[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4582770B2 - Sealing resin for light emitting diode and light emitting diode using the same - Google Patents

Sealing resin for light emitting diode and light emitting diode using the same Download PDF

Info

Publication number
JP4582770B2
JP4582770B2 JP2004191653A JP2004191653A JP4582770B2 JP 4582770 B2 JP4582770 B2 JP 4582770B2 JP 2004191653 A JP2004191653 A JP 2004191653A JP 2004191653 A JP2004191653 A JP 2004191653A JP 4582770 B2 JP4582770 B2 JP 4582770B2
Authority
JP
Japan
Prior art keywords
light
resin
light emitting
emitting diode
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004191653A
Other languages
Japanese (ja)
Other versions
JP2006013347A (en
Inventor
康正 森田
弘明 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2004191653A priority Critical patent/JP4582770B2/en
Publication of JP2006013347A publication Critical patent/JP2006013347A/en
Application granted granted Critical
Publication of JP4582770B2 publication Critical patent/JP4582770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光ダイオード用封止樹脂及びそれを使用した発光ダイオードに関する。   The present invention relates to a sealing resin for a light emitting diode and a light emitting diode using the same.

発光ダイオード(LED)の発光体(LEDチップ)は半導体を材料とする固体素子であり、p型半導体とn型半導体を接合させて順方向にバイアス電圧を印加することによって接合部(活性層)で電気エネルギーを光エネルギーに変換し、変換された光エネルギーをLEDチップから外部に出射する、という機構のものである。LEDチップの発する光のピーク発光波長は半導体材料によって異なるが、紫外線〜可視光〜赤外線の領域にあり、発光スペクトルは急峻な特性を有している。   A light emitter (LED chip) of a light emitting diode (LED) is a solid element made of a semiconductor, and a junction (active layer) is formed by joining a p-type semiconductor and an n-type semiconductor and applying a bias voltage in the forward direction. Thus, the electrical energy is converted into light energy, and the converted light energy is emitted from the LED chip to the outside. Although the peak emission wavelength of the light emitted from the LED chip varies depending on the semiconductor material, it is in the ultraviolet to visible to infrared region, and the emission spectrum has a steep characteristic.

また、LEDチップの寸法・形状は、一辺の長さが0.5mm程度の略6面体を成しており、光源としては極めて小さいために発光光量が少なく、点光源に近い光学特性を有している。したがって、このような特性のLEDチップを光源にしたLEDを設計・製作するに当たっては、LEDチップの活性層で発光された光の量に対するLEDチップから出射される光の量の割合(外部量子効率、或いは、光取り出し効率)を高め、且つLEDチップから出射されてLEDの外部に放出される光を集光してLEDの光軸上の光度を上げるような手法が施される。   In addition, the size and shape of the LED chip is an approximately hexahedron with a side length of about 0.5 mm. Since the light source is extremely small, the amount of emitted light is small and it has optical characteristics close to that of a point light source. ing. Therefore, in designing and manufacturing an LED using an LED chip having such characteristics as a light source, the ratio of the amount of light emitted from the LED chip to the amount of light emitted from the active layer of the LED chip (external quantum efficiency). Alternatively, a method of increasing light intensity on the optical axis of the LED by concentrating light emitted from the LED chip and emitted to the outside of the LED is performed.

ところで、異なる屈折率を有する透明体よって形成される境界平面(界面)の一方(屈折率がnの透明体)から界面に至る光(入射光)が入射点において界面の法線との成す角(入射角)と、入射光が界面の入射点から界面を挟んだ他方(屈折率がnの透明体)に入る光(屈折光)が界面の法線との成す角(屈折角)とに関して、n≦nの場合は、入射角が90°になるまでは入射角に係わらず屈折率がnの透明体からの入射光に対し全ての屈折光が屈折率がnの透明体に入る。 Incidentally, light (incident light) from one of the boundary planes (interface) formed by transparent bodies having different refractive indexes (transparent body having a refractive index of n1) to the interface forms an interface normal at the incident point. The angle (refractive angle) between the angle (incident angle) and the light (refracted light) that enters the other side (transparent body having a refractive index of n 2 ) sandwiching the interface from the incident point of the interface with the normal of the interface In the case of n 1 ≦ n 2 , all the refracted light has a refractive index of n 2 for the incident light from the transparent body having a refractive index of n 1 regardless of the incident angle until the incident angle reaches 90 °. Enter the transparent body.

一方、n>nの場合は、入射角によっては屈折角が90°以上になることがあり、このときには屈折光は存在せず、屈折角が90°(このときの入射角を臨界角という)では入射光は界面に平行に進行し、屈折角が90°を超えると入射光は界面で反射して全反射となり屈折率がnの透明体に戻って屈折率がnの透明体には入らないことになる。 On the other hand, when n 1 > n 2, the refraction angle may be 90 ° or more depending on the incident angle. At this time, there is no refracted light and the refraction angle is 90 ° (the incident angle at this time is the critical angle). The incident light travels parallel to the interface, and when the refraction angle exceeds 90 °, the incident light is reflected at the interface to be totally reflected and returns to the transparent body having a refractive index of n 1 and transparent with a refractive index of n 2 . It will not enter the body.

そこで、LEDチップの活性層で発光した光をLEDチップからLEDチップ外に出射するときの光取り出し効率について考えてみる。例えば、光出射面を形成する半導体材料の屈折率が3のLEDチップを屈折率が1の大気中で発光させたとすると臨界角は約19.5°となる。つまり、LEDチップの活性層で発光して光出射面に至った光のうち、光出射面の法線に対して約19.5°以内の角度で光出射面に至った光のみが光出射面から大気中に出射されることになる。   Therefore, consider the light extraction efficiency when the light emitted from the active layer of the LED chip is emitted from the LED chip to the outside of the LED chip. For example, if an LED chip having a refractive index of 3 of the semiconductor material forming the light emitting surface is caused to emit light in the atmosphere having a refractive index of 1, the critical angle is about 19.5 °. That is, only the light that reaches the light emitting surface at an angle within about 19.5 ° with respect to the normal of the light emitting surface out of the light emitted from the active layer of the LED chip and reaching the light emitting surface is emitted. The light is emitted from the surface into the atmosphere.

ところが、このLEDチップの光出射面と界面を形成する部材に屈折率が1以上のものを採用して発光させると臨界角は約19.5°以上となり、上記大気中で発光させたときよりも多くの光量をLEDチップからLEDチップ外に取り出すことが出きる。   However, if a member that forms an interface with the light emission surface of the LED chip is used to emit light by using a member having a refractive index of 1 or more, the critical angle becomes about 19.5 ° or more, which is higher than that when the light is emitted in the atmosphere. It is possible to extract a large amount of light from the LED chip to the outside of the LED chip.

このような理論を踏まえた上で光取り出し効率の向上を目的として施された手法は、LEDチップの光出射面を形成する半導体材料の屈折率に極力近い屈折率の透光性樹脂でLEDチップを封止することである。具体的に検証すると、上記LEDチップを屈折率が1.5の透光性樹脂で封止すると臨界角は30°となり、LEDチップの活性層で発光して光出射面に至った光のうち、光出射面の法線に対して30°までの角度で光出射面に至った光が光出射面から透光性樹脂内に出射されることになる。つまり、大気よりも屈折率の大きい透光性樹脂でLEDチップを封止することにより、LEDチップを大気中で発光させるよりも遥に多くの光をLEDチップから取り出すことができるようになり、光取り出し効率の大幅な向上が実現することとなる。   Based on such a theory, the technique taken for the purpose of improving the light extraction efficiency is a transparent resin having a refractive index as close as possible to the refractive index of the semiconductor material forming the light emitting surface of the LED chip. Is to seal. Specifically, when the LED chip is sealed with a translucent resin having a refractive index of 1.5, the critical angle becomes 30 °, and the light emitted from the active layer of the LED chip and reaches the light emitting surface The light reaching the light exit surface at an angle of up to 30 ° with respect to the normal of the light exit surface is emitted from the light exit surface into the translucent resin. In other words, by sealing the LED chip with a translucent resin having a refractive index larger than that of the atmosphere, much more light can be extracted from the LED chip than when the LED chip emits light in the atmosphere. A significant improvement in light extraction efficiency will be realized.

また、LEDチップを透光性樹脂で封止すると別の効果を齎すことができる。それは、上述のようにLEDチップは光源としては極めて小さいために発光光量が少なく、点光源に近い光学特性を有している。そのためLEDチップを封止した光透光性樹脂でレンズを形成することによって、LEDチップから透光性樹脂内に出射された光をレンズで集光してLEDの外部に放出することができ、よって光軸上の光度を上げることが可能になるものである。   Further, when the LED chip is sealed with a translucent resin, another effect can be obtained. As described above, since the LED chip is extremely small as a light source, the amount of emitted light is small and it has optical characteristics close to a point light source. Therefore, by forming the lens with a light-transmitting resin sealing the LED chip, the light emitted from the LED chip into the light-transmitting resin can be collected by the lens and emitted to the outside of the LED. Therefore, it is possible to increase the luminous intensity on the optical axis.

更に、上述した光学的効果の他に、LEDチップを透光性樹脂で封止することによって物理的効果も得ることができる。そこで図1及び図2で示す表面実装型LEDを参照してLEDチップの具体的な実装方法に基づく前記物理的効果を説明する。   Furthermore, in addition to the optical effects described above, a physical effect can also be obtained by sealing the LED chip with a translucent resin. Therefore, the physical effect based on the specific mounting method of the LED chip will be described with reference to the surface-mounted LED shown in FIGS.

LEDチップの電極構造はLEDチップを構成する半導体材料によって、LEDチップの対向する面の夫々にアノード電極とカソード電極とを設けたものとLEDチップの同一面側にアノード電極とカソード電極とを設けたものとの二種類に大別される。図1は前者のLEDチップを光源とし、図2は後者のLEDチップを光源として何れも表面実装型LEDと称されるパッケージに実装したものである。   The electrode structure of the LED chip is based on a semiconductor material that constitutes the LED chip, and an anode electrode and a cathode electrode are provided on each of the opposing surfaces of the LED chip, and an anode electrode and a cathode electrode are provided on the same side of the LED chip. It is roughly divided into two types. FIG. 1 shows the former LED chip as a light source, and FIG. 2 shows the latter LED chip as a light source, both of which are mounted on a package called a surface mount LED.

まず、図1に示す表面実装型LED10は、絶縁基板1に回路導体2a、2bが形成されたプリント基板3の上面に、上方に開いた擂鉢形状の凹部を有するランプハウス4が設けられている。そして凹部の低部に露出した回路導体2a、2bに導電性接着剤(図示せず)を介してLEDチップ5を搭載してLEDチップ5の下側電極と回路導体2aとの電気的導通を図り、LEDチップ5の上側電極と同じく凹部の低部に露出して前記LEDチップ5を搭載した回路導体2aとは分離された回路導体2bとをボンディングワイヤ6を介して接続して導通を図っている。また、LEDチップ5が実装されてボンディングワイヤ6が張られた凹部に透光性樹脂(エポキシ樹脂またはシリコーン樹脂)7が充填されている。   First, the surface-mounted LED 10 shown in FIG. 1 is provided with a lamp house 4 having a bowl-shaped recess opened upward on the upper surface of a printed circuit board 3 on which circuit conductors 2a and 2b are formed on an insulating substrate 1. . Then, the LED chip 5 is mounted on the circuit conductors 2a and 2b exposed in the lower part of the concave portion via a conductive adhesive (not shown) to establish electrical continuity between the lower electrode of the LED chip 5 and the circuit conductor 2a. In the same manner as the upper electrode of the LED chip 5, the circuit conductor 2 b that is exposed at the lower part of the recess and is separated from the circuit conductor 2 a on which the LED chip 5 is mounted is connected via a bonding wire 6 to achieve conduction. ing. In addition, a light-transmitting resin (epoxy resin or silicone resin) 7 is filled in the recess where the LED chip 5 is mounted and the bonding wire 6 is stretched.

図2に示す表面実装型LED20は、プリント基板3とランプハウス4の構成は図1と同様であるが、LEDチップ5は凹部の低部に接着剤(図示せず)を介して搭載され、LEDチップ5の上側に設けられた一対の電極の夫々と凹部の低部に露出して分離された一対の回路導体2a、2bの夫々とをボンディングワイヤ6a、6bを介して接続して導通を図っている。また、LEDチップ5が実装されてボンディングワイヤが張られた凹部に蛍光体8を分散した透光性樹脂(エポキシ樹脂またはシリコーン樹脂)7が充填されており、放出される光は白色光である。   The surface-mounted LED 20 shown in FIG. 2 has the same configuration of the printed circuit board 3 and the lamp house 4 as in FIG. 1, but the LED chip 5 is mounted on the lower part of the recess via an adhesive (not shown), Each of the pair of electrodes provided on the upper side of the LED chip 5 and the pair of circuit conductors 2a and 2b exposed and separated at the lower part of the recess are connected via the bonding wires 6a and 6b, respectively. I am trying. In addition, a light-transmitting resin (epoxy resin or silicone resin) 7 in which a phosphor 8 is dispersed is filled in a recess where the LED chip 5 is mounted and a bonding wire is stretched, and the emitted light is white light. .

このように実装されたLEDチップを透光性樹脂で封止するすることによって、上述のような機能を有するボンディングワイヤに直接触れることによって加わる力、並びに、間接的に加わる振動及び衝撃などによって電極からボンディングワイヤが剥離したり、ボンディングワイヤが切断したり、ボンディングワイヤの変形によって短絡したりすることによって生じる電気的な不具合を防止することができ、また同時に、LEDチップを湿気、塵埃などの外部環境から保護し、長期間に亘って信頼性を維持することが可能となる。   By sealing the LED chip mounted in this way with a translucent resin, the electrode is applied by the force applied by directly touching the bonding wire having the function as described above, and the vibration and impact applied indirectly. Can prevent electrical failure caused by peeling of the bonding wire, cutting of the bonding wire, or short-circuiting due to deformation of the bonding wire. At the same time, the LED chip can be prevented from being exposed to moisture, dust, etc. It is possible to protect from the environment and maintain reliability over a long period of time.

そこで、LEDチップ及びボンディングワイヤを封止する透光性樹脂がエポキシ樹脂の場合は、従来は酸無水物硬化系であり、下記構造式で表すビスフェノールAグリシジルエーテル(11)もしくは脂環式エポキシ(12)及びメチルヘキサヒドロ無水フタル酸(13)を主成分としていた。   Therefore, when the translucent resin for sealing the LED chip and the bonding wire is an epoxy resin, it is conventionally an acid anhydride curing system, and bisphenol A glycidyl ether (11) or alicyclic epoxy (11) represented by the following structural formula: 12) and methylhexahydrophthalic anhydride (13) as main components.

Figure 0004582770
Figure 0004582770

このようにLED用エポキシ樹脂は酸無水物硬化系が一般的であり、一列に並設された複数のリードフレームの端部に搭載されたLEDチップを透光性樹脂で封止してレンズ効果を持たせる構造の砲弾型LEDにおける厚みのあるレンズ成形や、樹脂基板上に搭載されたLEDチップを透光性樹脂で封止してレンズ効果を持たせる構造の表面実装型LEDにおけるトランスファー成形による樹脂基板上へのレンズ形成などには酸無水物硬化が適している。   As described above, the epoxy resin for LED is generally an acid anhydride curing system, and the LED effect is obtained by sealing the LED chips mounted on the ends of a plurality of lead frames arranged in a row with a translucent resin. Thick lens formation in a bullet-type LED having a structure that provides a lens, or transfer molding in a surface-mount type LED having a structure that provides a lens effect by sealing an LED chip mounted on a resin substrate with a translucent resin Acid anhydride curing is suitable for forming a lens on a resin substrate.

また、透光性樹脂がシリコーン樹脂の場合は、ジメチルシロキサン骨格を有する重合体であり、透明ゲル状もしくはゴム状のエラストマーである。
特開平8−335720号公報
Further, when the translucent resin is a silicone resin, it is a polymer having a dimethylsiloxane skeleton, and is a transparent gel-like or rubber-like elastomer.
JP-A-8-335720

しかしながら、近年、LEDはビルの壁面に取り付けられる情報表示板、各種競技場の情報表示板、道路情報板や交通信号灯など屋外に設置される表示機器の光源に使用される機会が多くなってきている。その場合、屋外においては太陽光の紫外線に直接晒されるため、紫外線吸収性の強い芳香族をビスフェノールAグリシジルエーテルを主成分とするLED用エポキシ樹脂は下記反応式(1)で表すように酸化されてカルボニル基を生成し、発色団を形成して変色(黄変)する。   However, in recent years, LEDs have been used more frequently as light sources for display devices installed outdoors, such as information display boards attached to the walls of buildings, information display boards for various stadiums, road information boards and traffic signal lights. Yes. In that case, since it is directly exposed to the ultraviolet rays of sunlight in the outdoors, the epoxy resin for LED mainly composed of bisphenol A glycidyl ether is highly oxidized as shown in the following reaction formula (1). A carbonyl group is formed, forming a chromophore and discoloring (yellowing).

Figure 0004582770
Figure 0004582770

また、白色光を放出する表面実装型LEDのように蛍光体を分散させた樹脂でLEDチップを薄く封止する場合、エポキシ樹脂の酸無水物硬化では酸無水物の蒸発が著しく、樹脂硬化後に樹脂部分の体積が大幅に減少する。   Also, when the LED chip is thinly sealed with a resin in which a phosphor is dispersed, such as a surface-mounted LED that emits white light, the acid anhydride evaporation of the epoxy resin is markedly evaporated and the resin is cured. The volume of the resin part is greatly reduced.

更に、酸無水物の蒸発によって、樹脂の強度や耐熱性が設計値より低くなるため、樹脂クラック、変色が発生し、LEDとしての信頼性が大きく低下するものである。   Furthermore, since the strength and heat resistance of the resin are lower than the designed values due to the evaporation of the acid anhydride, resin cracks and discoloration occur, and the reliability as an LED is greatly reduced.

こうした問題を解決するために、芳香族オニウム塩によるカチオン硬化が検討されているが、触媒中の硫黄が樹脂変色の要因となるため、特に熱によって変色が起こりやすいことが問題となる。更に、カウンターアニオンはヘキサフルオロアンチモンであり、この場合アンチモンの安全性が問題視されている。   In order to solve these problems, cation curing with an aromatic onium salt has been studied. However, since sulfur in the catalyst causes resin discoloration, the problem is that discoloration is particularly likely to occur due to heat. Further, the counter anion is hexafluoroantimony, and in this case, the safety of antimony is regarded as a problem.

上記問題を一挙に解決するために従来例で示したように、エポキシ樹脂の代わりにシリコーン樹脂を使用する場合もある。しかしながら、シリコーン樹脂はエポキシ樹脂と比較して屈折率が低く、LEDチップとの密着性も弱いため、LEDチップからの光取り出し効率が悪く、明るいLEDを得るには難点が多。更に、シリコーン樹脂はエポキシ樹脂と比較して強度が低く、表面に埃が付着しやすいという問題点がある。また、LEDチップが実装された基板上に自動機によってLEDチップを樹脂封止する表面実装型LEDの場合、硬化前のシリコーン樹脂は硬化前のエポキシ樹脂と比較して粘度が高く、作業性が良くないために生産効率が悪く、硬化後のシルコーン樹脂は表面がエポキシ樹脂に比べて柔らかく、強度も低いために自動機で封止するときの形状に制約がある、などの問題点も存在する。   In order to solve the above problems all at once, a silicone resin may be used in place of the epoxy resin as shown in the conventional example. However, the silicone resin has a lower refractive index than the epoxy resin and weak adhesion to the LED chip. Therefore, the light extraction efficiency from the LED chip is poor, and it is difficult to obtain a bright LED. Furthermore, the silicone resin has a problem that the strength is lower than that of the epoxy resin, and dust easily adheres to the surface. Also, in the case of a surface-mounted LED in which an LED chip is resin-sealed by an automatic machine on a substrate on which the LED chip is mounted, the silicone resin before curing has a higher viscosity and the workability than the epoxy resin before curing. The production efficiency is poor because it is not good, and the cured corn cone resin has a softer surface than the epoxy resin and its strength is low, so there are also problems such as restrictions on the shape when sealing with an automatic machine .

そこで、本発明は上記問題に鑑みて創案なされたもので、目的とするところは、従来のエポキシ樹脂に比べて短波長領域の透過率が高く、且つ紫外線及び熱による変色(黄変)が少ないと同時に、樹脂クラックなどのLEDとしての信頼性を低下させる不良要因を生じさせない発光ダイオード用封止樹脂及びそれを使用した発光ダイオードを提供するものである。   Therefore, the present invention was devised in view of the above problems, and the object is to have a high transmittance in a short wavelength region and less discoloration (yellowing) due to ultraviolet rays and heat than conventional epoxy resins. At the same time, the present invention provides a light-emitting diode encapsulating resin that does not cause failure factors such as resin cracks that lower the reliability of the LED, and a light-emitting diode using the same.

上記課題を解決するために、本発明の請求項1に記載された発明は、青色波長領域及びそれよりも短波長領域の波長範囲内の光を発する発光素子を封止する発光ダイオード用封止樹脂であって、該発光ダイオード用封止樹脂はエポキシ基及び/又はオキセタニル基を有するシロキサン誘導体であって、2,4,6,8-テトラ[2-(3-{オキサヒ゛シクロ[4.1.0]ヘフ゜チル})エチル]-2,4,6,8,-テトラメチル-シクロテトラシロキサン、ヒ゛ス[(1-エチル-3-オキセタニル)メトキシフ゜ロヒ゜ル]-テトラメチルシ゛シロキサン、エホ゜キシ基もしくはオキセタニル基を有するシルセスキオキサン、のいずれかで表されるシロキサン誘導体を主成分とすることを特徴とするものである。 In order to solve the above problems, the invention described in claim 1 of the present invention is a sealing for a light emitting diode that seals a light emitting element that emits light in a wavelength range of a blue wavelength region and a shorter wavelength region. The light-emitting diode encapsulating resin is a siloxane derivative having an epoxy group and / or an oxetanyl group, and is 2,4,6,8-tetra [2- (3- {oxadicyclo [4.1.0 ] Heptyl}) ethyl] -2,4,6,8, -tetramethyl-cyclotetrasiloxane, bis [(1-ethyl-3-oxetanyl) methoxyfluoro] -tetramethyldisiloxane, having ethoxy group or oxetanyl group The main component is a siloxane derivative represented by any of silsesquioxane .

また、本発明の請求項2に記載された発明は、請求項1において、前記発光ダイオード用封止樹脂は、硬化触媒として白金錯体を1〜1000ppmの範囲内で含有していることを特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the sealing resin for light-emitting diodes contains a platinum complex in a range of 1 to 1000 ppm as a curing catalyst. To do.

また、本発明の請求項3に記載された発明は、請求項2において、前記硬化触媒は、助触媒としてSi−H結合を有する化合物を白金触媒に対して1〜10倍モルの範囲内で含有していることを特徴とするものである。   In addition, the invention described in claim 3 of the present invention is the curing catalyst according to claim 2, wherein the curing catalyst is a compound having a Si-H bond as a co-catalyst within a range of 1 to 10 moles relative to the platinum catalyst. It is characterized by containing.

また、本発明の請求項4に記載された発明は、請求項1〜3の何れか1項に記載の発光ダイオード用封止樹脂を使用して発光素子を封止したことを特徴とするものである。   Moreover, the invention described in claim 4 of the present invention is characterized in that the light emitting element is sealed using the sealing resin for light emitting diodes described in any one of claims 1 to 3. It is.

エポキシ基とオキセタニル基のうち何れか一方または両方の置換基を有するシロキサン誘導体を主成分とする発光ダイオード用封止樹脂及びそれを使用した発光ダイオードを実現することによって、従来のエポキシ樹脂に比べて短波長領域の透過率が高く、且つ紫外線及び熱による変色(黄変)が少ないと同時に、樹脂クラックなどのLEDとしての信頼性を低下させる不良要因を生じさせない発光ダイオード用封止樹脂及びそれを使用した発光ダイオードを可能にした。   Compared to conventional epoxy resins by realizing a sealing resin for light emitting diodes mainly composed of a siloxane derivative having a substituent of either one or both of an epoxy group and an oxetanyl group, and a light emitting diode using the same. A sealing resin for light-emitting diodes that has high transmittance in the short wavelength region and little discoloration (yellowing) due to ultraviolet rays and heat, and does not cause defective factors such as resin cracks that reduce reliability as an LED, and Made the light emitting diode used possible.

以下、この発明の好適な実施形態を図1〜図3を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. As long as there is no description of the effect, it is not restricted to these aspects.

まず、本発明の発光ダイオード用封止樹脂を構成する成分について説明する。主成分としては、下記構造式で表すエポキシ基及び/又はオキセタニル基を有するシロキサン誘導体(21)〜(25)であり、熱によるカチオン重合によって硬化する係であることを特徴とする。   First, components constituting the light emitting diode sealing resin of the present invention will be described. The main component is a siloxane derivative (21) to (25) having an epoxy group and / or an oxetanyl group represented by the following structural formula, which is characterized by being cured by cationic polymerization by heat.

Figure 0004582770
Figure 0004582770

また、酸化防止剤としては、下記構造式で表すリン系酸化防止剤(26)及びフェノール系酸化防止剤(27)などを用いることができる。   Moreover, as antioxidant, phosphorus antioxidant (26) represented by the following structural formula, phenolic antioxidant (27), etc. can be used.

Figure 0004582770
Figure 0004582770

また、硬化触媒としては、ヘキサクロロ白金酸(HPtCl)、ウイルキンソン触媒、カールシュタット(Karstadt)触媒及びラモロー(Lamoreaux)触媒などが適しているが、そのなかでハイドロシリレーション反応に使用される白金錯体である
ヘキサクロロ白金酸(HPtCl)が望ましく、これが封止樹脂中に1〜1000ppmの範囲内で含有されることがさらに望ましい。尚、ヘキサクロロ白金酸(HPtCl)が封止樹脂中に50〜1000ppmの範囲内で含有されることが最も望ましい。
As the curing catalyst, hexachloroplatinic acid (H 2 PtCl 6 ), Wilkinson catalyst, Karlstadt catalyst, Lamoreaux catalyst, and the like are suitable, and among them, they are used for hydrosilylation reaction. Hexachloroplatinic acid (H 2 PtCl 6 ), which is a platinum complex, is desirable, and it is more desirable that this be contained within the range of 1 to 1000 ppm in the sealing resin. It is most desirable that hexachloroplatinic acid (H 2 PtCl 6 ) is contained in the sealing resin within a range of 50 to 1000 ppm.

更に、硬化促進のための助触媒としては、下記構造式で表されるSi−H結合を有する化合物(28)が適しており、これを上記ヘキサクロロ白金酸(HPtCl)に対して1〜10倍モルの範囲内で添加することが望ましい。 Furthermore, as a co-catalyst for accelerating curing, a compound (28) having a Si—H bond represented by the following structural formula is suitable, which is 1 with respect to hexachloroplatinic acid (H 2 PtCl 6 ). It is desirable to add in the range of 10 times mole.

Figure 0004582770
Figure 0004582770

以下、上記成分の組み合わせによる本発明の発光ダイオード用封止樹脂の「実施例1」〜「実施例3」について説明する。   Hereinafter, “Example 1” to “Example 3” of the sealing resin for light emitting diodes of the present invention by the combination of the above components will be described.

実施例1として以下の成分及び条件で特性測定サンプルおよび表面実装型LEDを作製した。尚、表面実装型LEDは従来例を示す図1及び図2の構成を利用し、LEDチップ封止樹脂に以下の各実施例の樹脂を採用したものである。
エポキシ基を有するシロキサン(21) 99.89重量%
ヘキサクロロ白金酸(HPtCl) 0.01重量%
助触媒(28) 0.10重量%
硬化条件 110℃2時間+150℃2時間
As Example 1, a characteristic measurement sample and a surface-mounted LED were produced under the following components and conditions. Incidentally, the surface-mount type LED uses the structure shown in FIGS. 1 and 2 showing a conventional example, and adopts the resin of each of the following examples as the LED chip sealing resin.
Siloxane having an epoxy group (21) 99.89% by weight
Hexachloroplatinic acid (H 2 PtCl 6 ) 0.01% by weight
Cocatalyst (28) 0.10% by weight
Curing conditions 110 ° C 2 hours + 150 ° C 2 hours

実施例2として以下の成分及び条件で特性測定サンプルおよび表面実装型発光ダイオードを作製した。
エポキシ基を有するシロキサン(22) 99.89重量%
ヘキサクロロ白金酸(HPtCl) 0.01重量%
助触媒(28) 0.10重量%
硬化条件 110℃2時間+150℃2時間
As Example 2, a characteristic measurement sample and a surface-mount type light emitting diode were produced under the following components and conditions.
Siloxane having epoxy group (22) 99.89% by weight
Hexachloroplatinic acid (H 2 PtCl 6 ) 0.01% by weight
Cocatalyst (28) 0.10% by weight
Curing conditions 110 ° C 2 hours + 150 ° C 2 hours

実施例3として以下の成分及び条件で特性測定サンプルおよび表面実装型発光ダイオードを作製した。
エポキシ基を有するシロキサン(23) 99.89重量%
ヘキサクロロ白金酸(HPtCl) 0.01重量%
助触媒(28) 0.10重量%
硬化条件 110℃2時間+150℃2時間
As Example 3, a characteristic measurement sample and a surface-mount type light emitting diode were produced under the following components and conditions.
Siloxane having an epoxy group (23) 99.89% by weight
Hexachloroplatinic acid (H 2 PtCl 6 ) 0.01% by weight
Cocatalyst (28) 0.10% by weight
Curing conditions 110 ° C 2 hours + 150 ° C 2 hours

上記「実施例1」〜「実施例3」で作製した特性測定サンプル及び比較のためにエポキシ樹脂で作製した特性測定サンプルの透過スペクトルを図3に示す。図3において、エポキシ樹脂は上述のように紫外線吸収があるために430nm(可視光領域)よりも短波長領域において光吸収が認められる。一方、実施例1〜実施例3で作製されたサンプルは樹脂を形成する分子骨格に紫外線吸収がないために、380nm以下の紫外線波長領域においても高い透過率を維持していることが認められる。   FIG. 3 shows the transmission spectra of the characteristic measurement samples prepared in “Example 1” to “Example 3” and the characteristic measurement samples prepared with an epoxy resin for comparison. In FIG. 3, since the epoxy resin has ultraviolet absorption as described above, light absorption is recognized in a wavelength region shorter than 430 nm (visible light region). On the other hand, the samples prepared in Examples 1 to 3 have high transmittance even in the ultraviolet wavelength region of 380 nm or less because the molecular skeleton forming the resin does not absorb ultraviolet rays.

また、上記「実施例1」〜「実施例3」で作製した樹脂及び比較のためのエポキシ樹脂をスライドグラス上に10μmの厚みにコーティングして加熱硬化させたものに、高圧水銀灯(5000mW/cm)による紫外線照射試験を実施した。その結果、エポキシ樹脂は照射時間1時間で変色し、400nmにおける透過率がほぼ0%となった。一方、実施例1〜実施例3においては、特に実施例1では照射時間300時間でも透過率の低下は認められなかった。 In addition, a high pressure mercury lamp (5000 mW / cm) was prepared by coating the resin prepared in the “Example 1” to “Example 3” and the epoxy resin for comparison to a thickness of 10 μm on a slide glass and heat-curing. The ultraviolet irradiation test by 2 ) was implemented. As a result, the epoxy resin changed its color after an irradiation time of 1 hour, and the transmittance at 400 nm was almost 0%. On the other hand, in Examples 1 to 3, especially in Example 1, no decrease in transmittance was observed even at an irradiation time of 300 hours.

そこで、以上の結果を踏まえて本発明の効果を以下に説明する。   Then, based on the above result, the effect of this invention is demonstrated below.

まず、一般的な酸無水物硬化のエポキシ樹脂は、ガラス転位点を境に樹脂の膨張係数が大きく変化してLEDのボンディングワイヤの切断などの問題を生じやすい。そこでこのような問題を防止するためには、樹脂のガラス転位点をLEDの使用環境よりも高くする必要があり、そのために樹脂に対して高いガラス転位点が求められていた。   First, general acid anhydride-cured epoxy resins tend to cause problems such as cutting of LED bonding wires because the expansion coefficient of the resin changes greatly at the glass transition point. Therefore, in order to prevent such a problem, it is necessary to make the glass transition point of the resin higher than the environment in which the LED is used. Therefore, a high glass transition point is required for the resin.

これに対し、カチオン硬化樹脂ではガラス転位点前後の膨張係数の変化が小さく、温度変化を伴なう環境下にあっても断線不良の発生を低減することができる。また、梯子状高分子であるシルセスキオキサンの添加によって、樹脂の強度及び剛性を確保することができるため、クラックの発生も抑制することができる。   On the other hand, in the cationic curable resin, the change in the expansion coefficient before and after the glass transition point is small, and occurrence of disconnection failure can be reduced even in an environment accompanied by a temperature change. In addition, the addition of silsesquioxane, which is a ladder-like polymer, can ensure the strength and rigidity of the resin, so that the occurrence of cracks can also be suppressed.

更に、従来の酸無水物硬化のエポキシ樹脂は、加熱硬化時に酸無水物の蒸発によって樹脂体積が大きく減少するために、図1又は図2に示すような表面実装型LEDのランプハウス内に十分に充填しても、硬化後大きく引けてしまうという問題があった。これは、外観上の問題だけでなく、配光に影響を及ぼす重大な問題である。   Furthermore, the conventional acid anhydride-cured epoxy resin significantly reduces the resin volume due to the evaporation of the acid anhydride during heat-curing, so that it is sufficient in the lamp house of the surface mount LED as shown in FIG. 1 or FIG. Even if it is filled in, there is a problem that it is greatly pulled after curing. This is a serious problem that affects light distribution as well as appearance problems.

また、加熱硬化時に酸無水物が選択的に蒸発するために、樹脂硬化物中の酸無水物とエポキシとの比率が変化する。その結果、樹脂組成の変化、耐候性の低下などによって所望する樹脂性能が得られず、LEDにおいて目論見通りの信頼性が確保できないことになる。   In addition, since the acid anhydride is selectively evaporated at the time of heat curing, the ratio of the acid anhydride to the epoxy in the resin cured product changes. As a result, desired resin performance cannot be obtained due to a change in resin composition, a decrease in weather resistance, and the like, and reliability as expected in the LED cannot be ensured.

これに対し、上記実施例のカチオン硬化樹脂は加熱硬化後の体積収縮率が小さく、設計仕様を満足する配光及び信頼性を実現することができる。   On the other hand, the cationic curable resin of the above embodiment has a small volume shrinkage ratio after heat curing, and can realize light distribution and reliability satisfying design specifications.

更に、触媒に硫黄を含有しないことから、従来のオニウム塩を使用したカチオン硬化物と比較して、熱変色が大幅に低減される。   Further, since the catalyst does not contain sulfur, thermal discoloration is greatly reduced as compared with a cationic cured product using a conventional onium salt.

このような優れた効果を奏する樹脂でLEDチップを封止したLEDは、長期の使用に亘っても樹脂の変色がないために発光色の変化を生じない。このことは、青色波長領域より波長の短い光を発するLEDチップを蛍光体を分散した樹脂で封止した白色LEDにおいては、色合いの変わらない白色を長時間に亘って維持できる利点がある。   An LED in which an LED chip is sealed with a resin having such an excellent effect does not cause a change in emission color because there is no discoloration of the resin over a long period of use. This is advantageous in that a white LED in which LED chips that emit light having a shorter wavelength than the blue wavelength region are sealed with a resin in which phosphors are dispersed can be maintained over a long period of time.

また、複数のLEDチップを樹脂で封止した混色LEDにおいては、各LEDチップの組み合わせによる混色後の色合いが長時間に亘って維持できる。よってこのようなLEDを縦横に多数配列したドットマトリックスディスプレイにおいては、色合いが変わることない画面を長期に亘って楽しむことができる。   Further, in a mixed color LED in which a plurality of LED chips are sealed with a resin, the color shade after color mixing due to the combination of the LED chips can be maintained for a long time. Therefore, in a dot matrix display in which a large number of such LEDs are arranged vertically and horizontally, it is possible to enjoy a screen whose color does not change over a long period of time.

その上、樹脂クラック及び樹脂硬化時の樹脂の引けがほとんどないためにLEDとしても信頼性が高く、装置に実装した場合のメンテナンスの必要がほとんどないためにランニングコストの低減を図ることができる。   In addition, since there is almost no resin cracking or resin shrinkage at the time of resin curing, the LED is highly reliable, and there is almost no need for maintenance when mounted on an apparatus, so that the running cost can be reduced.

LEDチップ封止樹脂に蛍光体を含有しない従来の表面実装型LEDの断面図である。It is sectional drawing of the conventional surface mount type LED which does not contain a fluorescent substance in LED chip sealing resin. LEDチップ封止樹脂に蛍光体を含有する従来の表面実装型LEDの断面図である。It is sectional drawing of the conventional surface mount type LED which contains a fluorescent substance in LED chip sealing resin. 本発明に係わる発光ダイオード用封止樹脂の実施例1〜3の透過率を表す図である。It is a figure showing the transmittance | permeability of Examples 1-3 of the sealing resin for light emitting diodes concerning this invention.

符号の説明Explanation of symbols

1 絶縁基板
2a、2b 回路導体
3 プリント基板
4 ランプハウス
5 LEDチップ
6 ボンディングワイヤ
6a、6b ボンディングワイヤ
7 透光性樹脂
8 蛍光体
10 表面実装型LED
20 表面実装型LED
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2a, 2b Circuit conductor 3 Printed circuit board 4 Lamp house 5 LED chip 6 Bonding wire 6a, 6b Bonding wire 7 Translucent resin 8 Phosphor 10 Surface mount type LED
20 Surface-mount LED

Claims (4)

青色波長領域及びそれよりも短波長領域の波長範囲内の光を発する発光素子を封止する発光ダイオード用封止樹脂であって、該発光ダイオード用封止樹脂はエポキシ基及び/又はオキセタニル基を有するシロキサン誘導体であって、下式(22)〜(25)のいずれかで表されるシロキサン誘導体を主成分とすることを特徴とする発光ダイオード用封止樹脂。
Figure 0004582770
Figure 0004582770
Figure 0004582770
A sealing resin for a light emitting diode that seals a light emitting element that emits light within a wavelength range of a blue wavelength region and a shorter wavelength region, wherein the sealing resin for a light emitting diode has an epoxy group and / or an oxetanyl group. A sealing resin for light-emitting diodes, comprising a siloxane derivative represented by any one of the following formulas (22) to (25) as a main component.
Figure 0004582770
Figure 0004582770
Figure 0004582770
前記発光ダイオード用封止樹脂は、硬化触媒として白金錯体を1〜1000ppmの範囲内で含有していることを特徴とする請求項1に記載の発光ダイオード用封止樹脂。   2. The light-emitting diode sealing resin according to claim 1, wherein the light-emitting diode sealing resin contains a platinum complex in a range of 1 to 1000 ppm as a curing catalyst. 前記硬化触媒は、助触媒としてSi−H結合を有する化合物を白金触媒の1〜10倍モルの範囲内で含有していることを特徴とする請求項2に記載の発光ダイオード用封止樹脂。   The said curing catalyst contains the compound which has a Si-H bond as a promoter in the range of 1-10 times mole of a platinum catalyst, The sealing resin for light emitting diodes of Claim 2 characterized by the above-mentioned. 請求項1〜3の何れか1項に記載の発光ダイオード用封止樹脂を使用して発光素子を封止したことを特徴とする発光ダイオード。   A light emitting diode, wherein the light emitting element is sealed using the sealing resin for a light emitting diode according to any one of claims 1 to 3.
JP2004191653A 2004-06-29 2004-06-29 Sealing resin for light emitting diode and light emitting diode using the same Expired - Fee Related JP4582770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191653A JP4582770B2 (en) 2004-06-29 2004-06-29 Sealing resin for light emitting diode and light emitting diode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191653A JP4582770B2 (en) 2004-06-29 2004-06-29 Sealing resin for light emitting diode and light emitting diode using the same

Publications (2)

Publication Number Publication Date
JP2006013347A JP2006013347A (en) 2006-01-12
JP4582770B2 true JP4582770B2 (en) 2010-11-17

Family

ID=35780190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191653A Expired - Fee Related JP4582770B2 (en) 2004-06-29 2004-06-29 Sealing resin for light emitting diode and light emitting diode using the same

Country Status (1)

Country Link
JP (1) JP4582770B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057011B2 (en) * 2005-06-06 2012-10-24 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent
US7557230B2 (en) 2005-06-06 2009-07-07 Sony Corporation Latent curing agent
JP2007197517A (en) * 2006-01-24 2007-08-09 Three M Innovative Properties Co Adhesive sealing composition, sealing film and organic el element
JP2007273562A (en) 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
TWI464193B (en) * 2007-03-15 2014-12-11 Nippon Steel & Sumikin Chem Co Oxetane resin composition, optical materials and optical semiconductor packaging materials
KR101186779B1 (en) * 2007-04-17 2012-09-27 아사히 가세이 케미칼즈 가부시키가이샤 Epoxy silicone and method for production thereof, and curable resin composition using the same and use thereof
JP6016697B2 (en) * 2013-04-03 2016-10-26 日本化薬株式会社 Curable resin composition for light-emitting semiconductor coating protective material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138329A (en) * 1988-11-18 1990-05-28 Ube Ind Ltd Epoxy resin composition
JPH06172444A (en) * 1992-07-17 1994-06-21 General Electric Co <Ge> Catalyst mainly comprising platinum and used for polymerizing vinyl ether monomer and polymer
JPH06240001A (en) * 1993-02-17 1994-08-30 Nippon Kayaku Co Ltd Organopolysiloxane and epoxy resin composition containing the same
JPH06270184A (en) * 1993-03-18 1994-09-27 Nagase Chiba Kk Injection molding method of epoxy resin composition and epoxy resin composition
JPH09143344A (en) * 1995-11-21 1997-06-03 Nippon Kayaku Co Ltd Silicon-modified compound, silicon-modified epoxy resin, epoxy resin composition, and cured item thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138329A (en) * 1988-11-18 1990-05-28 Ube Ind Ltd Epoxy resin composition
JPH06172444A (en) * 1992-07-17 1994-06-21 General Electric Co <Ge> Catalyst mainly comprising platinum and used for polymerizing vinyl ether monomer and polymer
JPH06240001A (en) * 1993-02-17 1994-08-30 Nippon Kayaku Co Ltd Organopolysiloxane and epoxy resin composition containing the same
JPH06270184A (en) * 1993-03-18 1994-09-27 Nagase Chiba Kk Injection molding method of epoxy resin composition and epoxy resin composition
JPH09143344A (en) * 1995-11-21 1997-06-03 Nippon Kayaku Co Ltd Silicon-modified compound, silicon-modified epoxy resin, epoxy resin composition, and cured item thereof

Also Published As

Publication number Publication date
JP2006013347A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
CN105789411B (en) Light emitting device package and lighting apparatus having the same
US8349627B2 (en) Method for fabricating a light emitting diode package structure
TWI415293B (en) Fabricating method of photoelectric device and packaging structure thereof
US20110176573A1 (en) Silicone Leaded Chip Carrier
KR102486032B1 (en) Light emitting device and lighting apparatus having thereof
US8497523B2 (en) Light emitting diode package
CN102549785B (en) Light emitting device
US20130200408A1 (en) Solid-state light emitting device
US20110049714A1 (en) Illuminant
CN102651445A (en) Light emitting device package
JP4582770B2 (en) Sealing resin for light emitting diode and light emitting diode using the same
KR100929325B1 (en) Heat dissipation LED package
KR101310107B1 (en) Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
CN111029456A (en) Integrated packaging display module
CN1177377C (en) Surface assembled luminescent diode and its manufacture method
US9065020B2 (en) Semiconductor lighting module package
KR20130060302A (en) Polymer composite, use of the polymer composite and optoelectronic component containing the polymer composite
CN104425694A (en) Light emitting diode packaging structure and method for manufacturing thereof
US9093281B2 (en) Luminescence device
JP2005229048A (en) White light emitting diode
CN103013282B (en) Light-failure-resistant LED (Light-emitting Diode) die-bonding insulation paste
CN101053087A (en) Electrooptical device with wireless contaction
KR20140135554A (en) heat dissipating commposition, method of thereof and light emitting device package including heat dissipating composition
EP2727976B1 (en) Light emitting device
KR20140061857A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees