[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4580510B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4580510B2
JP4580510B2 JP2000187625A JP2000187625A JP4580510B2 JP 4580510 B2 JP4580510 B2 JP 4580510B2 JP 2000187625 A JP2000187625 A JP 2000187625A JP 2000187625 A JP2000187625 A JP 2000187625A JP 4580510 B2 JP4580510 B2 JP 4580510B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000187625A
Other languages
Japanese (ja)
Other versions
JP2002006216A (en
JP2002006216A5 (en
Inventor
裕司 宮内
紳 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Fujii Optical Co Ltd
Original Assignee
Olympus Corp
Fujii Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Fujii Optical Co Ltd filed Critical Olympus Corp
Priority to JP2000187625A priority Critical patent/JP4580510B2/en
Publication of JP2002006216A publication Critical patent/JP2002006216A/en
Publication of JP2002006216A5 publication Critical patent/JP2002006216A5/ja
Application granted granted Critical
Publication of JP4580510B2 publication Critical patent/JP4580510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はズームレンズで、特にカムコーダーやデジタルカメラ等の電子撮像素子を用いたカメラに使用されるズームレンズに関するものである。
【0002】
【従来の技術】
上記の分野のズームレンズの従来例のうち、民生用の小型で低コストの従来のズームレンズは、特開平3−200113号、特開平6−94997号、特開平6−194572号の各公報に記載されているように、物体側から順に、正の屈折力を有し変倍時固定の第1レンズ群と、負の屈折力を有し変倍時広角端から望遠端にかけて物体側から像側に移動する第2レンズ群と、正の屈折力を有し変倍時広角端から望遠端にかけて像側から物体側へ移動して若干変倍作用を助ける第3レンズ群と、正の屈折力を有し変倍時可動の第4レンズ群とよりなるレンズ系である。
【0003】
これら従来例は、変倍比が5〜12程度である。
【0004】
また、前記構成のズームレンズで第3レンズ群の変倍作用を強くすることにより変倍比が3程度の従来例として特開平10−62687号、特開平11−119100号、特開平11−258507号の各公報に記載されたレンズ系が知られている。
【0005】
【発明が解決しようとする課題】
前記従来例のうち、変倍比が10程度のズームレンズは、第2レンズ群の変倍作用が強く小型化の点で不十分である。
【0006】
また変倍比が5程度の従来例のズームレンズは、フォーカシングも含めて考えると少ないレンズ枚数で、十分小型な構成であるとはいえない。
【0007】
また、前記従来例のうちの変倍比が3程度のズームレンズは、変倍比が十分ではなく、これを超える変倍比のレンズ系にしようとすると性能が劣化し、特にフォーカシングの際の性能劣化が大きい。
【0008】
本発明は、フォーカシングを含めて良好な光学性能を有していてまた製産性も良好であって、しかも少ないレンズ枚数にて構成したカムコーダーやデジタルカメラ等の電子撮像手段を用いたカメラに適した小型で低コストのズームレンズで、特に変倍比が5前後のズームレンズを提供するものである。
【0009】
【課題を解決するための手段】
本発明のズームレンズは、物体側から順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群と正の屈折力の第3レンズ群と正の屈折力の第4レンズ群とよりなり、各レンズ群間の間隔を変化させることにより変倍を行い、各レンズ群間のいずれかの空気間隔中につまり第1レンズ群と第2レンズ群の間、第2レンズ群と第3レンズ群の間、第3レンズ群と第4レンズ群の間のいずれかの空気間隔中に明るさ絞りが配置され、広角端から望遠端への変倍の際に第1レンズ群と明るさ絞りとは固定であり、第2レンズ群は光軸上を像側に常に移動し、第3レンズ群は光軸上を物体側へ常に移動し、第4レンズ群は光軸上を移動するもので、第3レンズ群と第4レンズ群の移動量が下記条件(1)を満足するようにしたものである。
(1) 0≦t4/t3<0.2
ただし、t3,t4は夫々第3レンズ群および第4レンズ群の広角端と望遠端の移動量の絶対値である。
【0010】
一般に高変倍のズームレンズは、第2レンズ群のみに変倍作用を負担させ、第4レンズ群により像面位置を補正するようにしている。
【0011】
本発明は、第2レンズ群の変倍作用の一部と第4レンズ群による像面位置の補正作用の一部を第3レンズ群に負担させることによってレンズ系の小型化を図ったもので、そのための条件が条件(1)である。
【0012】
条件(1)の上限を超えると第4レンズ群による像面位置の補正作用の負担が大になりすぎるため第4レンズ群の変倍時の移動量(像面位置補正のための移動量)が大になり、レンズ系を十分小型にすることが出来ない。また第4レンズ群によりフォーカシングを行なうようにした場合、前記のように変倍の際の第4レンズ群の移動量が大であると、フォーカシング時の収差変動が大になり、またフォーカシングのための機構が複雑になる。更に第2、第3レンズ群は変倍時いずれも単調に移動するのでズーミングのためのカムの製作が容易であり、また条件(1)を満足することにより前述のように第4レンズ群の移動量を小さくできるためにズーミング時やフォーカシング時のモーターなどでの制御が短くメカスペースを小さくできる。
【0013】
尚、条件(1)において下限値を超えることはあり得ない。
更には条件(1)の上限値を0.15とするとより好ましい。
又、条件(1)の下限値を0.005とすると、各レンズ群の移動量のバランスがよくなる。
【0014】
前記本発明の第1の構成のズームレンズにおいて、正の屈折力の第4レンズ群を物体側から順に両凹負レンズと正レンズとを接合した負の接合レンズと正レンズの2群3枚構成にすることが好ましい。
【0015】
このように、第4レンズ群を前記の通りの2群3枚構成にすることにより、第3レンズ群の変倍作用の一部を負担したときの第4レンズ群の収差発生量を少なくし、また第4レンズ群の移動量を少なくしたまま諸収差を良好に補正するためには、負レンズ1枚と正レンズ2枚が必要になり、そのうちの物体側の負レンズと正レンズとを接合することにより、製造誤差によるレンズ系の性能への悪影響を小さくすることができ、フォーカシングによる収差変動も少なくし得る。
【0016】
以上の理由から、第4レンズ群は、前述の通りの両凹レンズと正レンズの接合レンズと正レンズよりなる2群3枚構成にすることが望ましい。
【0017】
また、本発明のズームレンズにおいて、第4レンズ群を前述の通りの2群3枚構成にした時、下記条件(2)を満足することが望ましい。
(2) 0.24<|f4n/f4|<0.33
ただし、f4nは第4レンズ群の両凹レンズの単体での焦点距離、f4は第4レンズ群の焦点距離である。
【0018】
条件(2)において上限の0.33を超えると負レンズのパワーが弱くなり色収差の補正が困難であり、また条件(2)の下限の0.24を超えると負レンズのパワーが強くなりすぎ色収差やその他の諸収差の発生が大になる。
【0019】
また、この条件(2)を満足すれば、フォーカシングによる収差変動を小さくできる。
更には条件(2)の上限値を0.31とするとより好ましい。
又、条件(2)の下限値を0.27とするとより好ましい。
【0020】
本発明の第2の構成のズームレンズは、物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、正の屈折力の第4レンズ群とよりなり、各レンズ群間を変化させることにより変倍を行い、明るさ絞りが第1,第2レンズ群の間、第2,第3レンズ群の間、第3,第4レンズ群の間のいずれかのレンズ群間に配置されており、広角端から望遠端への変倍の際、第1レンズ群と明るさ絞りとが固定であり、第2,第3,第4レンズ群の四つのレンズ群が光軸上を移動するレンズ系で、広角端から望遠端にかけての変倍時第2レンズ群が常に像側へ移動し、第3レンズ群が常に物体側へ移動するもので、第4レンズ群は物体側から順に両凹負レンズと正レンズを貼り合わせた接合レンズと正レンズとよりなる2群3枚構成であり、前記の条件(2)を満足するレンズ系である。
【0021】
本発明のズームレンズは、前述のように第3レンズ群に変倍作用と像面位置の補正作用を負担させるようにした。そのため発生する収差を補正するためには、第4レンズ群に負レンズ1枚と正レンズ2枚が必要になる。
【0022】
前記第2の構成では、正の第4レンズ群を物体側から順に、両凹負レンズと正レンズとを接合した接合レンズと正レンズよりなる2群3枚構成にして、第3レンズ群にて発生する収差を補正するようにした。また、負レンズと正レンズとを接合することにより、製造誤差による光学性能に及ぼす影響を少なくした。
【0023】
また、この第2の構成において、第4レンズ群による収差補正作用を大にするために条件(2)を満足するようにした。
【0024】
前述の通り、この条件(2)の上限の0.33を超えると負のパワーが弱くなり色収差を十分良好に補正し得ない。又条件(2)の下限の0.24を超えると負レンズのパワーが強くなりすぎて色収差や他の諸収差が発生する。
【0025】
また、この条件(2)を満足するようにすれば、フォーカシングの際の収差変動を小さくすることができる。
条件(2)の上限値を0.31としてもよい。又、下限値を0.27としてもよい。
【0026】
本発明の第1、第2の構成のズームレンズは、第3レンズ群を少なくとも1枚の正レンズと最も像側に配置されていて像側に凹面を向けた負レンズを含んだ構成にすると、射出瞳を遠くにすることができ好ましい。
本発明の第3の構成のズームレンズは、物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、正の屈折力の第4レンズ群とよりなり、各レンズ群間の間隔を変化させることにより変倍を行い、明るさ絞りが第1,第2レンズ群の間、第2,第3レンズ群の間、第3,第4レンズ群の間のいずれかのレンズ群間に配置されており、広角端から望遠端への変倍の際、第1レンズ群と明るさ絞りとが固定であり、第2,第3,第4レンズ群の四つのレンズ群が光軸上を移動するレンズ系で、広角端から望遠端にかけての変倍時に、第2レンズ群が像側へ常に移動し、第3レンズ群が物体側へ常に移動するもので、正の第3レンズ群G3が少なくとも1枚の正レンズと1枚の負レンズを含んでおり、正の第4レンズ群が、物体側より順に、負の前群と正の後群とよりなり、負の前群が最も物体側の面と最も像側の面が物体側に凸面を向けた形状であり、正の後群が物体側に凸面を向けた単レンズよりなり、下記条件(3)を満足するレンズ系である。
(3) 0.3<|f4/f41|<0.6
ただし、f41は第4レンズ群の前群の焦点距離である。
【0027】
本発明のズームレンズは、第3レンズ群にも変倍作用を持たせたもので、そのためこの第3レンズ群が正レンズと負レンズとを含んでいないと色収差を補正できない。
【0028】
また、第4レンズ群を比較的パワーの小さい負の前群と正の単レンズよりなる正の後群とにて構成することにより諸収差特に色収差の発生を抑え変倍全域にわたってまたフォーカシング領域全域にわたって、収差変動を小さくし得る。
【0029】
また、条件(3)の上限の0.6を超えると負の前群のパワーが強くなりすぎ、色収差や諸収差が発生する。条件(3)の下限の0.3を超えると、負の前群のパワーが弱くなりすぎて色収差を補正できなくなる。
【0030】
また、第4レンズ群の負の前群の最も物体側の面と最も像側の面を物体側に凸面を向けた形状にすれば、第4レンズ群の製造誤差による悪影響を小さくすることが可能になる。
更に、条件(3)の上限値を0.53とするとより好ましい。
又、条件(3)の下限値を0.38とするとより好ましい。
【0031】
本発明の第3の構成のズームレンズにおいて、第4レンズ群の負の前群をメニスカスレンズ1枚にて構成すればレンズ系の部品点数の削減および小型化に寄与し得るため望ましい。特に負メニスカス単レンズとすればより部品点数の削減に寄与し得る。
【0032】
また前記の負の前群のメニスカスレンズをメニスカス形状の接合レンズにすれば、この前群における収差補正能力が一層向上するため望ましい。また、接合レンズであれば、この前群での製造誤差によるレンズ系に及ぼす悪影響を少なくできるため好ましい。
【0033】
本発明の第3の構成のズームレンズにおいて、正の第3レンズ群を最も像側に配置された像側に凹面を向けた負レンズと、少なくとも1枚の正レンズを含む構成にすることが望ましい。
【0034】
このように第3レンズ群の最も像側に像側に凹面を向けた負レンズを配置することにより射出瞳を遠くすることができるため望ましい。
【0035】
また、本発明のズームレンズは、この第3レンズ群にも変倍作用を持たせており、したがって、前記最も像側の負レンズの他に少なくとも1枚の正レンズを含むようにし、少なくとも正レンズと負レンズとを配置してこのレンズ群での色収差を良好に補正する必要がある。このように、正レンズと負レンズを配置しないと第3レンズ群での色収差を十分良好に補正することが困難になる。
【0036】
また、このように第3の構成で、第3レンズ群を最も像側に配置された像側に凹面を向けた負レンズと、この負レンズの他に少なくとも1枚の正レンズを含むようにしたズームレンズの場合も正の第4レンズ群の前群を負のメニスカスレンズ1枚にて構成することが望ましい。またこのメニスカスレンズをメニスカス形状の接合レンズとしてもよい。また、メニスカス単レンズ1枚にて構成してもよい。
【0037】
本発明のズームレンズつまり前述の第1〜第3の構成のズームレンズは、フォーカシングを第4レンズ群にて行なうのが望ましい。
また、本発明のズームレンズは明るさ絞りを第2レンズ群と第3レンズ群との間に配置すると、光学系全体の小型化と、像側へのテレセントリック性が両立でき好ましい。
以上の構成は変倍比が2.8から6.9のズームレンズに適している。
【0038】
【発明の実施の形態】
次に本発明の実施の形態を図1〜4に示す構成で下記データを有する実施例1〜4にもとづいて説明する。尚、実施例1、4は参考例である。
実施例1
f=5.900 〜10.219〜17.551 ,Fナンバー=2.83〜3.68〜3.99
2ω=60.6°〜21.3°
1 =60.780 d1 =1.00 n1 =1.80518 ν1 =25.42
2 =22.057 d2 =5.46 n2 =1.62280 ν2 =57.05
3 =-931.750 d3 =0.20
4 =25.036 d4 =3.16 n3 =1.80610 ν3 =40.92
5 =100.658 d5 =D1 (可変)
6 =83.957 d6 =1.00 n4 =1.80440 ν4 =39.59
7 =6.667 d7 =3.67
8 =-20.662 d8 =1.00 n5 =1.51633 ν5 =64.14
9 =8.622 d9 =2.93 n6 =1.80518 ν6 =25.42
10=60.380 d10=D2 (可変)
11=∞(絞り) d11=D3 (可変)
12=11.405 d12=2.95 n7 =1.69350 ν7 =53.24
13=-23.743 (非球面)d13=0.22
14=7.908 d14=2.62 n8 =1.69100 ν8 =54.82
15=40.704 d15=1.01 n9 =1.84666 ν9 =23.78
16=5.180 d16=D4 (可変)
17=32.444 d17=1.00 n10=1.80440 ν10=39.59
18=8.384 d18=2.32 n11=1.49700 ν11=81.54
19=32.662 d19=0.76
20=11.234 d20=2.82 n12=1.65844 ν12=50.88
21=-20.977 d21=D5 (可変)
22=∞ d22=3.40 n13=1.51633 ν13=64.14
23=∞ d23=1.00
24=∞(撮像面)
非球面係数
(第13面)K=-4.537 ,A4 =1.12339 ×10-4 ,A6 =8.46541 ×10-6
8 =-6.78805×10-7 ,A10=2.00622 ×10-8
f 5.900 10.219 17.551
1 1.03 4.60 9.50
2 14.42 10.85 5.95
3 5.76 2.45 0.43
4 3.06 6.43 6.17
5 1.25 1.19 3.45
t3=5.306 ,t4=2.203 ,t4/t3=2.203 /5.306 =0.415
f4=15.686 ,f41=-37.535
|f4/f41|=|15.686/-37.535 |=0.418 ,変倍比 2.97
撮像素子の画素ピッチ 3.2μm〜4.2μm
【0039】

Figure 0004580510
Figure 0004580510
【0040】
Figure 0004580510
Figure 0004580510
【0041】
Figure 0004580510
Figure 0004580510
ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1 ,d2 ,・・・ は各レンズの肉厚および空気間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。
【0042】
実施例1は、図1に示す通りの構成で、正の屈折力を有する第1レンズ群G1と負の屈折力を有する第2レンズ群G2と正の屈折力を有する第3レンズ群G3と正の屈折力を有する第4レンズ群G4とよりなり、明るさ絞りSは第2レンズ群G2第3レンズ群G3との間に配置されている。
【0043】
第1レンズ群G1と絞りSは変倍中固定であり、また広角端から望遠端への変倍の際に第2レンズ群G2は物体側から像側へ移動し、第3レンズ群G3は像側から物体側へ移動し、第4レンズ群G4は図1に示すように光軸上を移動する。
【0044】
この実施例1のレンズ系は、第1レンズ群G1が正の接合レンズと正レンズとよりなり、第2レンズ群G2が負レンズと負の接合レンズとよりなる。
【0045】
また、第3レンズ群G3は正レンズと、正レンズと負レンズの接合負レンズよりなり、第4レンズ群G4は負の接合レンズと正レンズの2群3枚よりなる。
【0046】
この実施例は、第3の構成のズームレンズで、第4レンズ群が負の前群G41と正の後群G42よりなり負の前群G41が最も物体側の面(r17)と最も像側の面(r19)とが物体側に凸のメニスカス形状の接合レンズからなり、正の後群G42が正レンズ1枚よりなる。
【0047】
この実施例1は条件(3)を満足する。
【0048】
実施例2は、図2に示す通りの構成であって、第1レンズ群G1と第2レンズ群G2は実施例1と同様のレンズ構成であるが、第3レンズ群G3が正レンズと負レンズのみからなり、第4レンズ群G4が両凹負レンズと正レンズの接合レンズと正レンズの2群3枚構成である点で実施例1と相違する。
【0049】
この実施例2は条件(1)、(2)を満足する。
【0050】
実施例3は、図3に示すような構成のズームレンズで、実施例2と類似の構成のレンズ系である。
【0051】
この実施例3も条件(1)、(2)を満足する。
【0052】
これら実施例2、3は第1及び第2の構成のズームレンズである。
【0053】
実施例4は図4に示す構成であって、第1レンズ群G1と第2レンズ群G2とは他の実施例と類似の構成である。また第3レンズ群G3は、2枚の正レンズと1枚の負レンズとよりなり、第4レンズ群G4は負レンズと正レンズとよりなる。
【0054】
つまり、この実施例4は第1、第3の構成のレンズ系であって、第3レンズ群G3は少なくとも1枚の正レンズと1枚の負レンズとよりなり、第4レンズ群G4は負の前群G41と正の後群G42とよりなり、負の前群G41が最も物体側と最も像側の面が物体側に凸のメニスカス単レンズであり、正の後群G42が正レンズよりなる。
【0055】
この実施例4は条件(1)、(3)を満足する。
【0056】
上記各実施例にて用いられる非球面の形状は、光軸上の光が進む方向をx軸、光軸と直交する方向をy軸としたとき、次の式にて表わされる。
Figure 0004580510
ただし、rは基準球面の曲率半径、kは円錐係数、A4 ,A6 ,A8 ,A10は非球面係数である。
【0057】
また、各実施例の断面図を示す図1〜図4において、上段は広角端、中段は中間焦点距離、下段は望遠端における図である。尚図中Fはローパスフィルターや不要波長域を制限するフィルターである。
【0058】
また図5は実施例1の収差図であり、この図のように諸収差は良好に補正されている。
【0059】
また、他の実施例2〜4も実施例1と同様の収差状況で諸収差は良好に補正されている。
【0060】
本発明のズームレンズは、以上述べたような構成であって、特許請求の範囲に記載したレンズ系のほか、次の各項に記載する構成のレンズ系も本発明の目的を達成し得る。
【0061】
(1)特許請求の範囲の請求項5に記載するレンズ系で、第4レンズ群の前群が負の屈折力を有するメニスカス単レンズであることを特徴とするズームレンズ。
【0062】
(2)特許請求の範囲の請求項5に記載するレンズ系であって、第4レンズ群の前群が負の屈折力を有するメニスカス形状の接合レンズであることを特徴とするズームレンズ。
【0063】
(3)特許請求の範囲の請求項1、2、3、4又は5あるいは前記の(1)又は(2)の項に記載するレンズ系で、第3レンズ群が少なくとも1枚の正レンズと最も像側に配置されていて像側に凹面を向けた負レンズとを含むことを特徴とするズームレンズ。
【0064】
(4)特許請求の範囲の請求項1、2、3、4又は5あるいは前記の(1)、(2)又は(3)の項に記載するレンズ系で、第4レンズ群を光軸上を移動させることにより近接物点に合焦するようにしたことを特徴とするズームレンズ。
【0065】
(5)特許請求の範囲の請求項1、2、3、4又は5あるいは前記の(1)、(2)、(3)又は(4)の項に記載するレンズ系で、変倍比が2.8から6.9であることを特徴とするズームレンズ。
【0066】
【発明の効果】
本発明によれば、少ないレンズ枚数で、フォーカシングも含め良好な光学性能で小型で低コストなカムコーダーやデジタルカメラ等に適したズームレンズを実現し得る。
【図面の簡単な説明】
【図1】本発明の実施例1の断面図
【図2】本発明の実施例2の断面図
【図3】本発明の実施例3の断面図
【図4】本発明の実施例4の断面図
【図5】本発明の実施例1の広角端における収差曲線図
【図6】本発明の実施例2の望遠端における収差曲線図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens, and more particularly to a zoom lens used in a camera using an electronic image sensor such as a camcorder or a digital camera.
[0002]
[Prior art]
Among conventional zoom lens examples in the above-mentioned fields, conventional small zoom lenses for consumer use are disclosed in JP-A-3-200113, JP-A-6-94997, and JP-A-6-194572. As described, in order from the object side, a first lens unit having a positive refractive power and fixed at the time of zooming, and an image from the object side having a negative refractive power from the wide-angle end to the telephoto end at the time of zooming. A second lens group that moves to the side, a third lens group that has positive refractive power, moves from the image side to the object side from the wide-angle end to the telephoto end at the time of zooming, and assists the zooming function slightly, and positive refraction This is a lens system that includes a fourth lens unit that has power and is movable during zooming.
[0003]
These conventional examples have a zoom ratio of about 5 to 12.
[0004]
Further, as a conventional example having a zoom ratio of about 3 by strengthening the zooming action of the third lens unit with the zoom lens having the above configuration, JP-A-10-62687, JP-A-11-119100, JP-A-11-258507. The lens system described in each publication of No. is known.
[0005]
[Problems to be solved by the invention]
Among the conventional examples, a zoom lens having a zoom ratio of about 10 is insufficient in terms of downsizing because the zooming action of the second lens group is strong.
[0006]
Further, the zoom lens of the conventional example having a zoom ratio of about 5 cannot be said to be a sufficiently small configuration with a small number of lenses in consideration of focusing.
[0007]
Also, the zoom lens having a zoom ratio of about 3 in the conventional example has an insufficient zoom ratio, and if a lens system having a zoom ratio exceeding this is attempted, the performance deteriorates, especially during focusing. The performance degradation is large.
[0008]
The present invention has good optical performance including focusing and good manufacturability, and is suitable for a camera using electronic imaging means such as a camcorder or a digital camera configured with a small number of lenses. The present invention provides a zoom lens that is a small and low-cost zoom lens, and particularly has a zoom ratio of around 5.
[0009]
[Means for Solving the Problems]
The zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power. The zoom lens system is configured to perform zooming by changing the interval between the lens groups, and during any air interval between the lens groups, that is, between the first lens group and the second lens group, the second lens group. And a third lens group, and an aperture stop is disposed in any one of the air gaps between the third lens group and the fourth lens group, and the first lens group during zooming from the wide-angle end to the telephoto end And the aperture stop are fixed, the second lens group always moves to the image side on the optical axis, the third lens group always moves to the object side on the optical axis, and the fourth lens group on the optical axis. The movement amount of the third lens group and the fourth lens group satisfies the following condition (1).
(1) 0 ≦ t4 / t3 <0.2
However, t3 and t4 are absolute values of the movement amounts of the third lens group and the fourth lens group at the wide-angle end and the telephoto end, respectively.
[0010]
In general, in a zoom lens having a high zoom ratio, only the second lens group is subjected to a zooming action, and the image plane position is corrected by the fourth lens group.
[0011]
The present invention reduces the size of the lens system by causing the third lens group to bear a part of the zooming action of the second lens group and a part of the correction of the image plane position by the fourth lens group. The condition for this is the condition (1).
[0012]
If the upper limit of condition (1) is exceeded, the burden of the correction operation of the image plane position by the fourth lens group becomes too great, and the movement amount during zooming of the fourth lens group (movement amount for correcting the image plane position) Becomes large, and the lens system cannot be made sufficiently small. Further, when focusing is performed by the fourth lens group, if the amount of movement of the fourth lens group at the time of zooming is large as described above, the aberration fluctuation at the time of focusing becomes large, and also for focusing. The mechanism becomes complicated. Further, since the second and third lens groups move monotonously at the time of zooming, it is easy to make a cam for zooming, and satisfying the condition (1) allows the fourth lens group to function as described above. Since the amount of movement can be reduced, the control with the motor during zooming and focusing is short and the mechanical space can be reduced.
[0013]
In the condition (1), the lower limit cannot be exceeded.
Furthermore, it is more preferable that the upper limit value of the condition (1) is 0.15.
Further, when the lower limit value of the condition (1) is set to 0.005, the movement amount balance of each lens group is improved.
[0014]
In the zoom lens having the first configuration according to the present invention, the fourth lens group having a positive refractive power is made up of a negative cemented lens in which a biconcave negative lens and a positive lens are cemented in this order from the object side, and two groups of two lenses of a positive lens. A configuration is preferable.
[0015]
In this way, by forming the fourth lens group in the two-group three-lens configuration as described above, the amount of aberration generated in the fourth lens group when a part of the zooming action of the third lens group is borne is reduced. Also, in order to correct various aberrations satisfactorily while reducing the amount of movement of the fourth lens group, one negative lens and two positive lenses are required, of which the negative lens and positive lens on the object side are By joining, adverse effects on the performance of the lens system due to manufacturing errors can be reduced, and aberration fluctuations due to focusing can also be reduced.
[0016]
For the above reasons, it is desirable that the fourth lens group has a two-group three-lens configuration including a cemented lens of a biconcave lens, a positive lens, and a positive lens as described above.
[0017]
In the zoom lens according to the present invention, it is desirable that the following condition (2) is satisfied when the fourth lens group has the two-group three-lens structure as described above.
(2) 0.24 <| f4n / f4 | <0.33
Here, f4n is the focal length of the biconcave lens in the fourth lens group alone, and f4 is the focal length of the fourth lens group.
[0018]
If the upper limit of 0.33 is exceeded in condition (2), the power of the negative lens will be weak and correction of chromatic aberration will be difficult, and if the lower limit of 0.24 of condition (2) is exceeded, the power of the negative lens will be too strong. Occurrence of chromatic aberration and other various aberrations increases.
[0019]
Further, if this condition (2) is satisfied, the aberration fluctuation due to focusing can be reduced.
Furthermore, it is more preferable that the upper limit value of the condition (2) is 0.31.
Further, it is more preferable that the lower limit value of the condition (2) is 0.27.
[0020]
A zoom lens having a second configuration according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power; The fourth lens unit has a positive refractive power, and zooming is performed by changing between the lens units, and the aperture stop is between the first and second lens units and between the second and third lens units. The first lens unit and the aperture stop are fixed during zooming from the wide-angle end to the telephoto end, and the first lens unit is fixed between the third lens unit and the fourth lens unit. Four lens groups of the second, third, and fourth lens groups move on the optical axis, and the second lens group always moves to the image side during zooming from the wide-angle end to the telephoto end, and the third lens The group always moves toward the object side. The fourth lens group has a positive lens and a cemented lens in which a biconcave negative lens and a positive lens are bonded in order from the object side. It is more becomes 2 group three-lens structure with's, a lens system satisfying the condition (2).
[0021]
In the zoom lens according to the present invention, as described above, the third lens group is caused to bear a zooming action and an image plane position correcting action. Therefore, in order to correct the generated aberration, one negative lens and two positive lenses are required in the fourth lens group.
[0022]
In the second configuration, the positive fourth lens group is configured in order from the object side, a two-group three-lens configuration including a cemented lens obtained by cementing a biconcave negative lens and a positive lens, and a positive lens. The aberration that occurs is corrected. In addition, by joining the negative lens and the positive lens, the influence on the optical performance due to the manufacturing error is reduced.
[0023]
Further, in this second configuration, the condition (2) is satisfied in order to increase the aberration correction action by the fourth lens group.
[0024]
As described above, if the upper limit of 0.33 of the condition (2) is exceeded, the negative power becomes weak and chromatic aberration cannot be corrected sufficiently satisfactorily. If the lower limit of 0.24 of the condition (2) is exceeded, the power of the negative lens becomes too strong, and chromatic aberration and other various aberrations occur.
[0025]
Further, if this condition (2) is satisfied, aberration fluctuations during focusing can be reduced.
The upper limit of condition (2) may be set to 0.31. The lower limit value may be set to 0.27.
[0026]
In the zoom lenses having the first and second configurations of the present invention, the third lens group includes at least one positive lens and a negative lens that is disposed closest to the image side and has a concave surface facing the image side. The exit pupil can be made far away, which is preferable.
A zoom lens having a third configuration according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power; The fourth lens unit has a positive refractive power, and zooming is performed by changing the distance between the lens units, and the brightness stop is between the first and second lens units, and the second and third lens units. Between the third lens group and the fourth lens group, and the first lens group and the aperture stop are fixed during zooming from the wide-angle end to the telephoto end. In the lens system in which the four lens groups of the second, third and fourth lens groups move on the optical axis, the second lens group always moves to the image side at the time of zooming from the wide angle end to the telephoto end, The third lens group always moves toward the object side, and the positive third lens group G3 includes at least one positive lens and one negative lens. The positive fourth lens group is composed of a negative front group and a positive rear group in order from the object side. The negative front group has the most object side surface and the most image side surface convex on the object side. This is a lens system that is formed by a single lens whose positive rear group has a convex surface facing the object side, and satisfies the following condition (3).
(3) 0.3 <| f4 / f41 | <0.6
Here, f41 is the focal length of the front group of the fourth lens group.
[0027]
In the zoom lens according to the present invention, the third lens group is also provided with a zooming action. Therefore, if the third lens group does not include a positive lens and a negative lens, chromatic aberration cannot be corrected.
[0028]
In addition, the fourth lens group is composed of a negative front group with relatively small power and a positive rear group consisting of a positive single lens, thereby suppressing the occurrence of various aberrations, particularly chromatic aberration, over the entire zooming area and over the entire focusing area. Aberration variation can be reduced over a wide range.
[0029]
If the upper limit of 0.6 of the condition (3) is exceeded, the power of the negative front group becomes too strong, and chromatic aberration and various aberrations occur. If the lower limit of 0.3 of the condition (3) is exceeded, the power of the negative front group becomes too weak to correct chromatic aberration.
[0030]
Further, if the negative lens front side of the fourth lens unit is formed so that the most object side surface and the most image side surface are convex on the object side, adverse effects due to manufacturing errors of the fourth lens unit can be reduced. It becomes possible.
Furthermore, it is more preferable that the upper limit value of the condition (3) is 0.53.
Further, it is more preferable that the lower limit value of the condition (3) is 0.38.
[0031]
In the zoom lens having the third configuration according to the present invention, it is desirable to form the negative front group of the fourth lens group with a single meniscus lens, since this can contribute to a reduction in the number of parts of the lens system and a reduction in size. In particular, a negative meniscus single lens can contribute to a reduction in the number of parts.
[0032]
In addition, it is desirable that the meniscus lens of the negative front group be a meniscus cemented lens, since the aberration correction capability in the front group is further improved. In addition, a cemented lens is preferable because adverse effects on the lens system due to manufacturing errors in the front group can be reduced.
[0033]
In the zoom lens having the third configuration according to the present invention, the positive third lens group may include a negative lens having a concave surface facing the image side disposed closest to the image side, and at least one positive lens. desirable.
[0034]
In this way, it is desirable to dispose the negative lens with the concave surface facing the image side closest to the image side of the third lens group because the exit pupil can be made far.
[0035]
In the zoom lens according to the present invention, the third lens group also has a zooming action. Therefore, the zoom lens includes at least one positive lens in addition to the most negative lens on the image side. It is necessary to arrange a lens and a negative lens and correct chromatic aberration in this lens group satisfactorily. As described above, unless the positive lens and the negative lens are arranged, it is difficult to correct the chromatic aberration in the third lens group sufficiently satisfactorily.
[0036]
In this way, in the third configuration, the third lens group includes a negative lens having a concave surface facing the image side disposed closest to the image side, and at least one positive lens in addition to the negative lens. Also in the case of the zoom lens, it is desirable that the front group of the positive fourth lens group is composed of one negative meniscus lens. The meniscus lens may be a meniscus cemented lens. Moreover, you may comprise with one meniscus single lens.
[0037]
In the zoom lens of the present invention, that is, the zoom lens having the first to third configurations described above, it is desirable that focusing be performed by the fourth lens group.
In the zoom lens according to the present invention, it is preferable that the aperture stop be disposed between the second lens group and the third lens group, since both the miniaturization of the entire optical system and the telecentricity toward the image side can be achieved.
The above configuration is suitable for a zoom lens having a zoom ratio of 2.8 to 6.9.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described based on Examples 1 to 4 having the following data with the configuration shown in FIGS. Examples 1 and 4 are reference examples.
Example 1
f = 5.900-10.219-17.551, F number = 2.83-3.68-3.99
2ω = 60.6 ° ~ 21.3 °
r 1 = 60.780 d 1 = 1.00 n 1 = 1.80518 ν 1 = 25.42
r 2 = 22.057 d 2 = 5.46 n 2 = 1.62280 ν 2 = 57.05
r 3 = -931.750 d 3 = 0.20
r 4 = 25.036 d 4 = 3.16 n 3 = 1.80610 ν 3 = 40.92
r 5 = 100.658 d 5 = D 1 (variable)
r 6 = 83.957 d 6 = 1.00 n 4 = 1.80440 ν 4 = 39.59
r 7 = 6.667 d 7 = 3.67
r 8 = -20.662 d 8 = 1.00 n 5 = 1.51633 ν 5 = 64.14
r 9 = 8.622 d 9 = 2.93 n 6 = 1.80518 ν 6 = 25.42
r 10 = 60.380 d 10 = D 2 (variable)
r 11 = ∞ (aperture) d 11 = D 3 (variable)
r 12 = 11.405 d 12 = 2.95 n 7 = 1.69350 ν 7 = 53.24
r 13 = -23.743 (aspherical surface) d 13 = 0.22
r 14 = 7.908 d 14 = 2.62 n 8 = 1.69100 ν 8 = 54.82
r 15 = 40.704 d 15 = 1.01 n 9 = 1.84666 ν 9 = 23.78
r 16 = 5.180 d 16 = D 4 (variable)
r 17 = 32.444 d 17 = 1.00 n 10 = 1.80440 ν 10 = 39.59
r 18 = 8.384 d 18 = 2.32 n 11 = 1.49700 ν 11 = 81.54
r 19 = 32.662 d 19 = 0.76
r 20 = 11.234 d 20 = 2.82 n 12 = 1.65844 ν 12 = 50.88
r 21 = -20.977 d 21 = D 5 (variable)
r 22 = ∞ d 22 = 3.40 n 13 = 1.51633 ν 13 = 64.14
r 23 = ∞ d 23 = 1.00
r 24 = ∞ (imaging surface)
Aspheric coefficient (13th surface) K = -4.537, A 4 = 1.12339 × 10 −4 , A 6 = 8.46541 × 10 −6
A 8 = -6.78805 × 10 −7 , A 10 = 2.00622 × 10 −8
f 5.900 10.219 17.551
D 1 1.03 4.60 9.50
D 2 14.42 10.85 5.95
D 3 5.76 2.45 0.43
D 4 3.06 6.43 6.17
D 5 1.25 1.19 3.45
t3 = 5.306, t4 = 2.203, t4 / t3 = 2.203 / 5.306 = 0.415
f4 = 15.686, f41 = −37.535
| F4 / f41 | = | 15.686 / -37.535 | = 0.418, zoom ratio 2.97
Pixel pitch of image sensor 3.2 μm to 4.2 μm
[0039]
Figure 0004580510
Figure 0004580510
[0040]
Figure 0004580510
Figure 0004580510
[0041]
Figure 0004580510
Figure 0004580510
Where r 1 , r 2 ,... Are the radius of curvature of each lens surface, d 1 , d 2 ,... Are the thickness and air spacing of each lens, and n 1 , n 2 ,. Refractive index, ν 1 , ν 2 ,... Is the Abbe number of each lens.
[0042]
In the first embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the third lens group G3 having a positive refractive power are configured as shown in FIG. The fourth lens group G4 has a positive refractive power, and the aperture stop S is disposed between the second lens group G2 and the third lens group G3.
[0043]
The first lens group G1 and the stop S are fixed during zooming, and the second lens group G2 moves from the object side to the image side during zooming from the wide-angle end to the telephoto end, and the third lens group G3 Moving from the image side to the object side, the fourth lens group G4 moves on the optical axis as shown in FIG.
[0044]
In the lens system of Example 1, the first lens group G1 includes a positive cemented lens and a positive lens, and the second lens group G2 includes a negative lens and a negative cemented lens.
[0045]
The third lens group G3 is composed of a positive lens and a cemented negative lens composed of a positive lens and a negative lens, and the fourth lens group G4 is composed of two groups consisting of a negative cemented lens and a positive lens.
[0046]
This embodiment is a zoom lens having a third configuration, and the fourth lens group is composed of a negative front group G41 and a positive rear group G42, and the negative front group G41 is the most object-side surface (r 17 ) and the most image. The side surface (r 19 ) is composed of a meniscus cemented lens convex on the object side, and the positive rear group G42 is composed of one positive lens.
[0047]
This Example 1 satisfies the condition (3).
[0048]
The second embodiment has a configuration as shown in FIG. 2, and the first lens group G1 and the second lens group G2 have the same lens configuration as that of the first embodiment, but the third lens group G3 has a positive lens and a negative lens. The fourth lens group G4 is different from the first embodiment in that the fourth lens group G4 has a two-group three-lens configuration including a cemented lens of a biconcave negative lens, a positive lens, and a positive lens.
[0049]
This Example 2 satisfies the conditions (1) and (2).
[0050]
The third embodiment is a zoom lens having a configuration as shown in FIG. 3 and a lens system having a configuration similar to that of the second embodiment.
[0051]
This Example 3 also satisfies the conditions (1) and (2).
[0052]
These Examples 2 and 3 are zoom lenses having the first and second configurations.
[0053]
The fourth embodiment has the configuration shown in FIG. 4, and the first lens group G1 and the second lens group G2 have a configuration similar to that of the other embodiments. The third lens group G3 is composed of two positive lenses and one negative lens, and the fourth lens group G4 is composed of a negative lens and a positive lens.
[0054]
That is, Example 4 is a lens system having the first and third configurations, and the third lens group G3 includes at least one positive lens and one negative lens, and the fourth lens group G4 is negative. The front group G41 and the positive rear group G42, and the negative front group G41 is a meniscus single lens with the most object-side and most image-side surfaces convex toward the object side, and the positive rear group G42 from the positive lens Become.
[0055]
This Example 4 satisfies the conditions (1) and (3).
[0056]
The shape of the aspherical surface used in each of the above embodiments is represented by the following equation, where the x-axis is the direction in which light travels on the optical axis and the y-axis is the direction orthogonal to the optical axis.
Figure 0004580510
Here, r is the radius of curvature of the reference sphere, k is the conic coefficient, and A 4 , A 6 , A 8 , and A 10 are aspheric coefficients.
[0057]
Moreover, in FIGS. 1-4 which show sectional drawing of each Example, the upper stage is a wide angle end, the middle stage is an intermediate | middle focal distance, and the lower stage is a figure in a telephoto end. In the figure, F is a low-pass filter or a filter for limiting an unnecessary wavelength region.
[0058]
FIG. 5 is an aberration diagram of Example 1, and various aberrations are corrected favorably as shown in FIG.
[0059]
In the other Examples 2 to 4, various aberrations are satisfactorily corrected in the same aberration situation as in Example 1.
[0060]
The zoom lens of the present invention is configured as described above, and in addition to the lens system described in the claims, the lens system configured as described in each of the following items can also achieve the object of the present invention.
[0061]
(1) A zoom lens system according to claim 5, wherein the front group of the fourth lens group is a meniscus single lens having negative refractive power.
[0062]
(2) A lens system according to claim 5, wherein the front group of the fourth lens group is a meniscus cemented lens having negative refractive power.
[0063]
(3) In the lens system according to claim 1, 2, 3, 4 or 5 or (1) or (2), the third lens group includes at least one positive lens. A zoom lens comprising: a negative lens disposed closest to the image side and having a concave surface facing the image side.
[0064]
(4) In the lens system according to claim 1, 2, 3, 4 or 5 of the claims or the item (1), (2) or (3), the fourth lens group is on the optical axis. A zoom lens characterized by focusing on a nearby object point by moving the lens.
[0065]
(5) In the lens system according to claim 1, 2, 3, 4 or 5 of the claims or the above-mentioned item (1), (2), (3) or (4), the zoom ratio is A zoom lens characterized by being from 2.8 to 6.9.
[0066]
【The invention's effect】
According to the present invention, it is possible to realize a zoom lens suitable for a camcorder, a digital camera, and the like with a small number of lenses, good optical performance including focusing, and a small size and low cost.
[Brief description of the drawings]
1 is a cross-sectional view of a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a second embodiment of the present invention. FIG. 3 is a cross-sectional view of a third embodiment of the present invention. FIG. 5 is an aberration curve diagram at the wide-angle end of Example 1 of the present invention. FIG. 6 is an aberration curve diagram at the telephoto end of Example 2 of the present invention.

Claims (4)

物体側より順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とよりなり、各レンズ群間の間隔を変化させることにより変倍を行ない、各レンズ群間のいずれかの空気間隔中に明るさ絞りを配置したレンズ系で、広角端から望遠端へかけての変倍の際、第1レンズ群と明るさ絞りが固定であり、第2レンズ群が光軸上を常に物体側から像側へ移動し、第3レンズ群が光軸上を常に像側から物体側へ移動し、第4レンズ群が光軸上を移動し、前記第4レンズ群が、物体側から順に、両凹負レンズと正レンズとからなる負の屈折力を有する接合レンズと正レンズとよりなる2群3枚構成であり、下記条件(1)、(2)を満足するズームレンズ。
(1) 0≦t4/t3<0.2
(2) 0.24<|f4n/f4|<0.33
ただし、t3,t4は夫々第3レンズ群および第4レンズ群の広角端と望遠端の移動量の絶対値、f4は第4レンズ群の焦点距離、f4nは第4レンズ群の接合レンズの両凹レンズ単体での焦点距離である。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power This is a lens system in which the magnification is changed by changing the distance between each lens group, and an aperture stop is placed in one of the air intervals between each lens group. From the wide-angle end to the telephoto end. During zooming, the first lens group and the aperture stop are fixed, the second lens group always moves on the optical axis from the object side to the image side, and the third lens group always images on the optical axis. The fourth lens group moves on the optical axis from the lens side to the object side, and the fourth lens group is a cemented lens having negative refractive power, which is composed of a biconcave negative lens and a positive lens in order from the object side. And a positive lens, a zoom lens that satisfies the following conditions (1) and (2) .
(1) 0 ≦ t4 / t3 <0.2
(2) 0.24 <| f4n / f4 | <0.33
Where t3 and t4 are the absolute values of the movement amounts of the third lens group and the fourth lens group at the wide-angle end and the telephoto end , f4 is the focal length of the fourth lens group, and f4n is both the cemented lenses of the fourth lens group. This is the focal length of a single concave lens .
前記第3レンズ群が少なくとも1枚の正レンズと最も像側に配置されていて像側に凹面を向けた負レンズとを含むことを特徴とする請求項1のズームレンズ。2. The zoom lens according to claim 1, wherein the third lens group includes at least one positive lens and a negative lens disposed closest to the image side and having a concave surface facing the image side. 前記第4レンズ群を光軸上を移動させることにより近接物点に合焦するようにしたことを特徴とする請求項1又は2のズームレンズ。 3. The zoom lens according to claim 1, wherein the fourth lens group is focused on an adjacent object point by moving on the optical axis. 4. 変倍比が2.8から6.9であることを特徴とする請求項1乃至の少なくとも何れか1項のズームレンズ。At least any one of the zoom lens according to claim 1 to 3 zoom ratio, characterized in that 6.9 to 2.8.
JP2000187625A 2000-06-22 2000-06-22 Zoom lens Expired - Fee Related JP4580510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187625A JP4580510B2 (en) 2000-06-22 2000-06-22 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187625A JP4580510B2 (en) 2000-06-22 2000-06-22 Zoom lens

Publications (3)

Publication Number Publication Date
JP2002006216A JP2002006216A (en) 2002-01-09
JP2002006216A5 JP2002006216A5 (en) 2007-06-28
JP4580510B2 true JP4580510B2 (en) 2010-11-17

Family

ID=18687576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187625A Expired - Fee Related JP4580510B2 (en) 2000-06-22 2000-06-22 Zoom lens

Country Status (1)

Country Link
JP (1) JP4580510B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625435B2 (en) 2001-08-03 2005-03-02 キヤノン株式会社 Zoom lens
JP2005181499A (en) 2003-12-17 2005-07-07 Konica Minolta Opto Inc Zoom lens
JP4839740B2 (en) * 2004-09-15 2011-12-21 株式会社ニコン Zoom lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694997A (en) * 1992-07-30 1994-04-08 Olympus Optical Co Ltd High variable power and wide angle zoom lens
JPH06194572A (en) * 1992-12-24 1994-07-15 Minolta Camera Co Ltd Variable power lens
JPH06347697A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Aspherical zoom lens and video camera using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582872B2 (en) * 1994-12-20 2004-10-27 松下電器産業株式会社 Zoom lens and video camera using the same
JP2901144B2 (en) * 1996-04-22 1999-06-07 キヤノン株式会社 Zoom lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694997A (en) * 1992-07-30 1994-04-08 Olympus Optical Co Ltd High variable power and wide angle zoom lens
JPH06194572A (en) * 1992-12-24 1994-07-15 Minolta Camera Co Ltd Variable power lens
JPH06347697A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Aspherical zoom lens and video camera using the same

Also Published As

Publication number Publication date
JP2002006216A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US7046452B2 (en) Three-group zoom lens
JP3606548B2 (en) 3 group zoom lens
JP4507140B2 (en) 3 group zoom lens
JP3506691B2 (en) High magnification zoom lens
JPH05173071A (en) Wide angle zoom lens
US20080062532A1 (en) Zoom lens and image pickup apparatus
JP4147786B2 (en) Zoom lens
JP2005037727A (en) Zoom lens and imaging device
JP2001033703A (en) Rear focus type zoom lens
JPH10206737A (en) Miniaturized optical zoom system
JP5213727B2 (en) Zoom lens and imaging apparatus having the same
JP2005084649A (en) Wide angle zoom lens
US7212350B2 (en) Zoom optical system that includes a function of preventing blurring of an image
JP3698134B2 (en) Zoom lens
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP4245780B2 (en) Zoom imaging optical system
JP4624744B2 (en) Wide angle zoom lens
JP4630581B2 (en) Zoom lens and imaging apparatus having the same
JP4371304B2 (en) Wide angle zoom lens
JP3810061B2 (en) Zoom lens
JP4203284B2 (en) Telephoto zoom lens
US6661584B2 (en) Zoom lens and camera having the zoom lens
JPH06160712A (en) Zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP5578412B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees