、特に表面欠陥のない鋼片の製造方法に係わるものである。
【0002】
【従来の技術】
鋼の大量生産を図るために、連続鋳造機と幅圧下圧延機を組み合わせたプロセスが公知となっている。このプロセスは、連続鋳造では鋳片幅を一定にして鋳造し、その後の圧延機で幅圧下をすることにより鋼片幅を変えるものであり、連鋳機での鋳型幅変更に伴う時間ロスがないことによる生産性の向上や、幅変更部の歩留まり向上が期待できる。
【0003】
しかしながら、鋳片内にAlやNbやV、N等を含有する場合には、幅圧下時に割れが発生し、表面欠陥につながるという問題がある。この脆化は、700〜1000℃近くの温度で起こるγ結晶粒界への析出物に起因する脆化であることが判っている。
これらの脆化を防止する手段として、変形歪みがかかる前の鋳片温度を脆化温度域より高温に保つこと、すなわち析出物の析出量を少なくすることが有効である事は公知である。
【0004】
また、特開昭55−14173号公報に記載のように、鋳片表層部温度がAr1以下、復熱温度がAr3+100℃の範囲になるように二次冷却帯で冷却−復熱を2回以上繰り返すことにより、オーステナイト粒径を微細化し炭窒化物の粒界析出の抑制とフィルム状フェライトの析出を防止することにより割れ防止を図ることが開示されている。
更に、特開平5−161948号公報では、連鋳機内の最終矯正点を通過した後、速やかに鋳片表層部10mm以内を特定の式で示す温度に一旦下げた後、850℃以上に復熱させて熱間圧延を行うことにより、幅圧下中に割れを防止する方法が示されている。
【0005】
しかしながら、これらの脆化温度域を特定する為には、鋼の成分ごとに引張り試験を行う必要があり、すべての鋼種の脆化域を特定することは、実質的に不可能である。特に、鋼の炭素濃度が異なると、同じ析出物の量でも脆化したりしなかったりするといった現象がある。
また、上記2件の特許公開公報に示された、温度履歴を制御して結晶粒を微細にする方法は、特定の成分の鋼種でしか実現出来ない方法であり、実プロセスでは炭素濃度が0.15%以上では難しい。
従って、どのような鋼種にも適用できる、析出物に起因する脆化温度を特定する為の一般的な法則が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明は、炭素や析出物構成元素の濃度が変わっても、脆化が生じない、すなわち割れが発生しない一般的な条件を提示することにより、脆化の原因となる元素を含有する鋼を幅圧下する場合にも、表面割れを防止することが可能な製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を特徴とする。
(1)連続鋳造によって得られた炭素鋼鋳片を幅圧下する際に、鋳片内の析出物の析出量が以下の式を満足するように幅圧下完了時の温度を規定することを特徴とする幅圧下による割れ欠陥が生じない鋼片の製造方法である。
W≦1000×d-2.5
ここで、
W(ppm):鋳片内の析出物の構成元素の濃度と温度によって決まる析出量
d(mm):幅圧下前の鋳片内の平均γ粒径
【0008】
(2)鋼の成分が、
C:0.001〜0.5質量%、
Mn:0.1〜3.0質量%、
Si:0.005〜2.0質量%、
P:0.001〜0.1質量%、
S:0.001〜0.05質量%、
N:0.002〜0.015質量%
酸素:0.0005〜0.0050質量%含み、
さらにAl、Nb、Ti、Vの内、一種または二種以上含み、それぞれの成分範囲が、
Al:0.001〜0.1質量%、
Nb:0.01〜0.1質量%
Ti:0.005〜0.1質量%
V:0.01〜0.1質量%、
であり、残部鉄および不可避的不純物からなる鋼片であることを特徴とする前記(1)記載の幅圧下による割れ欠陥が生じない鋼片の製造方法である。
【0009】
(3)鋼の成分が
Cr,Mo,Ni,B,Zr,Mg,Caの内、一種または二種以上含みそれぞれの成分が0.1質量%以下であることを特徴とする前記(2)記載の幅圧下による割れ欠陥が生じない鋼片の製造方法である。
【0010】
【発明の実施の形態】
本発明者らは、まず、Nと共にAl、Nb及びV等を含有する鋼の脆化が、いずれもオーステナイト(γ)結晶粒界の脆化であることに着目して、これらの脆化が生じる条件を検討した結果、脆化すなわち割れの発生有無を、γ粒径と析出物の析出量との関係式で決定することを着想するに至った。
【0011】
以下に本発明の詳細を記す。
発明者らは、まず、鋳片の幅圧下時に得られた鋼片の割れが発生する条件を実機試験のデータをもとに検討した。種々の鋼種について、幅圧下時の温度を変え、割れ発生有無を調査した。特に鋳片内のγ粒径と析出物の析出量に着目して解析を行なった。その結果を図1に示す。
図1から、γ粒径が大きい場合には鋳片内の析出物の析出量を非常に小さくしないと割れが発生するが、γ粒径を小さくすると、鋳片内の析出物の析出量が多くても割れは発生しない。
【0012】
この図1より、割れが発生する領域と発生しない領域は、以下の式で分けられることが判った。
W≦1000×d-2.5
ここで、W(ppm):析出物の構成元素の濃度(質量%)と温度によって決まる析出量
d(mm):幅圧下前の平均γ粒径
【0013】
次に、本発明の条件を規定した理由と、本発明の具体的な適用法について説明する。
まず、式の規定であるが、上述したように、実際の製造条件と割れ発生有無のデータを解析した結果から得られたものである。
具体的な適用法としては、まず、幅圧下前の鋳片のγ粒径を求める必要がある。これは事前に、当該成分の鋳片の断面を腐食して顕出したγ結晶粒組織より求めておく。γ結晶粒径は、成分、特に炭素濃度と連続鋳造時の温度履歴、そして幅圧下前の加熱炉の温度条件でほぼ決定されるので、ある程度の代表鋼種、製造条件について調査しておけば、すべての鋼種について調査する必要はない。
γ粒径を測定する領域は、鋳片表層から約10mmの深さで、幅方向で10点以上測定し、円相当径に換算してから平均値をとれば良い。
【0014】
なお、積極的にγ粒径を小さくする方法として、連続鋳造機内で鋳片を強冷却し、一旦γからα変態させた後、連鋳機内または連鋳機内後に鋳片を加熱して再びγに逆変態させる方法が公知であるが、この場合には、逆変態させて微細になったγ粒径を本発明の式に代入すれば、割れが発生しない析出物の析出量が多くなっても良いので、成分や製造条件の自由度が大きくなる。
【0015】
次に、鋳片内の析出量の見積もり方法であるが、これについては一般に、鋼中析出物の溶解度積の式が公知となっているので、これらの式を用いて計算する。
以下、AlとNで生成する析出物AlNに関して、具体例を挙げて説明する。AlとNに関しては、以下のような式が代表的なものとして公知になっている。(Darkenの式)
log{(%Al)×(%N)}=−7400/T+1.95
ここで、
(%Al)および(%N):それぞれ鋼中のAl濃度(質量%)、N濃度(質量%)、T:絶対温度(K)
【0016】
ある温度におけるAlNの析出物は以下の式で表される。
log[{(%Al)−α)}×{(%N)−β}]=−7400/T+1.95
ここで、
αとβ:AlN析出物となったAlおよびN量
また、AlとNの結合質量比の関係から
α:β=27:14
この二つの方程式を連立させて解くと、当該温度における析出量が計算できる。
【0017】
NbとNが関与する析出物NbNについては、以下のような式を用いた。(成田の式)
log{(%Nb)×(%N)}=−8500/T+2.89
ここで、(%Nb)および(%N):それぞれ鋼中のNb濃度(質量%)、N濃度(質量%)、T:絶対温度(K)
また、VとNが関与する析出物VNに付いては、以下のような式を用いた。(成田の式)
log{(%V)×(%N)}=−8700/T+3.63
ここで、(%V)および(%N):それぞれ鋼中のV濃度(質量%)、N濃度(質量%)、T:絶対温度(K)
【0018】
なお、NbとVが同時に所定量以上含まれる場合には、まずNbNについて計算し、NbNに使用されたN分を除いて、今度はVNについて計算し、それぞれの析出量の和を用いればよい。
また、Tiの影響については、以下のように考慮する必要がある。すなわち、TiもNと結合してTiNを生成するが、TiNは粒界脆化に対してそれほど影響しない。TiNは比較的高い温度で析出するので、まず、当該温度でのTiNの析出量を計算し、そこに含まれるN分を差し引いて、NbNやVNの析出量を計算する。
【0019】
実際の製造プロセスへの適用としては、与えられ得たγ粒径から本発明の式を満たすように、析出量の上限値を決め、その値以下となるように、成分や幅圧下時の温度を変化させることで、割れが発生しない製造条件が求められる。
対象となる鋼種は、炭素鋼であればどんなものでも構わないが、特にAlとNが含まれるもの、かつまたはNbとNが含まれているもの、かつまたはVとNが含まれているもので本発明の効果が顕著である。実際に使用される鋼材の鋼成分範囲を考慮すると以下のような成分範囲となる。
【0020】
Cは鋼の強度を持たす為に不可欠の元素であるため、下限を0.001質量%とし、上限は板材で用いられる最大炭素量として0.5質量%とした。
また、Mnも強度を得るために必要であり、その効果を出すために下限を0.1質量%とし、上限は特殊用途で使用される場合の最大値3.0質量%とした。
Siは用途によっては不要の場合もあるが、不可避的に混入するためその下限を0.005質量%とし、上限は特殊用途で用いられる2.0質量%とした。
【0021】
Pは鋼に有害な元素であるため、その上限を0.1質量%とし極力少ないほうが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。
Sも同様に製品特性に害をなす場合が多く極力低位とすることが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。また上限は連続鋳造時の割れを防ぐために0.05質量%とした。
酸素は非金属介在物生成の原因となるため、極力低いほうが望ましいが、下限は不可避的に混入する0.001質量%とし、上限は介在物があまり多くなると製品欠陥の原因となるので、0.050質量%とした。
【0022】
Nは本発明に関係する元素である。材料の強度や靱性を上げるために用いられているが、本発明の効果を得るためには上限が制限される。また、下限は脆化の発生しない値で規定した。すなわち下限以下であれば、本発明を用いる必要はない。この観点から、N:0.002〜0.015質量%となる。
Alは必要に応じ、脱酸元素として一般的に使用されているが、Nと化合してAlNを生成するため、材料の強度を上げる目的で用いられることもある。この観点から下限は不可避的に混入する0.001質量%とし、上限は材料の強度を上げるために0.1質量%とした。
【0023】
Nb,V、Tiはは必要に応じ材料の強度や靱性を上げるために用いられているが、本発明の効果を得るためには上限が制限される。また、下限は脆化の発生しない値で規定した。すなわち下限以下であれば、本発明を用いる必要はない。この観点から、それぞれ、Nb:0.01〜0.1質量%、V:0.01〜0.1質量%Ti:0.005〜0.1質量%となる。
その他、鋼の用途に応じてCr,Mo,Cu,Ni,Zr,B,Mg,Caの一種または二種以上を0.1質量%以下含んでも構わない。
【0024】
【実施例】
表1に示す成分の炭素鋼を表2に示す製造条件で連続鋳造および得られた鋳片を幅圧下をし、得られた鋼片で割れを調査した。割れの評価方法としては、表3に示すように、鋼片上面と下面にスカーフ溶削を2mm〜10mm行い、表面を目視観察した。更に鋼片からサンプルを切り出し、断面の割れの状態をカラーチェックで調査した。結果を表4に示す。
【0025】
【表1】
【0026】
【表2】
【0027】
【表3】
【0028】
【表4】
【0029】
表より、本発明の場合(試験No.1,3、5,7,9,11,13,15)の条件を満たす場合には、目視観察およびカラーチェックとも割れは検出されなかった。
一方、いずれの比較例(試験No.2,4,6,8,10,12,14,16)においても、実際の析出量が、本発明の式から計算される許容析出量を越えており、鋳片の目視やカラーチェック検査で割れが観察された。
【0030】
【発明の効果】
以上のように本発明により、Nと共にAl、NbV及びTiを含む鋼においても幅圧下時の割れが発生しなくなり、表面疵のない良好な鋼片が得られることが可能となる。
【図面の簡単な説明】
【図1】γ粒径と析出量から脆化発生領域を表した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel slab by reducing the width of a slab produced by a continuous casting method, and particularly to a method for producing a steel slab having no surface defects.
[0002]
[Prior art]
In order to mass-produce steel, a process combining a continuous casting machine and a width reduction rolling mill is known. This process involves casting with a constant slab width in continuous casting, and then reducing the width of the steel slab by reducing the width with a rolling mill. It can be expected to improve productivity and to improve the yield of the width changing part.
[0003]
However, when Al, Nb, V, N, or the like is contained in the slab, there is a problem that cracks occur during width reduction, leading to surface defects. This embrittlement has been found to be due to precipitates at the γ grain boundaries that occur at temperatures near 700-1000 ° C.
As a means for preventing such embrittlement, it is known that it is effective to keep the slab temperature before deformation strain higher than the embrittlement temperature range, that is, to reduce the amount of precipitates deposited.
[0004]
Further, as described in JP-A-55-14173, cooling-recuperation is performed twice or more in the secondary cooling zone so that the slab surface layer temperature is Ar1 or less and the recuperation temperature is in the range of Ar3 + 100 ° C. By repeating, it is disclosed that the austenite grain size is refined to prevent cracking by suppressing grain boundary precipitation of carbonitride and preventing precipitation of film-like ferrite.
Furthermore, in JP-A-5-161948, after passing through the final correction point in the continuous casting machine, the slab surface layer within 10 mm is quickly lowered to a temperature indicated by a specific formula and then reheated to 850 ° C. or higher. A method of preventing cracking during width reduction by performing hot rolling is shown.
[0005]
However, in order to identify these embrittlement temperature regions, it is necessary to perform a tensile test for each steel component, and it is virtually impossible to identify the embrittlement regions of all steel types. In particular, when the carbon concentration of steel is different, there is a phenomenon that the steel does not become brittle even with the same amount of precipitates.
In addition, the method of controlling the temperature history and making the crystal grains fine as shown in the above two patent publications is a method that can be realized only with the steel type of a specific component, and the carbon concentration is 0 in the actual process. It is difficult at 15% or more.
Therefore, a general rule for specifying the embrittlement temperature caused by precipitates that can be applied to any steel type has been desired.
[0006]
[Problems to be solved by the invention]
The present invention provides a steel containing an element that causes embrittlement by presenting general conditions in which embrittlement does not occur even when the concentration of carbon and precipitate constituent elements changes, that is, cracks do not occur. The present invention also provides a production method capable of preventing surface cracking even when the width is reduced.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized by the following configurations.
(1) When the width of the carbon steel slab obtained by continuous casting is reduced, the temperature at the completion of the reduction is defined so that the amount of precipitates in the slab satisfies the following formula: It is a manufacturing method of the steel slab which does not produce the crack defect by width reduction.
W ≦ 1000 × d −2.5
here,
W (ppm): Precipitation amount determined by the concentration and temperature of the constituent elements of the precipitates in the slab d (mm): Average γ grain size in the slab before width reduction
(2) The component of steel is
C: 0.001 to 0.5 mass%,
Mn: 0.1 to 3.0% by mass,
Si: 0.005 to 2.0 mass%,
P: 0.001 to 0.1% by mass,
S: 0.001 to 0.05 mass%,
N: 0.002 to 0.015 mass%
Oxygen: 0.0005 to 0.0050% by mass,
Further, one or more of Al, Nb, Ti, and V are included, and each component range is
Al: 0.001 to 0.1% by mass,
Nb: 0.01 to 0.1% by mass
Ti: 0.005 to 0.1% by mass
V: 0.01 to 0.1% by mass,
It is a steel slab consisting of the remaining iron and unavoidable impurities, and is the method for producing a steel slab in which crack defects due to width reduction do not occur as described in (1) above.
[0009]
(3) The steel component is one or more of Cr, Mo, Ni, B, Zr, Mg, and Ca, and each component is 0.1% by mass or less (2) It is a manufacturing method of the steel piece in which the crack defect by the described width reduction does not arise.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the inventors of the present invention paying attention to the fact that all of the embrittlement of steel containing Al, Nb and V together with N is embrittlement of austenite (γ) grain boundaries. As a result of studying the resulting conditions, the inventors have come up with the idea of determining the presence or absence of embrittlement, that is, cracking, using the relational expression between the γ grain size and the amount of precipitates.
[0011]
Details of the present invention will be described below.
The inventors first examined the conditions under which the steel slab cracked during width reduction of the slab occurred based on data from actual machine tests. For various steel types, the temperature during width reduction was changed and the presence or absence of cracks was investigated. In particular, the analysis was conducted by paying attention to the γ grain size in the slab and the amount of precipitates deposited. The result is shown in FIG.
From FIG. 1, when the γ grain size is large, cracks occur unless the precipitation amount of the precipitate in the slab is made very small. However, if the γ particle size is reduced, the precipitation amount of the precipitate in the slab is reduced. No cracks occur at most.
[0012]
From FIG. 1, it was found that the area where the crack occurs and the area where the crack does not occur can be divided by the following expression.
W ≦ 1000 × d −2.5
Here, W (ppm): Precipitation element concentration (% by mass) and temperature determined by temperature d (mm): Average γ grain size before width reduction
Next, the reason for defining the conditions of the present invention and the specific application method of the present invention will be described.
First, as to the definition of the formula, as described above, it is obtained from the result of analyzing the actual manufacturing conditions and the data on the presence or absence of cracks.
As a specific application method, first, it is necessary to obtain the γ grain size of the slab before width reduction. This is obtained in advance from the γ grain structure that appears by corroding the cross section of the slab of the component. The γ crystal grain size is almost determined by the components, especially the carbon concentration and the temperature history during continuous casting, and the temperature conditions of the heating furnace before the width reduction, so if you investigate about some representative steel types and production conditions, It is not necessary to investigate all steel grades.
The region for measuring the γ grain size may be an average value after measuring at least 10 points in the width direction at a depth of about 10 mm from the slab surface layer and converting to a circle equivalent diameter.
[0014]
As a method of actively reducing the γ particle size, the slab is strongly cooled in a continuous casting machine, and after γ to α transformation, the slab is heated again in the continuous casting machine or in the continuous casting machine and then again γ However, in this case, if the γ grain size that has been refined by reverse transformation is substituted into the formula of the present invention, the amount of precipitates that cause no cracking increases. Therefore, the degree of freedom of components and production conditions is increased.
[0015]
Next, there is a method for estimating the amount of precipitation in the slab. In general, formulas for solubility products of precipitates in steel are known, and calculation is performed using these formulas.
Hereinafter, the precipitate AlN produced by Al and N will be described with specific examples. As for Al and N, the following formulas are known as typical ones. (Darken's formula)
log {(% Al) × (% N)} = − 7400 / T + 1.95
here,
(% Al) and (% N): Al concentration (% by mass), N concentration (% by mass) in steel, T: Absolute temperature (K)
[0016]
The precipitate of AlN at a certain temperature is represented by the following formula.
log [{(% Al) −α)} × {(% N) −β}] = − 7400 / T + 1.95
here,
α and β: Al and N amounts as AlN precipitates, and α: β = 27: 14 from the relationship between the Al and N bond mass ratio.
By solving these two equations simultaneously, the amount of precipitation at the temperature can be calculated.
[0017]
For the precipitate NbN involving Nb and N, the following equation was used. (Narita formula)
log {(% Nb) × (% N)} = − 8500 / T + 2.89
Here, (% Nb) and (% N): Nb concentration (% by mass) and N concentration (% by mass) in steel, respectively, T: Absolute temperature (K)
For the precipitate VN involving V and N, the following equation was used. (Narita formula)
log {(% V) × (% N)} = − 8700 / T + 3.63
Here, (% V) and (% N): V concentration (mass%) and N concentration (mass%) in steel, respectively, T: Absolute temperature (K)
[0018]
When Nb and V are included at a predetermined amount or more at the same time, NbN is calculated first, except for N used for NbN, this time VN is calculated, and the sum of the respective precipitation amounts may be used. .
Moreover, it is necessary to consider the influence of Ti as follows. That is, Ti combines with N to produce TiN, but TiN does not significantly affect grain boundary embrittlement. Since TiN precipitates at a relatively high temperature, first, the amount of TiN deposited at that temperature is calculated, and the amount of NbN or VN deposited is calculated by subtracting the N content contained therein.
[0019]
As an application to the actual manufacturing process, the upper limit value of the precipitation amount is determined from the obtained γ particle size so as to satisfy the formula of the present invention, and the components and the temperature at the time of width reduction are set to be equal to or less than that value. By changing, manufacturing conditions that do not cause cracking are required.
The target steel type may be any carbon steel as long as it is carbon steel, particularly those containing Al and N, and / or Nb and N, and / or V and N. Thus, the effect of the present invention is remarkable. Considering the steel component range of the steel material actually used, the following component range is obtained.
[0020]
Since C is an essential element for imparting the strength of steel, the lower limit is set to 0.001% by mass, and the upper limit is set to 0.5% by mass as the maximum amount of carbon used in the plate material.
Further, Mn is also necessary for obtaining strength. In order to obtain the effect, the lower limit is set to 0.1% by mass, and the upper limit is set to 3.0% by mass when used for special purposes.
Although Si may be unnecessary depending on the application, since it is inevitably mixed, the lower limit is set to 0.005 mass%, and the upper limit is set to 2.0 mass% used for special applications.
[0021]
Since P is an element harmful to steel, the upper limit is preferably 0.1% by mass and is preferably as small as possible. However, since it is inevitably mixed, the lower limit is 0.001% by mass.
S is also harmful to the product characteristics in the same way, and it is desirable to make it as low as possible. However, since it is inevitably mixed, the lower limit of 0.001% by mass is practical. The upper limit was set to 0.05% by mass to prevent cracking during continuous casting.
Oxygen causes non-metallic inclusions to be generated, so it is desirable that it be as low as possible. However, the lower limit is unavoidably 0.001% by mass, and the upper limit is 0% because too much inclusion causes product defects. 0.050 mass%.
[0022]
N is an element related to the present invention. Although used to increase the strength and toughness of the material, the upper limit is limited to obtain the effects of the present invention. Further, the lower limit was defined as a value at which embrittlement does not occur. That is, if it is below a lower limit, it is not necessary to use this invention. From this viewpoint, N: 0.002 to 0.015 mass%.
Al is generally used as a deoxidizing element as needed. However, since it combines with N to produce AlN, it may be used for the purpose of increasing the strength of the material. From this viewpoint, the lower limit is inevitably mixed 0.001% by mass, and the upper limit is 0.1% by mass in order to increase the strength of the material.
[0023]
Nb, V, and Ti are used to increase the strength and toughness of the material as necessary, but the upper limit is limited to obtain the effects of the present invention. Further, the lower limit was defined as a value at which embrittlement does not occur. That is, if it is below a lower limit, it is not necessary to use this invention. From this point of view, Nb: 0.01 to 0.1 mass%, V: 0.01 to 0.1 mass% Ti: 0.005 to 0.1 mass%, respectively.
In addition, 0.1 mass% or less of one or more of Cr, Mo, Cu, Ni, Zr, B, Mg, and Ca may be included depending on the use of steel.
[0024]
【Example】
The carbon steel having the components shown in Table 1 was continuously cast under the production conditions shown in Table 2, and the obtained slab was subjected to width reduction, and the obtained steel slab was examined for cracks. As shown in Table 3, the crack was evaluated by performing scarf cutting on the upper surface and the lower surface of the steel piece from 2 mm to 10 mm and visually observing the surface. Furthermore, a sample was cut out from the steel piece, and the state of the crack in the cross section was investigated by color check. The results are shown in Table 4.
[0025]
[Table 1]
[0026]
[Table 2]
[0027]
[Table 3]
[0028]
[Table 4]
[0029]
From the table, when the conditions of the present invention (Test Nos. 1, 3, 5, 7, 9, 11, 13, 15) were satisfied, no cracks were detected in both visual observation and color check.
On the other hand, in any of the comparative examples (Test Nos. 2, 4, 6, 8, 10, 12, 14, 16), the actual precipitation amount exceeds the allowable precipitation amount calculated from the formula of the present invention. Cracks were observed by visual inspection and color check inspection of the slab.
[0030]
【The invention's effect】
As described above, according to the present invention, even when steel containing N, Al, NbV and Ti is not cracked at the time of width reduction, it is possible to obtain a good steel piece free from surface flaws.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embrittlement occurrence region from γ particle size and precipitation amount.
Claims (3)
W≦1000×d−2.5
ここで、
W(ppm):鋳片内の析出物の構成元素の濃度と温度によって決まる析出量
d(mm):幅圧下前の鋳片内の平均γ粒径。When the width of the carbon steel slab obtained by continuous casting is reduced, the temperature at the completion of the reduction is defined so that the amount of precipitates in the slab satisfies the following formula: A method for producing a steel slab that does not cause cracking defects due to rolling.
W ≦ 1000 × d −2.5
here,
W (ppm): Precipitation amount determined by the concentration and temperature of the constituent elements of the precipitate in the slab d (mm): Average γ grain size in the slab before width reduction.
C:0.001〜0.5質量%、
Mn:0.1〜3.0質量%、
Si:0.005〜2.0質量%、
P:0.001〜0.1質量%、
S:0.001〜0.05質量%、
N:0.002〜0.015質量%、
酸素:0.0005〜0.0050質量%含み、
さらにAl、Nb、Ti、Vの内、一種または二種以上含み、それぞれの成分範囲が、
Al:0.001〜0.1質量%、
Nb:0.01〜0.1質量%、
Ti:0.005〜0.1質量%、
V:0.01〜0.1質量%、
であり、残部鉄および不可避的不純物からなる鋼片であることを特徴とする請求項1記載の幅圧下による割れ欠陥が生じない鋼片の製造方法。Steel composition is
C: 0.001 to 0.5 mass%,
Mn: 0.1 to 3.0% by mass,
Si: 0.005 to 2.0 mass%,
P: 0.001 to 0.1% by mass,
S: 0.001 to 0.05 mass%,
N: 0.002 to 0.015 mass%,
Oxygen: 0.0005 to 0.0050% by mass,
Further, one or more of Al, Nb, Ti, and V are included, and each component range is
Al: 0.001 to 0.1% by mass,
Nb: 0.01 to 0.1% by mass
Ti: 0.005 to 0.1% by mass ,
V: 0.01 to 0.1% by mass,
The method for producing a billet according to claim 1, wherein the billet is a billet made of balance iron and unavoidable impurities, and does not cause cracking defects due to width reduction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001151943A JP4593006B2 (en) | 2001-05-22 | 2001-05-22 | Method for producing a billet free from crack defects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001151943A JP4593006B2 (en) | 2001-05-22 | 2001-05-22 | Method for producing a billet free from crack defects |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002346602A JP2002346602A (en) | 2002-12-03 |
JP4593006B2 true JP4593006B2 (en) | 2010-12-08 |
Family
ID=18996687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001151943A Expired - Fee Related JP4593006B2 (en) | 2001-05-22 | 2001-05-22 | Method for producing a billet free from crack defects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4593006B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4613579B2 (en) * | 2004-10-25 | 2011-01-19 | Jfeスチール株式会社 | Steel casting method |
JP4887818B2 (en) * | 2006-02-15 | 2012-02-29 | Jfeスチール株式会社 | Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet |
CN106086674A (en) * | 2016-06-30 | 2016-11-09 | 中车戚墅堰机车车辆工艺研究所有限公司 | Low-alloy cast steel and smelting process, heat treatment method and railway locomotive parts |
JP7183721B2 (en) * | 2018-11-15 | 2022-12-06 | 日本製鉄株式会社 | Hot width reduction rolling method for continuously cast slab |
JP7356025B2 (en) * | 2020-01-10 | 2023-10-04 | 日本製鉄株式会社 | Hot width reduction rolling method for continuously cast slabs |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000126856A (en) * | 1998-08-19 | 2000-05-09 | Nippon Steel Corp | Manufacture of slab free from surface defect caused by edging |
-
2001
- 2001-05-22 JP JP2001151943A patent/JP4593006B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000126856A (en) * | 1998-08-19 | 2000-05-09 | Nippon Steel Corp | Manufacture of slab free from surface defect caused by edging |
Also Published As
Publication number | Publication date |
---|---|
JP2002346602A (en) | 2002-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2966476C (en) | High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same | |
CA2945439C (en) | Steel plate and method of producing same | |
RU2205245C2 (en) | Steel with high rupture resistance and process of production thereof | |
EP3483294B1 (en) | Rolled h-shaped steel and manufacturing method thereof | |
JP2017531093A (en) | High strength austenitic stainless steel and method for producing the same | |
JP6728455B1 (en) | Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same | |
EP3770289A1 (en) | Wear-resistant steel and method for producing same | |
JP6409598B2 (en) | High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same | |
JP7479787B2 (en) | Hot work tool steel with excellent thermal conductivity | |
JP2014201815A (en) | Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor | |
WO2019044928A1 (en) | High-mn steel and production method therefor | |
KR20190028757A (en) | High frequency quenching steel | |
JP4593006B2 (en) | Method for producing a billet free from crack defects | |
JP2015093278A (en) | CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL | |
JP7299475B2 (en) | Steel for cold forging | |
JP6400517B2 (en) | High strength steel material with excellent fatigue crack propagation resistance and method for producing the same | |
JPWO2020090149A1 (en) | Steel for bolts | |
CN111684093B (en) | High Mn steel and method for producing same | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP7320936B2 (en) | bar steel | |
JP2019056148A (en) | High tensile strength thick steel plate and method of producing the same | |
JP2003166038A (en) | Continuously cast slab free from intercrystalline cracking | |
JP2022065798A (en) | Seamless steel pipe | |
JP2000126856A (en) | Manufacture of slab free from surface defect caused by edging | |
JP4203982B2 (en) | Manufacturing method for rolled compacted products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071109 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100915 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4593006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |