JP4592173B2 - Martensitic stainless steel welded structure with excellent fire resistance - Google Patents
Martensitic stainless steel welded structure with excellent fire resistance Download PDFInfo
- Publication number
- JP4592173B2 JP4592173B2 JP2000329984A JP2000329984A JP4592173B2 JP 4592173 B2 JP4592173 B2 JP 4592173B2 JP 2000329984 A JP2000329984 A JP 2000329984A JP 2000329984 A JP2000329984 A JP 2000329984A JP 4592173 B2 JP4592173 B2 JP 4592173B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- martensitic stainless
- fire resistance
- welded structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims description 17
- 239000000463 material Substances 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐火性に優れたマルテンサイト系ステンレス鋼よりなる板、形鋼、鋼管などの建築用鋼材を溶接で組み立てた、耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体に関する。
【0002】
【従来の技術】
火災時の建築物の倒壊や変形を防止する要請から、建築構造用鋼材には高温強度が必要とされる。一般構造用炭素鋼では300℃以上の高温に曝されると急激に強度が低下するため、鋼材表面への重度の耐火被覆施工などが必要とされてきたが、耐火被覆施工には建設コスト増大などの問題があるため、従来より耐火被覆を必要としないか、必要としても軽度の施工で済む耐火性に優れた鋼材が要求されてきており、これに対して600℃での降伏強度が常温降伏強度規格値の2/3以上を保証し、常温の引張強度が490Mpa あるいは570Mpa 級の、特開平2−77523号公報に開示されたような低合金鋼鋼材が実用化されてきている。
【0003】
高温強度の観点からすれば、この低合金系耐火鋼で所望の耐火性能は得られるが、低合金系であるため防錆性、耐食性が不十分で裸使用は困難であり、防錆塗装が必須となっている。すなわち、耐火被覆は省略できても防錆塗装は省略できず、このため施工コストが嵩んでいる。
【0004】
無塗装で建築構造に適用できる可能性のある鋼材としては、各種ステンレス鋼が想定されるが、実際に柱や梁などの建築構造に使用されている鋼材としては、意匠性などが重視される極く限られた用途でのオーステナイト系ステンレス鋼 (例えばSUS304)を除けば殆ど見られない。その最大の理由は、構造物に必須となる強度、靭性と溶接性をバランス良く満たす鋼種がなかったためであるが、最近では特開平11−323507号公報に開示されたように、溶接性に有害なCを低減してNiを添加したマルテンサイト系ステンレス鋼を建築構造用材料に展開する技術が提唱されてきている。しかしながら、前述の耐火性の要請に対して十分応えられる技術には至っていない。
【0005】
また、建築用途以外の分野では、例えばラインパイプにおいて、特開平9−316611号公報に開示されたように、溶接性、耐食性に優れ、パイプラインとして十分な高温強度を有するマルテンサイト系ステンレス鋼材が提案されてきている。しかしながら、パイプラインで定義される高温とは100ないし150℃程度であり、建築用耐火鋼材で規定される600℃に比べると遥かに低い。
したがって、無塗装で建築構造に適用可能な低C系マルテンサイト系ステンレス鋼において、常温での強度・靭性は無論のこと、600℃の高温条件で十分な強度が得られる鋼材は未だ提示されていない状況にある。
【0006】
さらに、構造物として完成された場合、母材のみならず溶接部での高温強度が問題であり、特に溶接金属部が重要となる。図1に示す溶接構造部の断面において、溶接金属は溶接材料と母材の一部が溶け込んで構成されるものであり、自ずと母材と異なる成分組成となる。母材の高温強度が十分でも溶接金属で不十分であれば、構造物全体としては十分な高温強度が得られない。そして、従来のJIS Z3321などに記載されているステンレス用溶接材料を用いた場合には、溶接金属部で十分な高温強度が得られないという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は、上述の問題を克服するものであり、特に溶接部において600℃での耐力が常温での耐力規格最小値の2/3以上を保証するマルテンサイト系ステンレス鋼溶接構造体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、先ずマルテンサイト系ステンレス鋼母材の強度、靭性、耐食性、高温耐力からみた成分設計を行い、次に種々の溶接材料を用いた溶接試験を重ねて溶接部の高温耐力を評価してきた。
その結果、母材と同等の高温耐力を得るための溶接金属の成分条件を解明した。本発明は、上記の知見に基づいて構築したものであり、その要旨は以下の通りである。
【0009】
(1)質量%で、
C :0.005〜0.1%、 Si:0.50%以下、
Mn:1.5%以下、 Cr:10.0〜15.0%、
Ni:0.5〜6.0%、 Mo:0.3〜3.0%、
N :0.03%以下、 Al:0.15%以下、
Ti:0.003〜0.050%
を含有し、NiとMoの含有量が下記(1)式の関係を満たして、残部がFeおよび不可避的不純物からなり、600℃における耐力が常温での耐力に対して2/3以上であるマルテンサイト系ステンレス鋼母材と、前記母材と同一範囲内の成分を含有し、なおかつ下記(2)および(3)式で定義するB値、C値がそれぞれ14.0以上17.0以下、−11.8以上の範囲にある溶接金属とを有することを特徴とする耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。
A=[Mo]−4.41[Ni]+22.94≧0 ……(1)
B=[Ni]+0.5[Mn]+30[C]+0.8[Cr]+0.8[Mo]+1.2[Si] ……(2)
C=[Ni]+0.5[Mn]+30[C]−1.1[Cr]−1.1[Mo]−1.6[Si] ……(3)
【0010】
(2)更に、質量%で、
P≦0.030%、 S≦0.0050%、
および必要に応じ、
Cu:3.0%以下、 W:1.0%以下、
Sn:1.0%以下、 Nb:0.05%以下、
V :0.1%以下の1種または2種以上を含有することを特徴とする前記(1)記載の耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。
(3)更に、質量%で、
P≦0.030%、 S≦0.0050%、
および
Ca:0.0005〜0.005%、B:0.0005〜0.0050%の1種または2種を含有することを特徴とする前記(1)または(2)のいずれかに記載の耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
先ず、本発明における母材の成分の限定理由について述べる。
C:Cは、Moと同様に高温強度を確保するために必要な元素であり、0.005%未満の含有量では600℃における高温耐力が不十分となる。しかしながら、含有させ過ぎると溶接熱影響部の靭性が劣化する。このため、両者のバランスから最適範囲を0.005%〜0.1%とした。
【0012】
Si:Siは、精錬工程での脱酸のために添加されて残留しているもので、溶接熱影響部での靭性に有害なフェライト相を形成する元素であるため、脱酸に必要とされる最小限の含有量とすべきであり、0.5%以下を適正範囲とした。
【0013】
Mn:Mnは母材の成形過程において重視される熱間加工性に有害なSを硫化物として固定して無害化する元素であると共に、オーステナイト安定化元素でもあり、熱影響部靭性に有害なフェライトの形成を抑制する作用を有するため含有させるが、含有し過ぎてもその効果は飽和するため、上限を1.5%とした。
【0014】
Cr:Crは耐食性の確保に必須の元素であり、10.0%以上の含有が必要であるが、反面フェライト安定化元素でもあり、含有量が多いと溶接熱影響部靭性を劣化させるフェライト相が形成され易くなるため、15.0%を上限とした。
【0015】
Ni:Niは耐食性改善に有効な元素であり、かつオーステナイトを安定化させフェライト生成を防止する効果をもつ元素である。このため、0.5%を下限として含有させる。しかしながら、多量に含有させると600℃における高温耐力が低下するため、その上限を6.0%とした。なおNiの含有量は、後述のMo含有量との関係で最適化される。
【0016】
Mo:MoはCrと同様、耐食性に有効な元素であると共に、高温耐力を維持する上で必要かつ不可欠の元素である。このため、0.3%を下限として含有させるが、フェライト形成能の強い元素であるため、溶接部靭性にも配慮して含有量上限を3.0%とした。
【0017】
N:Nは、溶接熱影響部の硬さを上昇させ、靭性を低下させる元素であり、Cのように高温強度を改善する効果を有さない。このため0.03%を上限として規制した。
【0018】
Al:AlはSiと同様、脱酸に必要な元素であると共に、脱硫を促進して前記のS含有量を安定的に確保するために含有させるが、過度に含有させると酸化物系介在物が多くなることに加えて窒化物も生成されるようになり、靭性が低下する。このため含有量の上限を0.15%とした。
【0019】
Ti:Tiは、酸化物または窒化物として存在し溶接熱影響部の粒成長を抑止して靭性を改善する効果を有する。またMnと同様、熱間加工性に有害なSを硫化物として固定して無害化する効果も有する。このため、0.003%を下限として含有させるが、過剰に含有させると粗大窒化物が現われて熱間加工性が低下すると共に、炭化物が形成されて靭性劣化をきたすため、上限を0.050%とした。
【0020】
A値(=[Mo]-4.41[Ni]+22.94 ≧0):高温耐力に及ぼすMo,Ni量の影響を図2に示す。これより、本発明のNi含有量で高温耐力の点から、必要となる条件はA≧0となる範囲である。
【0021】
以上の組成をべ一スとして、さらに高温耐力、耐食性、溶接性や靭性、熱間加工性を改善するために、以下に述べる元素の1種以上を選択的に添加することができる。
Cu:CuはNiと同様、耐食性改善に有効な元素であると共に、フェライト生成防止効果を有する元素であるため含有させるが、過剰に含有させると熱間加工性が劣化するので上限を3.0%とした。
【0022】
W:WはMoと同様、高温耐力を向上させるのに有効な元素であるため、Mo含有量が低い場合には補足的に含有させても良いが、高価な元素でもあることから含有量の上限は1.0%とした。
【0023】
Sn:Snは高温耐力を向上させる効果を有するため、Wと同様に、Mo含有量が低い場合には補足的に含有させても良いが、過剰に含有させると熱間加工性や溶接性が劣化するので、上限を1.0%とした。
【0024】
Nb,V:Nb,Vは、いずれも高温耐力を僅かながら改善させる効果を有すると共に溶接熱影響部硬さを低下させるのに有効である。しかしながら、多く含有させても効果は飽和するので、含有量の上限をそれぞれNb:0.05%,V:0.1%とした。
【0025】
Ca:0.0005〜0.005%、B:0.0005〜0.0050%
Ca:Caは、熱間加工性改善に有効な元素であり、必要に応じて0.0005%以上含有させるが、含有量が多すぎると粗大酸化物による靭性劣化を招くため、含有量の上限を0.005%とした。
B:Bも熱間加工性改善に有効な元素であり、0.0005%を下限として含有させるが、0.0050%超えて含有させると溶接割れを起こすため、適正範囲を0.0005〜0.0050%とした。
【0026】
P,S:P,Sは不可避的に含まれる不純物元素であり、高温耐力には直接影響しないが、靭性や熱間加工性に害する作用をもつため可及的に低レベルとするのが望ましい。現在の精錬技術で工業的かつ経済的に到達可能な範囲として、P:0.03%以下、S:0.005%以下が望ましい。
【0027】
次に、溶接金属の成分に関する限定理由について述べる。
以上の組成よりなり600℃での耐力が常温耐力の2/3以上となる母材と成分系が同一条件にあることを前提とした上で、さらに前記(2),(3)式で定義する成分指標B値,C値が所定の範囲にある必要がある。
【0028】
これらB,C値は、溶接金属の高温耐力に影響する金属組織に関連する指標である。当該成分系の溶接金属の金属組織は、マルテンサイト単相、あるいはマルテンサイト+オーステナイトの2相、あるいはマルテンサイト+フェライトの2相、あるいはマルテンサイト+オーステナイト+フェライトの3相のいずれかとなるが、マルテンサイトは高温強度確保には有利であるが靭性が劣り、オーステナイトは靭性に優れるものの高温強度を低下させ、フェライトはマルテンサイトと類似の作用を有する他、溶接金属の割れ防止にも役立つ。したがって、耐火建築構造に適用される溶接金属としては、これら3相が最適条件でバランス良く共存することが必要となる。
【0029】
溶接金属は凝固状態であるから、その金属組織における相分率は概ね成分含有量をもって近似することができるので、その最適条件をB値,C値をもって以下のように決定した。
B値:低すぎるとオーステナイト相が出現せず靭性の低い溶接金属となってしまう。また高すぎるとオーステナイト分率が多くなり過ぎて高温耐力が母材より大幅低下してしまう。このため、適正範囲として14.0から17.0の範囲を設定した。
C値:低すぎるとフェライトが出現せず溶接金属に割れが生じてしまうので、−11.8以上を適正とした。
【0030】
【実施例】
実施例に基づいて、本発明をより詳細に説明する。
表1に示す組成の鋼を溶製して造塊法にて鋳造した後、該鋳片を1200℃に加熱して板厚10mmの板圧延を施し、室温まで冷却した後、焼戻処理を施して母材とした。この母材に開先加工を行い、表2に示す成分の溶接材料を用いてTIG溶接を行った。この溶接部および母材部を対象として、JIS Z2241に従った常温引張り試験およびJIS G0567に従った600℃での高温引張試験を行った。
【0031】
試験結果を表3に示す。No. 1〜9の本発明では、溶接部において目的とする常温耐力の2/3以上の600℃耐力が得られる。一方、比較例 No.10,11,12は、母材が本発明の成分範囲から外れているため、母材部の耐火特性で溶接部全体の耐火特性が決定されている。比較例 No.13は溶接金属部においてもB値が発明範囲を外れているため、所期の耐火特性は得られない。また、比較例 No.14は、溶接金属部のC値が本発明範囲を外れているため、溶接割れが生じる。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】
【発明の効果】
以上述べたように、本発明によって、母材および溶接金属の成分を最適化することにより、耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体が得られる。
【図面の簡単な説明】
【図1】溶接部の断面を示す図である。
【図2】A値と高温耐力/常温耐力比の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a martensitic stainless steel welded structure excellent in fire resistance, in which building steel materials such as plates, shaped steel, and steel pipes made of martensitic stainless steel excellent in fire resistance are assembled by welding.
[0002]
[Prior art]
High-temperature strength is required for steel for building structures because of the demand to prevent the collapse and deformation of buildings during a fire. General structural carbon steel suddenly loses its strength when exposed to high temperatures of 300 ° C or higher, so it has been necessary to apply heavy fireproof coating to the steel surface. However, construction costs increase for fireproof coating. As a result, there has been a demand for a steel material that does not require a fire-resistant coating or that requires only a small amount of construction, and that has excellent fire resistance. Low alloy steel materials such as those disclosed in Japanese Patent Application Laid-Open No. 2-77523 having a yield strength standard value of 2/3 or more and a normal temperature tensile strength of 490 MPa or 570 MPa have been put into practical use.
[0003]
From the viewpoint of high-temperature strength, this low alloy refractory steel can provide the desired fire resistance, but because it is a low alloy rust resistance and corrosion resistance, it is difficult to use barely, and rust prevention coating is difficult. It is essential. That is, even if the fireproof coating can be omitted, the rust-proof coating cannot be omitted, which increases the construction cost.
[0004]
Various stainless steels are assumed as steel materials that can be applied to building structures without painting. However, as steel materials that are actually used in building structures such as columns and beams, design is important. It is rarely seen except for austenitic stainless steel (for example, SUS304) in extremely limited applications. The biggest reason is that there is no steel grade that satisfies the balance of strength, toughness, and weldability essential for the structure, but recently, as disclosed in JP-A-11-323507, it is harmful to weldability. Techniques have been proposed for developing martensitic stainless steel with Ni added and reducing mar C to building structural materials. However, it has not yet reached a technology that can sufficiently meet the above-mentioned demand for fire resistance.
[0005]
Further, in fields other than architectural uses, for example, in line pipes, martensitic stainless steel materials having excellent weldability and corrosion resistance and sufficient high-temperature strength as pipelines are disclosed, as disclosed in JP-A-9-316611. Has been proposed. However, the high temperature defined in the pipeline is about 100 to 150 ° C., which is much lower than 600 ° C. defined in the construction fireproof steel.
Therefore, in low-C martensitic stainless steel that can be applied to building structures without painting, the strength and toughness at room temperature are, of course, steel materials that can obtain sufficient strength at high temperatures of 600 ° C have not yet been proposed. There is no situation.
[0006]
Furthermore, when it is completed as a structure, not only the base material but also the high-temperature strength at the welded part is a problem, and the welded metal part is particularly important. In the cross section of the welded structure shown in FIG. 1, the weld metal is formed by melting a part of the welding material and the base material, and naturally has a component composition different from that of the base material. If the weld metal is insufficient even if the base metal has sufficient high-temperature strength, sufficient high-temperature strength cannot be obtained for the entire structure. And when the welding material for stainless steels described in the conventional JIS Z3321 etc. is used, there exists a problem that sufficient high temperature strength cannot be obtained in a weld metal part.
[0007]
[Problems to be solved by the invention]
The present invention overcomes the above-described problems, and in particular, provides a martensitic stainless steel welded structure in which the proof stress at 600 ° C. is 2/3 or more of the minimum proof stress standard value at room temperature. For the purpose.
[0008]
[Means for Solving the Problems]
The inventors first designed the components in terms of the strength, toughness, corrosion resistance, and high-temperature strength of the martensitic stainless steel base material, and then repeated welding tests using various welding materials to determine the high-temperature strength of the welded portion. I have evaluated it.
As a result, the component conditions of the weld metal to obtain the high temperature proof stress equivalent to the base metal were clarified. The present invention is constructed based on the above findings, and the gist thereof is as follows.
[0009]
(1) In mass%,
C: 0.005 to 0.1%, Si: 0.50% or less,
Mn: 1.5% or less, Cr: 10.0 to 15.0%,
Ni: 0.5-6.0% , Mo: 0.3-3.0% ,
N: 0.03% or less, Al: 0.15% or less,
Ti: 0.003 to 0.050%
The content of Ni and Mo satisfies the relationship of the following formula (1), the balance is composed of Fe and inevitable impurities, and the proof stress at 600 ° C. is 2/3 or higher than the proof strength at normal temperature. The martensitic stainless steel base material and the components within the same range as the base material, and the B value and C value defined by the following formulas (2) and (3) are 14.0 to 17.0, respectively. A martensitic stainless steel welded structure excellent in fire resistance, characterized by having a weld metal in a range of −11.8 or more.
A = [Mo] −4.41 [Ni] + 22.94 ≧ 0 (1)
B = [Ni] +0.5 [Mn] +30 [C] +0.8 [Cr] +0.8 [Mo] +1.2 [Si] (2)
C = [Ni] +0.5 [Mn] +30 [C] −1.1 [Cr] −1.1 [Mo] −1.6 [Si] (3)
[0010]
(2) Furthermore, in mass% ,
P ≦ 0.030%, S ≦ 0.0050% ,
And if necessary
Cu: 3.0% or less, W: 1.0% or less,
Sn: 1.0% or less, Nb: 0.05% or less,
V: The martensitic stainless steel welded structure having excellent fire resistance as described in (1) above, containing one or more of 0.1% or less .
(3) Furthermore, in mass%,
P ≦ 0.030%, S ≦ 0.0050%,
and
Ca: 0.0005-0.005%, B: 0.0005-0.0050% 1 type or 2 types are contained, The fireproof in any one of said (1) or (2) characterized by the above-mentioned. Martensitic stainless steel welded structure with excellent properties.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the components of the base material in the present invention will be described.
C: C is an element necessary for securing high temperature strength like Mo, and if the content is less than 0.005%, the high temperature proof stress at 600 ° C. becomes insufficient. However, if too much is included, the toughness of the weld heat affected zone deteriorates. For this reason, the optimal range was made into 0.005%-0.1% from both balance.
[0012]
Si: Si is added and left for deoxidation in the refining process, and is an element that forms a ferrite phase that is harmful to toughness in the weld heat affected zone. Therefore, Si is required for deoxidation. The minimum content should be 0.5% or less.
[0013]
Mn: Mn is an element detoxified by fixing S, which is harmful to hot workability, which is important in the molding process of the base material, as a sulfide, and is also an austenite stabilizing element, which is harmful to heat affected zone toughness. It is contained because it has an action of suppressing the formation of ferrite, but the effect is saturated if it is contained too much, so the upper limit was made 1.5%.
[0014]
Cr: Cr is an essential element for ensuring corrosion resistance and needs to be contained in an amount of 10.0% or more. On the other hand, it is also a ferrite stabilizing element. If the content is large, the ferrite phase deteriorates the toughness of the weld heat affected zone. Therefore, the upper limit was made 15.0%.
[0015]
Ni: Ni is an element effective for improving corrosion resistance, and has an effect of stabilizing austenite and preventing the formation of ferrite. For this reason, 0.5% is contained as a lower limit. However, since a high temperature proof stress at 600 ° C. is reduced when a large amount is contained, the upper limit is made 6.0%. The Ni content is optimized in relation to the Mo content described later.
[0016]
Mo: Like Cr, Mo is an element effective for corrosion resistance, and is an essential and indispensable element for maintaining high-temperature proof stress. For this reason, although 0.3% is contained as a lower limit, since it is an element having strong ferrite forming ability, the upper limit of content was set to 3.0% in consideration of weld toughness.
[0017]
N: N is an element that increases the hardness of the heat affected zone and decreases the toughness, and does not have the effect of improving the high temperature strength like C. Therefore, the upper limit is set to 0.03%.
[0018]
Al: Like Si, Al is an element necessary for deoxidation, and is included in order to promote desulfurization and ensure the above S content stably, but if included excessively, oxide inclusions In addition to the increase in the number of nitrides, nitrides are generated and the toughness decreases. For this reason, the upper limit of content was made into 0.15%.
[0019]
Ti: Ti exists as an oxide or nitride and has an effect of suppressing toughness by suppressing grain growth in the weld heat affected zone. In addition, like Mn, it also has the effect of detoxifying S, which is harmful to hot workability, as a sulfide. For this reason, 0.003% is contained as a lower limit. However, if excessively contained, coarse nitrides appear and hot workability is lowered, and carbides are formed and toughness is deteriorated. %.
[0020]
A value (= [Mo] −4.41 [Ni] + 22.94 ≧ 0): FIG. 2 shows the influence of the amounts of Mo and Ni on the high temperature proof stress. Thus, the necessary condition is a range where A ≧ 0 from the viewpoint of high temperature proof stress with the Ni content of the present invention.
[0021]
Based on the above composition, one or more of the elements described below can be selectively added in order to further improve the high temperature proof stress, corrosion resistance, weldability, toughness, and hot workability.
Cu: Like Ni, Cu is an element effective for improving corrosion resistance, and is an element having an effect of preventing the formation of ferrite. However, if excessively contained, hot workability deteriorates, so the upper limit is 3.0. %.
[0022]
W: W, like Mo, is an element effective for improving the high-temperature proof stress, so if the Mo content is low, it may be supplementarily contained, but since it is also an expensive element, the content of The upper limit was 1.0%.
[0023]
Sn: Since Sn has the effect of improving the high-temperature yield strength, it may be supplementarily added when the Mo content is low, as with W, but if included excessively, hot workability and weldability are obtained. Since it deteriorates, the upper limit was made 1.0%.
[0024]
Nb, V: Both Nb and V have an effect of slightly improving the high-temperature proof stress, and are effective in reducing the hardness of the weld heat affected zone. However, since the effect is saturated even if it is contained in a large amount, the upper limit of the content is set to Nb: 0.05% and V: 0.1%, respectively.
[0025]
Ca: 0.0005 to 0.005%, B: 0.0005 to 0.0050%
Ca: Ca is an element effective for improving hot workability, and is contained in an amount of 0.0005% or more as necessary. However, if the content is too large, toughness deterioration due to coarse oxides is caused, so the upper limit of the content Was 0.005%.
B: B is also an element effective for improving hot workability, and 0.0005% is contained as the lower limit. However, if contained over 0.0050%, weld cracking occurs, so the appropriate range is 0.0005-0. .0050%.
[0026]
P, S: P and S are inevitably contained impurity elements that do not directly affect the high-temperature proof stress, but it is desirable to make them as low as possible because they have an adverse effect on toughness and hot workability. . P: 0.03% or less and S: 0.005% or less are desirable as ranges that are industrially and economically reachable with the current refining technology.
[0027]
Next, the reason for limitation regarding the components of the weld metal will be described.
Based on the premise that the base material and the component system with the above composition and the yield strength at 600 ° C. are 2/3 or more of the normal temperature yield strength are the same, and further defined by the above formulas (2) and (3) It is necessary that the component index B value and C value to be within a predetermined range.
[0028]
These B and C values are indices related to the metal structure that affects the high temperature proof stress of the weld metal. The metal structure of the weld metal of the component system is either a martensite single phase, a martensite + austenite two phase, a martensite + ferrite two phase, or a martensite + austenite + ferrite three phase, Martensite is advantageous for securing high-temperature strength, but has poor toughness. Austenite is excellent in toughness, but lowers high-temperature strength. Ferrite has a function similar to martensite, and also helps prevent cracking of weld metal. Therefore, as a weld metal applied to a fireproof building structure, it is necessary that these three phases coexist in a balanced manner under optimum conditions.
[0029]
Since the weld metal is in a solidified state, the phase fraction in the metal structure can be approximated with the component content, and the optimum conditions were determined as follows with the B and C values.
B value: If it is too low, the austenite phase does not appear and the weld metal has low toughness. On the other hand, if it is too high, the austenite fraction becomes too high and the high-temperature proof stress is significantly lower than that of the base material. For this reason, the range of 14.0 to 17.0 was set as an appropriate range.
C value: If it is too low, ferrite will not appear and cracks will occur in the weld metal.
[0030]
【Example】
The invention is explained in more detail on the basis of examples.
After the steel having the composition shown in Table 1 was melted and cast by the ingot-making method, the slab was heated to 1200 ° C., subjected to plate rolling with a plate thickness of 10 mm, cooled to room temperature, and then tempered. To give a base material. Groove processing was performed on this base material, and TIG welding was performed using welding materials having the components shown in Table 2. A normal temperature tensile test according to JIS Z2241 and a high temperature tensile test at 600 ° C. according to JIS G0567 were performed on the welded part and the base metal part.
[0031]
The test results are shown in Table 3. In the present invention of Nos. 1 to 9, a 600 ° C. proof stress that is 2/3 or more of the target normal temperature proof stress can be obtained in the weld zone. On the other hand, in Comparative Examples No. 10, 11, and 12, since the base material is outside the component range of the present invention, the fire resistance characteristics of the entire welded portion are determined by the fire resistance characteristics of the base material portion. In Comparative Example No. 13, since the B value is also outside the scope of the invention even in the weld metal part, the desired fire resistance characteristics cannot be obtained. Moreover, since the C value of the weld metal part is outside the scope of the present invention in Comparative Example No. 14, a weld crack occurs.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
[Table 3]
[0035]
【The invention's effect】
As described above, according to the present invention, a martensitic stainless steel welded structure having excellent fire resistance can be obtained by optimizing the components of the base material and the weld metal.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section of a welded portion.
FIG. 2 is a diagram showing the relationship between A value and high temperature yield strength / normal temperature yield strength ratio.
Claims (3)
C :0.005〜0.1%、 Si:0.50%以下、
Mn:1.5%以下、 Cr:10.0〜15.0%、
Ni:0.5〜6.0%、 Mo:0.3〜3.0%、
N :0.03%以下、 Al:0.15%以下、
Ti:0.003〜0.050%
を含有し、NiとMoの含有量が下記(1)式の関係を満たして、残部がFeおよび不可避的不純物からなり、600℃における耐力が常温での耐力に対して2/3以上であるマルテンサイト系ステンレス鋼母材と、前記母材と同一範囲内の成分を含有し、なおかつ下記(2)および(3)式で定義するB値、C値がそれぞれ14.0以上17.0以下、−11.8以上の範囲にある溶接金属とを有することを特徴とする耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。
A=[Mo]−4.41[Ni]+22.94≧0 ……(1)
B=[Ni]+0.5[Mn]+30[C]+0.8[Cr]+0.8[Mo]+1.2[Si] ……(2)
C=[Ni]+0.5[Mn]+30[C]−1.1[Cr]−1.1[Mo]−1.6[Si] ……(3)% By mass
C: 0.005 to 0.1%, Si: 0.50% or less,
Mn: 1.5% or less, Cr: 10.0 to 15.0%,
Ni: 0.5-6.0% , Mo: 0.3-3.0% ,
N: 0.03% or less, Al: 0.15% or less,
Ti: 0.003 to 0.050%
The content of Ni and Mo satisfies the relationship of the following formula (1), the balance is composed of Fe and inevitable impurities, and the proof stress at 600 ° C. is 2/3 or higher than the proof strength at normal temperature. The martensitic stainless steel base material and the components within the same range as the base material, and the B value and C value defined by the following formulas (2) and (3) are 14.0 to 17.0, respectively. A martensitic stainless steel welded structure excellent in fire resistance, characterized by having a weld metal in a range of −11.8 or more.
A = [Mo] −4.41 [Ni] + 22.94 ≧ 0 (1)
B = [Ni] +0.5 [Mn] +30 [C] +0.8 [Cr] +0.8 [Mo] +1.2 [Si] (2)
C = [Ni] +0.5 [Mn] +30 [C] −1.1 [Cr] −1.1 [Mo] −1.6 [Si] (3)
P≦0.030%、 S≦0.0050%、
および
Cu:3.0%以下、 W:1.0%以下、
Sn:1.0%以下、 Nb:0.05%以下、
V :0.1%以下の1種または2種以上を含有することを特徴とする請求項1に記載の耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。 Furthermore, in mass% ,
P ≦ 0.030%, S ≦ 0.0050% ,
And Cu: 3.0% or less, W: 1.0% or less,
Sn: 1.0% or less, Nb: 0.05% or less,
The martensitic stainless steel welded structure excellent in fire resistance according to claim 1 , characterized in that it contains one or more of V: 0.1% or less.
P≦0.030%、 S≦0.0050%、
および
Ca:0.0005〜0.005%、B:0.0005〜0.0050%の1種または2種を含有することを特徴とする請求項1または2のいずれか1項に記載の耐火性に優れたマルテンサイト系ステンレス鋼溶接構造体。 Furthermore, in mass% ,
P ≦ 0.030% , S ≦ 0.0050% ,
and
It contains 1 type or 2 types of Ca: 0.0005-0.005% and B: 0.0005-0.0050%, The fire resistance of any one of Claim 1 or 2 characterized by the above-mentioned . Excellent martensitic stainless steel welded structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000329984A JP4592173B2 (en) | 2000-10-30 | 2000-10-30 | Martensitic stainless steel welded structure with excellent fire resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000329984A JP4592173B2 (en) | 2000-10-30 | 2000-10-30 | Martensitic stainless steel welded structure with excellent fire resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002129291A JP2002129291A (en) | 2002-05-09 |
JP4592173B2 true JP4592173B2 (en) | 2010-12-01 |
Family
ID=18806575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000329984A Expired - Lifetime JP4592173B2 (en) | 2000-10-30 | 2000-10-30 | Martensitic stainless steel welded structure with excellent fire resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4592173B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4792355B2 (en) * | 2006-09-12 | 2011-10-12 | バブコック日立株式会社 | Yokoyose / stub tube welded structure and boiler apparatus including the same |
CN101269447B (en) * | 2007-03-23 | 2013-01-09 | 中国科学院金属研究所 | Heat-proof stainless steel gas protection welding wire of martensite |
JP5971415B2 (en) * | 2013-06-19 | 2016-08-17 | Jfeスチール株式会社 | Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316611A (en) * | 1996-03-27 | 1997-12-09 | Kawasaki Steel Corp | Martensitic steel for line pipe excellent in corrosion resistance and weldability |
JPH1161347A (en) * | 1997-08-14 | 1999-03-05 | Kawasaki Steel Corp | Martensitic steel for line pipes excellent in corrosion resistance and weldability |
JPH11256281A (en) * | 1998-03-11 | 1999-09-21 | Sumitomo Metal Ind Ltd | Martensitic stainless steel excellent in welding performance characteristic |
-
2000
- 2000-10-30 JP JP2000329984A patent/JP4592173B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316611A (en) * | 1996-03-27 | 1997-12-09 | Kawasaki Steel Corp | Martensitic steel for line pipe excellent in corrosion resistance and weldability |
JPH1161347A (en) * | 1997-08-14 | 1999-03-05 | Kawasaki Steel Corp | Martensitic steel for line pipes excellent in corrosion resistance and weldability |
JPH11256281A (en) * | 1998-03-11 | 1999-09-21 | Sumitomo Metal Ind Ltd | Martensitic stainless steel excellent in welding performance characteristic |
Also Published As
Publication number | Publication date |
---|---|
JP2002129291A (en) | 2002-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000256777A (en) | High tensile strength steel plate excellent in strength and low temperature toughness | |
JP2908228B2 (en) | Ferritic steel welding material with excellent resistance to hot cracking | |
JP4592173B2 (en) | Martensitic stainless steel welded structure with excellent fire resistance | |
JP2002047532A (en) | High tensile strength steel sheet excellent in weldability and its production method | |
JP3620319B2 (en) | Martensitic stainless steel with excellent corrosion resistance and weldability | |
JP4457492B2 (en) | Stainless steel with excellent workability and weldability | |
JP3845366B2 (en) | Corrosion resistant steel with excellent weld heat affected zone toughness | |
JPH03211230A (en) | Production of low alloy steel for line pipe with high corrosion resistance | |
JP4570221B2 (en) | Martensitic stainless steel with excellent fire resistance | |
JP3422880B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JP3126181B2 (en) | Manufacturing method of steel for offshore structures with excellent fire resistance | |
JP3422877B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JP3565155B2 (en) | High strength low alloy heat resistant steel | |
JP2001234276A (en) | Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE | |
JP3412926B2 (en) | CO2 corrosion resistant and sulfide stress crack resistant martensitic stainless steel with excellent weldability | |
JPH0711331A (en) | Manufacture of pipe coupling | |
JP2583114B2 (en) | Low carbon Cr-Mo steel sheet with excellent weld cracking resistance | |
JPH0737649B2 (en) | Manufacturing method of fireproof steel plate for building with low yield ratio | |
JPH05339637A (en) | Production of steel pipe or square pipe having low yield ratio and excellent weatherability | |
JP2001152295A (en) | Hot rolled stainless steel plate for civil engineering and building construction use, excellent in workability and weldability | |
JPS62256947A (en) | Tempered high-phosphorus-type weather-resisting steel plate excellent in weldability and toughness at low temperature | |
JPH04350120A (en) | Production of high strength refractory steel plate for construction use | |
JPH09118953A (en) | Low chrome-ferritic steel excellent in strength at high temperature and weldability | |
JP2816008B2 (en) | Low yield ratio steel material for building with excellent fire resistance and method of manufacturing the same | |
JPH05339674A (en) | Low carbon 0.5% mo steel sheet excellent in weld crack resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050225 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4592173 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |