[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4588547B2 - 多重通信システム及び多重通信方法 - Google Patents

多重通信システム及び多重通信方法 Download PDF

Info

Publication number
JP4588547B2
JP4588547B2 JP2005174208A JP2005174208A JP4588547B2 JP 4588547 B2 JP4588547 B2 JP 4588547B2 JP 2005174208 A JP2005174208 A JP 2005174208A JP 2005174208 A JP2005174208 A JP 2005174208A JP 4588547 B2 JP4588547 B2 JP 4588547B2
Authority
JP
Japan
Prior art keywords
signal
signals
channel
multiplexed
spreading code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174208A
Other languages
English (en)
Other versions
JP2006352373A (ja
Inventor
憲行 太田
準基 三鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005174208A priority Critical patent/JP4588547B2/ja
Publication of JP2006352373A publication Critical patent/JP2006352373A/ja
Application granted granted Critical
Publication of JP4588547B2 publication Critical patent/JP4588547B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の異なる通信チャネルを単一の送信手段に多重化する多重通信システムに関する。
従来、単一の送信源に複数の通信チャネルを多重化する多重化通信方式には以下のようなものが知られている。
通信チャネル毎に通信データを格納するバッファを送信側の装置に設置し、送信源から送信する前に通信データを一度バッファに格納する。
スケジューラは、チャネル毎のバッファに格納されている通信データの総量を参照し、予め定められた順番で、通信データを読み出すバッファを選択し、選択したバッファから通信データを読み出し、受信側の装置に向けて送信する。
このとき、通信データはデータブロック単位で読み出される。通信データの形式がイーサネット(登録商標)形式であれば、64〜1518bytesのイーサネット(登録商標)フレーム単位、ATM形式であれば、53bytesのATMセル単位で読み出される(例えば、非特許文献1から5を参照。)。また、このとき、フレーム単位で誤り訂正を行うこともある(例えば、非特許文献2を参照。)
スケジューリング則には、各チャネルから順番に読み出すラウンドロビンスケジューリング(例えば、非特許文献5又は6を参照。)、各チャネルに優先度をつけ、高優先のチャネルの通信データを読み出すプライオリティスケジューリング(例えば、非特許文献3又は6を参照。)などの方法がある。
上記の方式により、複数の通信チャネルの通信データを単一の送信源に多重することができる。
IEEE Std802.3.2000 IEEE Std802.3ah−2004 IEEE Std802.1D−2004 John B.Nagle"On Packet Switches with Infinite Storage",IEEE Transactions On Communications,Vol.COM−35,No.4,April 1987 Manolis Katevenis and Costas Coursoubetis"Weighted Round−Robin Cell Multiplexing in a General−Purpose ATM Switch Chip",IEEE Journal On Selected Areas InCommunications,Vol.9,No.8,Octorber 1991 戸田巌著「詳解ネットワークQoS技術」オーム社、2001年5月発行
しかし、この多重通信方式では、以下のような課題がある。
通信チャネル毎に必要とされる要求が異なる場合、又は通信チャネルに設定されているアプリケーションが異なる場合などで、チャネル毎の優先度が異なる場合がある。この場合、一般に要求される条件は、伝送速度、保証帯域又は遅延特性が例示できるが、チャネル毎に要求される信頼度が異なる場合もある。
すなわち、劣悪な通信環境においても、十分に小さい誤り率で通信することが求められるような通信チャネルである。さらには、通信環境が突然劣化しても、十分に小さい誤り率で通信可能であることが求められる。これを実現するためには、上記の多重通信方式においては、以下のように通信を行う必要がある。
通信チャネル毎に、要求に応じた符号化処理を行い、必要な誤り率を確保する。このときの符号化方式には、誤り訂正符号を付与する方式や拡散符号を用いる方式がある。しかし、この方式では、符号化処理により、送信すべき通信データ量が必ず増加するため、この符号化された通信データを単一の送信器から送信するのに必要な時間は増大する。
その間、他のチャネルからの通信データを送信することはできないため、他のチャネルの通信データは長時間バッファ内に格納されたままとなり、このチャネルの遅延時間は増大する。特に、誤り率を著しく改善することができる拡散符号化を行う場合、通信データ1ビットに対し、符号長Lビットの拡散符号を必要とするため、他のチャネルの待ち時間は単純に以前のL倍となる。
これにより、きわめて長時間にわたり他のチャネルの通信データは送信装置から送信されることがなく、これらの通信チャネルを利用するアプリケーションに大きな影響を与える。また、不要に長い符号を用いると、通信帯域の利用効率を低下させてしまう。
従って、本発明では、通信帯域を効率的に利用し、符号化により通信データが増大する通信チャネルを除く通信チャネルの遅延時間及び符号化する通信チャネルのビット誤り率の増大を回避して通信環境を維持することが可能な多重通信システム及び多重通信方法を提供することを目的とする。
本発明では、上記目的を達成するために、送信装置から送信する複数の信号を予め符号化し、所定の重みを掛け合わせてビット単位で多重化することとした。また、送信装置と対向接続された受信装置側でビット誤り率を測定し、送信装置で符号化する際の符号又は符号長、並びに多重化する際のビット列に対する重みを受信装置側で設定することとした。
具体的には、本発明に係る多重通信システムは、N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムであって、前記送信装置は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号毎に設けられ前記チャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化して出力するp個の符号器と、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号器から出力されるp個の符号化信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して出力する多重化器と、前記多重化器から出力される前記多重化信号を所定の通信方式で送信する送信器と、を備え、前記受信装置は、前記送信器から送信される前記多重化信号を受信し電気信号として出力する受信器と、前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、前記再生器のそれぞれは、前記分配器からの前記多重化信号と第1参照信号とを取得し、前記多重化信号から再生したクロック信号と前記第1参照信号とのいずれか一方に前記多重化信号を同期させて前記多重化信号を識別再生する第1データ再生器を備え、前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号を取得し、前記相関信号から再生したクロック信号に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号に同期するクロック信号を出力し、前記第1データ再生器において前記第1参照信号をいずれかの前記第2データ再生器から出力される前記クロック信号とすることを特徴とする。
重みをビット列に掛け合わせて多重化することにより、符号化により通信データが増加したチャネルの信号の送信完了を待つことなく、他のチャネルの信号を送信することができる。そのため、他のチャネルの信号を通信ネットワークから他の通信ネットワークへ送信するのに要する遅延時間を、従来のフレーム毎に出力する場合と比較して短くすることができる。従って、符号化により通信データが増加しても通信環境を劣化させることなく維持することができる。また、複数のチャネルについてチャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
拡散符号による直接拡散符号化方式は、符号化による通信データ量の増加率が他の符号化方式に比較して大きい。本発明では、通信データ量の増加率の大きい拡散符号化方式においても遅延時間の増大の抑制効果を発揮することができる。
予めクロックデータ再生器で生成したクロック信号を第1参照信号として用いると、多重化信号の高安定な識別再生を可能とすると共に、相関信号又はクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
具体的には、本発明に係る多重通信システムは、N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムであって、前記送信装置は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号毎に設けられ前記チャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化して出力するp個の符号器と、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号器から出力されるp個の符号化信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して出力する多重化器と、前記多重化器から出力される前記多重化信号を所定の通信方式で送信する送信器と、を備え、前記受信装置は、前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器を備え、前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号と第2参照信号とを取得し、前記相関信号から再生したクロック信号と前記第2参照信号とのいずれか一方に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するクロック信号を出力し、前記第2データ再生器において前記第2参照信号を他の前記第2データ再生器から出力される前記クロック信号とする。
重みをビット列に掛け合わせて多重化することにより、符号化により通信データが増加したチャネルの信号の送信完了を待つことなく、他のチャネルの信号を送信することができる。そのため、他のチャネルの信号を通信ネットワークから他の通信ネットワークへ送信するのに要する遅延時間を、従来のフレーム毎に出力する場合と比較して短くすることができる。従って、符号化により通信データが増加しても通信環境を劣化させることなく維持することができる。また、複数のチャネルについてチャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
拡散符号による直接拡散符号化方式は、符号化による通信データ量の増加率が他の符号化方式に比較して大きい。本発明では、通信データ量の増加率の大きい拡散符号化方式においても遅延時間の増大の抑制効果を発揮することができる。
予めクロックデータ再生器で生成したクロック信号を第2参照信号として用いると、相関信号の高安定な識別再生を可能とする共に、相関信号又はクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
また、上記多重通信システムにおいて、前記送信装置は、前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を設定する設定器をさらに備えることが望ましい。
設定器で重み、拡散符号又は拡散符号の符号長を設定することにより、通信環境に応じて送信装置での送信条件を柔軟に変えることが可能となる。
また、上記多重通信システムにおいて、前記受信装置は、前記送信装置の送信する前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を、前記送信装置から受信する前記多重化信号に基づいて決定し前記送信装置に通知する通知器をさらに備え、前記送信装置において前記設定器は、前記通知器から通知された前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長に従って前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を設定することが望ましい。
このように、受信装置において送信装置の送信制御を行うことにより、受信装置において送信装置の送信状態を認識しながら通信することが可能となる。そのため、通信環境が劣化した場合でも、重み、拡散符号又は拡散符号の符号長を変化させて、通信環境を早急に回復させることができる。
また、上記多重通信システムにおいて、前記受信装置は、前記復号器で復号化された前記p個のチャネルの信号からチャネル毎に前記p個のチャネルの信号のビット誤り率を測定するp個の誤り率測定器をさらに備え、前記通知器は、前記p個の誤り率測定器で測定されたp個のビット誤り率が許容ビット誤り率以下となるように前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することが望ましい。
このように、通知器を設けることにより、符号化信号のビット誤り率に対して動的に重み、拡散符号又は拡散符号の符号長を設定することが可能となるため、ビット誤り率が急増することを防止し、通信環境を劣化させることなく維持することができる。
また、上記多重通信システムにおいて、前記送信装置において、前記Nを2とした2個のチャネルの信号のうち前記pを1とした1個のチャネルの信号に対する重みをW1(ただし、W1は自然数とする。)とし、他の1個のチャネルの信号に対する重みをW2(ただし、W2は1とする。)とし且つ前記pを1とした1個のチャネルの信号に対する前記許容ビット誤り率をe(eは、任意の値とする。)とした場合、前記受信装置において前記通知器は、前記誤り率測定器で測定され前記pを1とした1個のチャネルの信号に対する前記ビット誤り率をemとして、emがe未満のときは前記拡散符号の符号長をL1(ただし、L1は自然数とする。)に決定し、emがe以上のときは前記拡散符号の符号長をL2(ただし、L2は自然数とし且つL1<L2とする。)に決定することが望ましい。
このようにビット誤り率が増加した場合には符号長を長くして、符号化するチャネルの信号のビット誤り率を低下させる。一方、ビット誤り率が許容ビット誤り率以下であれば通信条件を満たしているため、符号長を短くして符号化による通信データ量の増加を抑えることにより、符号化するチャネルの信号の実効的な通信速度を上げ、効率的に通信帯域を利用することができる。
また、上記多重通信システムにおいて、前記送信装置は、前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器と、前記バッファ量測定器で測定されるバッファ量を通知する通知信号を生成して前記p個のチャネルの信号のうちいずれか1個のチャネルの信号として出力する通知信号生成器と、をさらに備え、前記受信装置において前記通知器は、前記通知信号生成器から出力される前記通知信号及び前記誤り率測定器の測定する前記ビット誤り率に基づいて前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することが望ましい。
このように、送信装置に格納されているバッファ量及び受信装置でのビット誤り率に基づいて重み、拡散符号又は拡散符号の符号長を設定することにより、バッファ量が増大しても通信環境を劣化させることなく維持することができる。
また、上記多重通信システムにおいて、前記送信装置は、前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器をさらに備え、前記設定器は、前記バッファ量測定器で測定されるバッファ量に対応する所定の値に前記重みを設定することが望ましい。
通信環境の変化として各チャネルのバッファ量の増減が考えられる。そのため、バッファ量の増減に応じて重みを可変することで、例えば、伝送速度の実効値を維持することができる。
また、上記多重通信システムにおいて、前記送信装置において、前記Nを2とした場合、前記送信装置において前記設定器は、前記バッファ量測定器で測定され前記pを1とした1個のチャネルの信号のバッファ量が0のときは前記pを1とした1個のチャネルの信号に対する重みを0とし且つ他の1個のチャネルの信号に対する重みを1とし、前記バッファ量測定器で測定され前記pを1とした1個のチャネルの信号のバッファ量が0より大きいときは前記pを1とした1個のチャネルの信号に対する重みを1とし且つ他の1個のチャネルの信号に対する重みをW(ただし、Wは自然数とする。)とすることが望ましい。
設定器が、このように重みをバッファ量に応じて動的に変更して設定することで、符号化をするチャネルのバッファ量が0のときは、符号化をしないチャネルのバッファからの信号の通信データのみを読み出すことが可能となる。そのため通信帯域を効率的に使用することができる。
また、上記多重通信システムにおいて、前記送信装置は、前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器と、前記バッファ量測定器で測定されるバッファ量に応じて前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長をチャネル毎に設定する設定器をさらに備え、前記受信装置において前記(N−p)個の再生器のそれぞれは、前記第1データ再生器の前段で予め前記多重化信号を前記重み及び前記符号長に応じた所定時間だけ遅延させて出力する遅延器をさらに備えることが望ましい。
多重化信号を重み及び前記符号長に応じて多重化信号を所定時間遅延させることにより、クロックデータ再生器からのクロック信号の先頭に多重化信号のうち符号化されていない(N−p)個のチャネルの信号の先頭のビットを合わせることができる。そのため、不要に遅延させることがなく通信速度を維持することができる。
また、上記多重通信システムにおいて、前記送信装置において前記設定器が、前記Nを2とした2個のチャネルの信号のうち前記pを1とした1個のチャネルの信号に対する重みを1とし且つ他の1個のチャネルの信号に対する重みをW(ただし、Wは自然数とする。)と設定し且つ前記pを1とした1個のチャネルの信号に対する符号長をL(ただし、Lは自然数とする。)と設定する場合、前記受信装置において前記遅延器は、前記多重化信号を前記所定時間d(ただし、dはL×(1+W)/(前記2個のチャネルの信号のビットレート)の自然数倍とする。)だけ遅延させることが望ましい。
本発明は、特に2つのチャネル信号のうち、一方を符号化し他方を符号化しない場合である。これにより、クロックデータ再生器からのクロック信号の先頭のビットと多重化信号に含まれる符号化されていないチャネルの信号の先頭ビットとの同期を取ることができる。そのため、多重化信号を必要以上に遅延させることがなく伝送速度を低下させない。
また、本発明に係る送信装置は、上記いずれかの送信装置である。
本発明に係る送信装置は、総てのチャネルの信号をビット多重するため、符号化により増大したチャネルを除く他のチャネルの遅延時間の増大を抑制できる。また、送信装置でのバッファ量に応じてビット列に対する重みを設定するため、送信待ち時間に極端な差が出ることを抑制できるとともに、バッファ量が0のチャネルがあっても、ビット多重する際に多重化信号に空きビットを作ることがないため、通信帯域を効率よく使用することを可能とする。
また、本発明に係る受信装置は、N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムの前記受信装置であって、前記多重化信号は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号化信号のビット列にそれぞれ所定の重みを付与した信号であり、前記受信装置は、前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、前記再生器のそれぞれは、前記分配器からの前記多重化信号と第1参照信号とを取得し、前記多重化信号から再生したクロック信号と前記第1参照信号とのいずれか一方に前記多重化信号を同期させて前記多重化信号を識別再生する第1データ再生器を備え、前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号を取得し、前記相関信号から再生したクロック信号に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号に同期するクロック信号を出力し、前記第1データ再生器において前記第1参照信号をいずれかの前記第2データ再生器から出力される前記クロック信号とすることを特徴とする。
また、本発明に係る受信装置は、N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムの前記受信装置であって、前記多重化信号は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号化信号のビット列にそれぞれ所定の重みを付与した信号であり、前記受信装置は、前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号と第2参照信号とを取得し、前記相関信号から再生したクロック信号と前記第2参照信号とのいずれか一方に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するクロック信号を出力し、前記第2データ再生器において前記第2参照信号を他の前記第2データ再生器から出力される前記クロック信号とすることを特徴とする。
本発明に係る受信装置は、ビット誤り率を受信装置において検出して送信装置にフィードバックさせて符号長を再設定することにより、許容ビット誤り率以下の通信が可能となり、通信環境を劣化させることなく維持することを可能とする。
また、本発明に係る多重通信方法は、送信装置がN(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信し、前記送信装置と対向接続される受信装置が前記送信装置から送信される前記多重化信号を受信する多重通信方法であって、前記送信装置は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、符号化した符号化信号のビット列及び前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して所定の通信方式で送信し、前記受信装置は、前記送信装置から送信される前記多重化信号を受信し電気信号として出力してN個に分配し、分配したN個の前記多重化信号のうちp個の前記多重化信号を前記符号化方式に対応してチャネル毎に復号化し、分配した前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号をそれぞれ前記多重化信号から再生したクロック信号と第1参照信号とのいずれか一方に同期させて前記(N−p)個の多重化信号をさらに識別再生し、前記p個の多重化信号を復号する際に、前記多重化信号と前記拡散符号との相関をとり、相関をとった相関信号を前記相関信号から再生したクロック信号に同期させて前記p個のチャネルの信号を識別再生し、前記p個の多重化信号のうちq(ただし、qはp以下の自然数とする。)個についてq個の前記チャネルの信号を識別再生する際に、識別再生と共に前記相関信号から再生した前記クロック信号に同期するq個のクロック信号を生成し、前記(N−p)個の多重化信号を識別する際に前記第1参照信号を前記q個のクロック信号のうちいずれかのクロック信号とすることを特徴とする。
このように、チャネル毎に符号化処理を行うことにより、各チャネルで異なる許容ビット誤り率を設定できる。そのため、通信データの種類によって柔軟な通信環境の選択が可能となる。また、送信装置において、チャネル毎に異なる重みを付与して多重化することにより、あるチャネルの信号について符号化により通信データ量が増加しても、増加した通信データの送信終了を待つことなく他のチャネルの信号も送信できるため、他のチャネルの遅延時間の増大を抑制することができる。また、複数のチャネルについてチャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
復号化した信号を識別再生する際に、第1参照信号として、予め生成されたクロック信号を用いることにより、安定に識別再生することが可能となる共に、多重化信号又はクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
また、本発明に係る多重通信方法は、送信装置がN(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信し、前記送信装置と対向接続される受信装置が前記送信装置から送信される前記多重化信号を受信する多重通信方法であって、前記送信装置は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、符号化した符号化信号のビット列及び前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して所定の通信方式で送信し、前記受信装置は、前記送信装置から送信される前記多重化信号を受信し電気信号として出力して自動利得増幅してN個に分配し、分配したN個の前記多重化信号のうちp個の前記多重化信号を前記符号化方式に対応してチャネル毎に復号化し、分配した前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号をそれぞれ識別再生し、前記p個の多重化信号を復号する際に、前記多重化信号と前記拡散符号との相関をとり、相関をとった相関信号を前記相関信号から再生したクロック信号と第2参照信号とのいずれか一方に同期させて前記p個のチャネルの信号を識別再生し、前記p個の多重化信号のうちq(ただし、qはp以下の自然数とする。)個についてq個の前記チャネルの信号を識別再生する際に、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するq個のクロック信号を生成し、前記p個のチャネルの信号を識別再生する際に、前記第2参照信号を他の前記第2参照信号に同期する前記q個のクロック信号のうちいずれかのクロック信号とする。
このように、チャネル毎に符号化処理を行うことにより、各チャネルで異なる許容ビット誤り率を設定できる。そのため、通信データの種類によって柔軟な通信環境の選択が可能となる。また、送信装置において、チャネル毎に異なる重みを付与して多重化することにより、あるチャネルの信号について符号化により通信データ量が増加しても、増加した通信データの送信終了を待つことなく他のチャネルの信号も送信できるため、他のチャネルの遅延時間の増大を抑制することができる。また、複数のチャネルについてチャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
相関信号を識別再生する際に、第2参照信号として、予め生成された他のチャネルのクロック信号を用いることにより、安定に識別再生することが可能となる共に、相関信号又はクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
また、上記の多重通信方法において、前記受信装置は、復号化した前記p個のチャネルの信号からチャネル毎にビット誤り率を測定し、測定したp個の前記ビット誤り率がそれぞれ許容ビット誤り率以下となるように前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を決定して前記送信装置に通知し、前記送信装置は、前記受信装置から通知された前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長に従って前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を設定することが望ましい。
このように受信装置側でビット誤り率をモニタして、各チャネルのビット誤り率が許容ビット誤り率以下となるように重み、拡散符号又は拡散符号の符号長を決定することにより、符号化により通信データが増大しても通信環境を劣化させることなく維持することができる。
また、上記の多重通信方法において、前記送信装置は、前記p個のチャネルの信号を符号化する前に前記p個のチャネルの信号を予めチャネル毎にバッファに格納し且つ前記N個のチャネルの信号を多重化する前に前記(N−p)個のチャネルの信号を予めチャネル毎にバッファに格納し、格納した前記N個のチャネルの信号の量をバッファ毎に測定し、測定したバッファ量を通知する通知信号を生成して前記p個のチャネルの信号のいずれか1のチャネルの信号として送信し、前記受信装置は、前記送信装置から送信された前記通知信号及び測定した前記p個のビット誤り率に基づいて前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することが望ましい。
このように、送信装置に格納されているバッファ量及び受信装置でのビット誤り率に基づいて重みの大きさ、拡散符号又は拡散符号の符号長を設定することにより、バッファ量が増大しても通信環境を劣化させずに維持することができる。
また、上記の多重通信方法において、前記送信装置が、前記p個のチャネルの信号を符号化する前に前記p個のチャネルの信号を予めチャネル毎にバッファに格納し且つ前記N個のチャネルの信号を多重化する前に前記(N−p)個のチャネルの信号を予めチャネル毎にバッファに格納し、格納した前記N個のチャネルの信号の量をバッファ毎に測定し且つ測定したバッファ量に対応する所定の値に、前記N個のチャネルの信号に対する前記重みWi及び前記p個のチャネルの信号に対する前記拡散符号の符号長Lj(ただし、iはN以下で前記N個のチャネルの信号のそれぞれのチャネルに対応し、jはp以下で前記p個のチャネルの信号のそれぞれのチャネルに対応する。)を設定する場合、前記受信装置は、前記(N−p)個の多重化信号を再生する前に予め前記多重化信号を所定時間遅延させ、前記多重化信号を遅延させる際に、前記受信装置は、前記所定時間di(ただし、i=jでdiはチャネル毎にLj×(1+Wi)の自然数倍とする。)だけ遅延させることが望ましい。
所定時間をdiとすることにより、クロック信号の先頭に多重化信号のうち符号化されていない(N−p)個のチャネルの信号の先頭のビットを合わせることができる。そのため、不要に遅延させることがなく通信速度を維持することができる。
本発明に係る多重通信システム及び多重通信方法では、通信帯域を効率的に利用し、符号化により通信データが増大する通信チャネルを除く通信チャネルの遅延時間及び符号化する通信チャネルのビット誤り率の増大を回避して通信環境を維持することが可能な多重通信システム及び多重通信方法を提供することが可能である。
以下に、本発明に係る多重通信システム及び多重通信方法について実施形態を示して詳細に説明するが、本発明は、以下の記載に限定して解釈されない。なお、本明細書及び図面において番号が同じ構成要素は、相互に同一のものを示すものとする。さらに、同一の構成要素が複数ある場合には、同一の番号のあとにハイフンを付加して区別することとする。
図1に、本実施形態に係る多重通信システム2のブロック構成図を示す。また、図2から図5に他の形態に係る多重通信システムのブロック構成図を示す。
図1に示す多重通信システム2は、通信ネットワーク10に接続された送信装置11と、光伝送路30を介して送信装置11と対向接続される受信装置12と、を有する。
送信装置11は、通信ネットワーク10から送信される通信データを含む信号を識別してチャネルCH1又はチャネルCH2のいずれか一方に出力する識別器20と、識別器20から出力される信号を格納するバッファ21−1、21−2と、バッファ21−1から出力される信号を所定の符号化方式で符号化する符号器22と、符号器22から出力される符号化信号及びバッファ21−2から直接出力される信号をビット単位で多重化して多重化信号を出力する多重化器23と、多重化器23から出力される多重化信号を所定の通信方式で送信する送信器27と、を有する。また、本実施形態では、バッファ21−1、21−2に格納された通信データの量、即ちバッファ量をチャネル毎に測定するバッファ量測定器26と、符号器22での符号化方式を決定し、また多重化器23での信号の多重化の際にビット列に付与する重みを設定する設定器25と、バッファ量測定器26で測定したバッファ量を通知する通知信号を生成してチャネルCH1の信号として出力する通知信号生成器53と、を有する。
ここで、識別器20は、通信ネットワーク10からの通信データを予め定められた識別規則に従って識別し、通信データを含む信号を出力する。例えば、通信データのデータフレーム中の優先度フィールドを参照して高優先順に通信データをチャネルCH1及びCH2に向けて出力する。
バッファ21−1、21−2は、例えばFIFO(First In First Out)構成をとり、受信した順に信号を出力する。なお、格納する通信データがデータフレーム単位で格納可能であればいずれの格納形式であってもよい。このとき、バッファ量測定器26は、バッファ21−1、21−2に格納された通信データの量、即ちバッファ量をチャネルCH1及びCH2毎に測定する。
符号器22は、所定の符号化方式でバッファから出力される信号を符号長さL1の符号C1により符号化する。所定の符号化方式としては、DES(Data Encryption Standard)、RSA(Rivest−Shamir−Adlman)及びPGP(Pretty Good Privacy)等の信号暗号化の際の符号化、ADPCM(Adaptive Differential Pulse Code Moduration)、JPEG(Joint Photographic Expert Group)及びMPEG(Motion Picture Experts Group)等の音声/画像信号圧縮の際の符号化、CRC(Cyclic Redundancy Check)等の誤り訂正を行うための符号化、LZ(Lempel−Ziv coding)符号等の情報圧縮の際の符号化並びにCDMA(Code Division Multiple Access)等の信号変調の際の符号化が例示できる。本実施形態では、上記CDMA等の通信で適用される拡散符号によるSS(Spread Spectrum)方式の符号化方式を適用した場合について説明する。拡散符号による直接拡散符号化方式は、符号化による通信データ量の増加率が他の符号化方式に比較して大きい。本実施形態では、通信データ量の増加率の大きい符号化方式においても遅延時間の増大の抑制効果を発揮することができる。
多重化器23は、符号器22から出力される符号化信号及びバッファ21−2から直接出力される信号を各信号のビット列にそれぞれ重みW1及びW2を付与してビット単位で多重化し多重化信号として出力する。
なお、図1では、符号器22を設けたチャネルを1つ、符号器22を設けないチャネルを1つの合計2つのチャネルを設けた送信装置を示しているが、通信チャネルは、図2に示す他の形態のように、N個設けることができる。また、図2では、N個のチャネルの総てに符号器22−1から22−Nを設けたが、N個のチャネルのうちp個のチャネルを符号器を設けたチャネルとし、p個を除く(N−p)個のチャネルを符号器を設けないチャネルとすることもでき、また、符号器22−1から22−Nにおける符号長を1とすることにより実質符号器を設けないチャネルとすることもできる。このように所望の通信環境に応じて柔軟に符号器を設けることができる。図2に示すようにチャネル数をN個とした場合は、各チャネルにバッファ21−1から21−Nを設けることが望ましい。この場合、識別器20は、所定の識別規則に従って、通信データをチャネルCH1からCHNに向けて出力する。また、バッファ量測定器26は、バッファ21−1から21−Nのバッファ量をバッファごとに測定する。
ここで、図6に図1に示す多重化器から出力される多重化信号の構成の1例を示した概略図を示す。
まず、図1に示すバッファ21−1から出力された信号は、符号器22において図6に示すように符号長L1=L(ただし、Lは任意の自然数とする。)でL倍の長さに符号化され、出力される。一方、図1に示すバッファ21−2から出力される信号は、そのまま多重化器23に入力される。ここで、図6に示すように1ビットの信号(信号のビットをAjで示す。)が図1に示す符号器22に入力されたと仮定すると、符号長L1のチップレートは、符号器22に入力される信号(図6において符号化しない信号のビットをBj+r(r=1、2、・・・N)で示す。)のビットレートよりも短い。そのため、符号器22では、後の多重化器23での多重化を考慮し、符号化信号(図6において符号化信号のビットをA (s=1、2、・・・L)で示す。)のビットレートをバッファ21−2から出力される信号のビットレートに合わせて出力することが望ましい。
次に、図1に示す多重化器23では、符号器22からの符号化信号のビット列に重みW1=1を掛け合わせ、バッファ21−2からの信号のビット列に重みW2=W(ただし、Wは任意の自然数とする。)を掛け合わせて、図6に示すように、符号化信号A とバッファからの信号Bj+rとを交互に配列して多重化して多重化信号を出力する。なお、図2に示すようにチャネル数をN個とした場合、多重化器23は、N個のチャネルの信号のそれぞれのビット列に重みを掛け合わせ、例えば番号の若いバッファ22−1から符号化信号の出力される順番に符号化信号を配列して出力することとする。
図6に示すように多重化して多重化信号を出力する場合、各チャネルCH1及びCH2の伝送速度の実効値VCH1、VCH2は、
VCH1=(1/L)×{1/(1+W)}×T
(ただし、Tは多重化信号のビットレートとする。)
VCH2={W/(1+W)}×T
となる。
このように、重みW1及びW2をビット列に掛け合わせて多重化することにより、図1に示す符号器22での符号化によりL倍の長さとなったチャネルCH1の信号の送信完了を待つことなく、チャネルCH2の信号を送信することができる。そのため、図1に示すバッファ21−1からの信号のフレーム長とバッファ21−2から出力される信号のフレーム長が同一であると仮定すると、チャネルCH2の信号を通信ネットワーク10から通信ネットワーク13へ送信するのに要する遅延時間を、従来のフレーム毎に出力する場合と比較して(1+1/W)/(1+L)倍小さくすることができる。従って、短い遅延時間で、チャネルCH1は低速であるが十分に小さい誤り率での通信を維持し、チャネルCH2は高速での通信を維持することが可能となる。なお、図2に示すように、チャネル数をN個とした場合でも、符号化により通信データが増大したチャネルを除くチャネルの信号の遅延時間の増大を抑制できることは、種々のフレーム長に対して計算することにより検証できる。また、図2に示すように、複数のチャネルについて符号器を設けると、チャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
図1に示す送信器27は、多重化器23から出力される多重化信号を所定の通信方式、例えばイーサネット(登録商標)形式で送信する。この場合、図1では、多重化信号を光に変換して光伝送路30を介して送信する形態を示したが、図3に示すように、送信アンテナ(不図示)から無線信号32により多重化信号を送信することとしてもよい。この場合、送信器27を無線周波数帯での変調器とする。多重化信号の送信方法として光を適用すると電磁波による影響を受けずに高速の通信が可能となり、無線を適用すると、送信装置の設置位置が限定されないため、送信装置を、いずれの場所からでも通信が可能な無線装置として使用することが可能となる。
図1に示す設定器25は、上記の重み、拡散符号又は拡散符号の符号長を設定する。設定器25で重み、拡散符号又は拡散符号の符号長を設定することにより、通信環境に応じて送信装置11での送信条件を柔軟に変えることが可能となる。
また、設定器25は、バッファ量測定器26で測定される各チャネルのバッファ量に基づいて、重みを設定することもできる。通信環境の変化として各チャネルのバッファ量の増減が考えられる。そのため、バッファ量の増減に応じて重みを可変することで、例えば、伝送速度の実効値を維持することができる。ここで、拡散符号を設定するとは、例えば拡散符号の0の並びや1の並びの配列を設定することをいう。
また、あるチャネルのバッファ量が0の場合、そのバッファ量の重みを0として多重化に全く寄与させないこととすれば通信帯域を効率的に使用することができる。つまり、図1においてはバッファ量測定器26により測定されるチャネルCH1のバッファ量をバッファ量B1とすると、バッファ量B1が0のときは、チャネルCH1及びCH2に対する重みW1及びW2を、それぞれW1=0、W2=1とする。一方、バッファ量B1が0より大きいときは、チャネルCH1及びCH2に対する重みW1及びW2を、それぞれW1=1、W2=Wとする。設定器25が、このように重みをバッファ量に応じて動的に変更して設定することで、バッファ量B1が0のときはチャネルCH2のバッファからの信号の通信データのみを読み出すことが可能となるためである。
また、設定器25は、後に説明する受信装置12で決定された重み、拡散符号又は拡散符号の符号長を受信器56により受信し、受信した重み、拡散符号又は拡散符号の符号長に従って重み、拡散符号又は拡散符号の符号長を設定することも可能であるが、このことについては、受信装置12の構成の説明の際に合わせて説明する。また、通知信号生成器53は、受信装置12に重み、拡散符号又は拡散符号の符号長を決定させるための情報として各チャネルのバッファ量を通知する信号を生成してチャネルCH1の信号として出力する。
図1に示す受信装置12は、送信装置11の送信器27から送信される多重化信号を送信器27での通信方式に対応して電気信号に変換して出力する受信器40と、受信器40から出力される多重化信号を2個に分配する分配器41と、分配器41から出力される多重化信号の一方を送信装置11での符号化方式に対応して復号化して出力する復号器42と、を有する。また、受信装置12は、分配器41から出力される多重化信号の他方を、送信装置11の多重化器23から出力される信号の形で再生する再生器43と、復号器42から出力される信号のビット誤り率を測定する誤り率測定器63と、誤り率測定器63で測定されたビット誤り率に基づいて送信装置11でのチャネルCH1及びCH2に対する重み並びにチャネルCH1に対する拡散符号又は拡散符号の符号長を決定する重み・符号決定器44と、重み・符号決定器44で決定した重み、拡散符号又は拡散符号の符号長を所定の通信方式で送信装置に向けて送信する送信器66と、を有する。また、受信装置12は、分配復号化部46から出力された通信データを処理するデータ処理部45をさらに有する。なお、重み・符号決定器44及び送信器66は、重み、拡散符号又は拡散符号の符号長を通知する通知器の一部に含まれる。
受信器40は、多重化信号を電気信号に変換する際、図1に示す形態の場合では、光伝送路30を介して多重化信号を受信するため、フォトダイオード等の受光素子により光としての多重化信号を受光して電気信号に変換する。この電気信号は、アナログでそのまま出力されるものであってもよいし、また、必要な比較器(不図示)を用いてデジタル信号に変換して出力されたものであってもよい。一方、図3に示す多重通信システム4のように、無線通信の場合は、アンテナ(不図示)で受信した多重化信号を復調して出力することとしてもよいし、必要な比較器(不図示)を用いてデジタル信号に変換して出力するものであってもよい。
復号器42は、分配器41でビット列の構成が同一の信号として分配された多重化信号を、送信装置11でのチャネルCH1に対する符号化方式に対応して復号化する。また、再生器43は、分配器41でビット列の構成が同一の信号として分配された多重化信号を、送信装置11の多重化器23から出力される多重化信号を識別再生して出力する。受信器40からデジタル信号として多重化信号が出力される場合、復号器42は、符号化信号のみを抽出して拡散符号との相関を取ることで復号化することができる。また、再生器43は、分配器41から出力される多重化信号をそのまま出力することでよい。一方、受信器40からアナログ信号として多重化信号が出力される場合は、復号器42及び再生器43は、以下に説明する構成とすることが望ましい。
図7に、1実施形態に係る復号器及び再生器のブロック構成図を示す。
図7に示す復号器42は、分配器41から出力される多重化信号と送信装置でのチャネルCH1に対する拡散符号との相関をとる相関器421と、相関器421から出力される相関信号93と相関信号93から再生したクロック信号とを同期させてチャネルCH1の信号を識別再生し且つ相関信号93から再生したクロック信号に同期するクロック信号を出力する第2データ再生器としてのクロックデータ再生器422と、を有する。
相関器421は、例えば以下に説明する構成とすることができる。図12に、相関器の1例を示したブロック構成図を示す。また、図13に、図12に示す相関器における弾性表面波マッチドフィルタのブロック構成図を示す。なお、ここでは、図1に示す送信器27と受信器40との間では、ベースバンド伝送されているものとする。
図12に示す相関器500は、多重化信号を分岐させた一方を反転させる反転回路111と、反転回路111からの出力信号のレベルをシフトさせるレベルシフト回路112と、レベルシフト回路112からの出力信号を周波数fsで変調する変調回路114と、多重化信号を分岐させた他方を周波数fsで変調する変調回路113と、変調回路113からの出力を分岐させた一方と拡散符号中「1」との相関をとる弾性表面波マッチドフィルタ115と、他方と拡散符号中「0」との相関をとる弾性表面波マッチドフィルタ118と、変調回路114からの出力を分岐させた一方と拡散符号中「1」との相関をとる弾性表面波マッチドフィルタ117と、他方と拡散符号中「0」との相関をとる弾性表面波マッチドフィルタ116と、弾性表面波マッチドフィルタ115及び弾性表面波マッチドフィルタ116からの出力信号を足し合わせた信号を整流する整流回路119と、整流回路119からの出力信号から高周波成分を除去するローパスフィルタ120と、弾性表面波マッチドフィルタ117及び弾性表面波マッチドフィルタ118からの出力信号を足し合わせた信号を整流する整流回路121と、整流回路121からの出力信号から高周波成分を除去するローパスフィルタ122と、ローパスフィルタ122からの出力信号を反転させる反転回路123と、ローパスフィルタ120及び反転回路123からの出力を足し合わせた信号を変調周波数fsで復調する復調回路124と、を有する。
ここで、弾性表面波マッチドフィルタは、図13に示すように、入力信号と拡散符号中「1」との相関をとる弾性表面波マッチドフィルタ115又は入力信号と拡散符号中「0」との相関をとる弾性表面波マッチドフィルタ116であり、それぞれの弾性表面波マッチドフィルタ115、116は、圧電体基板140と、圧電体基板140上に配置された送信電極131と、圧電体基板140上で送信電極131と所定の電極間距離を空けて配置された受信電極133と、を有する。
電極間距離は、図12に示す変調周波数fsと図13に示す圧電体基板140の材料の音速とから決定される。送信電極131に入力された電気信号は、圧電体基板140の圧電効果により弾性表面波を励振する。励振された弾性表面波は圧電体基板140上を伝搬し、受信電極133へ到達して受信電極133により再び電気信号に変換される。このとき、受信電極133の配置を、拡散符号と送信側の多重化重みに応じた配置にしておく。これにより、受信電極133と励振された弾性表面波の波形とが一致したときに最大の出力が得られる。なお、上記は、拡散符号中「1」との相関をとる弾性表面波マッチドフィルタ115についての説明であるが、拡散符号中「0」との相関をとる弾性表面波マッチドフィルタ116についても原理は同様である。
図12及び図13では、拡散符号を「1011」とした例を示しており、図12に示すように、チャネルCH1の原信号が「1」である時、符号化及び多重化により、送信側から送信される信号は、多重化信号(「1...0...1...1...」)となる。ここで、「...」は、チャネルCH2の信号を示している。相関器500では、受信した多重化信号を弾性表面波マッチドフィルタ115に、多重化信号のうち反転回路111により反転させた信号「0...1...0...0...」を弾性表面波マッチドフィルタ116に、それぞれ入力する。図13に示すように、弾性表面波マッチドフィルタ115では、それぞれ信号「1」のときだけ弾性表面波を励振させる。そして、励振した弾性表面波132は圧電体基板140上を伝搬し、受信電極133上に到達する。弾性表面波132の一部は受信電極133で電気信号に変換され、一部はなお先へ伝搬する。弾性表面波マッチドフィルタ115に入力された最初の信号「1」が受信電極137上に達したとき、弾性表面波マッチドフィルタ115及び弾性表面波マッチドフィルタ116の総ての受信電極上には励振された弾性表面波132、135が存在し、出力される電気信号は最大となり、相関ピークを得ることができる。原信号「0」に対しては、図12に示す弾性表面波マッチドフィルタ117及び弾性表面波マッチドフィルタ118の組合せから相関ピークがえられる。
なお、図7に示す相関器421は、入力信号と拡散符号との相関を出力することができれば、図12で説明した弾性表面波マッチドフィルタを適用した構成に限られない。また、同様に図1に示す送信器27と受信器40との間の伝送方式はベースバンド伝送に限られない。
このように多重化信号と拡散符号との相関を取ることにより、別途クロック信号を用いなくてもチャネルCH1の信号を復号することができる。
また、図7に示すクロックデータ再生器422は、例えばPLL(Phase Locked Loop)回路を適用することができる。
ここで、図9にクロックデータ再生器の1例を示したブロック構成図を示す。
図9に示すクロックデータ再生器503は、INへの入力信号からクロック信号を抽出するPLL回路83と、REFへ入力されるクロック信号を検出して「1」を出力するクロック検出回路84と、クロック検出回路84からの信号「1」の入力によりREFへ入力されるクロック信号を出力し、信号「0」の入力によりPLL回路83からのクロック信号を出力する信号切替回路85と、信号切替回路85から出力されるクロックの立ち上がりに同期してINへの入力信号をラッチして出力するラッチ回路86と、を有する。また、信号切替回路85からの出力は、ラッチ回路86への入力信号と分岐されてクロック信号として出力される。
ここで、INから入力された入力信号は、PLL回路83によりクロックが抽出される。ここで、REFへの入力されるクロック信号がクロック検出回路84により検出されれば、信号切替回路85からは、REFへ入力されるクロック信号が出力される。そして、ラッチ回路86は、信号切替回路85から出力されるクロック信号の立ち上がりに同期してINへの入力信号をラッチしてデータ信号を出力する。
なお、図7に示すクロックデータ再生器422は、入力信号からクロック信号とデータ信号とを抽出できれば、図9で説明した回路構成に限られない。
このように、相関信号93からクロック信号を抽出することにより、クロックの抽出を効率的に行うことができる。なお、クロックデータ再生器422から出力されるクロック信号は、後に説明する再生器43において使用する。
図7に示す再生器43は、多重化信号を所定時間遅延させる遅延器431と、遅延器431から出力される遅延信号と第1参照信号95とから多重化信号を再生する第1データ再生器としてのデータ再生器434と、復号器42のクロックデータ再生器422からのクロック信号を選択する信号選択器433と、を有する。また、再生器43は、クロック信号の周波数に応じてクロック信号のビットレートを多重化信号のビットレートに合わせるため、所定の逓倍数でクロック信号を逓倍する逓倍器432と、を有する。
逓倍器432は、例えばPLL回路を適用することができる。本実施形態では、多重化信号は、図6に示すようにLビットのチャネルCH1の符号化信号の各ビット間にチャネルCH2のWビットの符号化していない信号が挿入されているため、図7に示す復号器42のクロックデータ再生器422から出力されるクロック信号のビットレートを1/{L×(1+W)}bit/sとすると、逓倍器432での逓倍数mは、
m=L×(1+W)
となる。なお、本実施形態では、2つのチャネルでの多重化信号の場合を示しているが、N個のチャネルでの多重化信号の場合は、多重化信号のフレーム長さ分とすることができ、送信装置で設定される重み・符号長さに応じて定めることができる。
遅延器431は、例えば多重化信号を遅延線に通すことによって多重化信号の位相をシフトさせてもよいし、LRCで構成されるオールパスフィルタにより多重化信号の位相特性のみを変化させることとしてもよい。ここで、遅延器の具体的な構成例について説明する。
図10に、遅延器の1例を示したブロック構成図を示す。また、図11に、図10に示す遅延器における弾性表面波遅延線のブロック構成図を示す。
図10に示す遅延器502は、入力信号を周波数fsで変調する変調回路87と、変調回路87からの出力信号を所定時間遅延する弾性表面波遅延線88と、弾性表面波遅延線88からの出力信号を整流する整流回路89と、整流回路89からの出力信号から高周波成分を除去するローパスフィルタ97と、ローパスフィルタ97からの出力信号を復調して原信号を取り出す復調回路98と、を有する。ここで、弾性表面波遅延線88は、図11に示すように、圧電体基板99と、圧電体基板99上に配置された送信電極101と、圧電体基板99上で送信電極101と所定の電極間距離を空けて配置された受信電極102と、を有する。
図11に示す弾性表面波遅延線88において、送信電極101及び受信電極102のそれぞれの電極間ピッチ、並びに送信電極101と受信電極102との電極間距離は、変調周波数fsと、圧電体基板99の材料の音速とから決定される。送信電極101に入力された電気信号は圧電体基板99の圧電効果により弾性表面波100を励振する。励振された弾性表面波100は、圧電体基板99上を伝搬し、受信電極102へ到達し、受信電極102により再び電気信号に変換され出力される。このとき、送信電極101と受信電極102との間を伝搬する時間だけ遅延するので、電極間距離を適当な距離にすることで、弾性表面波遅延線88への入力信号を所定時間遅延させることができる。
なお、図7に示す遅延器431は、信号を所定時間遅延させることができればよく、図10に示す弾性表面波遅延線88を適用した構成に限られない。
本実施形態では、遅延器431での遅延時間dは、d=m×nとすることが望ましい。ここで、mは、上記の逓倍数である。また、nは、チャネルCH1の復号器42のクロックデータ再生器422が相関器421からの相関信号93からクロック信号を生成して出力するまでに必要とする相関信号93のビット数とする。これにより、クロックデータ再生器422からのクロック信号の先頭のビットと多重化信号に含まれるチャネルCH2の信号の先頭ビットとの同期を取ることができる。そのため、多重化信号を必要以上に遅延させることがなく伝送速度を低下させない。なお、本実施形態では、2つのチャネルでの多重化信号の場合を示しているが、N個のチャネルでの多重化信号の場合においても、遅延時間diについて、mを多重化信号のフレーム長さ分とし、nを、あるチャネルの復号器42のクロックデータ再生器422が相関器421からの相関信号93からクロック信号を生成して出力するまでに必要とする相関信号93のビット数とすることができる。ここで、符号化チャネルに対する重みを1とし、符号化しないチャネルに対する重みWiを総てのチャネルに対して等しくとる場合、diをLj×(1+Wi)の自然数倍とする。
データ再生器434は、復号器42のクロックデータ再生器422と同様の構成をしており、遅延器431からの遅延信号96と第1参照信号95とから多重化信号を識別再生して出力する。ここで、第1参照信号95として、遅延器431からの遅延信号96のみを使用することもできるが、逓倍器432からのクロック信号を使用することが望ましい。このように、予めクロックデータ再生器422で生成したクロック信号を第1参照信号95として用いると、多重化信号の高安定な識別再生を可能とする共に、多重化信号又はクロックデータ再生器422からのクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
信号選択器433は、第1参照信号95として、逓倍器432からのクロック信号を選択して出力する。ここで、送信装置においてチャネルCH1への入力がない場合は、復号器42のクロックデータ再生器422からクロック信号が出力されないため、信号選択の際、信号選択器433は、送信装置においてチャネルCH1への入力が存在する場合には、クロック信号を選択する。なお、送信装置におけるチャネルCH1への入力の有無を検出は、後に説明する重み・符号決定器44によりクロックデータ再生器422から出力されるチャネルCH1の信号を検出の有無を判断することにより行う。このように、信号選択器433で信号選択して出力することにより、無通信の信号を使用しないようにして再生誤りを防いで通信帯域を効率よく使用することが可能となる。
なお、図1では、送信装置11の構成に合わせて復号器42をチャネルに1つ設けた受信装置12を示しているが、通信チャネルは、図2に示す他の形態のように、送信装置70の構成に合わせてN個設けることができる。また、図2では、N個のチャネルの総てに復号器42−1から42−Nを設けたが、送信装置70の構成に合わせてN個のチャネルのうちp個のチャネルに復号器42−1から42−pを設け、p個を除く(N−p)個のチャネルに復号器を設けないこともできる。この場合の復号器の構成について説明する。
図8は、復号器を2以上設けた場合の、1実施形態に係る復号器のブロック構成図である。
図8に示す復号器42−1は、図7に示す相関器421及びクロックデータ再生器422の他に、クロックデータ再生器422の前段で多重化信号を予め所定時間遅延させて出力する遅延器423と、他のいずれかの復号器のクロックデータ再生器から出力されるクロック信号の検出によりクロック信号を第2参照信号94として出力する信号選択器425と、信号選択器425の前段部でクロック信号を所定の逓倍数で逓倍する逓倍器424と、を備える。また、図8では、(N−1)個の復号器のうちいずれの復号器からのクロック信号を選択するクロック信号選択器426をさらに有する。
遅延器423は、図7において説明した再生器43の遅延器431と同様の構成で、図8に示すいずれかのチャネルのクロック信号の出力と多重化されたチャネルCH1の信号の先頭ビットとの同期を取ることができる。また、逓倍器424も同様に図7において説明した逓倍器432と同様の構成で、図8に示すいずれかのチャネルのクロック信号の周波数に応じてクロック信号のビットレートをクロックデータ再生器422に入力される多重化信号のビットレートに合わせるため設けたものである。
クロック信号選択器426は、クロック信号の入力があるもののいずれかを選択して出力する。このように、クロック信号選択器426で信号選択して出力することにより、無通信の信号を使用しないようにして再生誤りを防いで通信帯域を効率よく使用することが可能となる。このとき、図8に示すクロック信号選択器426でのクロック信号として、重みが0より大きく、符号長が最も長いチャネルのクロック信号を他の総てのチャネルの復号器の第2参照信号として選択してもよい。悪化した通信環境であっても、安定した参照信号を得ることができる。また、信号選択器425は、いずれかのクロック信号の入力がある場合には、当該クロック信号を第2参照信号94として採用する。このように、信号選択器425で信号選択して出力することにより、無通信の信号を使用しないようにして再生誤りを防いで通信帯域を効率よく使用することが可能となる。なお、クロック信号選択器426及び信号選択器425において、クロック信号の入力の検出は、後に説明する重み・符号決定器44により行うこととする。
予めクロックデータ再生器422で生成したクロック信号を第2参照信号94として用いると、符号化された信号の高安定な識別再生を可能とする共に、相関信号又はクロックデータ再生器422からのクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。ここで、図2に示す復号器42−1から42−Nのそれぞれを図8に示す構成とする場合は、図2に示すN個の復号器42−1から42−Nのうち少なくとも1個の復号器を図7に示す復号器42とする必要がある。いずれか1つのクロック信号は、多重化信号から抽出する必要があるためである。また、図8の構成の任意の2つの復号器について相互のクロック信号を入力し合うことも当然にできない。なお、図8では、チャネルCH1の信号を復号する復号器42−1を示したため、クロック信号選択器426に入力されるクロック信号をチャネルCH1を除くチャネルCH2からチャネルCHNのクロック信号としたが、他のチャネルに対する復号器において図8に示す構成とする場合は、当該他のチャネルのクロック信号を除くクロック信号をクロック信号選択器426に入力することとする。
図1に示す重み・符号決定器44は、重みの大きさ、拡散符号又は前記拡散符号の符号長を、送信装置11から受信する多重化信号に基づいて決定する。また、重み・符号決定器44は、図7に示す復号器42内の相関器421の相関符号、逓倍器432内の逓倍数の設定及び遅延器431での遅延時間の設定、並びに信号選択器433における信号選択及び図8に示すクロック信号選択器426における信号選択、並びに相関器421の相関符号の設定、遅延器423での遅延時間の設定及び逓倍器424での逓倍数の設定を行う。さらに図1に示す重み・符号決定器44は、決定した重み、拡散符号又は拡散符号の符号長を送信器66から伝送路31を介して送信装置11に送信する。ここで伝送路31は、光伝送路30と平行して敷設された光伝送路とすることができる。また、光伝送路30の物理媒体中、送信器が使用する波長領域と別の波長領域を符号化・重み通知信号送信器が使用してもよい。また、図3に示す形態のように、無線信号34により重み、拡散符号又は拡散符号の符号長を送信することとしてもよい。送信装置11の設定器25は、受信装置12から送信される重み、拡散符号又は拡散符号の符号長に従って、チャネルCH1、CH2に対する重み、拡散符号又は拡散符号の符号長を設定する。
このように、受信装置12において送信装置11の送信制御を行うことにより、受信装置12において送信装置11の送信状態を認識しながら通信することが可能となる。そのため、通信環境が劣化した場合でも、重み、拡散符号又は拡散符号の符号長を変化させて、通信環境を早急に回復させることができる。
また、重み・符号決定器44は、誤り率測定器63で測定されるビット誤り率が予めチャネルCH1に定められた許容ビット誤り率以下となるように重み、拡散符号又は拡散符号の符号長を決定する。例えば、誤り率測定器63で測定されるビット誤り率が大きいほどに符号長を長く設定することとする。また、ビット誤り率が大きいほどに復号器42での復号誤りが存在するとも考えられることから、例えばチャネルCH1に対する重みを大きくして図7に示す相関器421での相関精度を高めるようにしてもよい。また、同様に拡散符号の配列を決定することとしてもよい。
このように、重み・符号決定器44を設けることにより、符号化信号のビット誤り率に対して動的に重み、拡散符号又は拡散符号の符号長を設定することが可能となるため、ビット誤り率が急増することを防止し、通信環境を劣化させることなく維持することができる。
ここで、図1に示す送信装置11において、チャネルCH1の信号に対する重みをW1とし、チャネルCH2の信号に対する重みをW2とし且つチャネルCH1の信号に対する許容ビット誤り率をeとした場合、重み・符号決定器44は、誤り率測定器63で測定されるビット誤り率をemとして、emがe未満のときは拡散符号の符号長をL1に決定し、emがe以上のときは拡散符号の符号長をL2に決定する。
このようにビット誤り率が増加した場合には符号長を長くしてチャネルCH1のビット誤り率を低下させる。一方、ビット誤り率が許容ビット誤り率以下であれば通信条件を満たしているため、符号長を短くして符号化による通信データ量の増加を抑えることによりチャネルCH1の信号の実効的な通信速度を上げ、効率的に通信帯域を利用することができる。
また、図1に示す重み・符号決定器44は、通知信号生成器53から出力される通知信号から送信装置11のバッファ21−1、21−2に格納されたバッファ量を取得する。そして、取得したバッファ量及び誤り率測定器63の測定するビット誤り率に基づいて重みの大きさ、拡散符号又は拡散符号の符号長を決定する。ここで、例えば、通知信号により取得したバッファ量の多いバッファの通信データを減少させるため、符号長を短く設定し、又は重みを大きく設定した場合に、ビット誤り率が増加することが考えられるため、重み・符号決定器44は、ビット誤り率とバッファ量とのトレードオフを考慮して重み、拡散符号又は拡散符号の符号長を設定する。
このように、送信装置11に格納されているバッファ量及び受信装置12でのビット誤り率に基づいて重み、拡散符号又は拡散符号の符号長を設定することにより、バッファ量が増大しても通信環境を劣化させることなく維持することができる。
なお、図1では、送信装置11の構成に合わせて、復号器42をチャネルCH1に1つ設けた受信装置12を示しているが、通信チャネルは、図2に示す形態のように、送信装置11の構成に合わせてN個設けることができる。また、図2では、N個のチャネルの総てに復号器42−1から42−Nを設けたが、送信装置11の構成に合わせてN個のチャネルのうちp個のチャネルに復号器を設けることもできる。この場合、誤り率測定器は、復号器を設けたチャネルに1つずつ設け、重み・符号決定器44は、各誤り率測定器でチャネル毎に測定される誤り率に基づいて重み、拡散符号又は拡散符号の符号長を決定することとなる。
また、図1に示す受信装置12のデータ処理部45は、必要に応じて通信データを加工し、通信ネットワーク13へ送信する。例えば、データ処理部45が行う通信データの加工には、VLAN(Virtual Local Area Network)タグの挿入・削除がある。
以上、本実施形態に係る多重通信システムの構成について説明したが、図4及び図5に示すように、上記の送信装置を送信装置70−1から70−MとしてM個設けることもできる。なお、図4に示す多重通信システム5は、送信装置70−1から70−Mと受信装置80との間で光通信を行う形態を示し、図5に示す多重通信システム6は、送信装置70−1から70−Mと受信装置80との間で無線通信を行う形態を示している。図4に示すように光通信を行う場合は、光伝送路30に光スプリッタ33を設けて送信装置70−1から70−Mから出力される信号光を合波して受信装置80に送信する。
また、図4及び図5に示す受信装置80は、上述した分配復号化部を分配復号化部82−1から82−MとしてM個備える。そして、図4に示す受信装置80において受信器40は、M個の送信装置70−1から70−Mから受信したM個の多重化信号を多重化信号毎にM個の分配復号化部82−1から82−Mに向けて出力する。受信器40は、例えば送信装置毎に異なるタイムスロットを用いるTDMA(Time Division Multiple Access)、異なる波長を用いるWDMA(Wave Division Multiple Access)又は異なる符号を用いるCDMA(Code Division Multiple Access)を適用して分波することができる。
また、図5に示す受信装置80において受信器40は、M個の送信装置70−1から70−Mから受信したM個の多重化信号を多重化信号毎にM個の分配復号化部82−1から82−Mに向けて出力する。この場合、受信器40は、無線分波器であり、例えば無線周波数帯での復調器を適用することができる。
図4及び図5に示すように1対多の多重通信システム5、6においても、送信装置70−1から70−Mにおいて総てのチャネルの信号をビット多重するため、符号化により増大したチャネルを除く他のチャネルの遅延時間の増大を抑制できる。また、送信装置70−1から70−Mでのバッファ量に応じてビット列に対する重みを設定するため、送信待ち時間に極端な差が出ることを抑制できるとともに、バッファ量が0のチャネルがあっても、ビット多重する際に多重化信号に空きビットを作ることがないため、通信帯域を効率よく使用することができる。さらに、ビット誤り率を受信装置80において検出して送信装置70−1から70−Mにフィードバックさせて符号長を再設定することにより、許容ビット誤り率以下の通信が可能となり、通信環境を劣化させることなく維持することができる。
次に図2、図7及び図8を参照して本実施形態に係る多重通信方法について説明する。なお、図2、図7及び図8では、便宜上、p個の符号器で符号化を行い、p個の復号器で復号化を行うこととするが、符号化及び復号化は、N個の符号器及び復号器のうち任意のp個で行うことができる。また、図2、図7及び図8では、符号器及び復号器は、符号化及復号化を行うために設けているが、符号長を1とすることにより符号化及び復号化をしないでそのまま信号を通過させることもできる。そのため、N個のチャネルの信号のうちp個の符号化及び復号化を行うチャネルの信号を除く(N−p)個のチャネルの信号については符号化及び復号化を行わないこととする。
図2に示す送信装置70がN個のチャネルの信号を多重化した多重化信号を送信する際に、送信装置70は、N個のチャネルの信号のうちp個のチャネルの信号を符号器22−1から22−pにおいてそれぞれ所定の符号化方式で符号化する。符号化には、前述したように、暗号化、音声/画像信号圧縮、情報圧縮、誤り訂正又は拡散符号による変調をする際に適用される符号化を例示できる。また、N個のチャネルの信号のうちp個のチャネルの信号を除く(N−p)個のチャネルの信号については、符号器において符号化を行わずにそのまま出力する。
そして、多重化器23において、符号器22−1から22−pからのp個の符号化信号及び(N−p)個の符号化をしていないチャネルの信号のビット列にそれぞれ所定の重みを付与して多重化信号を生成する。その後、送信器27から所定の通信方式で送信する。送信器27からの通信方法は、前述したように、無線、有線を問わない。
このように、チャネル毎に符号化処理を行うことにより、各チャネルで異なる許容ビット誤り率を設定できる。そのため、通信データの種類によって柔軟な通信環境の選択が可能となる。また、送信装置70において、チャネル毎に異なる重みを符号化信号のビット列に付与して多重化することにより、あるチャネルの信号について符号化により通信データ量が増加しても、増加した通信データの送信終了を待つことなく他のチャネルの信号も送信できるため、他のチャネルの遅延時間の増大を抑制することができる。また、複数のチャネルについてチャネル毎に所定の符号化方式で符号化するため、許容ビット誤り率を通信チャネル毎に確保して、通信環境が悪化しても通信可能なチャネルを確保することができる。さらに、重み、符号又は符号長を変えれば、チャネル毎に通信データが増減しても通信帯域の効率的な利用が可能となる。
次に、送信装置70と対向接続される受信装置80が送信装置70から送信される多重化信号を受信する際に、受信装置80は、送信装置70から送信される多重化信号を受信器40において受信し電気信号として出力する。ここで、受信器40は、前述したように、送信装置70の送信器27からの通信方式に合わせて多重化信号を受信する。つまり、送信器27が光通信を行う場合は、受信器40を光受信器とし、送信器27が無線通信を行う場合には、受信器40を無線受信器とする。そして、受信装置80は、受信器40で受信した多重化信号を分配器41でN個に分配し、そのうちp個の多重化信号について、復号器42−1から42−pで送信装置70での符号化方式に対応してチャネル毎に復号化する。
ここで、符号化方式として拡散符号による直接拡散方式を採用した場合の多重通信方法について説明する。
図2に示す受信装置80は、受信器40で受信した多重化信号を電気信号として出力する際に、自動利得増幅する。そして、分配器41でN個に分配する。その後、受信装置80は、分配したN個の多重化信号のうちp個の多重化信号を除く(N−p)個の多重化信号をそれぞれ図7に示すデータ再生器434において遅延信号96から再生したクロック信号又は第1参照信号95に同期させて多重化信号を識別再生する。なお、図2に示す受信装置80は、(N−p)個のチャネルの信号に対してそれぞれ図7に示す再生器43を有していて、各再生器について上記の識別再生を行う。
一方、図2に示す受信装置80は、p個の多重化信号からp個のチャネルの信号を復号する際に、図7に示す相関器421で多重化信号と拡散符号との相関をとり、相関をとった相関信号93をクロックデータ再生器422において相関信号93から再生したクロック信号に同期させてN個のチャネルの信号のいずれかを識別再生する。また、クロックデータ再生器422は、信号を識別再生すると共に、相関信号93から再生したクロック信号に同期したクロック信号を出力する。なお、図2に示す受信装置80は、N個のチャネルの信号に対してそれぞれ図7に示す復号器42を有していて、各復号器について上記の識別再生を行う。
ここで、クロックデータ再生器422においてデータ再生に用いるクロック信号として、図7に示す相関器421から出力される相関信号93からのもの用いることもでき、図8に示すように、他のチャネルのクロックデータ再生器から出力されるクロック信号のいずれかをクロック信号選択器426及び信号選択器425で選択して用いることもできる。この場合、クロック信号選択器426及び信号選択器425での信号選択は、各チャネルのクロックデータ再生器から出力される符号化されたチャネルの信号を重み・符号決定器44で検出して行うこととする。そして、クロックデータ再生器422は、信号を識別再生すると共に、相関信号93から再生したクロック信号又は第2参照信号94に同期したクロック信号を出力する。また、ビットの先頭を合わせるため、予め遅延器423により多重化信号を遅延させる。なお、遅延器423による遅延は、相関器421の後段で行ってもよい。
このように、図7に示す相関器421で多重化信号と拡散符号との相関を取ることにより、別途クロック信号を用いなくても符号化したチャネルの信号を復号化することができる。さらに、図8に示すように、クロックデータ再生器422で識別再生する際に、第2参照信号94として、予め他のチャネルのクロックデータ再生器で生成されたクロック信号を用いることにより、安定に識別再生することが可能となる共に、相関信号又は他のクロックデータ再生器からのクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
また、データ再生器434においてデータ再生に用いるクロック信号として、図7に示すように分配器41から出力される多重化信号からのものを用いることもでき、またp個の復号器のクロックデータ再生器から出力されるクロック信号のいずれかを選択して用いることもできる。この場合、信号選択は、各チャネルのクロックデータ再生器から出力される符号化されたチャネルの信号を重み・符号決定器44で検出して行うこととする。また、ビットの先頭を合わせるため、予め遅延器431により多重化信号を遅延させる。
このように、データ再生器434で識別再生する際に、第1参照信号95として、予めクロックデータ再生器422で生成されたクロック信号を用いることにより、安定に識別再生することが可能となる共に、多重化信号又はクロックデータ再生器422からのクロック信号のいずれかを選択してデータ再生のクロック信号として用いることにより、再生誤りを防いで通信帯域を効率的に利用することができる。
また、図2に示す受信装置80は、復号器42−1から42−pで復号化したp個のチャネルの信号から誤り率測定器63−1から63−pでチャネル毎にビット誤り率を測定する。そして、測定したp個のビット誤り率を重み・符号決定器44で取得し、各チャネルのビット誤り率が許容ビット誤り率以下となるようにN個のチャネルの信号に対する重みの大きさ及びp個のチャネルの信号に対する拡散符号又は拡散符号の符号長を決定する。そして、決定した重み、拡散符号又は拡散符号の符号長を、送信器66により所定の通信方式で送信装置70に通知する。
一方、送信装置70は、受信装置80から通知された重みの大きさ、拡散符号又は拡散符号の符号長を受信器56で受信し、受信した重み、拡散符号又は拡散符号の符号長に従って設定器25において重みの大きさ、拡散符号又は拡散符号の符号長を設定する。受信装置80では、例えば、ビット誤り率が許容ビット誤り率を超えて増加するほどに拡散符号の符号長を長くし、ビット誤り率が許容ビット誤り率以下で減少するほどに拡散符号の符号長を短く設定する。また、例えば、ビット誤り率が許容ビット誤り率を超えて増加するほどに重みを大きくし、ビット誤り率が許容ビット誤り率以下で減少するほどに重みを小さく設定する。重みを大きくすることにより単位長さあたりに含まれる符号化信号の量が増えるためビット誤り率を低下できると考えられる。
このように受信装置80側でビット誤り率をモニタして、各チャネルのビット誤り率が許容ビット誤り率以下となるように重み、拡散符号又は拡散符号の符号長を決定することにより、符号化により通信データが増大しても通信環境を劣化させることなく維持することができる。
また、図2に示す送信装置70は、N個のチャネルの信号を多重化する前に予めチャネル毎にバッファ21−1から21−Nに格納し、格納したN個のチャネルの信号の量をバッファ量測定器26によりバッファ毎に測定する。そして、測定したバッファ量を通知する通知信号を通知信号生成器53により生成してバッファ21−pに格納し符号器22−pにより符号化して送信する。なお、通知信号は、p個のバッファ21−1から21−pのいずれに格納することとしてもよい。
一方、受信装置80は、送信装置70から送信された通知信号及び誤り率測定器63−1から63−pで測定したp個のビット誤り率に基づいて重み・符号決定器44で重みの大きさ、拡散符号又は拡散符号の符号長を決定する。ここで、例えば、通知信号により取得したバッファ量の多いバッファの通信データを減少させるため、符号長を短く設定し又は重みを大きく設定した場合に、ビット誤り率が増加することが考えられるため、重み・符号決定器44は、ビット誤り率とバッファ量とのトレードオフを考慮して重み、拡散符号又は拡散符号の符号長を設定する。
このように、送信装置70に格納されているバッファ量及び受信装置80でのビット誤り率に基づいて重み、拡散符号又は拡散符号の符号長を設定することにより、バッファ量が増大しても通信環境を劣化させることなく維持することができる。
また、図2に示す送信装置70においてバッファ量測定器26で測定したバッファ量に対応する所定の値に重みWi及び拡散符号の符号長Ljを設定する場合、受信装置80において多重化信号を識別再生するときは、受信装置80は、図7に示す遅延器431による遅延時間を所定時間diだけ遅延させる。
所定時間をdiとすることにより、クロック信号の先頭に多重化信号のうち符号化されていない(N−p)個のチャネルの信号の先頭のビットを合わせることができる。そのため、不要に遅延させることがなく通信速度を維持することができる。
本発明の多重通信システム及び多重通信方法は、中継ネットワーク等の幹線系ネットワークのみならず、ローカルエリアネットワークやアクセスネットワークを構築する際の多重通信システム及び多重通信方法としても適用することができる。
1実施形態に係る多重通信システムのブロック構成図である。 1実施形態に係る多重通信システムのブロック構成図である。 1実施形態に係る多重通信システムのブロック構成図である。 1実施形態に係る多重通信システムのブロック構成図である。 1実施形態に係る多重通信システムのブロック構成図である。 多重化器から出力される多重化信号の構成の1例を示した概略図である。 1実施形態に係る復号器及び再生器のブロック構成図である。 1実施形態に係る復号器のブロック構成図である。 クロックデータ再生器の1例を示したブロック構成図である。 遅延器の1例を示したブロック構成図である。 図10に示す遅延器における弾性表面波遅延線のブロック構成図である。 相関器の1例を示したブロック構成図である。 図12に示す相関器における弾性表面波マッチドフィルタのブロック構成図である。
符号の説明
2:多重通信システム
3:多重通信システム
4:多重通信システム
5:多重通信システム
6:多重通信システム
10:通信ネットワーク
11:送信装置
12:受信装置
13:通信ネットワーク
20:識別器
21−1から21−N:バッファ
22:符号器
22−1から22−N:符号器
23:多重化器
25:設定器
26:バッファ量測定器
27:送信器
27−1から27−M:送信器
28:符号化多重部
30:光伝送路
31:伝送路
32:無線信号
32−1から32−N:無線信号
33:光スプリッタ
34:無線信号
40:受信器
41:分配器
42:復号器
42−1から42−N:復号器
43:再生器
44:重み・符号決定器
45:データ処理部
46:分配復号化部
53:通知信号生成器
56:受信器
56−1から56−M:受信器
63:誤り率測定器
63−1から63−N:誤り率測定器
66:送信器
70:送信装置
70−1から70−M:送信装置
80:受信装置
82:分配復号化部
82−1から82−M:分配復号化部
83:PLL回路
84:クロック検出回路
85:信号切替回路
86:ラッチ回路
87:変調回路
88:弾性表面波遅延線
89:整流回路
90:符号化多重部
93:相関信号
94:第2参照信号
95:第1参照信号
96:遅延信号
97:ローパスフィルタ
98:復調回路
99:圧電体基板
100:弾性表面波
101:送信電極
102:受信電極
111:反転回路
112:レベルシフト回路
113:変調回路
114:変調回路
115:弾性表面波マッチドフィルタ
116:弾性表面波マッチドフィルタ
117:弾性表面波マッチドフィルタ
118:弾性表面波マッチドフィルタ
119:整流回路
120:ローパスフィルタ
121:整流回路
122:ローパスフィルタ
123:反転回路
124:復調回路
131:送信電極
132:弾性表面波
133:受信電極
134:送信電極
135:弾性表面波
136:受信電極
137:受信電極
140:圧電体基板
421:相関器
422:クロックデータ再生器
423:遅延器
424:逓倍器
425:信号選択器
426:クロック信号選択器
431:遅延器
432:逓倍器
433:信号選択器
434:データ再生器
500:相関器
502:遅延器
503:クロックデータ再生器

Claims (18)

  1. N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムであって、
    前記送信装置は、
    前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号毎に設けられ前記チャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化して出力するp個の符号器と、
    前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号器から出力されるp個の符号化信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して出力する多重化器と、
    前記多重化器から出力される前記多重化信号を所定の通信方式で送信する送信器と、を備え、
    前記受信装置は、
    前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、
    前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、
    前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、
    前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、
    前記再生器のそれぞれは、前記分配器からの前記多重化信号と第1参照信号とを取得し、前記多重化信号から再生したクロック信号と前記第1参照信号とのいずれか一方に前記多重化信号を同期させて前記多重化信号を識別再生する第1データ再生器を備え、
    前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号を取得し、前記相関信号から再生したクロック信号に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、
    p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号に同期するクロック信号を出力し、
    前記第1データ再生器において前記第1参照信号をいずれかの前記第2データ再生器から出力される前記クロック信号とすることを特徴とする多重通信システム。
  2. N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムであって、
    前記送信装置は、
    前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号毎に設けられ前記チャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化して出力するp個の符号器と、
    前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号器から出力されるp個の符号化信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して出力する多重化器と、
    前記多重化器から出力される前記多重化信号を所定の通信方式で送信する送信器と、を備え、
    前記受信装置は、
    前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、
    前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、
    前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、
    前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、
    前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号と第2参照信号とを取得し、前記相関信号から再生したクロック信号と前記第2参照信号とのいずれか一方に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、
    p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するクロック信号を出力し、
    前記第2データ再生器において前記第2参照信号を他の前記第2データ再生器から出力される前記クロック信号とすることを特徴とする多重通信システム。
  3. 前記送信装置は、前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を設定する設定器をさらに備えることを特徴とする請求項1又は2に記載の多重通信システム。
  4. 前記受信装置は、前記送信装置の送信する前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を、前記送信装置から受信する前記多重化信号に基づいて決定し前記送信装置に通知する通知器をさらに備え、
    前記送信装置において前記設定器は、
    前記通知器から通知された前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長に従って前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を設定することを特徴とする請求項に記載の多重通信システム。
  5. 前記受信装置は、前記復号器で復号化された前記p個のチャネルの信号からチャネル毎に前記p個のチャネルの信号のビット誤り率を測定するp個の誤り率測定器をさらに備え、
    前記通知器は、前記p個の誤り率測定器で測定されたp個のビット誤り率が許容ビット誤り率以下となるように前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することを特徴とする請求項に記載の多重通信システム。
  6. 前記送信装置において、前記Nを2とした2個のチャネルの信号のうち前記pを1とした1個のチャネルの信号に対する重みをW1(ただし、W1は自然数とする。)とし、他の1個のチャネルの信号に対する重みをW2(ただし、W2は1とする。)とし且つ前記pを1とした1個のチャネルの信号に対する前記許容ビット誤り率をe(eは、任意の値とする。)とした場合、
    前記受信装置において前記通知器は、
    前記誤り率測定器で測定され前記pを1とした1個のチャネルの信号に対する前記ビット誤り率をemとして、emがe未満のときは前記拡散符号の符号長をL1(ただし、L1は自然数とする。)に決定し、emがe以上のときは前記拡散符号の符号長をL2(ただし、L2は自然数とし且つL1<L2とする。)に決定することを特徴とする請求項に記載の多重通信システム。
  7. 前記送信装置は、
    前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器と、前記バッファ量測定器で測定されるバッファ量を通知する通知信号を生成して前記p個のチャネルの信号のうちいずれか1個のチャネルの信号として出力する通知信号生成器と、をさらに備え、
    前記受信装置において前記通知器は、
    前記通知信号生成器から出力される前記通知信号及び前記誤り率測定器の測定する前記ビット誤り率に基づいて前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することを特徴とする請求項に記載の多重通信システム。
  8. 前記送信装置は、
    前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器をさらに備え、
    前記設定器は、前記バッファ量測定器で測定されるバッファ量に対応する所定の値に前記重みを設定することを特徴とする請求項に記載の多重通信システム。
  9. 前記送信装置において、前記Nを2とした場合、
    前記送信装置において前記設定器は、
    前記バッファ量測定器で測定され前記pを1とした1個のチャネルの信号のバッファ量が0のときは前記pを1とした1個のチャネルの信号に対する重みを0とし且つ他の1個のチャネルの信号に対する重みを1とし、前記バッファ量測定器で測定され前記pを1とした1個のチャネルの信号のバッファ量が0より大きいときは前記pを1とした1個のチャネルの信号に対する重みを1とし且つ他の1個のチャネルの信号に対する重みをW(ただし、Wは自然数とする。)とすることを特徴とする請求項に記載の多重通信システム。
  10. 前記送信装置は、
    前記p個の符号器の前段で予め前記p個のチャネルの信号をチャネル毎に格納するp個のバッファと、前記多重化器の前段で予め前記(N−p)個のチャネルの信号をチャネル毎に格納する(N−p)個のバッファと、N個の前記バッファに格納されたチャネルの信号の量をバッファ毎に測定するバッファ量測定器と、
    前記バッファ量測定器で測定されるバッファ量に応じて前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長をチャネル毎に設定する設定器をさらに備え、
    前記受信装置において前記(N−p)個の再生器のそれぞれは、前記第1データ再生器の前段で予め前記多重化信号を前記重み及び前記符号長に応じた所定時間だけ遅延させて出力する遅延器をさらに備えることを特徴とする請求項に記載の多重通信システム。
  11. 前記送信装置において前記設定器が、前記Nを2とした2個のチャネルの信号のうち前記pを1とした1個のチャネルの信号に対する重みを1とし且つ他の1個のチャネルの信号に対する重みをW(ただし、Wは自然数とする。)と設定し且つ前記pを1とした1個のチャネルの信号に対する符号長をL(ただし、Lは自然数とする。)と設定する場合、
    前記受信装置において前記遅延器は、前記多重化信号を前記所定時間d(ただし、dはL×(1+W)/(前記2個のチャネルの信号のビットレート)の自然数倍とする。)だけ遅延させることを特徴とする請求項10に記載の多重通信システム。
  12. N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムの前記受信装置であって、
    前記多重化信号は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号化信号のビット列にそれぞれ所定の重みを付与した信号であり、
    前記受信装置は、
    前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、
    前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、
    前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、
    前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、
    前記再生器のそれぞれは、前記分配器からの前記多重化信号と第1参照信号とを取得し、前記多重化信号から再生したクロック信号と前記第1参照信号とのいずれか一方に前記多重化信号を同期させて前記多重化信号を識別再生する第1データ再生器を備え、
    前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号を取得し、前記相関信号から再生したクロック信号に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、
    p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号に同期するクロック信号を出力し、
    前記第1データ再生器において前記第1参照信号をいずれかの前記第2データ再生器から出力される前記クロック信号とすることを特徴とする受信装置。
  13. N(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信する送信装置と、前記送信装置と対向接続され前記送信装置から送信される前記多重化信号を受信する受信装置と、を有する多重通信システムの前記受信装置であって、
    前記多重化信号は、前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列及び前記p個の符号化信号のビット列にそれぞれ所定の重みを付与した信号であり、
    前記受信装置は、
    前記送信器から送信される前記多重化信号を受信し電気信号として自動利得増幅して出力する受信器と、
    前記受信器から出力される前記多重化信号をN個に分配して出力する分配器と、
    前記分配器から出力されるN個の前記多重化信号のうちp個の多重化信号毎に設けられ前記p個のチャネルの信号をそれぞれ前記符号化方式に対応して復号化するp個の復号器と、
    前記分配器からの前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号毎に設けられ前記送信装置で多重化された前記多重化信号を識別再生する再生器と、を備え、
    前記復号器のそれぞれは、前記分配器からの前記多重化信号と前記拡散符号との相関をとる相関器と、前記相関器で相関をとられた相関信号と第2参照信号とを取得し、前記相関信号から再生したクロック信号と前記第2参照信号とのいずれか一方に前記相関信号を同期させて前記N個のチャネルの信号のうちいずれか1個のチャネルの信号を識別再生する第2データ再生器をさらに備え、
    p個の前記第2データ再生器のうちq(ただし、qはp以下の自然数とする。)個の前記第2データ再生器は、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するクロック信号を出力し、
    前記第2データ再生器において前記第2参照信号を他の前記第2データ再生器から出力される前記クロック信号とすることを特徴とする受信装置。
  14. 送信装置がN(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信し、前記送信装置と対向接続される受信装置が前記送信装置から送信される前記多重化信号を受信する多重通信方法であって、
    前記送信装置は、
    前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、符号化した符号化信号のビット列及び前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して所定の通信方式で送信し、
    前記受信装置は、
    前記送信装置から送信される前記多重化信号を受信し電気信号として出力して自動利得増幅してN個に分配し、分配したN個の前記多重化信号のうちp個の前記多重化信号を前記符号化方式に対応してチャネル毎に復号化し、分配した前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号をそれぞれ前記多重化信号から再生したクロック信号と第1参照信号とのいずれか一方に同期させて前記(N−p)個の多重化信号をさらに識別再生し、
    前記p個の多重化信号を復号する際に、前記多重化信号と前記拡散符号との相関をとり、相関をとった相関信号を前記相関信号から再生したクロック信号に同期させて前記p個のチャネルの信号を識別再生し、
    前記p個の多重化信号のうちq(ただし、qはp以下の自然数とする。)個についてq個の前記チャネルの信号を識別再生する際に、識別再生と共に前記相関信号から再生した前記クロック信号に同期するq個のクロック信号を生成し、
    前記(N−p)個の多重化信号を識別する際に前記第1参照信号を前記q個のクロック信号のうちいずれかのクロック信号とする
    ことを特徴とする多重通信方法。
  15. 送信装置がN(ただし、Nは2以上の整数とする。)個のチャネルの信号を多重化した多重化信号を送信し、前記送信装置と対向接続される受信装置が前記送信装置から送信される前記多重化信号を受信する多重通信方法であって、
    前記送信装置は、
    前記N個のチャネルの信号のうちp(ただし、pはN以下の自然数とする。)個のチャネルの信号を所定の符号長の拡散符号による直接拡散符号化方式で符号化し、符号化した符号化信号のビット列及び前記N個のチャネルの信号のうち前記p個のチャネルの信号を除く(N−p)個のチャネルの信号のビット列にそれぞれ所定の重みを付与して前記多重化信号を生成して所定の通信方式で送信し、
    前記受信装置は、
    前記送信装置から送信される前記多重化信号を受信し電気信号として出力して自動利得増幅してN個に分配し、分配したN個の前記多重化信号のうちp個の前記多重化信号を前記符号化方式に対応してチャネル毎に復号化し、分配した前記N個の多重化信号のうち前記p個の多重化信号を除く(N−p)個の多重化信号をそれぞれ識別再生し、
    前記p個の多重化信号を復号する際に、前記多重化信号と前記拡散符号との相関をとり、相関をとった相関信号を前記相関信号から再生したクロック信号と第2参照信号とのいずれか一方に同期させて前記p個のチャネルの信号を識別再生し、
    前記p個の多重化信号のうちq(ただし、qはp以下の自然数とする。)個についてq個の前記チャネルの信号を識別再生する際に、識別再生と共に前記相関信号から再生した前記クロック信号と前記第2参照信号とのいずれか一方に同期するq個のクロック信号を生成し、
    前記p個のチャネルの信号を識別再生する際に、前記第2参照信号を他の前記第2参照信号に同期する前記q個のクロック信号のうちいずれかのクロック信号とする
    ことを特徴とする多重通信方法。
  16. 前記受信装置は、復号化した前記p個のチャネルの信号からチャネル毎にビット誤り率を測定し、測定したp個の前記ビット誤り率がそれぞれ許容ビット誤り率以下となるように前記N個のチャネルの信号に対する前記重みの大きさ及び前記p個のチャネルの信号に対する前記拡散符号又は前記拡散符号の符号長を決定して前記送信装置に通知し、
    前記送信装置は、前記受信装置から通知された前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長に従って前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を設定することを特徴とする請求項14又は15に記載の多重通信方法。
  17. 前記送信装置は、前記p個のチャネルの信号を符号化する前に前記p個のチャネルの信号を予めチャネル毎にバッファに格納し且つ前記N個のチャネルの信号を多重化する前に前記(N−p)個のチャネルの信号を予めチャネル毎にバッファに格納し、格納した前記N個のチャネルの信号の量をバッファ毎に測定し、測定したバッファ量を通知する通知信号を生成して前記p個のチャネルの信号のいずれか1のチャネルの信号として送信し、
    前記受信装置は、前記送信装置から送信された前記通知信号及び測定した前記p個のビット誤り率に基づいて前記重みの大きさ、前記拡散符号又は前記拡散符号の符号長を決定することを特徴とする請求項16に記載の多重通信方法。
  18. 前記送信装置が、前記p個のチャネルの信号を符号化する前に前記p個のチャネルの信号を予めチャネル毎にバッファに格納し且つ前記N個のチャネルの信号を多重化する前に前記(N−p)個のチャネルの信号を予めチャネル毎にバッファに格納し、格納した前記N個のチャネルの信号の量をバッファ毎に測定し且つ測定したバッファ量に対応する所定の値に、前記N個のチャネルの信号に対する前記重みWi及び前記p個のチャネルの信号に対する前記拡散符号の符号長Lj(ただし、iはN以下で前記N個のチャネルの信号のそれぞれのチャネルに対応し、jはp以下で前記p個のチャネルの信号のそれぞれのチャネルに対応する。)を設定する場合、
    前記受信装置は、前記(N−p)個の多重化信号を再生する前に予め前記多重化信号を所定時間遅延させ、
    前記多重化信号を遅延させる際に、前記受信装置は、前記所定時間di(ただし、i=jでdiはチャネル毎にLj×(1+Wi)の自然数倍とする。)だけ遅延させることを特徴とする請求項14に記載の多重通信方法。
JP2005174208A 2005-06-14 2005-06-14 多重通信システム及び多重通信方法 Expired - Fee Related JP4588547B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174208A JP4588547B2 (ja) 2005-06-14 2005-06-14 多重通信システム及び多重通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174208A JP4588547B2 (ja) 2005-06-14 2005-06-14 多重通信システム及び多重通信方法

Publications (2)

Publication Number Publication Date
JP2006352373A JP2006352373A (ja) 2006-12-28
JP4588547B2 true JP4588547B2 (ja) 2010-12-01

Family

ID=37647755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174208A Expired - Fee Related JP4588547B2 (ja) 2005-06-14 2005-06-14 多重通信システム及び多重通信方法

Country Status (1)

Country Link
JP (1) JP4588547B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888630B2 (ja) 2005-07-08 2012-02-29 日本電気株式会社 通信システムおよびその監視制御方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744505B2 (ja) * 1989-10-05 1995-05-15 日本電気株式会社 ディジタル多重分離装置
JPH08140143A (ja) * 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd 移動型テレビ電話システム
JPH08307312A (ja) * 1995-04-28 1996-11-22 Sharp Corp スペクトル拡散通信方式の受信機
JPH09116520A (ja) * 1995-10-20 1997-05-02 Mitsubishi Electric Corp 多重化装置
JPH1041915A (ja) * 1996-07-24 1998-02-13 Sony Corp 伝送装置及び伝送方法
JPH11205265A (ja) * 1998-01-19 1999-07-30 Sony Corp データ多重化装置
JP2000261366A (ja) * 1999-03-09 2000-09-22 Seiko Epson Corp 通信環境適応化方法及び無線通信装置並びに通信環境適応化処理プログラムを記録した記録媒体
JP2000295198A (ja) * 1999-04-01 2000-10-20 Matsushita Electric Ind Co Ltd Cdma基地局装置及びcdma通信方法
JP2001007775A (ja) * 1997-06-19 2001-01-12 Toshiba Corp 情報データ多重化伝送システムとその多重化装置及び分離装置
JP2001268051A (ja) * 2000-03-22 2001-09-28 Ntt Docomo Inc マルチキャリア/ds−cdma移動通信システムにおける上りリンクパケット伝送方法
JP2002111631A (ja) * 2000-10-04 2002-04-12 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd 無線通信システム及び無線通信装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744505B2 (ja) * 1989-10-05 1995-05-15 日本電気株式会社 ディジタル多重分離装置
JPH08140143A (ja) * 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd 移動型テレビ電話システム
JPH08307312A (ja) * 1995-04-28 1996-11-22 Sharp Corp スペクトル拡散通信方式の受信機
JPH09116520A (ja) * 1995-10-20 1997-05-02 Mitsubishi Electric Corp 多重化装置
JPH1041915A (ja) * 1996-07-24 1998-02-13 Sony Corp 伝送装置及び伝送方法
JP2001007775A (ja) * 1997-06-19 2001-01-12 Toshiba Corp 情報データ多重化伝送システムとその多重化装置及び分離装置
JPH11205265A (ja) * 1998-01-19 1999-07-30 Sony Corp データ多重化装置
JP2000261366A (ja) * 1999-03-09 2000-09-22 Seiko Epson Corp 通信環境適応化方法及び無線通信装置並びに通信環境適応化処理プログラムを記録した記録媒体
JP2000295198A (ja) * 1999-04-01 2000-10-20 Matsushita Electric Ind Co Ltd Cdma基地局装置及びcdma通信方法
JP2001268051A (ja) * 2000-03-22 2001-09-28 Ntt Docomo Inc マルチキャリア/ds−cdma移動通信システムにおける上りリンクパケット伝送方法
JP2002111631A (ja) * 2000-10-04 2002-04-12 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd 無線通信システム及び無線通信装置

Also Published As

Publication number Publication date
JP2006352373A (ja) 2006-12-28

Similar Documents

Publication Publication Date Title
RU2608355C1 (ru) Уплотнение заголовков пакетов транспортного потока
KR101779435B1 (ko) 방송 신호를 송신하는 장치, 방송 신호를 수신하는 장치, 방송 신호를 송신하는 방법 및 방송 신호를 수신하는 방법
US10158449B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
KR101838082B1 (ko) 방송 신호를 송신하는 장치, 방송 신호를 수신하는 장치, 방송 신호를 송신하는 방법 및 방송 신호를 수신하는 방법
US20120155556A1 (en) Digital television transmission with error correction
KR100990395B1 (ko) 무선 통신 시스템에서 데이터 송신 장치 및 방법
JP2005151462A (ja) ストリームデータ送信機、ストリームデータ送信方法、ストリームデータ受信機及びストリームデータ受信方法並びにストリームデータ通信システム及びストリームデータ送受信方法。
WO2014166205A1 (zh) 基于灵活栅格标签的频谱资源分配方法及装置
JP4588547B2 (ja) 多重通信システム及び多重通信方法
JP2010177858A (ja) デジタルデータ送信装置及びデジタルデータ受信装置
JP6785928B2 (ja) 方法
JP2019513325A (ja) スロット付きalohaの電信分割
JP5200381B2 (ja) Ponシステムの局側装置、受信部、クロック及びデータ再生部、及び、ponシステムの上り方向通信方法
KR20180081722A (ko) 정보 처리 장치, 정보 처리 방법, 및 프로그램
JP7396080B2 (ja) 中継システム、送信装置、及び受信装置
JP2016027686A (ja) 光伝送システム及び信号伝送方法
JP2005151463A (ja) ストリームデータ受信装置およびストリームデータ受信方法
JP2001144733A (ja) 音声伝送装置及び音声伝送方法
WO2004059974A1 (en) Apparatus and method for providing digital broadcasting service based on multiple broadcasting sites and frequency bands
JP5060342B2 (ja) パケット送信装置
JP2007027813A (ja) 通信システム
KR101738867B1 (ko) 오류정정을 위한 방송 신호 부호화 및 복호화 방법, 이를 위한 방송 신호 송수신 장치 및 이를 위한 시스템
JP2010183419A (ja) 送信装置、受信装置及び伝送システム
JP6016718B2 (ja) 映像送受信システム、送信装置、および、受信装置
JP6063281B2 (ja) 送信装置、受信装置及びこれらのプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees