[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4565238B2 - Foliar spray for reducing residual nitric acid in plants - Google Patents

Foliar spray for reducing residual nitric acid in plants Download PDF

Info

Publication number
JP4565238B2
JP4565238B2 JP2005253392A JP2005253392A JP4565238B2 JP 4565238 B2 JP4565238 B2 JP 4565238B2 JP 2005253392 A JP2005253392 A JP 2005253392A JP 2005253392 A JP2005253392 A JP 2005253392A JP 4565238 B2 JP4565238 B2 JP 4565238B2
Authority
JP
Japan
Prior art keywords
nitric acid
glycerin
concentration
sugar
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005253392A
Other languages
Japanese (ja)
Other versions
JP2007063213A (en
Inventor
雄一 石川
豊喜 原
Original Assignee
国立大学法人 大分大学
ファームテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 大分大学, ファームテック株式会社 filed Critical 国立大学法人 大分大学
Priority to JP2005253392A priority Critical patent/JP4565238B2/en
Publication of JP2007063213A publication Critical patent/JP2007063213A/en
Application granted granted Critical
Publication of JP4565238B2 publication Critical patent/JP4565238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)

Description

本発明は、植物体内の残留硝酸低減用葉面散布剤に関するものである。   The present invention relates to a foliar spray for reducing residual nitric acid in a plant body.

ほとんどの植物は、根から窒素源として硝酸を多量に取り込む。この根から吸い込まれた窒素源は、葉において光合成で作成された糖由来の炭素源と結合し、炭素と窒素の化合物であるアミノ酸となり植物が生長する。従って、健康な植物体内には、常時、一定濃度の硝酸イオンが存在していて、ゼロにはできない。多肥栽培を行うと、植物の硝酸代謝能力以上に硝酸イオンが根から吸い込まれて、硝酸過多となって生長してしまう。結果的に増収となるが、未消化の残留硝酸の多さのため、腐敗が速く、食味も優れず、亜硝酸に変化すると発がん剤となったり、ヘム鉄と結び付きチアノーゼなどの症状を引き起こしてしまう。このため、農作物中の残留硝酸は、可能な限り低減する事が食の安心を求める市場から求められている。実際、EUでは葉野菜に含まれる硝酸濃度の許容基準値が、約三千ppm前後に定められている。   Most plants take up a large amount of nitric acid as a nitrogen source from the roots. The nitrogen source sucked from the roots is combined with a sugar-derived carbon source created by photosynthesis in the leaves, becomes an amino acid which is a compound of carbon and nitrogen, and the plant grows. Therefore, a healthy plant always has a constant concentration of nitrate ions, which cannot be reduced to zero. When multi-fertilization is performed, nitrate ions are sucked from the roots more than the ability of the plant to metabolize nitrate, resulting in excessive nitrate and growth. As a result, sales increased, but due to the large amount of undigested residual nitric acid, it rots quickly and does not taste well. End up. For this reason, residual nitric acid in crops is required from the market that demands food safety to reduce as much as possible. In fact, in the EU, an acceptable standard value for the concentration of nitric acid contained in leafy vegetables is set at about 3,000 ppm.

植物体内の硝酸は、亜硝酸を経てアンモニアへ還元され、それに続く炭素との結合による同化を受けアミノ酸へと代謝される。この窒素代謝回路を活性化させ硝酸を効率よく代謝させ、その濃度を低減するには、微量のモリブデン、マンガン、亜鉛、銅、鉄などの金属酵素の活性化が必要となる。このためには、まず、必須だが微量で十分な金属(微量必須金属と以降省略)濃度の確保が必要である。これに加え、光合成に必要な葉緑素やエネルギー分子ATPに関連したマグネシウムと、細胞骨格の強化に使用されるカルシウムは、金属の中でも特に多量に必要となる。また、光合成由来の炭素源を葉面から葉面散布により強制的に供給する事も硝酸代謝に効果的に作用する。実際にこれらの因子の制御を活用して植物の残留硝酸濃度低減効果を示した例として特許文献1〜特許文献12がある。これに加えて栽培方法で硝酸低減を行う特許文献13がある。   Nitric acid in the plant body is reduced to ammonia through nitrous acid, and is subsequently metabolized to amino acids through assimilation by bonding with carbon. In order to activate this nitrogen metabolic circuit to efficiently metabolize nitric acid and reduce its concentration, it is necessary to activate a trace amount of metalloenzymes such as molybdenum, manganese, zinc, copper, and iron. For this purpose, it is first necessary to secure a concentration of essential but sufficient metal (hereinafter abbreviated as trace essential metal). In addition to this, chlorophyll necessary for photosynthesis and magnesium related to the energy molecule ATP and calcium used for strengthening the cytoskeleton are required in a particularly large amount among metals. In addition, forcibly supplying a photosynthesis-derived carbon source from the leaf surface by foliar spraying effectively acts on nitrate metabolism. There are Patent Documents 1 to 12 as examples that actually show the effect of reducing the residual nitric acid concentration of plants by utilizing the control of these factors. In addition to this, there is Patent Document 13 in which nitric acid is reduced by a cultivation method.

これら特許文献1〜13で用いられた硝酸低減の対策方針を分類すると次の項目群にまとめられる:
(0) 植物が肥大化するまでは硝酸態窒素で効率良く太らせ、十分に生育後に培地の窒素源をアモンニア態窒素にして培養する事による方法。即ち、根圏から硝酸を強制的に取り去って培養する方法。この方法は、水耕では可能であるが土壌栽培では困難で、増収にも難がある欠点を持つ。
(1) 金属酵素機能の補強
モリブデン、マンガン、亜鉛など微量必須金属(鉄や銅なども)を特定成分に偏らずバランス良く、葉面散布など適切な方法で供給する事。
(2) カルシウム、マグネシウムの十分な供給
骨格を作るカルシウムとエネルギー分子ATPや葉緑素に関与するマグネシウムを、(1)の金属よりも十分に多量に吸収させる事。
(3) 光合成機能の葉面への供与
紫外線領域の光を効果的に取り込む酸化チタン投与などのように光合成機能そのものを補助する事。
(4) 光合成産物、炭素源の葉面への供与
糖発酵液中の有機酸と糖のように光合成産物を強制的に直接補給する事。
(5) 成長ホルモンの供与
藻類などに含まれているオーキシン、ジベレリン、サイトカニン、ベタインなどの成長ホルモンを活用する事。
(6) 尿素態窒素の葉面への供与
土壌に散布された尿素は、バクテリアで硝酸に酸化されてしまう。これに対し、葉面から取り込まれた尿素は硝酸代謝を促す。
(7) 酢酸もしくは酢酸塩の培地への供与。
(8) アモンニア態窒素の葉面への供与。
葉内で代謝過程にある亜硝酸をアンモニアと反応させ強制的に窒素と水に分解させる。
(9) ペプチド態窒素の供与。
(10) アミノ酸(非α-アミノ酸)化合物の供与。
These countermeasures for reducing nitric acid used in Patent Documents 1 to 13 are classified into the following items:
(0) A method in which a plant is efficiently fattened with nitrate nitrogen until the plant is enlarged, and after cultivating the plant, the nitrogen source of the medium is changed to ammonia nitrogen. That is, a method in which nitric acid is forcibly removed from the rhizosphere and cultured. This method has the disadvantages that it is possible with hydroponics, but difficult with soil cultivation, and also difficult to increase yields.
(1) Reinforcing the metalloenzyme function Supplying trace essential metals (such as iron and copper) such as molybdenum, manganese, and zinc in an appropriate manner such as foliar application in a well-balanced manner, without being biased toward specific components.
(2) Calcium, which forms a sufficient supply skeleton of calcium and magnesium, and magnesium involved in the energy molecule ATP and chlorophyll are absorbed in a sufficiently larger amount than the metal of (1).
(3) To assist the photosynthetic function itself, such as the administration of titanium oxide that effectively captures the light in the ultraviolet region that is donated to the leaves of the photosynthetic function.
(4) Forcing photosynthetic products directly, such as organic acids and sugars in the fermented sugar fermentation broth to photosynthetic products and carbon sources.
(5) Utilization of growth hormones such as auxin, gibberellin, cytocanin, and betaine contained in growth algae.
(6) Urea sprayed on the soil supplied to the leaves of urea nitrogen is oxidized to nitric acid by bacteria. In contrast, urea taken from the leaf surface promotes nitrate metabolism.
(7) Donation of acetic acid or acetate to the medium.
(8) Donation to the leaves of Ammonian nitrogen.
Nitrous acid in the process of metabolism in the leaves reacts with ammonia to forcibly decompose it into nitrogen and water.
(9) Donation of peptide nitrogen.
(10) Donation of amino acid (non-α-amino acid) compounds.

これら(0)から(9)の窒素活性化因子は単独で使用されたり、複数因子の組み合わせによる相乗効果により硝酸低減のため活用されている。具体的に硝酸低減に関する特許文献は以下のように解析される:まず、単独因子では、
因子(0)の特許文献13および14、
因子(1)の特許文献6および7、
因子(3)の特許文献8、
因子(4)の特許文献1、
因子(10)の特許文献10、
因子(7)の特許文献12、
因子(8)の特許文献11
がある。ついで、複合因子では、
因子(5)+(1)、もしくは因子(5)+(1)+(4)の特許文献4と5、
因子(4)+(2)+(6)で増収と同時に植物の抗酸化活性向上も行っている特許文献2、
因子(4)+(2)+(9)で特許文献2を凌ぐ特性を達成している特許文献3
に分類される。
These nitrogen activators (0) to (9) are used alone or in combination for reducing nitrate due to the synergistic effect of a combination of multiple factors. Specifically, the patent literature on nitrate reduction is analyzed as follows:
Patent documents 13 and 14 of factor (0),
Patent documents 6 and 7 of factor (1),
Patent Document 8 of Factor (3),
Patent Document 1 of Factor (4),
Patent Document 10 of Factor (10),
Patent Document 12 of Factor (7),
Patent Document 11 of Factor (8)
There is. Then, for complex factors,
Patent Documents 4 and 5 of factor (5) + (1) or factor (5) + (1) + (4),
Patent Document 2, which is improving the antioxidant activity of plants at the same time as increasing sales with the factor (4) + (2) + (6)
Patent Document 3 that achieves characteristics exceeding Patent Document 2 with factor (4) + (2) + (9)
are categorized.

硝酸低減については言及されてないものの、特許文献15と16において、グルタミン酸から誘導されるγ−アミノ酪酸(4-アミノブタン酸GABA)をグルタミン酸とカゼインタンパク質と一緒に葉面散布などで供与する事で植物の生育活性化がなされている。これら二つのアミノ酸(5−アミノレブリン酸とγ−アミノ酪酸)は、どちらも生体タンパク質を構成しているα−アミノ酸ではないが、植物活性の向上に効果がある。多くの特許文献でα−アミノ酸の植物生育に対する効用が実証なく記述されているが、特許文献17では、α−アミノ酸の中でメチオニン(Met)のみが根毛密度の増加に寄与している事が示されている。さらに、特許文献18は、メチオニンとトリプトファンを葉面散布することにより植物の糖の転流が促進される事を示している。植物活性に効果的に作用するα−アミノ酸と、そうでないα−アミノ酸がある事を特許文献17は示している。   Although there is no mention of nitrate reduction, Patent Documents 15 and 16 provide γ-aminobutyric acid (4-aminobutanoic acid GABA) derived from glutamic acid together with glutamic acid and casein protein by foliar spraying or the like. Plant growth is activated. These two amino acids (5-aminolevulinic acid and γ-aminobutyric acid) are not α-amino acids constituting biological proteins, but are effective in improving plant activity. Although many patent documents describe the effects of α-amino acids on plant growth without verification, Patent Document 17 shows that only methionine (Met) among α-amino acids contributes to an increase in root hair density. It is shown. Further, Patent Document 18 shows that the translocation of plant sugar is promoted by foliar application of methionine and tryptophan. Patent Document 17 shows that there are α-amino acids that effectively act on plant activity and α-amino acids that do not.

高分子であるタンパク質を加水分解すると、その分子量が低下しペプチドを経て、最終的には最小構成単位のα−アミノ酸になる。大豆粕(特許文献17)、ゼラチン(特許文献19)由来のペプチドとアミノ酸、そして、動物性繊維(特許文献20)、米糠(特許文献21)由来のα−アミノ酸は、植物の生育促進をもたらす事が述べられている。しかし、これら四つの特許文献は、全て硝酸低減と抗酸化活性について言及してない。α−アミノ酸の中でもメチオニンのみが根の生育活性に相関している事を踏まえると、特許文献17から特許文献21におけるタンパク質分解物の生育促進に与える効果は、主に、α−アミノ酸態窒素よりはむしろ、ペプチド態窒素に由来していると考察するのが妥当である。   When a protein, which is a polymer, is hydrolyzed, its molecular weight decreases, and after passing through a peptide, finally becomes an α-amino acid of the minimum constitutional unit. Peptides and amino acids derived from soybean meal (patent document 17), gelatin (patent document 19), and α-amino acid derived from animal fiber (patent document 20) and rice bran (patent document 21) bring about the promotion of plant growth. Things are stated. However, these four patent documents all do not mention nitrate reduction and antioxidant activity. Considering that only methionine is correlated with root growth activity among α-amino acids, the effects of Patent Document 17 to Patent Document 21 on the promotion of the growth of proteolysate are mainly from α-amino acid nitrogen. Rather, it is reasonable to consider that it is derived from peptide nitrogen.

実際、ペプチド態窒素をマグネシウム含有の糖蜜発酵有機酸液に高濃度に共存させた葉面散布剤は、硝酸低減能はもちろんの事、植物の生育促進と抗酸化活性向上に大きく貢献している。本発明者(石川)は特許文献3にこれらの結果を示している。   In fact, foliar sprays in which peptide nitrogen coexists in a magnesium-containing molasses-fermented organic acid solution contributes greatly to promoting plant growth and improving antioxidant activity as well as reducing nitrate. . The present inventor (Ishikawa) shows these results in Patent Document 3.

特許文献2および3の葉面散布剤の処理により硝酸値は確かに低減するが、避けることができない問題がある。特許文献3の図2に示されているように、散布剤の植物体内への浸透で窒素代謝が活発化し、硝酸値は一時的に低下する。しかし、代謝により不足した硝酸濃度を補うために根を通じて再び硝酸が土壌から吸い込まれて、最終的には散布前よりも体内硝酸値が高まる。この植物体内の硝酸濃度の再増加こそが生育促進と増収につながっている。代謝活性化により低下した養分が必ず補われて、元の状態、もしくはそれ以上に回復してしまう現象は、生命活動を継続している以上避けることができない。即ち、散布直後からの経過時間に対して、植物体内の硝酸濃度は、最小値を迎え、その後再び増加してしまう。農作物生産者にとっては、低硝酸化した農作物を出荷するために、残留硝酸値が最小になっている時期を予測して、可食部位を培地から抜き取り、または切断し市場に出荷しなければならい。しかし、硝酸値がもっとも低下する時間とその低硝酸状態を維持する時間の予測は、品種、温度と日照、土壌の水分環境で左右されてしまうために、経験の領域を超える事はできない。   Although the nitric acid value is certainly reduced by the treatment of the foliar sprays of Patent Documents 2 and 3, there is a problem that cannot be avoided. As shown in FIG. 2 of Patent Document 3, nitrogen metabolism is activated by the penetration of the spray into the plant body, and the nitric acid value temporarily decreases. However, nitric acid is again sucked from the soil through the roots to compensate for the lack of nitric acid concentration due to metabolism, and ultimately the nitric acid level in the body is higher than before spraying. This re-increase in nitric acid concentration in plants leads to growth promotion and increase in sales. The phenomenon that the nutrients that have been reduced due to metabolic activation are always compensated, and the original state or more is recovered, so that life activities cannot be avoided. That is, the nitric acid concentration in the plant body reaches a minimum value with respect to the elapsed time immediately after spraying, and then increases again. For crop producers, in order to ship low-nitrate crops, the edible part must be removed from the culture medium or cut and shipped to the market, predicting when the residual nitrate level is at a minimum. . However, the prediction of the time when the nitric acid value falls most and the time when the low nitric acid state is maintained depends on the variety, temperature and sunshine, and the moisture environment of the soil, so it cannot exceed the field of experience.

葉面散布型の野菜の葉面散布剤に求められる性能は、硝酸濃度の最小値を可能な限り低下させる事に加えて、低硝酸濃度を維持する時間も長期化させる特性である。   The performance required for the foliar spray-type vegetable foliar spraying agent is to reduce the minimum value of nitric acid concentration as much as possible, and also to extend the time for maintaining a low nitric acid concentration.

窒素代謝剤散布による植物体内硝酸濃度の時間変動現象は、特許文献2と3以外の葉面散布型葉面散布剤全てが本質的に持っている問題であろう。しかし、特許文献4〜10では、散布からの経過時間に対する硝酸値の変動については論述がない。従って、前項で記述した低硝酸状態を如何に長期化するかとの視点に立った葉面散布剤の開発がなされていない。   The time fluctuation phenomenon of the nitrate concentration in the plant due to the spraying of the nitrogen metabolite will be a problem inherent to all the foliar spraying foliar spraying agents other than Patent Documents 2 and 3. However, Patent Documents 4 to 10 do not discuss the fluctuation of the nitric acid value with respect to the elapsed time from spraying. Therefore, no foliar spray has been developed from the viewpoint of how to prolong the low nitric acid state described in the previous section.

葉面散布剤散布で代謝が活性化し葉内の硝酸が低減する。その後、根から硝酸が再吸収するために硝酸濃度の時間変動が生じる。低硝酸化した状態を長時間維持するために、本発明者らは根からの硝酸吸収の制限を意識した。硝酸イオンは、極めて親水性が強力で水溶液として植物体内に取り込まれる。従って、根からの水分の吸い上げを制御すると、結果的に再吸収される硝酸量を制限できるはずである。   Foliar spraying activates metabolism and reduces nitrate in the leaves. Thereafter, nitric acid concentration is reabsorbed from the roots, so that the nitric acid concentration varies with time. In order to maintain the low nitrated state for a long time, the present inventors were aware of the limitation of nitric acid absorption from the roots. Nitrate ions are extremely hydrophilic and are taken into plants as aqueous solutions. Therefore, controlling the uptake of moisture from the root should limit the amount of nitric acid that is eventually reabsorbed.

Figure 0004565238
表1は、特許文献1の葉面散布剤をほうれん草に葉面散布した際の残留硝酸値の変動をまとめている。ほうれん草を出荷サイズまで生育させた後、ハウス内で10日間一切水の散布を行わない圃場と連日灌水をおこなった圃場で散布試験を行っている。水切り処理を施している圃場では、対照区と比較して、散布一日後の5/5に約1000ppm硝酸値が低減するが、五日後の5/9には根からの再吸収のため対照区の硝酸値に近づいている。これに対して、連日灌水処理を行っている圃場では散布による硝酸値の変動が認められない。少なくとも特許文献1の葉面散布剤は、土壌が低水分の状態で用いると効果的である事がわかる。上述したように、水分制限のため、根からの硝酸吸い上げ量よりも、散布による植物体内硝酸の代謝量が勝っている状況と判断できる。このように、表1は、水分調整と葉面散布剤の作用効率との間に相関関係が存在する事を証明している。
特開2003-146786号公報(糖蜜発酵有機酸液) 特願2004-21836(糖蜜発酵有機酸液+マグネシウム) 特願2005-088449(糖蜜発酵有機酸液+マグネシウム+ペプチド態窒素) 特許第2793583号公報(褐藻成分) 特開2000-26183号公報(紅藻、緑藻成分) 特開平10-218713号公報(Mo、キトサン) 特開2003-180165号公報(Mo、アミノ酸、核酸) 特開2003-146786号公報(酸化チタンの紫外光捕集) 特開2001-2517号公報(蜂蜜と海水を含む天然塩) United States Patent 5,489,572(非α-アミノ酸、5-aminolevulinic acid) 特許公開平10-218713(アンモニアによる亜硝酸分解) 特許公開2001-190154(酢酸類の活用) 特許公開平10-290638(硝酸態窒素を含まない養液栽培) 特許公開平11-69920(硝酸態窒素を含まない養液栽培) 特許公表2003-525202、2003-12389(GABA、CASカゼイン、GLU) 特許公開2003-12389(GABA、GLU) 特許公開2003-73210(大豆粕分解物またはメチオニン) 特許公開2005-15438(メチオニン、トリプトファン、糖転流促進剤) 特許公開2003-12389(ゼラチン、ニカワ由来のペプチド類、アミノ酸) 特許公開2003-160391(動物性繊維を硫酸で加水分解 方法) 特許公開平7-10670(米糠エキスに黒砂糖で発酵、製造とその製品)
Figure 0004565238
Table 1 summarizes the variation of the residual nitric acid value when the foliar spray agent of Patent Document 1 is sprinkled on spinach. After growing spinach to the shipping size, the spraying test is conducted in the field where no water is sprayed for 10 days in the house and in the field where watering is performed every day. In the field where drainage treatment is applied, compared to the control plot, about 1000 ppm nitric acid level is reduced 5/5 after the day of spraying. The nitric acid level is approaching. On the other hand, in the field where irrigation treatment is carried out every day, there is no change in the nitrate value due to spraying. It can be seen that at least the foliar spraying agent of Patent Document 1 is effective when used in a state of low moisture in the soil. As described above, it can be determined that the metabolism amount of nitric acid in the plant by spraying is superior to the nitric acid uptake amount from the root due to water limitation. Thus, Table 1 demonstrates that there is a correlation between moisture adjustment and the efficiency of foliar spray.
JP 2003-146786 A (molasses fermentation organic acid solution) Japanese Patent Application No. 2004-21836 (molasses fermentation organic acid solution + magnesium) Patent application 2005-088449 (molasses fermentation organic acid solution + magnesium + peptide nitrogen) Japanese Patent No. 2793583 (Brown Algae Component) JP 2000-26183 (Red Algae, Green Algae Component) JP 10-218713 A (Mo, Chitosan) JP 2003-180165 A (Mo, amino acid, nucleic acid) JP2003-146786 (ultraviolet light collection of titanium oxide) JP2001-2517 (natural salt including honey and seawater) United States Patent 5,489,572 (non-α-amino acid, 5-aminolevulinic acid) Patent Publication 10-218713 (Nitrous acid decomposition with ammonia) Patent Publication 2001-190154 (Utilization of acetic acid) Patent Publication No. 10-290638 (Nutrient culture without nitrate nitrogen) Patent Publication 11-69920 (Nutrient culture without nitrate nitrogen) Patent publications 2003-525202, 2003-12389 (GABA, CAS casein, GLU) Patent Publication 2003-12389 (GABA, GLU) Patent Publication 2003-73210 (Soybean meal decomposition product or methionine) Patent Publication 2005-15438 (methionine, tryptophan, sugar translocation promoter) Patent Publication 2003-12389 (Gelatin, peptides derived from glue, amino acids) Patent Publication 2003-160391 (Method of hydrolyzing animal fibers with sulfuric acid) Patent Publication No. 7-10670 (fermented with brown sugar in rice bran extract, manufactured and its products)

上述した知見により本発明者らは、葉の保湿効果を高めて、葉からの水分の蒸散を抑制低下させ、結果的に根からの水の吸収を制限すると同時に、これまで以上に強力に植物体内の硝酸代謝の活性化が可能な葉面散布剤の開発を重要課題とし、完成した。
つまり本発明は、植物の可食部位における残留硝酸濃度をより強力に低減させ、同時にこの低減した硝酸濃度状態をより長時間維持させる葉面散布剤を開発したのである。
Based on the above-mentioned findings, the present inventors have improved the moisturizing effect of the leaves, reduced and reduced the transpiration of water from the leaves, and consequently limited the absorption of water from the roots, and at the same time more powerful than ever The development of a foliar spray that can activate nitrate metabolism in the body was an important issue and was completed.
That is, the present invention has developed a foliar spray agent that more strongly reduces the residual nitric acid concentration in the edible part of the plant and at the same time maintains the reduced nitric acid concentration state for a longer time.

本発明は、葉の保湿剤として、食用可能であるグリセリンを高濃度に使用した。このグリセリンは、保湿効果だけでなく、自身が炭素源として葉の中で代謝され、また、他要素の細胞膜への浸透を促進する効果を併せ持つ。また、葉内の硝酸代謝の速度をさらに増加させる促進剤としてγ−アミノ酪酸(GABA)やメチオニン(Met)を併用した。即ち、前述した硝酸削減因子(4)+(2)+(9)にグリセリンと該アミノ酪酸およびメチオニンの相乗効果を加えたものであり、その特徴とする技術条件は次の通りである。
(1)、糖類発酵有機酸水溶液と、マグネシウム塩溶液と、グリセリンと、アミノ酪酸及びメチオニンを含有してなる植物体内の残留硝酸低減用葉面散布剤。
(2)、糖水溶液とタンパク質水溶液を酵母種菌により糖発酵とタンパク質分解した糖類発酵有機酸水溶液と、マグネシウム塩溶液、グリセリンと、さらにアミノ酪酸及びメチオニン(Met)を含有してなる植物体内の残留硝酸低減用葉面散布剤。
(3)、可溶性総ペプチド濃度を可溶性総アミノ酸濃度以上に高めた糖類発酵有機酸水溶液と、マグネシウム塩溶液と、グリセリンと、アミノ酪酸及びメチオニンを含有してなる植物体内の残留硝酸低減用葉面散布剤。
(4)、酵母種菌により発酵させた糖水溶液に所定量の酢と尿素を加えた糖類発酵有機酸水溶液と、マグネシウム塩溶液、グリセリンと、さらにアミノ酪酸及びメチオニン(Met)を含有してなる植物体内の残留硝酸低減用葉面散布剤。
(5).タンパク質含有の糖水溶液を酵母種菌により発酵させ、その溶液に所定量の酢を加え糖類発酵有機酸水溶液とする。この糖類発酵有機酸水溶液100重量%に対し、酢酸マグネシウムをマグネシウム濃度が1〜6重量%になるように溶解させる。これらの混合溶液100体積%に対して5〜30体積%のグリセリンを添加する。さらにこのグリセリン混合液1L当たり、アミノ酪酸1〜20g及びメチオニンMet1〜20gとを含有させてなる植物体内の残留硝酸低減用葉面散布剤。
(6).糖水溶液を酵母種菌により発酵させ、その溶液に所定量の酢と尿素を加え糖類発酵有機酸水溶液とする。この糖類発酵有機酸水溶液100重量%に対し、マグネシウム塩をマグネシウム濃度が1〜6重量%になるように溶解させる。これらの混合溶液100体積%に対して5〜30体積%のグリセリンを添加する。さらにこのグリセリン混合液1L当たり、アミノ酪酸1〜20g及びメチオニンMet1〜20gとを含有させてなる植物体内の残留硝酸低減用葉面散布剤。
In the present invention, edible glycerin was used at a high concentration as a leaf moisturizer. This glycerin not only has a moisturizing effect, but is also metabolized in the leaf itself as a carbon source, and also has the effect of promoting the penetration of other elements into the cell membrane. Further, γ-aminobutyric acid (GABA) and methionine (Met) were used in combination as an accelerator for further increasing the rate of nitrate metabolism in the leaves. That is, the nitric acid reduction factor (4) + (2) + (9) described above is obtained by adding the synergistic effect of glycerin, the aminobutyric acid and methionine, and the technical conditions characterized as follows.
(1) A foliar spray for reducing residual nitric acid in a plant comprising a sugar-fermented organic acid aqueous solution, a magnesium salt solution, glycerin, aminobutyric acid and methionine.
(2) Residue in plant body containing sugar-fermented organic acid aqueous solution obtained by sugar fermentation and proteolysis of sugar aqueous solution and protein aqueous solution with yeast inoculum, magnesium salt solution, glycerin, and aminobutyric acid and methionine (Met) Foliar spray for reducing nitric acid.
(3) A leaf surface for reducing residual nitric acid in a plant comprising a sugar-fermented organic acid aqueous solution in which the soluble total peptide concentration is higher than the soluble total amino acid concentration, a magnesium salt solution, glycerin, aminobutyric acid and methionine. Spraying agent.
(4) A plant comprising a sugar-fermented organic acid aqueous solution obtained by adding a predetermined amount of vinegar and urea to a sugar aqueous solution fermented by yeast inoculum, a magnesium salt solution, glycerin, and further aminobutyric acid and methionine (Met). Foliar spray for reducing residual nitric acid in the body.
(5). A protein-containing sugar aqueous solution is fermented with yeast inoculum, and a predetermined amount of vinegar is added to the solution to obtain a sugar-fermented organic acid aqueous solution. Magnesium acetate is dissolved in 100% by weight of the saccharide-fermented organic acid aqueous solution so that the magnesium concentration is 1 to 6% by weight. 5-30 volume% glycerol is added with respect to 100 volume% of these mixed solutions. Further, a foliar spray for reducing residual nitric acid in a plant, comprising 1 to 20 g of aminobutyric acid and 1 to 20 g of methionine per 1 L of this glycerin mixed solution.
(6). A sugar aqueous solution is fermented with yeast inoculum, and a predetermined amount of vinegar and urea are added to the solution to obtain a sugar-fermented organic acid aqueous solution. The magnesium salt is dissolved so that the magnesium concentration becomes 1 to 6% by weight with respect to 100% by weight of this saccharide-fermented organic acid aqueous solution. 5-30 volume% glycerol is added with respect to 100 volume% of these mixed solutions. Further, a foliar spray for reducing residual nitric acid in a plant, comprising 1 to 20 g of aminobutyric acid and 1 to 20 g of methionine per 1 L of this glycerin mixed solution.

農作物生産現場では、圃場への施肥量が同じで、同一品種であっても、日照や気温、土壌中の水分など一定でない。このため、葉面散布剤の葉面散布から収穫までの待ち時間の設定見込みが非常に困難である。長すぎれば硝酸の再吸収が起こり、短すぎれば十分に硝酸を代謝できていない状況に遭遇する。
本発明の植物体内の残留硝酸低減用葉面散布剤は、散布母体液、即ち、ペプチド態窒素もしくは尿素に富む前記糖類発酵有機酸水溶液にマグネシウム塩を高濃度に溶解させた母液に、食用可能なグリセリンを高濃度に加え、更にγ−アミノ酪酸(GABA)とメチオニン(Met)を作用させたものである。グリセリンは葉の保湿効果を高めて、葉からの水分の蒸散を低減抑制し、根からの水に溶解した硝酸の取り込みを制限する(効果1)。また、グリセリンは、他成分の細胞浸透性も優れているため、生育活性能を持つGABAとMetの葉面からの取り込みを加速する。さらに、グリセリンはそれ自身が炭素源として代謝されるため、グリセリン、GABA、Metの三者を併用することは非常に効果的な葉内の硝酸代謝につながる(効果2)。効果2が母体液の硝酸低減作用と一緒に働く事により、植物の可食部位における硝酸濃度を速やかに、強力に低下させた高品質状態にする。さらに、効果1による根からの硝酸取り込み制限が、この高品質状態つまり残留硝酸低濃度状態をより長時間(期間)維持させる。低硝酸濃度の長期化は、農作物生産者に幅広い有効収穫作業期間を与える優れた効果を有するもので、農作物生産現場とって、極めて優しく効果的な葉面散布剤である。
At the crop production site, the amount of fertilizer applied to the field is the same, and even with the same variety, sunlight, temperature, moisture in the soil, etc. are not constant. For this reason, it is very difficult to set the waiting time from foliar spraying to harvesting. If it is too long, reabsorption of nitric acid will occur, and if it is too short, we will encounter a situation where nitric acid cannot be metabolized sufficiently.
The foliar spray for reducing residual nitric acid in a plant according to the present invention is edible in a spray mother liquid, that is, a mother liquid in which a magnesium salt is dissolved in a high concentration in the saccharide-fermented organic acid aqueous solution rich in peptide nitrogen or urea. Glycerin is added to a high concentration, and γ-aminobutyric acid (GABA) and methionine (Met) are allowed to act. Glycerin enhances the moisturizing effect of the leaves, reduces and suppresses the transpiration of water from the leaves, and limits the uptake of nitric acid dissolved in the water from the roots (effect 1). Glycerin also has excellent cell permeability to other components, so it accelerates the uptake of GABA and Met, which have growth activity, from the leaves. Furthermore, since glycerin itself is metabolized as a carbon source, the combined use of glycerin, GABA, and Met leads to highly effective nitrate metabolism in leaves (effect 2). The effect 2 works together with the nitrate reducing action of the mother liquid, so that the nitric acid concentration in the edible part of the plant is quickly and strongly reduced to a high quality state. Furthermore, the restriction of nitric acid uptake from the root by the effect 1 maintains this high quality state, that is, the residual nitric acid low concentration state for a longer period (period). Prolonged low nitric acid concentration has an excellent effect of providing a wide range of effective harvesting periods to crop producers, and is a very gentle and effective foliar spray for crop production sites.

本発明の葉面散布剤は、好ましい母液として、表3に示すペプチド態窒素に富む糖類発酵有機酸水溶液にマグネシウムを含有させたもの又は尿素を含む糖類発酵有機酸水溶液にマグネシウムを含有させたものを用いる。この母液にグリセリンと特定アミノ酸(同重量のGABAとMetの一種以上)を添加するものである。
マグネシウムは、代謝に不可欠なエネルギー化合物であるATPを活性化させるため、可能な限り高濃度が望ましい。蒸散抑制、炭素源、浸透補助の役目のグリセリンは、水にとける有機化合物であるため、高濃度では生育傷害が発現する。従って、作物毎にグリセリンの適切な上限濃度を設定するのが好ましい。高価なGABAとMetは、最も効果が高まる最低濃度を設定する事が好ましい。
この植物体内の残留硝酸低減用葉面散布剤の最良の形態と好ましい製造過程における各種成分濃度との関係を次に詳述する。
タンパク質を窒素源として含む場合:炭素濃度が25〜35重量%の糖水溶液と、水溶性タンパク質源濃度が7〜26重量%のタンパク質水溶液を、体積比で4(糖水溶液):6(タンパク質水溶液)から3(糖水溶液):7(タンパク質水溶液)の割合で混合溶解させる。この結果この混合液は炭素濃度として10〜14重量%の糖と、4〜16重量%の水溶性タンパク質源を含む水溶液となる。次にこの水溶液を酵母種菌により糖の有機酸への発酵と同時にタンパク質をペプチドとアミノ酸へ分解して、トリクロロ酢酸処理後の可溶ペプチドがLOWRY法による定量値で30〜60g/L濃度含まれる糖類発酵有機酸水溶液にし、この糖類発酵有機酸水溶液100重量%に、酢に溶解した濃度2〜4重量%のマグネシウム天然鉱石を1〜6重量%又はこのマグネシウム塩溶液及び尿素を溶解させる。この水溶液に対してグリセリンを5〜30体積%溶解させる。さらにこのグリセリン混合液1L当たり、アミノ酪酸1〜20g及び又はメチオニンMet1〜20gを加える事で本例の製造過程を終了する。
尿素を窒素源として含む場合:糖水溶液を酵母種菌により発酵させ、その溶液1Lに所定量の酢(10〜20度100mL)と尿素(50〜400g)を加え糖類発酵有機酸水溶液とする。この糖類発酵有機酸水溶液100重量%に対し、マグネシウム塩をマグネシウム濃度が1〜6重量%になるように溶解させる。これらの混合溶液100体積%に対して5〜30体積%のグリセリンを添加する。さらにこのグリセリン混合液1L当たり、アミノ酪酸を1〜20g及びメチオニンMetを1〜20gとを加える事で本例の製造過程を終了する。
そしてこのようにして製造して得た葉面散布剤において、植物に散布する際の希釈程度は、通常は水で50〜1500倍に希釈し、より好ましくは水で100〜500倍に希釈すれば後述の所期の各種効果が確実に得られるものである。
The foliar spray of the present invention is a preferred mother liquor containing magnesium in a sugar-fermented organic acid aqueous solution rich in peptide nitrogen shown in Table 3, or containing sugar in a sugar-fermented organic acid aqueous solution containing urea. Is used. Glycerin and a specific amino acid (one or more of GABA and Met of the same weight) are added to this mother liquor.
Magnesium activates ATP, which is an energy compound indispensable for metabolism, and therefore it is desirable that the concentration be as high as possible. Glycerin, which acts as a transpiration suppressor, carbon source, and penetration aid, is an organic compound that dissolves in water, so that growth damage occurs at high concentrations. Therefore, it is preferable to set an appropriate upper limit concentration of glycerin for each crop. For expensive GABA and Met, it is preferable to set the lowest concentration that is most effective.
The relationship between the best form of the foliar spray for reducing residual nitric acid in the plant and the concentration of various components in the preferred production process will be described in detail below.
When protein is included as a nitrogen source: a sugar aqueous solution having a carbon concentration of 25 to 35% by weight and a protein aqueous solution having a water-soluble protein source concentration of 7 to 26% by weight, 4 (sugar aqueous solution): 6 (protein aqueous solution) ) To 3 (aqueous sugar solution): 7 (aqueous protein solution). As a result, this mixed solution becomes an aqueous solution containing 10 to 14% by weight of sugar and 4 to 16% by weight of a water-soluble protein source in terms of carbon concentration. Next, this aqueous solution is decomposed into a peptide and an amino acid simultaneously with fermentation of sugar to an organic acid by a yeast inoculum, and a soluble peptide after treatment with trichloroacetic acid is contained at a concentration of 30 to 60 g / L by a LOWRY method. A saccharide-fermented organic acid aqueous solution is prepared, and 1 to 6% by weight of magnesium natural ore having a concentration of 2 to 4% by weight dissolved in vinegar or this magnesium salt solution and urea are dissolved in 100% by weight of the saccharide-fermented organic acid aqueous solution. 5-30 volume% of glycerol is dissolved with respect to this aqueous solution. Furthermore, the manufacturing process of this example is complete | finished by adding 1-20 g of aminobutyric acid and / or 1-20 g of methionine per 1L of this glycerol mixed liquid.
When urea is included as a nitrogen source: A sugar aqueous solution is fermented with yeast inoculum, and a predetermined amount of vinegar (10 to 20 degrees 100 mL) and urea (50 to 400 g) are added to 1 L of the solution to obtain a sugar-fermented organic acid aqueous solution. The magnesium salt is dissolved so that the magnesium concentration becomes 1 to 6% by weight with respect to 100% by weight of this saccharide-fermented organic acid aqueous solution. 5-30 volume% glycerol is added with respect to 100 volume% of these mixed solutions. Further, the production process of this example is completed by adding 1 to 20 g of aminobutyric acid and 1 to 20 g of methionine Met per liter of the glycerin mixed solution.
In the foliar spray obtained as described above, the degree of dilution when spraying on plants is usually diluted 50 to 1500 times with water, more preferably 100 to 500 times with water. For example, the desired effects described below can be obtained with certainty.

本発明におけるアミノ酪酸は、GABA(4-アミノブタン酸)であるが、BABA(3-アミノブタン酸)やAABA(2-アミノブタン酸)であっても可能である。メチオニンは、L体、D体、DLラセミ体の区別を問わない。   The aminobutyric acid in the present invention is GABA (4-aminobutanoic acid), but may be BABA (3-aminobutanoic acid) or AABA (2-aminobutanoic acid). Methionine may be distinguished from L-form, D-form, and DL racemate.

本発明における前記マグネシウム塩の対陰イオンはカルボキシレート(-CO2 -)である。 In the present invention, the counter anion of the magnesium salt is carboxylate (—CO 2 ).

本発明におけるグリセリンは、保湿剤を意図して添加するが、実際には、グリセリンが共存すると細胞膜への多様な化合物の浸透性が高く、また、それ自身が炭素源として葉内で代謝に活用されるため、硝酸低減に対して複合的な役割を担っていると考えられる。グリセリンとしては99%以上の粘性のある純グリセリンから、水を含むグリセリン水であっても可能である。添加量の上限は、一般的な細胞膜内タンパク質の変性を考えると40体積%以下が望ましく、好ましくは30体積%以下である。また、天然油を加水分解してアルキル脂肪酸を除去、もしくは共存のまま得られる粗グリセリン水溶液でも使用できる。アルキル脂肪酸は有機酸として葉面散布剤の中で活用される。 In the present invention, glycerin is intentionally added as a moisturizing agent. However, in reality, when glycerin coexists, the permeability of various compounds to the cell membrane is high, and itself is utilized as a carbon source for metabolism in the leaves. Therefore, it is considered that it plays a complex role for nitric acid reduction. As the glycerin, it is possible to use pure glycerin having a viscosity of 99% or more and glycerin water containing water. The upper limit of the amount added is desirably 40% by volume or less, preferably 30% by volume or less, considering the general denaturation of intracellular protein. Further, it is possible to use a crude glycerin aqueous solution obtained by hydrolyzing natural oil to remove an alkyl fatty acid or coexisting. Alkyl fatty acids are used in foliar sprays as organic acids.

本発明におけるタンパク質源には、卵類、乳類、血液由来物質、豆乳類など水に分散もしくは溶解が容易なものが好ましい。   The protein source in the present invention is preferably a protein source that can be easily dispersed or dissolved in water, such as eggs, milk, blood-derived substances, and soy milk.

本発明における糖類としては、廃糖蜜がコスト面から優れているが、精製した砂糖、黒砂糖、蜂蜜、果糖、乳糖など食品用の糖が好ましい。もちろん、化学試薬レベルにまで生成したグルコース、マルトース、スクロースも使用できる。マグネシウム塩は、酢酸マグネシウムやアミノ酸マグネシウム錯体塩が好ましいが、苦汁や硫酸マグネシウムなどその他のマグネシウム塩でも構わない。 As the saccharides in the present invention, molasses is excellent in terms of cost, but sugars for food such as refined sugar, brown sugar, honey, fructose and lactose are preferable. Of course, glucose, maltose and sucrose produced to the chemical reagent level can also be used. The magnesium salt is preferably magnesium acetate or an amino acid magnesium complex salt, but may be other magnesium salts such as bitter juice and magnesium sulfate.

比較として、前記マグネシウム塩の代わりにカルシウム塩や酸化チタン、モリブデン塩、亜鉛塩、マンガン塩など必須微量金属塩を飽和溶解させた葉面散布剤に対してもグリセリンと前記特定アミノ酸の添加は、その硝酸低減特性を向上させることと推察される。一方、撥水(親油)性のパラフィン系などの蒸散抑制剤を保水剤としてのグリセリンの代わりに活用することも可能であるが、この変形も本発明と同様の優れた効果は得られない。   As a comparison, addition of glycerin and the specific amino acid to a foliar spray agent in which essential trace metal salts such as calcium salt, titanium oxide, molybdenum salt, zinc salt, manganese salt are saturated and dissolved instead of the magnesium salt, It is presumed that the nitric acid reduction property is improved. On the other hand, it is possible to utilize a water repellent (lipophilic) paraffinic transpiration inhibitor in place of glycerin as a water retention agent, but this modification cannot provide the same excellent effect as the present invention. .

次に本発明の植物体内の残留硝酸低減用葉面散布剤の散布による葉野菜の硝酸低減効果を、散布からの経過時間に対して表4から表6にまとめている。表3でグリセリンと特定アミノ酸の二つの添加因子の内、グリセリンの欠如効果を高菜において観察した。表4では、逆に特定アミノ酸の欠如効果をほうれん草で確認した。表5ではグリセリン量の効果を観察している。表6と表7では特定アミノ酸量の効果を観察している。表3から表6まではペプチド態窒素に富む母液を利用しているが、表7と表8では尿素を含む母液を利用してグリセリンと特定アミノ酸の共存効果を観察している。表9は、硝酸値でなく、増収効果に与えるグリセリンと特定アミノ酸の共存効果をまとめている。 Next, Table 4 to Table 6 summarize the nitrate reduction effect of leafy vegetables by spraying the foliar spray for reducing residual nitric acid in the plant of the present invention with respect to the elapsed time from spraying. In Table 3, among the two additive factors of glycerin and specific amino acids, the lack of glycerin was observed in Takana. In Table 4, conversely, the effect of lacking specific amino acids was confirmed in spinach. In Table 5, the effect of the amount of glycerin is observed. Tables 6 and 7 observe the effect of the specific amino acid amount. Tables 3 to 6 use a mother liquor rich in peptide nitrogen, while Tables 7 and 8 use a mother liquor containing urea to observe the coexistence effect of glycerin and a specific amino acid. Table 9 summarizes the coexistence effect of glycerin and specific amino acids on the yield increase effect, not the nitric acid value.

本発明の植物体内の残留硝酸低減用葉面散布剤の葉面散布は、ほうれん草などの葉野菜、大根などの根菜、トマトなどの果菜からブドウや梨などの果樹に対して使用できる。露地栽培の場合、葉面散布の好ましい時期は、植物の生長が大きく制限される厳寒期以外が好ましい。厳寒期では、表1から表8の優れた結果が発現しにくい。 The foliar application of the foliar spray for reducing residual nitric acid in the plant of the present invention can be used for leaf vegetables such as spinach, root vegetables such as radishes, fruit vegetables such as tomatoes, and fruit trees such as grapes and pears. In the case of outdoor cultivation, the preferred time for foliar spraying is preferably other than the severe cold season when plant growth is greatly restricted. In the severe cold season, the excellent results shown in Tables 1 to 8 are difficult to express.

以下、本発明の実施例を説明する。尚、本実施例において、成分の割合、混合手順、操作手順は、適時入れ替えと変量可能である。   Examples of the present invention will be described below. In addition, in a present Example, the ratio of a component, a mixing procedure, and an operation procedure can be changed and changed at appropriate time.

(葉面散布剤の製造)
表2には、母液として糖発酵液1、糖発酵液2、糖発酵液3の各例を示す。糖発酵液1は、可溶性ペプチドに富む糖蜜発酵有機酸液に酢酸マグネシウムを飽和溶解した母液である。糖発酵液2は、尿素を所定量添加した糖蜜発酵有機酸液に硫酸マグネシウムを飽和溶解した母液である。糖発酵液3は、糖発酵液2に粉末海藻を添加した母液である。以下に糖発酵液1、2および3の具体的な製造方法を述べる。
糖発酵液1の製造: 卵白18L(リットル以下同じ)を激しい撹拌で室温で水に溶解させ、60Lの水溶液とした。均一溶解が困難な場合には、加熱により殺菌処理した海水(イオン強度が高い水)を室温で1Lほど添加し溶解させる。脱脂粉乳の場合は、市販牛乳とほぼ同じ濃さを目安に、4.6kgの粉乳を温水に撹拌しながら溶解させ60Lの水溶液とする。これら水溶液と廃糖蜜液(炭素28wt%、比重1.39、Brix度82%)40Lを混合し、十分に撹拌して100Lのタンパク質と糖蜜の混合水溶液を得る。これに種菌液を1Lほど混合し、外気の流入を遮断した上で、恒温相中で33℃前後に撹拌する事無く静置する。一週間に一度の割合で撹拌を兼ねた空気吹き込みを実施し、糖度計による糖度を追跡する。糖度が、一定値に収束するまで、静置を続ける。仕込み後、1−2週間は、発酵に基づく激しい二酸化炭素の発泡が認められ、その後、上記の条件で数ヶ月発酵を継続させると「醤油」臭の黒色水溶液が得られる。発酵度合いを屈折率型糖度計で追跡した場合、卵白の場合は、仕込み直後 41.0±0.5 Brix %の糖度が、次第に減少し、30.5±0.5Brix %で一定値を示すようになる。この発酵液2.75Lに対し、20度の食用酢250mLを混合する。さらにこの約3Lの水溶液に水和した酢酸マグネシウム固体を室温で飽和溶解に達するまで溶解させて糖発酵液1を得る。
糖発酵液2の製造: 廃糖蜜液(炭素28wt%、比重1.39、Brix度82%)40Lを純水60Lに室温で撹拌溶解させ100Lの水溶液を得る。これに種菌液を1Lほど混合し、外気の流入を遮断した上で、恒温相中で30℃前後に撹拌する事無く静置する。一週間に一度の割合で撹拌を兼ねた空気吹き込みを実施し、糖度計による糖度を追跡する。糖度が、一定値に収束するまで、静置を続ける。仕込み後、2-4週間は、発酵に基づく激しい二酸化炭素の発泡が認められ、その後、上記の条件で6ヶ月以上発酵を継続させると27-30 Brix %糖度で一定値を示すようになる。この発酵液1.0Lに対し、15度の食用酢100mLと尿素粉末400gを加えて水溶液を得る。この尿素入り水溶液に硫酸マグネシウム粉末を室温で飽和溶解に達するまで溶解させて糖発酵液2を得る。
糖発酵液3の製造: 糖発酵液2の製造過程で得られる27-30 Brix %糖度の発酵済み液1.0Lに対し、15度の食用酢100mLと尿素粉末200gを加えて水溶液Aを得る。これとは別に、糖発酵液2の製造過程で得られる27-30 Brix %糖度の発酵済み液1.0Lに対し、15度の食用酢100mLと海藻粉末25gを溶解させて水溶液Bを得る。水溶液Aと水溶液Bを等体積混合して糖発酵液3を得る。
尚、上記製造説明において、
注1: 卵白18Lを、第一製糖(株)社の糖蜜40L、水42Lと共存下、36℃で3月間、酵母発酵した糖蜜発酵液を使用。
注2: 一切の水溶性タンパク質源を含まない、第一製糖(株)社の糖蜜40Lと水42Lを、室温で10ヶ月間、酵母発酵した糖蜜発酵液を使用。
注3: 硫酸マグネシウム、食品添加物、赤穂化成社を使用。酢酸マグネシウムは、有機JAS認証済みク溶解性苦土鉱石(陸王、日本バイオ肥料社)と醸造酢(HA150、マルカン酢社)を原料として加熱とろ過操作のみで固体酢酸マグネシウムを作成して使用。
注4: アルギン酸を約30重量%、ラミナリンを約5重量%、フコダインを約10重量%、マンニットを約 8重量%、その他の構成成分は糖中心の海藻粉末(窒素2重量%、リン酸P2O5 2重量%、カリK2O 15重量%)。
(Manufacture of foliar spray)
Table 2 shows examples of sugar fermentation liquid 1, sugar fermentation liquid 2, and sugar fermentation liquid 3 as mother liquors. The sugar fermentation broth 1 is a mother liquor in which magnesium acetate is saturated and dissolved in a molasses fermented organic acid solution rich in soluble peptides. The sugar fermentation broth 2 is a mother liquor in which magnesium sulfate is saturatedly dissolved in a molasses fermentation organic acid solution to which a predetermined amount of urea is added. The sugar fermentation broth 3 is a mother liquor obtained by adding powdered seaweed to the sugar fermentation broth 2. A specific method for producing the sugar fermentation liquids 1, 2, and 3 will be described below.
Manufacture of sugar fermentation liquid 1: Egg white 18L (same below liter) was dissolved in water at room temperature with vigorous stirring to obtain a 60 L aqueous solution. When uniform dissolution is difficult, about 1 L of seawater (water with high ionic strength) sterilized by heating is added and dissolved at room temperature. In the case of skim milk powder, 4.6 kg of powdered milk is dissolved in warm water while stirring, with the same concentration as that of commercially available milk, as a 60 L aqueous solution. These aqueous solutions and 40 L of waste molasses (carbon 28 wt%, specific gravity 1.39, Brix degree 82%) are mixed and sufficiently stirred to obtain 100 L of a mixed aqueous solution of protein and molasses. This is mixed with about 1 L of the inoculum solution, blocked from flowing in outside air, and allowed to stand without stirring at around 33 ° C. in a constant temperature phase. Carry out air blowing that also serves as agitation once a week, and monitor the sugar content with a saccharimeter. Keep standing until the sugar content converges to a certain value. For 1-2 weeks after charging, intense carbon dioxide foaming based on fermentation was observed, and when the fermentation was continued for several months under the above conditions, a black aqueous solution with a “soy sauce” odor was obtained. When the degree of fermentation is tracked with a refractive index sugar content meter, in the case of egg white, the sugar content of 41.0 ± 0.5 Brix% gradually decreases immediately after charging, and shows a constant value at 30.5 ± 0.5 Brix%. To 2.75 L of this fermentation broth, 250 mL of 20 degree edible vinegar is mixed. Further, the magnesium acetate solid hydrated in about 3 L of the aqueous solution is dissolved at room temperature until saturation dissolution is reached to obtain a sugar fermentation broth 1.
Manufacture of sugar fermentation liquid 2: 40L of waste molasses (carbon 28wt%, specific gravity 1.39, Brix degree 82%) is stirred and dissolved in 60L of pure water at room temperature to obtain 100L of aqueous solution. This is mixed with about 1 L of the inoculum and blocked from flowing in outside air, and then allowed to stand without stirring at around 30 ° C. in a constant temperature phase. Carry out air blowing that also serves as agitation once a week, and monitor the sugar content with a saccharimeter. Keep standing until the sugar content converges to a certain value. For 2-4 weeks after charging, intense carbon dioxide foaming due to fermentation was observed, and when the fermentation was continued for more than 6 months under the above conditions, a constant value was exhibited at 27-30 Brix% sugar content. An aqueous solution is obtained by adding 100 mL of 15 degree edible vinegar and 400 g of urea powder to 1.0 L of this fermentation broth. In this urea-containing aqueous solution, the magnesium sulfate powder is dissolved at room temperature until saturation dissolution is reached to obtain a sugar fermentation solution 2.
Manufacture of sugar fermentation liquid 3: To 1.0 L of 27-30 Brix% fermented liquid obtained in the manufacturing process of sugar fermentation liquid 2, 100 mL of 15 degree edible vinegar and 200 g of urea powder are added to obtain aqueous solution A. Separately, 100 mL of 15 degree edible vinegar and 25 g of seaweed powder are dissolved in 1.0 L of 27-30 Brix% fermented liquid obtained in the production process of sugar fermentation liquid 2 to obtain aqueous solution B. An aqueous solution A and an aqueous solution B are mixed in equal volumes to obtain a sugar fermentation broth 3.
In the above production description,
Note 1: Using 18L of egg white, the molasses fermented from yeast at 36 ° C for 3 months in the presence of 40L of molasses and 42L of water.
Note 2: Uses a molasses fermented solution that does not contain any water-soluble protein source and is fermented by yeast fermentation of 40 L of molasses and 42 L of water for 10 months at room temperature.
* 3: Magnesium sulfate, food additive, Ako Kasei Co., Ltd. is used. Magnesium acetate is made from organic JAS-certified smeltable claystone ore (Rikuo, Nippon Bio-Fertilizer) and brewed vinegar (HA150, Malkan vinegar), which are used to produce solid magnesium acetate only by heating and filtration. .
Note 4: Alginic acid is about 30% by weight, laminarin is about 5% by weight, fucodyne is about 10% by weight, mannit is about 8% by weight, and other components are sugar-centered seaweed powder (nitrogen 2% by weight, phosphoric acid P 2 O 5 2% by weight, potash K 2 O 15% by weight).

Figure 0004565238
次いで、糖発酵液1に純粋グリセリンを40体積%を上限として添加した。糖発酵液2と3には純粋グリセリンを14体積%を添加した。さらにこのグリセリン混合液1L当たり、特定アミノ酸としてGABA 2.5g〜10gとMet 2.5g〜10gを加え、外部型超音波処理により溶解させた。
これらの操作により、炭素源としての有機酸とグリセリン、窒素源としてのα-アミノ酸とペプチド、非α-アミノ酸、尿素そしてマグネシウム中心とした金属イオンを含めた2種類の葉面散布剤、即ち表3〜表6に記載のA0〜A5と、表7〜表9に記載のB1、B2とC1を得た。
表3〜表6の葉面散布剤A0〜A5は100倍、表7〜表8の葉面散布剤B1とC1は500倍、表7のB1とB2は300倍に水で希釈して植物の葉面に散布処理した。散布頻度は、収穫までの週1回ないし2回の散布で効果が得られる。これよりも多く用いる場合は、吸肥が旺盛になるため、土壌中の肥料残量を追跡しながら散布することが好ましい。
Figure 0004565238
Subsequently, pure glycerin was added to sugar fermentation broth 1 up to 40% by volume. 14% by volume of pure glycerin was added to sugar fermentation liquids 2 and 3. Further, 2.5 g to 10 g of GABA and 2.5 g to 10 g of Met were added as specific amino acids per liter of the glycerin mixed solution, and dissolved by external ultrasonic treatment.
By these operations, two types of foliar sprays containing organic acids and glycerin as carbon sources, α-amino acids and peptides as nitrogen sources, non-α-amino acids, urea and metal ions centered on magnesium, 3 to A6 described in Table 6 and B1, B2 and C1 described in Tables 7 to 9 were obtained.
Tables 3 to 6 foliar sprays A0 to A5 are diluted 100 times, Tables 7 to 8 foliar sprays B1 and C1 are 500 times, and B1 and B2 in Table 7 are diluted 300 times with water. The leaf surface was sprayed. The spraying frequency is effective by spraying once or twice a week until harvest. When using more than this, since the fertilization becomes vigorous, it is preferable to spray while tracking the remaining amount of fertilizer in the soil.

(農作物評価方法)
測定対象とした農作物を同一の条件(温度、日照、水分)で複数固体生育させた。本例の葉面散布剤を用いる区(散布区)と用いない区(対照区)を同数用意した。試験は、西南暖地(大分市と佐伯市)で実施した。
(Crop evaluation method)
Multiple crops were grown under the same conditions (temperature, sunshine, moisture) for the crops to be measured. The same number of groups using the foliar spraying agent (spreading group) and the group not using (control group) were prepared. The test was conducted in the Southwest Warmlands (Oita City and Saiki City).

評価対象の農作物、高菜とほうれん草は、水などの媒体を一切添加する事なく、作物そのものをすり鉢で十分に破砕後、水溶液と不溶繊維物をポリエチレンの不織布で濾別し、濾過液の分析を行った。硝酸イオンは、呈色法を活用したRQフレックス(メルク社製)を用い標準液で補正後に定量した。採取は、株全体を分析するのではなく勢いのある外葉を異なる20株から無作為に一株から1葉もぎ取った。その20葉を一緒にして一つの野菜汁試料とした。   For the crops to be evaluated, Takana and spinach, without adding any medium such as water, the crop itself is sufficiently crushed in a mortar, and then the aqueous solution and insoluble fiber are filtered off with a polyethylene nonwoven fabric, and the filtrate is analyzed. went. Nitrate ions were quantified after correction with a standard solution using RQ flex (manufactured by Merck) utilizing a coloration method. Harvesting did not analyze the entire strain, but randomly stripped one vigorous leaf from 20 different strains. The 20 leaves were combined into one vegetable juice sample.

農作物のサンプリング時間は、サンプリング時刻を分析作物毎に固定した。葉の分析では、葉柄と葉部位を一緒にしている。   As for the sampling time of the crop, the sampling time was fixed for each analyzed crop. In the leaf analysis, the petiole and the leaf part are combined.

Figure 0004565238
(グリセリンの効果−高菜での評価)
表3には、3/12と13の両日、高菜の葉の表裏面に葉面散布剤A1の100倍希釈水溶液を霧吹きで十分に吹き付け、19日までの葉の硝酸濃度をまとめている。無散布地区Z1の硝酸値は1000ppm前後で一定している。これに対して、三つの散布区Z2〜Z4の硝酸値は変動している。特定アミノ酸とグリセリンを含まない糖発酵液1のみの散布地区Z2では、散布翌日に660ppmとやや硝酸濃度が低下するが日数の経過とともに硝酸濃度が増加し、19日には散布直前の硝酸濃度を越して1600ppm近くに達している。糖発酵液1に特定アミノ酸のみを加えた葉面散布剤a1の散布処理地区Z3では、15日に硝酸濃度が240ppmまで低下して、その後上昇に転じる。糖発酵液1にグリセリンと特定アミノ酸の双方を加えた葉面散布剤A1の散布処理地区Z4では、硝酸濃度の低下幅が最も大きく、15日には200ppmを下回り、19日になっても200ppmを切ったままである。
Figure 0004565238
(Effect of glycerin-evaluation with Takana)
Table 3 summarizes the concentration of nitric acid in the leaves up to 19th day by spraying a 100-fold diluted aqueous solution of foliar spray A1 sufficiently on the front and back surfaces of Takana leaves on both the 3/12 and 13 days. The nitric acid value in the non-spray zone Z1 is constant at around 1000ppm. On the other hand, the nitric acid values in the three spraying zones Z2 to Z4 are fluctuating. In the spraying zone Z2, which contains only the sugar fermentation broth 1 that does not contain specific amino acids and glycerin, the nitric acid concentration decreases slightly to 660 ppm the day after spraying, but the nitric acid concentration increases with the passage of days. It has reached nearly 1600ppm. In the spray treatment zone Z3 of the foliar spray agent a1 in which only a specific amino acid is added to the sugar fermentation broth 1, the nitric acid concentration decreases to 240 ppm on the 15th, and then increases. In the spray treatment zone Z4 of the foliar spray A1 in which both glycerin and specific amino acids are added to the sugar fermentation broth 1, the decrease in nitric acid concentration is the largest, falling below 200 ppm on the 15th and 200 ppm even on the 19th. Remains off.

糖発酵液1に特定アミノ酸(GABA+Met)のみを添加した葉面散布剤a1の散布処理地区Z3は、高菜の硝酸濃度が低減し、低硝酸化した期間が長期化している。この特徴は、グリセリンの存在でより顕著になる事が表3から明らかである。   In the spray treatment area Z3 of the foliar spray agent a1, in which only the specific amino acid (GABA + Met) is added to the sugar fermentation broth 1, the nitric acid concentration of the high vegetables is reduced and the period of low nitrification is prolonged. It is clear from Table 3 that this feature becomes more prominent in the presence of glycerin.

Figure 0004565238
(特定アミノ酸の効果−ほうれん草での評価)
表4には、3/30、ほうれん草(品種アンナ)に葉面散布剤A1の100倍希釈水溶液を霧吹きで十分に吹き付け、4/2日までの葉の硝酸濃度をまとめている。無散布区Z5の硝酸値は、3000ppm前後で一定している。一方、二つの散布区Z6 、Z7の硝酸値は無散布地区Z5に比し変動している。一つは糖発酵液1にグリセリンだけを加え特定アミノ酸を含まない葉面散布剤a2の散布地区Z6で、ここはゆっくりと硝酸濃度が低下し、散布後三日目で3340ppmから2700ppmまで低下する。これに対して、もう一つは糖発酵液1に特定アミノ酸とグリセリンを同時に添加した葉面散布剤A1の散布処理地区Z7で、ここは散布後二日後に1300ppmまで低下し、その後、硝酸濃度の増加に転じている。
Figure 0004565238
(Effects of specific amino acids-evaluation with spinach)
Table 4 summarizes the nitric acid concentration of leaves up to 4/2 days by spraying 3/30 spinach (variety Anna) with 100-fold diluted aqueous solution of foliar spray agent A1 sufficiently by spraying. The nitric acid value in the non-spread zone Z5 is constant at around 3000ppm. On the other hand, the nitric acid values in the two spray zones Z6 and Z7 fluctuate compared to the non-spray zone Z5. One is the spray zone Z6 of the foliar spray agent a2, which adds only glycerin to the sugar fermentation broth 1 and does not contain a specific amino acid, where the nitric acid concentration slowly decreases and drops from 3340ppm to 2700ppm on the third day after spraying. . On the other hand, the other is the spray treatment zone Z7 of the foliar spray A1 in which a specific amino acid and glycerin are added simultaneously to the sugar fermentation broth 1. This is reduced to 1300 ppm two days after spraying, and then the nitric acid concentration Has turned to increase.

ほうれん草に対しては、ゆっくりと硝酸濃度を低下させるグリセリンのみの添加した葉面散布剤a2よりも、グリセリンと特定アミノ酸を同時に添加した葉面散布剤A1による硝酸代謝が効率良い事が明らかである。   For spinach, it is clear that nitrate metabolism by foliar spray A1 to which glycerin and a specific amino acid are added simultaneously is more efficient than foliar spray a2 to which only glycerin is added, which slowly lowers the nitrate concentration. .

表3の高菜と表4のほうれん草の結果は矛盾しない。品種が異なっても、葉の硝酸濃度の効果的な低下には、糖発酵液1にグリセリンと特定アミノ酸を共存させた葉面散布剤A1が有効である事がわかる   The results for Takana in Table 3 and spinach in Table 4 are consistent. Even if the varieties are different, it can be seen that foliar spray A1 in which glycerin and a specific amino acid coexist in sugar fermentation broth 1 is effective in effectively reducing the nitrate concentration in leaves.

(グリセリン濃度の効果−ほうれん草での評価)
表5は、3/18の午前中、ほうれん草に葉面散布剤A0からA5の100倍希釈水溶液を霧吹きで十分に吹き付け、20日までの葉の硝酸濃度をまとめている。グリセリン含有量が、7、14、27、40体積%の五つの葉面散布剤を評価している。特定アミノ酸は、五つの葉面散布剤全てで同じ濃度に調整している。グリセリン濃度を変化させた散布地区Z9、Z10、Z11は、全て無散布地区Z8に比し、散布当日の日没前には、2990ppmから1600〜2000ppmまで急速に低下している。グリセリン濃度の効果は、散布翌日以降に認められる。グリセリン濃度が低い散布地区Z9とZ10では、翌日には硝酸濃度が上昇に転じ、散布三日後には散布前とほぼ同等の約3000〜3200ppmまで高まっている。一方、グリセリン濃度が高い散布地区Z11では、三日後であっても1500ppmを下回っている。また、最も高いグリセリン濃度のZ12では、生育傷害が認められ評価できなかった。
(Effect of glycerin concentration-evaluation with spinach)
Table 5 summarizes the nitrate concentration of leaves up to the 20th in the morning of 3/18 by spraying a 100-fold diluted aqueous solution of foliar sprays A0 to A5 onto spinach. Five foliar sprays having a glycerin content of 7, 14, 27, and 40% by volume are evaluated. Specific amino acids are adjusted to the same concentration in all five foliar sprays. In the spraying districts Z9, Z10, and Z11 in which the glycerin concentration was changed, all decreased rapidly from 2990 ppm to 1600 to 2000 ppm before sunset on the day of spraying compared to the non-spraying zone Z8. The effect of glycerin concentration is observed after the day after application. In the sprayed areas Z9 and Z10 where the glycerin concentration is low, the nitric acid concentration started to increase on the following day, and increased to about 3000-3200 ppm, which is almost the same as before spraying three days after spraying. On the other hand, in the spray area Z11 where the glycerin concentration is high, it is below 1500 ppm even after 3 days. In addition, with Z12 having the highest glycerin concentration, growth damage was observed and could not be evaluated.

Figure 0004565238
表5から、葉面散布剤中のグリセリン濃度の増加に伴う、低下した硝酸濃度の維持期間の増大がわかる。しかし、グリセリン濃度を40体積%と極端に上げると、ほうれん草では生育障害が発生してしまう。品種や気候にあわせたグリセリン濃度の決定が必要である。少なくとも春先のほうれん草に対しては、Z11が最も優れた硝酸低減特性を示している。
Figure 0004565238
From Table 5, it can be seen that the maintenance period of the reduced nitric acid concentration increases with the increase in the glycerin concentration in the foliar spray. However, if the glycerin concentration is extremely increased to 40% by volume, growth failure occurs in spinach. It is necessary to determine the glycerin concentration according to the variety and climate. At least for early spring spinach, Z11 has the most excellent nitrate reduction properties.

Figure 0004565238
(特定アミノ酸濃度の効果−ほうれん草での評価−その1)
表6は、3/18の午前中、早春ほうれん草(アトラス)に葉面散布剤A1、A4とA5の100倍希釈水溶液を霧吹きで十分に吹き付け、20日までの葉の硝酸濃度をまとめている。グリセリン含有量は全て、14体積%としている。特定アミノ酸量は、三つの葉面散布剤で 1L当たりGABA/Met 2.5g/2.5g、同5.0g/5.0g、同10.0g/10.0gと変化させている。確かに、特定アミノ酸の量を変化させた散布地区Z13、Z10、Z14は、全て無散布地区Z8に比し、散布当日の日没前には、2990ppmから1500〜2900ppmまで低下している。しかし、硝酸値の低減度合いは、特定アミノ酸濃度に依存している。最も特定アミノ酸濃度が低い散布地区Z13では、どのサンプリング時間であっても2500 ppmを下回ることはない。これに対し、最も特定アミノ酸濃度が高いZ14では、1510ppmまで低下して、翌日からは硝酸値が上昇している。これらの中間の特定アミノ酸濃度であるZ10は、わずかにZ14に硝酸低減能において及ばないもののZ14とほぼ硝酸低減特性は同じであると結論できる。
Figure 0004565238
(Effect of specific amino acid concentration-evaluation with spinach-1)
Table 6 summarizes the nitrate concentration of leaves up to the 20th in the morning of 3/18 by spraying 100% diluted aqueous solution of foliar spray A1, A4 and A5 on early spring spinach (Atlas). . The glycerin content is all 14% by volume. The specific amino acid amount is changed with GABA / Met 2.5g / 2.5g, 5.0g / 5.0g, 10.0g / 10.0g per liter in three foliar sprays. Certainly, the sprayed areas Z13, Z10, and Z14 in which the amount of the specific amino acid was changed are all reduced from 2990ppm to 1500-2900ppm before sunset on the day of spraying compared to the non-sprayed area Z8. However, the degree of nitric acid reduction depends on the specific amino acid concentration. In the spray zone Z13, which has the lowest concentration of specific amino acids, it does not fall below 2500 ppm at any sampling time. On the other hand, Z14 with the highest specific amino acid concentration decreased to 1510 ppm, and the nitric acid level increased from the next day. It can be concluded that Z10, which is a specific amino acid concentration in between, is almost the same in terms of nitrate reduction as Z14, although it does not reach Z14 in the ability to reduce nitrate.

Figure 0004565238
(特定アミノ酸濃度の効果−ほうれん草での評価−その2)
特定アミノ酸の濃度効果の再現性を異なる母液で確認した。表7は、6/5の午前中、初夏ほうれん草(アクティオン)に葉面散布剤B1とB2の300倍希釈水溶液を霧吹きで十分に吹き付け、8日までの葉の硝酸濃度をまとめている。グリセリン含有量は全て、14体積%としている。特定アミノ酸量は、二つの葉面散布剤で 1L当たりGABA/Met 5.0g/5.0g(B1区)と同10.0g/10.0g(B2区)と変化させている。4回の散布処理によりグリセリンと特定アミノ酸を含まない糖発酵液2のみの処理では4000ppmを超える硝酸濃度があり、根からの硝酸取り込みが、葉内での硝酸代謝よりも優先している。これに対し、特定アミノ酸とグリセリンを添加した区では、4回目の散布直前から2500ppm程度の小さな硝酸値で、散布によりさらに硝酸値の低下が生じる。特定アミノ酸濃度効果ははっきりと現れている。春先のデータを示した表6では、A1区が、A5区よりもわずかに良好な硝酸低減特性を示しているが大差と言うほどの差ではない。これに対し、初夏のデータを示した表7は、GABA/Met10.0g/10.0gのB2区が、同5.0g/5.0g区のB1区よりも劣った硝酸低減特性(硝酸低下の度合いが小さく、硝酸の再上昇も早い)を示している。
Figure 0004565238
(Effect of specific amino acid concentration-evaluation with spinach-2)
The reproducibility of the concentration effect of specific amino acids was confirmed with different mother liquors. Table 7 summarizes the nitrate concentration of leaves up to the 8th in the morning of 6/5 by spraying a 300-fold diluted aqueous solution of foliar sprays B1 and B2 on early summer spinach (Aktion). The glycerin content is all 14% by volume. The specific amino acid amount is changed between GABA / Met 5.0g / 5.0g (B1 ward) and 10.0g / 10.0g (B2 ward) per liter with two foliar sprays. In the treatment of only the sugar fermentation liquid 2 containing no glycerin and specific amino acids by the four spraying treatments, there is a concentration of nitric acid exceeding 4000 ppm, and nitric acid uptake from the root has priority over nitric acid metabolism in the leaves. On the other hand, in the group to which the specific amino acid and glycerin were added, the nitric acid value further decreased by spraying at a small nitric acid value of about 2500 ppm immediately before the fourth spraying. The specific amino acid concentration effect is evident. In Table 6 showing the early spring data, the A1 ward shows slightly better nitric acid reduction characteristics than the A5 ward, but the difference is not so large. On the other hand, Table 7 showing the data for early summer shows that the B2 section of GABA / Met10.0g / 10.0g is inferior to the B1 section of 5.0g / 5.0g section. Small and nitric acid re-rises fast).

表6と表7から、特定アミノ酸の量は、少なからず、多からずの最適量の設定が不可欠である事がわかる。この最適濃度は、母液、栽培品種、栽培時期、気候でも変動すると考えられる。少なくともほうれん草に対しては、1L当たりGABA/Met 5.0g/5.0gの特定アミノ酸濃度が、効果的と判断できる。 From Table 6 and Table 7, it can be seen that the amount of the specific amino acid is not small, and it is essential to set an optimal amount. This optimum concentration may vary depending on the mother liquor, cultivar, cultivation season, and climate. At least for spinach, a specific amino acid concentration of GABA / Met 5.0 g / 5.0 g per liter can be judged to be effective.

Figure 0004565238
(異なる糖発酵液を母液とした添加効果−ほうれん草での評価)
ペプチド態窒素と酢酸マグネシウムの存在を特徴とした糖発酵液1に代わり、尿素と硫酸マグネシウムの含有を特徴とした糖発酵液2(葉面散布剤B1)と海藻の添加を特徴とする糖発酵液3(葉面散布剤C1)を母液として、硝酸濃度に与えるグリセリンと特定アミノ酸を添加した効果を表7にまとめている。糖発酵液2のみの散布処理地区Z19の硝酸値は、無散布地区Z18のそれよりもむしろ増加している。これに対して、糖発酵液2にグリセリンと特定アミノ酸を含む葉面散布剤B1の散布処理地区Z20は、散布当日の日没前には、3240ppmから2350ppm前後まで急速に低下し、散布四日後の5/30には1340ppmまで低下している。一方、海草成分とグリセリンと特定アミノ酸含有を特徴とする葉面散布剤C1の処理区Z21は、散布当日の日没前では硝酸値の低下が認められないが、翌日、翌々日には3240ppmから2310、219ppmとゆっくりと低下している。
Figure 0004565238
(Additive effect using different sugar fermentation broth as mother liquor-evaluation with spinach)
Instead of sugar fermentation liquid 1 characterized by the presence of peptide nitrogen and magnesium acetate, sugar fermentation liquid characterized by the addition of urea and magnesium sulfate 2 (foliar spray B1) and seaweed Table 7 summarizes the effects of adding glycerin and specific amino acids on the nitric acid concentration using liquid 3 (foliar spray C1) as the mother liquor. The nitric acid value in the spray treatment zone Z19 with only the sugar fermentation liquor 2 is increased rather than that in the non-spray zone Z18. On the other hand, the spray treatment area Z20 of foliar spray B1 containing glycerin and specific amino acids in sugar fermentation broth 2 rapidly decreases from 3240ppm to around 2350ppm before sunset on the day of spraying, and four days after spraying It is reduced to 1340ppm on 5/30 of the current. On the other hand, in the treatment group Z21 of the foliar spray C1, which is characterized by the inclusion of seaweed ingredients, glycerin and specific amino acids, a decrease in nitric acid level is not observed before sunset on the day of spraying, but from 3240 ppm to 2310 on the next day and the next day. 219ppm, slowly decreasing.

表8に示す葉面散布剤B1とC1の結果は、表3から表6の糖発酵液1を母液とするグリセリンと特定アミノ酸の添加の葉面散布剤A1、A2の効果と本質的に同じである事がわかる。海藻成分を用いた硝酸削減剤にも使用できる。もちろん、硝酸低減の速度などには、糖発酵液1系の葉面散布剤と糖発酵液2および3系の葉面散布剤で差が現れ、糖発酵液1を母液としたグリセリンと特定アミノ酸添加系の葉面散布剤A1、A2の方が、より速やかな硝酸濃度の低減能力を持っている。   The results of the foliar sprays B1 and C1 shown in Table 8 are essentially the same as the effects of the foliar sprays A1 and A2 with the addition of glycerin and specific amino acids using the sugar fermentation broth 1 in Tables 3 to 6 as the mother liquor. I understand that it is. It can also be used as a nitrate reducing agent using seaweed ingredients. Of course, there is a difference in the rate of nitric acid reduction between foliar sprays of sugar fermentation broth 1 and sugar fermenters 2 and 3, and glycerin and specific amino acids with sugar ferment broth 1 as the mother liquor. Additive foliar sprays A1 and A2 have a quicker ability to reduce nitric acid concentration.

Figure 0004565238
(収量への影響)
糖発酵液2および糖発酵液3にグリセリンと特定アミノ酸を添加した葉面散布剤B1とC1が、収穫量に及ぼす影響を表9にまとめている。散布処理は、計三回行い、最終散布から二日後の5/28から連続して三日間の収穫量調査を行った。表9の重量は、異なる20株から一葉を採り、計20葉の合計重量である。対照とする無散布地区Z22は、散布地区ともに5/28から30までの三日間で大きな変動はない。その平均値をみると、無散布地区Z22が最も少ない収穫量で、葉も一回り小さい。これに対して、糖発酵液2のみの散布地区Z23が最も収量に優れて、葉も一番大きい。糖発酵液2および糖発酵液3にグリセリンと特定アミノ酸を添加した系葉面散布剤B1とC1の散布地区Z24とZ25は、これらの中間の収穫量を示す。
Figure 0004565238
(Effect on yield)
Table 9 summarizes the effects of foliar sprays B1 and C1 obtained by adding glycerin and specific amino acids to sugar fermentation liquid 2 and sugar fermentation liquid 3 on the yield. The spraying treatment was performed three times in total, and the harvest amount was investigated for 3 days continuously from 5/28 two days after the final spraying. The weight in Table 9 is the total weight of 20 leaves taken from 20 different strains. In the non-sprayed area Z22, which is the control, there is no significant change in the sprayed area in 3 days from 5/28 to 30. Looking at the average value, the non-sprayed area Z22 has the smallest yield and the leaves are slightly smaller. On the other hand, the application area Z23 with only the sugar fermentation broth 2 has the highest yield and the largest leaves. The sprayed areas Z24 and Z25 of the foliar sprays B1 and C1 in which glycerin and a specific amino acid are added to the sugar fermentation liquid 2 and the sugar fermentation liquid 3 show intermediate yields.

糖発酵液2および糖発酵液3にグリセリンと特定アミノ酸を添加した葉面散布剤B1とC1は、硝酸低減に関して正の効果を発現するが、収穫量の増加、即ち、生育活性化には、若干負の効果を示している事が表9から明確である。既に述べたように、植物体内の硝酸濃度低減のためには、根から吸い込まれる硝酸量を制限した上で、植物体内の硝酸を代謝させる事が肝要である。糖発酵液2および糖発酵液3へのグリセリンと特定アミノ酸の添加により、根から取り込まれる硝酸量よりも、植物体内での硝酸代謝量が勝り、少ない硝酸量の分だけ生育できないことを意味している。   Foliar sprays B1 and C1 with glycerin and specific amino acids added to sugar fermentation broth 2 and sugar fermentation broth 3 have a positive effect on nitric acid reduction, but for increased yield, ie, growth activation, It is clear from Table 9 that the effect is slightly negative. As described above, in order to reduce the concentration of nitric acid in the plant body, it is important to limit the amount of nitric acid sucked from the roots and then metabolize nitric acid in the plant body. By adding glycerin and specific amino acids to sugar fermentation liquid 2 and sugar fermentation liquid 3, it means that the amount of nitric acid metabolism in the plant is superior to the amount of nitric acid taken in from the roots, and it cannot grow by the small amount of nitric acid. ing.

(好ましい散布剤の使用方法)
増収と同時に硝酸の低減を行うには、糖発酵液1、もしくは、糖発酵液2単独を使用して生育促進させ、収穫予定直前に硝酸低減能に優れる本発明の糖発酵液1又は糖発酵液2にグリセリンと特定アミノ酸を添加した葉面散布剤A1、A2、B1等を散布するコンビネーションが極めて重要であり効果的である。
(Preferred usage of spraying agent)
In order to reduce nitric acid at the same time as increasing the yield, the sugar fermentation broth 1 or sugar fermentation broth 1 or the sugar fermentation broth 1 of the present invention, which is promoted by using the sugar fermentation broth 1 or the sugar fermentation broth 2 alone, and has an excellent nitrate reducing ability immediately before the harvest is scheduled. A combination of spraying a foliar spray A1, A2, B1, etc., in which glycerin and a specific amino acid are added to liquid 2, is extremely important and effective.

流通業者は、野菜の硝酸低減を農作物生産者に求めている状況が増えてきた。このために多様な葉面散布剤が、作物生産者から要求され、開発されている。しかし、この葉面散布剤を用いても、生産現場では、上手く野菜等の体内残留硝酸値を低減できる時もあれば、不可能な時もあるのが実情であった。即ち、葉面散布剤を利用しても、低い一定幅の残留硝酸値を持つ品質管理された作物の生産が困難である。大きな原因は、散布処理により一時的に硝酸低減状態になっても、生命活動のため根から硝酸が再び吸収されるからである。前記した硝酸低減機能を持つ糖発酵液にグリセリンと特定アミノ酸を同時に加える本発明は、硝酸値を大きく低下させ、低硝酸状態をより長く維持できる。農作物の現場にとっては、効果的に硝酸低減が可能な農業資材となっている。本発明は、健康安心など品質を最優先に保証した農業マーケットの活性化に貢献できる先導的な農作物の葉面散布剤である。有機農業の生産性向上に加え、高品質を定量的にPR可能で、差別化された有機作物として経済効果を生み出せるはずである。
Distributors are increasingly demanding crop producers to reduce nitrates in vegetables. For this reason, various foliar sprays are required and developed by crop producers. However, even if this foliar spray is used, the actual situation is that at the production site, the residual nitric acid level in vegetables and the like can be reduced successfully, and sometimes it is impossible. That is, even if a foliar spray is used, it is difficult to produce a quality-controlled crop having a low level of residual nitric acid value. The main reason is that even if the nitric acid is temporarily reduced by spraying treatment, nitric acid is absorbed again from the roots due to vital activity. The present invention in which glycerin and a specific amino acid are simultaneously added to the sugar fermentation broth having a nitrate reducing function described above can greatly reduce the nitric acid value and maintain the low nitric acid state for a longer time. It is an agricultural material that can effectively reduce nitric acid for the field of agricultural products. The present invention is a leading foliar spraying agent that can contribute to the activation of the agricultural market that guarantees the highest quality, such as health and safety. In addition to improving the productivity of organic agriculture, it is possible to quantitatively promote high quality, and it should be able to produce economic effects as a differentiated organic crop.

Claims (2)

ペプチド類の重量濃度が30〜60g/Lである糖と水溶性タンパク質の糖類発酵有機酸水溶液100重量%に対して、マグネシウム塩溶解によりマグネシウム濃度を1〜6重量%にし、更に前記マグネシウム塩を溶解した糖類発酵有機酸水溶液100体積%に対して5〜30体積%のグリセリンを溶解し、更に前記マグネシウム塩とグリセリンを溶解した糖類発酵有機酸水溶液1L当たりアミノ酪酸1〜20g及びメチオニン1〜20gを添加してなる葉面散布剤。 With respect to 100% by weight of saccharide-fermented organic acid aqueous solution of sugar and water-soluble protein having a peptide weight concentration of 30-60 g / L, the magnesium concentration is adjusted to 1-6% by dissolution of magnesium salt. 1 to 20 g of aminobutyric acid and 1 to 20 g of methionine per liter of saccharide fermented organic acid aqueous solution in which 5 to 30% by volume of glycerin is dissolved with respect to 100% by volume of the dissolved saccharide fermented organic acid aqueous solution and the magnesium salt and glycerin are further dissolved. A foliar spraying agent. 水溶性タンパク質が卵白と粉乳の一つ以上である請求項1に記載の葉面散布剤。 The foliar spray according to claim 1, wherein the water-soluble protein is one or more of egg white and milk powder.
JP2005253392A 2005-09-01 2005-09-01 Foliar spray for reducing residual nitric acid in plants Active JP4565238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253392A JP4565238B2 (en) 2005-09-01 2005-09-01 Foliar spray for reducing residual nitric acid in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253392A JP4565238B2 (en) 2005-09-01 2005-09-01 Foliar spray for reducing residual nitric acid in plants

Publications (2)

Publication Number Publication Date
JP2007063213A JP2007063213A (en) 2007-03-15
JP4565238B2 true JP4565238B2 (en) 2010-10-20

Family

ID=37925802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253392A Active JP4565238B2 (en) 2005-09-01 2005-09-01 Foliar spray for reducing residual nitric acid in plants

Country Status (1)

Country Link
JP (1) JP4565238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830134B2 (en) * 2007-01-31 2011-12-07 国立大学法人 大分大学 Foliar spray type nitrate reducing agent
JP5339231B2 (en) * 2008-07-22 2013-11-13 国立大学法人 大分大学 Plant growth promoter and method for producing the same

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270289A (en) * 1985-05-23 1986-11-29 協和醗酵工業株式会社 Manufacture of fertilizer
JPS62230707A (en) * 1986-03-31 1987-10-09 Toshio Yamada Plant activation agent
JPH01141891A (en) * 1987-11-28 1989-06-02 Hiroshi Shioashi Method for preparing agriculturally active agent
JPH0543367A (en) * 1991-08-09 1993-02-23 Yojiro Yamada Organic acid mineral solution for growing plant and its production
JPH06219876A (en) * 1993-01-28 1994-08-09 Gun Ei Chem Ind Co Ltd Crop nutrient assistant
JPH10504797A (en) * 1994-02-23 1998-05-12 オーグゼイン・コーポレーション Method of stimulating plant growth using GABA
JPH11103678A (en) * 1997-10-07 1999-04-20 Kibun Food Chemifa Co Ltd Concentration reducer of nitrogen in the state of nitric acid
JP2000026183A (en) * 1998-07-08 2000-01-25 Kibun Food Chemifa Co Ltd Nitrate-state nitrogen concentration reducer
JP2000327471A (en) * 1999-05-11 2000-11-28 Nippon Hiryo Kk Calcium fertilizer for foliar spray
JP2001503431A (en) * 1996-11-06 2001-03-13 オーグゼイン・コーポレーション How to increase fertilizer efficiency
JP2001151618A (en) * 1999-11-29 2001-06-05 Mitsui Chemicals Inc Method for accelerating absorption of potassium ion by plant
JP2001192310A (en) * 2000-01-12 2001-07-17 Mitsui Chemicals Inc Method for promoting absorption of calcium ion from surface of plant
JP2001190154A (en) * 2000-01-11 2001-07-17 Yoshizawa Lime Industry Method for culturing crop and agent for improving quality of crop
JP2002017163A (en) * 2000-07-06 2002-01-22 Goko:Kk Growth-promoting agent and method for cultivating plant by using the same
JP2003012389A (en) * 2001-06-27 2003-01-15 Konica Zelatin Kk Liquid fertilizer containing peptides and amino acid and method of manufacturing the same
JP2003146786A (en) * 2001-11-16 2003-05-21 Nishi Nippon Sangyo Kk Liquid fertilizer and method of manufacturing the same
JP2003160391A (en) * 2001-11-21 2003-06-03 Kazuhiro Aida Plant activating agent obtained from animal fiber and method for producing the same, and plant growing method using the same
JP2003180165A (en) * 2001-12-18 2003-07-02 Eisai Seikaken Kk Plant nitric acid-reducing agent
JP2003192513A (en) * 2001-12-27 2003-07-09 Masao Shibuya Crop growth promoter and crop growth promoting method
JP2003274761A (en) * 2002-01-18 2003-09-30 Mitsui Touatsu Hiryo Kk Foliar spraying agent
JP2005219990A (en) * 2004-02-09 2005-08-18 Mitsui Touatsu Hiryo Kk Foliar spraying agent

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270289A (en) * 1985-05-23 1986-11-29 協和醗酵工業株式会社 Manufacture of fertilizer
JPS62230707A (en) * 1986-03-31 1987-10-09 Toshio Yamada Plant activation agent
JPH01141891A (en) * 1987-11-28 1989-06-02 Hiroshi Shioashi Method for preparing agriculturally active agent
JPH0543367A (en) * 1991-08-09 1993-02-23 Yojiro Yamada Organic acid mineral solution for growing plant and its production
JPH06219876A (en) * 1993-01-28 1994-08-09 Gun Ei Chem Ind Co Ltd Crop nutrient assistant
JPH10504797A (en) * 1994-02-23 1998-05-12 オーグゼイン・コーポレーション Method of stimulating plant growth using GABA
JP2001503431A (en) * 1996-11-06 2001-03-13 オーグゼイン・コーポレーション How to increase fertilizer efficiency
JPH11103678A (en) * 1997-10-07 1999-04-20 Kibun Food Chemifa Co Ltd Concentration reducer of nitrogen in the state of nitric acid
JP2000026183A (en) * 1998-07-08 2000-01-25 Kibun Food Chemifa Co Ltd Nitrate-state nitrogen concentration reducer
JP2000327471A (en) * 1999-05-11 2000-11-28 Nippon Hiryo Kk Calcium fertilizer for foliar spray
JP2001151618A (en) * 1999-11-29 2001-06-05 Mitsui Chemicals Inc Method for accelerating absorption of potassium ion by plant
JP2001190154A (en) * 2000-01-11 2001-07-17 Yoshizawa Lime Industry Method for culturing crop and agent for improving quality of crop
JP2001192310A (en) * 2000-01-12 2001-07-17 Mitsui Chemicals Inc Method for promoting absorption of calcium ion from surface of plant
JP2002017163A (en) * 2000-07-06 2002-01-22 Goko:Kk Growth-promoting agent and method for cultivating plant by using the same
JP2003012389A (en) * 2001-06-27 2003-01-15 Konica Zelatin Kk Liquid fertilizer containing peptides and amino acid and method of manufacturing the same
JP2003146786A (en) * 2001-11-16 2003-05-21 Nishi Nippon Sangyo Kk Liquid fertilizer and method of manufacturing the same
JP2003160391A (en) * 2001-11-21 2003-06-03 Kazuhiro Aida Plant activating agent obtained from animal fiber and method for producing the same, and plant growing method using the same
JP2003180165A (en) * 2001-12-18 2003-07-02 Eisai Seikaken Kk Plant nitric acid-reducing agent
JP2003192513A (en) * 2001-12-27 2003-07-09 Masao Shibuya Crop growth promoter and crop growth promoting method
JP2003274761A (en) * 2002-01-18 2003-09-30 Mitsui Touatsu Hiryo Kk Foliar spraying agent
JP2005219990A (en) * 2004-02-09 2005-08-18 Mitsui Touatsu Hiryo Kk Foliar spraying agent

Also Published As

Publication number Publication date
JP2007063213A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
KR20120099873A (en) Eco-friendly custom crop rhizodegradation enzyme complexes
CN102603401A (en) High-potassium liquid organic fertilizer taking wood vinegar as matrix and production method thereof
CN102093117B (en) Special fertilizer for rice leaf surfaces and application thereof
JP2008044854A (en) Plant growth activator and method for growing plant using the same plant growth activator
ES2397178B2 (en) PROCEDURE FOR OBTAINING BIOFERTILIZERS AND BIO STIMULANTS FOR AGRICULTURE AND ANIMAL FEEDING.
JP2001190154A (en) Method for culturing crop and agent for improving quality of crop
JP4104263B2 (en) Method for promoting absorption of calcium ions from the surface of plants
JP4560723B2 (en) Foliar spray and method for producing the same
JP2007238482A (en) Agent for enhancing absorption of specific element by plant
CN108184585B (en) Method for increasing content of essential amino acid in rice
CN103833477A (en) Special liquid insecticide fertilizer for increasing garlic yield, killing pests and reducing residues and preparation method of special liquid insecticide fertilizer
KR100522894B1 (en) Manufacturing method of environmentally friendly plant growth enhancer
AU2006200467B2 (en) Micronutrient chelate fertilizer
JP4565238B2 (en) Foliar spray for reducing residual nitric acid in plants
JP5339231B2 (en) Plant growth promoter and method for producing the same
CN107114177A (en) A kind of implantation methods of zinc-rich Zhanhua winter jujube
KR102409954B1 (en) Plant nutrient composition and manufacturing method thereof
CN108276212A (en) A kind of foliar fertilizer and preparation method thereof for wine-growing
CN107118063B (en) Fertilizer special for kiwi fruit planting and preparation method thereof
JP2008184454A (en) Foliar spray type nitric acid reducing agent
EP2896286B1 (en) Method for increasing the content of useful components in edible plants
CN104973915A (en) Production method of amino acid organic-inorganic compound fertilizer
CN109503234A (en) A kind of ammino acid liquid fertilizer and preparation method thereof comprehensively utilizing discarded marine product preparation
CN111875434B (en) Cold-resistant and vernalization-promoting tea tree liquid fertilizer and application thereof
US11420908B2 (en) Obtaining improved water fortifier from brewer's yeast water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350