[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4560642B2 - Method for producing Sn-coated conductive material - Google Patents

Method for producing Sn-coated conductive material Download PDF

Info

Publication number
JP4560642B2
JP4560642B2 JP2004122866A JP2004122866A JP4560642B2 JP 4560642 B2 JP4560642 B2 JP 4560642B2 JP 2004122866 A JP2004122866 A JP 2004122866A JP 2004122866 A JP2004122866 A JP 2004122866A JP 4560642 B2 JP4560642 B2 JP 4560642B2
Authority
JP
Japan
Prior art keywords
plating
layer
thickness
cathode
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004122866A
Other languages
Japanese (ja)
Other versions
JP2005307240A (en
Inventor
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2004122866A priority Critical patent/JP4560642B2/en
Publication of JP2005307240A publication Critical patent/JP2005307240A/en
Application granted granted Critical
Publication of JP4560642B2 publication Critical patent/JP4560642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、自動車用コネクタ端子、バスバーや、電気・電子部品の端子等に用いられる銅または銅合金(単に、導電材という。)に関し、特に各端子、バスバーの両端で異なる特性が求められるものに関するものである。より具体的には、一方の端で特に低挿入力性、耐削れ性、他方の端では特にはんだ付け性、耐熱性が求められる場合に関するものである。   The present invention relates to copper or copper alloy (simply referred to as a conductive material) used for connector terminals for automobiles, bus bars, terminals of electric / electronic parts, etc., and in particular, different characteristics are required at each terminal and both ends of the bus bar. It is about. More specifically, it relates to a case where low insertion force and abrasion resistance are particularly required at one end, and particularly solderability and heat resistance are required at the other end.

プリント回路基板(PCBという。)等のスルーホールに挿入される端子、または表面実装される端子は、錫(本発明中でSnと表す。)被覆された銅または銅合金の条材からプレスで成形されたものが一般的であり、Sn−Pb系はんだで基板に取り付けられていた。また、部品の小型化等により端子の細線化も進み、プレス時に露出した端面の面積比率が高まっている。更に、Pbフリー化に伴いPbを含まないはんだ(Pbフリーはんだという。)でのはんだ付けが要求されている。Pbを含まないはんだでは、Sn−Ag−Cu系等が有名であるが、Sn−Pb系はんだに比べて融点が高く、はんだ付け性が低下するため端子を基板へ取り付けることが困難になっている。   A terminal to be inserted into a through hole such as a printed circuit board (PCB) or a surface-mounted terminal is pressed from a strip of copper or copper alloy coated with tin (represented as Sn in the present invention). What was shape | molded was common and was attached to the board | substrate with the Sn-Pb type solder. In addition, due to the miniaturization of parts and the like, the terminals are becoming thinner, and the area ratio of the end face exposed during pressing is increasing. Furthermore, with Pb-free, soldering with solder that does not contain Pb (referred to as Pb-free solder) is required. Sn-Ag-Cu-based solders are well known as solders that do not contain Pb. However, since the melting point is higher than that of Sn-Pb-based solders and solderability is reduced, it is difficult to attach terminals to a substrate. Yes.

はんだ付け性を向上するための対策として、プレス後に厚い(3μm超の)Snめっきを施す手段が挙げられるが、端子のもう一方側では別コネクタとの接続時の挿入力が増大する問題がある。また、Snめっきした後にリフロー処理を施さない場合、ウイスカが発生しやすく、回路短絡の危険性がある。
また、Pbフリー化に対する別のアプローチとして、端子の先端をバネ状にプレス成形し、直接スルーホールに固定する技術も開発されている。端子の耐熱性を確保するために、プレス加工後に厚い(3μm超の)Snめっきを施す場合が多いが、元々非常に高い接圧で設計された端子のため、スルーホール挿入時の挿入力が大きすぎるといった問題が出ている。挿入力低減のために、Snの厚さを単純に薄くすることが考えられるが、その場合には経時変化により表面に厚い酸化物が形成されやすく、基板や別コネクタとの接続部において耐熱性に問題が出る可能性がある。
As a measure for improving the solderability, there is a means of applying a thick (greater than 3 μm) Sn plating after pressing, but there is a problem that the insertion force at the time of connection with another connector increases on the other side of the terminal. . Moreover, when reflow processing is not performed after Sn plating, whiskers are likely to occur, and there is a risk of short circuit.
As another approach to Pb-free, a technique has been developed in which the tip of the terminal is pressed into a spring shape and directly fixed to the through hole. In order to ensure the heat resistance of the terminal, thick (> 3 μm) Sn plating is often applied after press working. However, since the terminal was originally designed with a very high contact pressure, the insertion force when inserting a through hole is high. The problem is too big. In order to reduce the insertion force, it is conceivable to simply reduce the thickness of Sn, but in that case, a thick oxide is likely to be formed on the surface due to changes over time, and heat resistance at the connection with the board or another connector May cause problems.

さらに別の対策として、黄銅製の母材にSnめっきするにあたり、(回路基板にはんだ付けされる)取付部において(相手側端子金具と弾性的に接触する)接触部よりもSnめっき層を厚くして、Snと母材から拡散したZnとの合金化がSnめっき層の表面に到達する時間を遅延させてはんだ付けを良好にするとともに、接触部では端子金具間の嵌合・離脱の抵抗を減らすことも提案されている(例えば、特許文献1参照。)。しかし、この手法はいったん黄銅製の母材全体に薄く均一にSnめっき薄層を形成した後に、厚くすべき取付部にのみ再度厚くSnめっきをするものであって、めっき工程が複雑でコスト高となるにとどまらず、Pbフリーはんだ実装等のより厳しい熱環境において十分なはんだ付け性や耐熱性を確保することは難しい。原因としては、Znの拡散防止として施している下地めっき成分(CuまたはNi)が表層まで拡散し、電気抵抗が高く、はんだ付け性も阻害する酸化物を形成するためである。下地成分の拡散防止策として仮にSnの厚い部分を3μm以上に設定した場合、はんだ付け性の改善は見られるが、コスト高という課題が残る。
特開平11−214050号公報
As another countermeasure, when Sn plating is performed on a base material made of brass, the Sn plating layer is made thicker than the contact portion (elastically in contact with the mating terminal fitting) at the attachment portion (soldered to the circuit board). Then, the alloying of Sn and Zn diffused from the base metal delays the time to reach the surface of the Sn plating layer to improve the soldering, and at the contact portion, the resistance of fitting / disengaging between the terminal fittings Has also been proposed (see, for example, Patent Document 1). However, this method is to form a thin Sn plating thin layer uniformly on the entire brass base material, and then again to thicken only the mounting portion to be thickened. The plating process is complicated and expensive. In addition, it is difficult to ensure sufficient solderability and heat resistance in a more severe thermal environment such as Pb-free solder mounting. This is because the base plating component (Cu or Ni) applied to prevent the diffusion of Zn diffuses to the surface layer, forming an oxide that has high electrical resistance and hinders solderability. If the thick Sn portion is set to 3 μm or more as a measure for preventing the base component from diffusing, solderability is improved, but the problem of high cost remains.
JP-A-11-2114050

PCBに挿入される端子には、コスト、耐熱性、耐食性、はんだ付け性の観点から、Snめっきが広く利用されている。端子によっては、1つの端子内で、低挿入力性が強く求められる部分と、はんだ付け性や耐熱性を強く求められる部分を併せ持つことが要求されるものも出てきている。Snめっきの場合、低挿入力性とはんだ付け性・耐熱性はトレードオフの関係にあり問題である。Sn厚さが薄いとはんだ付け性・耐熱性は劣るものの低挿入力性に優れ、一方、厚いと低挿入力性は劣るもののはんだ付け性・耐熱性に優れる。
また、Sn被覆方法が光沢Snめっきの場合、ウイスカ及び耐熱性の問題がある。Snめっき後にリフロー処理を行えばウイスカを大幅に低減できるが、自動車のエンジンルーム等の厳しい熱環境においては十分な耐熱性を有していない。そのため、低挿入力性が強く求められる部分と、はんだ付け性や耐熱性を強く求められる部分を併せ持ち、耐ウイスカ性にも優れた低コストの銅または銅合金部材が求められている。
For terminals inserted into the PCB, Sn plating is widely used from the viewpoint of cost, heat resistance, corrosion resistance, and solderability. Some terminals are required to have both a portion in which low insertion force is strongly required and a portion in which solderability and heat resistance are strongly required in one terminal. In the case of Sn plating, low insertion force, solderability and heat resistance are in a trade-off relationship and are problematic. If the Sn thickness is thin, the solderability and heat resistance are inferior, but the low insertion force is excellent. On the other hand, if the Sn thickness is thick, the low insertion force is inferior, but the solderability and heat resistance are excellent.
Further, when the Sn coating method is gloss Sn plating, there are problems of whisker and heat resistance. Whiskering can be greatly reduced if reflow treatment is performed after Sn plating, but it does not have sufficient heat resistance in a severe thermal environment such as an engine room of an automobile. Therefore, there is a need for a low-cost copper or copper alloy member that has both a portion that requires low insertion force and a portion that requires strong solderability and heat resistance, and is excellent in whisker resistance.

本発明は、上記の課題を解決するものであって、第1に、銅または銅合金からなる素材の一部領域が厚さ0.05μm以上0.8μm未満のSnめっき薄層で被覆され、残部領域が厚さ0.8μm以上3μm以下の一体に形成されたSnめっき厚層で被覆されてなり、該Snめっき薄層および該Snめっき厚層の下地層として、前記素材側からNiめっき層とCuめっき層で形成された下地層を有する導電材;第2に、前記Snめっき薄層が厚さ0.1μm以上0.8μm未満である、第1記載の導電材;第3に、前記Snめっき厚層が厚さ0.8μm以上2.0μm未満である、第1または2に記載の導電材;第4に、前記下地層が前記素材側から厚さ0.05μm以上2μm以下のNiめっき層と厚さ0.05μm以上1μm以下のCuめっき層で形成された下地層である、第1〜3のいずれかに記載の導電材;第5に、少なくとも前記Snめっき厚層最表面側が溶融凝固組織である、第1〜4のいずれかに記載の導電材;第6に、めっき浴中において、前記下地層を有する素材を陰極とし、該陰極と該陰極に対向する陽極との間の一部に絶縁性遮蔽板を配置して電気めっきを行うことによって、該陰極上の一部領域に厚さ0.05μm以上0.8μm未満のSnめっき薄層を被覆し、残部領域に厚さ0.8μm以上3μm以下の一体に形成されたSnめっき厚層を被覆する、第1〜5のいずれかに記載の導電材を製造する方法;第7に、めっき浴中において、前記下地層を有する素材を陰極とし、該陰極の両面と該両面に対向する各陽極との各間の一部にそれぞれ絶縁性遮蔽板を配置して電気めっきを行うことによって、該陰極上の一部領域に厚さ0.05μm以上0.8μm未満のSnめっき薄層を被覆し、残部領域に厚さ0.8μm以上3μm以下の一体に形成されたSnめっき厚層を被覆する、第1〜5のいずれかに記載の導電材を製造する方法;第8に、前記電気めっきにより形成された前記薄層および厚層にリフロー処理を行う、第6または7に記載の製造方法;第9に、前記電気めっきの工程、前記リフロー処理の工程の少なくとも一方がリールトゥリールのラインで行われる、第6〜8のいずれかに記載の製造方法である。   The present invention solves the above-mentioned problem. First, a partial region of a material made of copper or a copper alloy is coated with a Sn plating thin layer having a thickness of 0.05 μm or more and less than 0.8 μm, The remaining region is covered with an integrally formed Sn plating thick layer having a thickness of 0.8 μm or more and 3 μm or less, and the Ni plating layer is formed from the material side as an underlayer of the Sn plating thin layer and the Sn plating thick layer. And a conductive material having a base layer formed of a Cu plating layer; second, the conductive material according to the first aspect, wherein the Sn plating thin layer has a thickness of 0.1 μm or more and less than 0.8 μm; The conductive material according to 1 or 2, wherein the Sn plating thick layer has a thickness of 0.8 μm or more and less than 2.0 μm; and fourth, the Ni is 0.05 μm or more and 2 μm or less in thickness from the material side. It was formed with a plating layer and a Cu plating layer having a thickness of 0.05 μm or more and 1 μm or less. The conductive material according to any one of the first to third, which is a base layer; fifth, the conductive material according to any one of the first to fourth, wherein at least the outermost surface side of the Sn plating thick layer is a melt-solidified structure; In the plating bath, the material having the base layer is used as a cathode, and an insulating shielding plate is disposed between a part of the cathode and the anode facing the cathode, and electroplating is performed. A thin region of Sn plating with a thickness of 0.05 μm or more and less than 0.8 μm is coated on a part of the area on the cathode, and a thick Sn plating layer formed integrally with a thickness of 0.8 μm or more and 3 μm or less is coated on the remaining region. A method for producing the conductive material according to any one of 1 to 5; seventh, in a plating bath, the material having the base layer is a cathode, and both surfaces of the cathode and each anode facing the both surfaces; Electroplating is performed by placing an insulating shielding plate in part between each of Thus, a Sn plating thin layer with a thickness of 0.05 μm or more and less than 0.8 μm is coated on a part of the cathode, and the Sn plating thickness formed integrally with a thickness of 0.8 μm or more and 3 μm or less on the remaining area. A method for producing a conductive material according to any one of 1 to 5 that covers a layer; eighth, a reflow treatment is performed on the thin layer and the thick layer formed by the electroplating; Ninth, the manufacturing method according to any one of 6 to 8, wherein at least one of the electroplating step and the reflow treatment step is performed on a reel-to-reel line.

本発明に係る導電材は、部位により低挿入力性とはんだ付け性・耐熱性を同時に要求される端子やバスバー等の電気・電子部品用材料として優れたものであって、さらにはPbフリーはんだによるはんだ付けも可能なものであり、効率的に低コストで製造することができるという優れた効果を奏する。   The conductive material according to the present invention is excellent as a material for electrical and electronic parts such as terminals and bus bars that require low insertion force and solderability and heat resistance at the same time depending on the part. Can be soldered, and has an excellent effect that it can be efficiently manufactured at low cost.

本発明をさらに具体的に説明する。
銅または銅合金の条または所望の形状に成形された連鎖条に、下地めっき層を形成する。素材側から0.05〜2μmのNiめっき層と0.05〜1μmのCuめっき層で形成された下地層が好ましい。その上にSnをめっきし、必要に応じてリフロー処理を行う。
The present invention will be described more specifically.
A base plating layer is formed on a strip of copper or copper alloy or a chain strip formed into a desired shape. An underlayer formed from a Ni plating layer of 0.05 to 2 μm and a Cu plating layer of 0.05 to 1 μm is preferable from the material side. Sn is plated thereon, and a reflow process is performed as necessary.

Snめっきは、図1にその断面概念図を示しためっき槽1を用いて、めっき厚さを薄くしたい素材(陰極)2の領域に対応する個所に絶縁性の遮蔽板3を配置して、各々所望の厚さになるよう調整する。すなわち、めっき槽1内のめっき浴4中において、下地層を有する素材2を陰極とし、この陰極と陰極に対向する陽極5との間の一部に遮蔽板3を配置して電気めっきを行い、素材2上の一部領域(図1の場合では素材2の下方領域)にSnめっき薄層を被覆し、残部領域(図1の場合では素材2の上方領域)に一体に形成されたSnめっき厚層を被覆するものであり、好ましくは陰極2の両面に陽極5を対向させてそれぞれの間に遮蔽板3を配置する。なお、遮蔽板3はめっき厚さのバランスを取るために孔をあけることができるし、傾斜を設けることもできる。これによって、薄層と厚層が一体化して形成された信頼性の高いめっき厚層を得ることができる。   For Sn plating, an insulating shielding plate 3 is disposed at a position corresponding to a region of a material (cathode) 2 to be thinned by using a plating tank 1 whose sectional conceptual view is shown in FIG. Each is adjusted to a desired thickness. That is, in the plating bath 4 in the plating tank 1, the material 2 having the base layer is used as a cathode, and the shielding plate 3 is disposed in a part between the cathode and the anode 5 facing the cathode to perform electroplating. The Sn plating thin layer is coated on a part of the material 2 (the lower region of the material 2 in the case of FIG. 1), and the Sn is integrally formed in the remaining region (the upper region of the material 2 in the case of FIG. 1). The plating thick layer is covered, and preferably, the anode 5 is opposed to both sides of the cathode 2 and the shielding plate 3 is disposed between them. The shielding plate 3 can be perforated in order to balance the plating thickness, and can be provided with an inclination. As a result, a highly reliable plated thick layer formed by integrating the thin layer and the thick layer can be obtained.

また、本発明法の実施にあたっては、リールトゥリールのライン、すなわち、銅または銅合金からなる素材の条を巻き取った材料リールからまず素材の条を巻き出し、必要に応じてあらかじめ下地めっき層を形成したのち、電気Snめっきをし、次いでリフロー処理を行って、製品リールに巻き取る方法を行えば、効率的である。さらに、各工程ごとに、必要に応じて電解脱脂、酸洗、洗浄、乾燥を行う。
より具体的には、リールトゥリールのラインで電気Snめっき工程を行う場合に、図1において紙面に垂直な方向から素材の条材を連続的に供給し電気Snめっき後に同一方向へ連続的に巻き取ることができる(すなわち例えば、素材の条材をめっき槽の側面から水平方向にめっき槽内へ供給し、めっき後、対向する側面からめっき槽外へ水平方向に巻き取る)。下地めっき層の形成工程およびリフロー処理工程も同様に連続的に行うことができ、これら工程を連続して行えばリールトゥリールのラインですべての工程を一回で連続して行うことができる。
In carrying out the method of the present invention, the material strip is first unwound from the reel-to-reel line, that is, the material reel wound with the material strip made of copper or copper alloy. After forming the film, it is efficient to perform electro Sn plating, then perform a reflow process, and take up a product reel. Furthermore, electrolytic degreasing, pickling, washing, and drying are performed as necessary for each step.
More specifically, when the electric Sn plating process is performed on the reel-to-reel line, the strip material is continuously supplied from the direction perpendicular to the paper surface in FIG. 1 and continuously in the same direction after the electric Sn plating. It can be wound up (that is, for example, the strip material is supplied from the side surface of the plating tank into the plating tank in the horizontal direction, and after plating, it is wound up from the opposite side face to the outside of the plating tank in the horizontal direction). The underplating layer forming step and the reflow treatment step can be performed continuously in the same manner. If these steps are performed continuously, all the steps can be performed at once in a reel-to-reel line.

第1図のめっき槽によってSnめっきされた導電材の断面概念図を図2に示す。すなわち、下地層6を有する素材2にSnめっきをした場合、一部(図2では下方)領域にSnめっき薄層、残部(図2では上方)領域にSnめっき厚層が形成される。
なお、前記方法で製造した場合、Snめっき薄層とSnめっき厚層の境界がはっきりせず連続的に厚さが変化する部分ができることがあるが、設計により所定の部分の必要特性を考慮し厚さを制御すれば問題ない。
FIG. 2 shows a conceptual cross-sectional view of a conductive material Sn-plated by the plating tank of FIG. That is, when Sn plating is performed on the material 2 having the base layer 6, a Sn plating thin layer is formed in a part (downward in FIG. 2) and a Sn plating thick layer is formed in the remaining (upward in FIG. 2).
In addition, when manufactured by the above method, the boundary between the Sn plating thin layer and the Sn plating thick layer may not be clear, and there may be a portion where the thickness changes continuously. There is no problem if the thickness is controlled.

次に、本発明の数値範囲の限定理由を記載する。
(1)Snめっき厚層の厚さ0.8μm以上3μm以下について
0.8μm未満では、経時変化によりはんだ付け性が十分ではない。3μmを超えると、挿入力及びSnの削れが顕著になる他、コスト面でも不利となる。好ましくは0.8〜2μmであり、さらに好ましくは1〜2μmである。
(2)Snめっき薄層の厚さ0.05μm以上0.8μm未満について
0.05μm未満では、素材または下地成分の拡散及び酸化により電気的信頼性に問題が出る場合がある。0.8μm以上では挿入力低減の効果が小さい。好ましくは0.1μm以上0.8μm未満であり、さらに好ましくは0.2〜0.7μmである。
(3)各下地層の厚さについて
素材側から厚さ0.05μm以上2μm以下のNiめっき層と厚さ0.05μm以上1μm以下のCuめっき層であることが好ましい。
Niめっき層は素材の銅または銅合金のCuの拡散を効果的に抑制し、さらには銅合金中の添加元素の拡散を効果的に抑制し(例えばZnやP)、接触抵抗やはんだ付け性、更には皮膜の耐熱密着性の低下を効果的に防止する。Niめっき層の厚さが0.05μmより薄いと前記効果が得られず、2μmより大きいと曲げ加工性が低下するため、厚さは0.05μm以上2μm以下であることが好ましい。
Cuめっき層は表面に被覆したSn層と熱処理(リフロー処理等)によりCu−Snの合金層を形成することが好ましい。耐食性向上、耐熱性向上を目的とし、厚さ0.05〜1μmであることが好ましい。
Next, the reasons for limiting the numerical range of the present invention will be described.
(1) Thickness of Sn plating thick layer not less than 0.8 μm and not more than 3 μm If the thickness is less than 0.8 μm, the solderability is not sufficient due to the change with time. If it exceeds 3 μm, the insertion force and the wear of Sn become remarkable, and the cost is disadvantageous. Preferably it is 0.8-2 micrometers, More preferably, it is 1-2 micrometers.
(2) Thickness of Sn-plated thin layer of 0.05 μm or more and less than 0.8 μm If the thickness is less than 0.05 μm, there may be a problem in electrical reliability due to diffusion or oxidation of the material or the base component. If the thickness is 0.8 μm or more, the effect of reducing the insertion force is small. Preferably it is 0.1 micrometer or more and less than 0.8 micrometer, More preferably, it is 0.2-0.7 micrometer.
(3) About the thickness of each foundation layer It is preferable that they are 0.05 to 2 micrometer-thick Ni plating layer and 0.05 to 1 micrometer-thick Cu plating layer from the raw material side.
The Ni plating layer effectively suppresses the diffusion of copper of the raw material or Cu of the copper alloy, and also effectively suppresses the diffusion of additive elements in the copper alloy (for example, Zn or P), and the contact resistance and solderability In addition, it effectively prevents a decrease in the heat-resistant adhesion of the film. If the thickness of the Ni plating layer is less than 0.05 μm, the above-described effect cannot be obtained. If the thickness of the Ni plating layer is more than 2 μm, the bending workability deteriorates. Therefore, the thickness is preferably from 0.05 μm to 2 μm.
The Cu plating layer is preferably formed by forming a Cu—Sn alloy layer by a Sn layer coated on the surface and heat treatment (reflow treatment or the like). The thickness is preferably 0.05 to 1 μm for the purpose of improving corrosion resistance and heat resistance.

Snの被覆方法を、電気めっき後に加熱溶融するリフロー処理を行う方法とした理由は、耐ウイスカ性を向上させるためである。リフロー処理は250〜900℃の温度中に0.1〜180秒滞留させた後、120秒以内に水冷、空冷等により100℃以下に冷却する方法が望ましい。ただし、耐ウイスカ性を必要としない場合は、リフロー処理を行わなくても構わない。   The reason for using the Sn coating method as the method of performing the reflow process of heating and melting after electroplating is to improve the whisker resistance. The reflow process is preferably a method in which the sample is kept at a temperature of 250 to 900 ° C. for 0.1 to 180 seconds and then cooled to 100 ° C. or less by water cooling or air cooling within 120 seconds. However, when the whisker resistance is not required, the reflow process may not be performed.

以下に、本発明の実施例を示すが、本発明の技術的範囲は本実施例に限定されるものではない。   Examples of the present invention are shown below, but the technical scope of the present invention is not limited to these Examples.

試験材は、組成Cu−1.0wt%Ni−0.9wt%Sn−0.05wt%P、ビッカース硬さHV170、厚さ0.25mm、幅50mmの銅合金条を使用した。
リールトゥリールの連続めっきラインで、素材の表面および端面を電解脱脂と酸洗で活性化した後、各種下地めっき層と、Sn層の被覆を行った。各層の被覆方法は、厚さの制御に優れ、コスト的にも有利な電気めっきを用いた。下地めっきは全面均一に被覆するよう調整し、Snめっきは、図1に示すような絶縁性の遮蔽板3を用い、素材2の下半分(a部)のSn被覆厚が0.3〜3.3μmの薄層、上半分(b部)のSn被覆厚が0.3〜3.3μmの厚層となるよう調整した。ただし、全面同じ厚さの試験材は遮蔽板を用いなかった。
The test material used was a copper alloy strip having the composition Cu-1.0 wt% Ni-0.9 wt% Sn-0.05 wt% P, Vickers hardness HV170, thickness 0.25 mm, and width 50 mm.
In the reel-to-reel continuous plating line, the surface and end face of the material were activated by electrolytic degreasing and pickling, and then various undercoat layers and Sn layers were coated. As a coating method for each layer, electroplating that is excellent in thickness control and advantageous in cost was used. The base plating is adjusted so that the entire surface is uniformly coated, and the Sn plating uses an insulating shielding plate 3 as shown in FIG. 1, and the Sn coating thickness of the lower half (part a) of the material 2 is 0.3 to 3 The thickness was adjusted so that the Sn coating thickness of the thin layer of 0.3 μm and the upper half (part b) was 0.3 to 3.3 μm. However, the test material having the same thickness on the entire surface did not use a shielding plate.

Snめっきは、素材の両面からそれぞれ50mmの間隔で対向してSn板の陽極を配置し、また素材から3〜10mmの個所に素材の下側15〜30mmの部分に対向して硬質塩化ビニル板の遮蔽板を垂直に配置し、液温20℃、見かけの陰極電流密度5.7A/dm2で行った。めっき槽の液面高さも、所望のめっき厚を得るために、素材の上端から液面までの距離を1〜5mmの範囲で調整した。
Niめっきはスルファミン酸Ni浴、Cuめっきは硫酸銅浴、Snめっきは硫酸錫浴で行った。各めっき浴とも光沢剤は添加せず、無光沢めっきを行った。また、Sn層を被覆後、バーナー炉でリフロー処理を行った。炉内温度400〜600℃、炉内滞留時間0.1〜20秒で表面を溶融させた後、水冷と空冷を併用して10秒以内に100℃以下へ冷却した。
表1に、本発明材および比較材の測定および評価の結果を示す。
For Sn plating, the anode of the Sn plate is arranged facing each other at a distance of 50 mm from both sides of the material, and the rigid polyvinyl chloride plate is opposed to the lower portion of the material by 15 to 30 mm at a position 3 to 10 mm from the material. The shielding plate was vertically arranged, and the liquid temperature was 20 ° C. and the apparent cathode current density was 5.7 A / dm 2 . The liquid surface height of the plating tank was also adjusted within a range of 1 to 5 mm from the upper end of the material to the liquid surface in order to obtain a desired plating thickness.
Ni plating was performed using a sulfamic acid Ni bath, Cu plating was performed using a copper sulfate bath, and Sn plating was performed using a tin sulfate bath. In each plating bath, no brightener was added and matte plating was performed. Moreover, after coating the Sn layer, a reflow treatment was performed in a burner furnace. The surface was melted at a furnace temperature of 400 to 600 ° C. and a residence time in the furnace of 0.1 to 20 seconds, and then cooled to 100 ° C. or less within 10 seconds using both water cooling and air cooling.
Table 1 shows the results of measurement and evaluation of the inventive material and the comparative material.

被覆したNiとSnの厚さは蛍光X線膜厚測定器で測定した。被覆したCuの厚さは、Niめっき後Cuめっきした試験片を用い、電解式膜厚計で測定した。
Sn薄層、Sn厚層の厚さは、それぞれ両端1〜9mmの範囲で2mmおきに5点測定し、その平均値で求めた。
表1には、被覆厚さ、a部の低挿入力性(摩擦係数)、b部のはんだ付け性と耐熱性の評価結果を示す。
低挿入力性は、図3に模式図を示す装置を用いて摩擦係数を測定し、低挿入力性の代用特性評価とした。摩擦係数が小さいほど低挿入力であることを示す。摩擦係数の測定方法は、水平台11上において、内側半径R=1mmのインテンドを3つ設けた表面処理板材(上側試験片)8を上側とし、これに重錘10によって15Nの荷重をかけながら100mm/分の速度で、同じ表面処理を施した下側板材(下側試験片)9の上を移動し、プーリー12を介してロードセル13で摩擦力を測定し、摩擦力の平均値を重錘荷重(15N)で除して算出した。
The thicknesses of the coated Ni and Sn were measured with a fluorescent X-ray film thickness measuring instrument. The thickness of the coated Cu was measured with an electrolytic film thickness meter using a specimen plated with Cu after Ni plating.
The thicknesses of the Sn thin layer and Sn thick layer were measured at 5 points every 2 mm in the range of 1 to 9 mm on both ends, and the average value was obtained.
Table 1 shows the evaluation results of the coating thickness, the low insertion force (friction coefficient) of part a, the solderability and heat resistance of part b.
For the low insertion force, the friction coefficient was measured using the apparatus shown in the schematic diagram of FIG. A smaller friction coefficient indicates a lower insertion force. The method of measuring the friction coefficient is that the surface treatment plate material (upper test piece) 8 provided with three intents having an inner radius R = 1 mm is set on the horizontal table 11 while a 15 N load is applied to the weight 10 by the weight 10. It moves on the lower plate material (lower test piece) 9 subjected to the same surface treatment at a speed of 100 mm / min, measures the frictional force with the load cell 13 via the pulley 12, and calculates the average value of the frictional force. It was calculated by dividing by the weight load (15N).

はんだ付け性は、155℃の大気中で16時間保持(エージング)した後に、表2に示す試験条件で評価を行った。
耐熱性は、160℃の大気雰囲気中で120時間保持した後の接触抵抗値で評価した。接触抵抗値は、マイクロオームメーターを使用し、開放電圧20mV、電流10mA、0.5φmmのU型金線プローブ、最大荷重100gf、摺動無しの条件で、試験数N=3で測定し、その平均値を求めた。初期値は、No.5のみ1.5mΩ、その他は1mΩ以下であった。
Solderability was evaluated under the test conditions shown in Table 2 after being held (aged) in the atmosphere at 155 ° C. for 16 hours.
The heat resistance was evaluated by a contact resistance value after being kept in an air atmosphere at 160 ° C. for 120 hours. The contact resistance value was measured at a test number N = 3 using a micro ohm meter under the conditions of an open voltage of 20 mV, a current of 10 mA, a 0.5 mm U-shaped gold wire probe, a maximum load of 100 gf, and no sliding. The average value was obtained. The initial value was 1.5 mΩ only for No. 5 and 1 mΩ or less for the others.

Figure 0004560642
Figure 0004560642

本発明材であるNo.1、2、3は摩擦係数が0.3以下と小さく、はんだ付け性にも優れ、耐熱性も優れている。
b部のSn被覆厚さが薄いNo.4は、はんだ付け性、耐熱性共に劣る。これは、エージング処理により素材から拡散したCuが表層で厚い酸化物を形成したためである。また、a部のSn被覆厚さが厚いNo.6、7は、いずれも摩擦係数が0.3を超え、低挿入力効果が不足している。これは、挿入時の抵抗になる純Sn層の厚さが厚いためである。特に、Sn被覆厚さが3μmを超えているNo.7では、Snの削れが顕著であった。また、No.5は下地Cuがないため、下地Niが直接Snと化合物を生じ、さらにはNiが表層まで拡散して酸化物を形成し、はんだ付け性、耐熱性に劣る。
The Nos. 1, 2, and 3 of the present invention have a small friction coefficient of 0.3 or less, excellent solderability, and excellent heat resistance.
No. 4 in which the Sn coating thickness of the part b is thin is inferior in both solderability and heat resistance. This is because Cu diffused from the raw material by the aging treatment formed a thick oxide on the surface layer. Further, Nos. 6 and 7 where the Sn coating thickness of part a is thick have a friction coefficient exceeding 0.3, and the low insertion force effect is insufficient. This is because the thickness of the pure Sn layer that becomes a resistance at the time of insertion is thick. In particular, in No. 7 in which the Sn coating thickness exceeds 3 μm, the scraping of Sn was remarkable. In No. 5, since there is no underlying Cu, the underlying Ni directly forms a compound with Sn, and further Ni diffuses to the surface layer to form an oxide, which is inferior in solderability and heat resistance.

Figure 0004560642
Figure 0004560642

一方の端で低挿入力性、他方の端でははんだ付け性、耐熱性が求められる、自動車用コネクタ端子・バスバーなどの電気・電子部品の端子等の用途に適用できる。   It can be applied to applications such as automobile connector terminals and terminals for busbars and other electrical / electronic parts that require low insertion force at one end and solderability and heat resistance at the other end.

めっき槽の断面概念図である。It is a section conceptual diagram of a plating tank. 素材のめっき前後の断面概念図である。It is a cross-sectional conceptual diagram before and after plating of a material. 摩擦係数測定装置の模式図である。It is a schematic diagram of a friction coefficient measuring device.

符号の説明Explanation of symbols

1 めっき槽
2 素材(陰極)
3 遮蔽板
4 めっき浴
5 陽極
6 下地層
7 Snめっき層
8 インデント付き上側試験片
9 下側試験片
10 重錘(15N)
11 水平台
12 プーリー
13 ロードセル
1 Plating tank 2 Material (cathode)
3 Shielding plate 4 Plating bath 5 Anode 6 Underlayer 7 Sn plating layer 8 Upper test piece with indent 9 Lower test piece 10 Weight (15N)
11 Horizontal base 12 Pulley 13 Load cell

Claims (3)

銅または銅合金からなる素材の一部領域が厚さ0.2〜0.7μmのSnめっき薄層で被覆され、残部領域が厚さ1〜2μmの連続的に一体に形成されたSnめっき厚層で被覆されてなり、該Snめっき薄層および該Snめっき厚層の下地層として、前記素材側からNiめっき層とCuめっき層で全面に形成された下地層を有し、少なくとも前記Snめっき厚層最表面側が溶融凝固組織である導電材を製造する方法であって、前記素材の条を巻き取った材料リールからまず該素材の条を巻き出し、全面に均一にNiめっき層、次いでCuめっき層を被覆する下地めっきを行った後、めっき浴中において、前記下地層を有する素材を陰極とし、該陰極と該陰極に対向する陽極との間の一部に絶縁性遮蔽板を配置して電気めっきを行うことによって、該陰極上の一部領域に厚さ0.2〜0.7μmのSnめっき薄層を被覆し、残部領域に厚さ1〜2μmの連続的に一体に形成されたSnめっき厚層を被覆し、次いで連続して前記電気めっきにより形成された前記薄層および厚層にリフロー処理を行って製品リールに巻き取る、導電材を製造する方法Sn plating thickness in which a partial region of a material made of copper or a copper alloy is coated with a thin Sn plating layer having a thickness of 0.2 to 0.7 μm , and the remaining region is continuously formed integrally with a thickness of 1 to 2 μm. The Sn plating thin layer and the Sn plating thick layer have an underlayer formed on the entire surface with a Ni plating layer and a Cu plating layer from the material side, and at least the Sn plating A method of manufacturing a conductive material having a thick layer outermost surface side having a melt-solidified structure, firstly unrolling the material strip from the material reel wound with the material strip, uniformly plating the Ni plating layer and then Cu After performing the base plating to cover the plating layer, in the plating bath, the material having the base layer is used as a cathode, and an insulating shielding plate is disposed in a part between the cathode and the anode facing the cathode. By performing electroplating The thin region of Sn plating with a thickness of 0.2 to 0.7 μm is coated on a part of the cathode and the thick region of Sn plating with a thickness of 1-2 μm is formed on the remaining region. Then, a method of manufacturing a conductive material, in which the thin layer and the thick layer formed by electroplating are continuously subjected to a reflow process and wound on a product reel. 銅または銅合金からなる素材の一部領域が厚さ0.2〜0.7μmのSnめっき薄層で被覆され、残部領域が厚さ1〜2μmの連続的に一体に形成されたSnめっき厚層で被覆されてなり、該Snめっき薄層および該Snめっき厚層の下地層として、前記素材側からNiめっき層とCuめっき層で全面に形成された下地層を有し、少なくとも前記Snめっき厚層最表面側が溶融凝固組織である導電材を製造する方法であって、前記素材の条を巻き取った材料リールからまず該素材の条を巻き出し、全面に均一にNiめっき層、次いでCuめっき層を被覆する下地めっきを行った後、めっき浴中において、前記下地層を有する素材を陰極とし、該陰極の両面と該両面に対向する各陽極との各間の一部にそれぞれ絶縁性遮蔽板を配置して電気めっきを行うことによって、該陰極上の一部領域に厚さ0.2〜0.7μmのSnめっき薄層を被覆し、残部領域に厚さ1〜2μmの連続的に一体に形成されたSnめっき厚層を被覆し、次いで連続して前記電気めっきにより形成された前記薄層および厚層にリフロー処理を行って製品リールに巻き取る、導電材を製造する方法Sn plating thickness in which a partial region of a material made of copper or a copper alloy is coated with a thin Sn plating layer having a thickness of 0.2 to 0.7 μm , and the remaining region is continuously formed integrally with a thickness of 1 to 2 μm. The Sn plating thin layer and the Sn plating thick layer have an underlayer formed on the entire surface with a Ni plating layer and a Cu plating layer from the material side, and at least the Sn plating A method of manufacturing a conductive material having a thick layer outermost surface side having a melt-solidified structure, firstly unrolling the material strip from the material reel wound with the material strip, uniformly plating the Ni plating layer and then Cu After performing the base plating for covering the plating layer, in the plating bath, the material having the base layer is used as a cathode, and insulation is provided between each part of the cathode and each anode facing the both surfaces. Electroplating with shielding plate Is performed, and a Sn plating thin layer having a thickness of 0.2 to 0.7 μm is coated on a partial region on the cathode , and the Sn plating formed continuously and integrally on the remaining region has a thickness of 1 to 2 μm. A method for producing a conductive material, comprising coating a thick layer, and subsequently reflowing the thin layer and the thick layer formed by electroplating and winding the product on a product reel. 前記素材がNi、Sn及びPを含有する銅合金からなる素材である、請求項1または2に記載の導電材を製造する方法。 The method for producing a conductive material according to claim 1 or 2, wherein the material is a material made of a copper alloy containing Ni, Sn, and P.
JP2004122866A 2004-04-19 2004-04-19 Method for producing Sn-coated conductive material Expired - Lifetime JP4560642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122866A JP4560642B2 (en) 2004-04-19 2004-04-19 Method for producing Sn-coated conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122866A JP4560642B2 (en) 2004-04-19 2004-04-19 Method for producing Sn-coated conductive material

Publications (2)

Publication Number Publication Date
JP2005307240A JP2005307240A (en) 2005-11-04
JP4560642B2 true JP4560642B2 (en) 2010-10-13

Family

ID=35436340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122866A Expired - Lifetime JP4560642B2 (en) 2004-04-19 2004-04-19 Method for producing Sn-coated conductive material

Country Status (1)

Country Link
JP (1) JP4560642B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161127A (en) * 2004-12-09 2006-06-22 Takamatsu Mekki:Kk Electronic material suitable for insertion type connection terminal and method for producing the same
JP4934456B2 (en) * 2006-02-20 2012-05-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4368931B2 (en) * 2006-12-13 2009-11-18 日鉱富士電子株式会社 Male terminal and manufacturing method thereof
JP5192878B2 (en) * 2007-04-09 2013-05-08 古河電気工業株式会社 Connectors and metal materials for connectors
JP5005420B2 (en) * 2007-05-01 2012-08-22 株式会社神戸製鋼所 Mating connector terminal and manufacturing method thereof
JP4632380B2 (en) * 2009-06-04 2011-02-16 協和電線株式会社 Plating film connection terminal member, connection terminal using the same, plating film material and multilayer plating material used therefor, and method for producing plating film connection terminal member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917323A (en) * 1972-06-12 1974-02-15
JPS634089A (en) * 1986-06-20 1988-01-09 Shinko Electric Ind Co Ltd Partial plating device
JPH0448098A (en) * 1990-06-15 1992-02-18 Nec Corp Differential plating method
JPH11214050A (en) * 1998-01-27 1999-08-06 Sumitomo Wiring Syst Ltd Thermal metal fitting
JP2000192280A (en) * 1998-12-22 2000-07-11 Sumitomo Wiring Syst Ltd Plating device and plating method
JP2003031333A (en) * 2001-07-12 2003-01-31 Sumitomo Wiring Syst Ltd Terminal manufacturing method
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917323A (en) * 1972-06-12 1974-02-15
JPS634089A (en) * 1986-06-20 1988-01-09 Shinko Electric Ind Co Ltd Partial plating device
JPH0448098A (en) * 1990-06-15 1992-02-18 Nec Corp Differential plating method
JPH11214050A (en) * 1998-01-27 1999-08-06 Sumitomo Wiring Syst Ltd Thermal metal fitting
JP2000192280A (en) * 1998-12-22 2000-07-11 Sumitomo Wiring Syst Ltd Plating device and plating method
JP2003031333A (en) * 2001-07-12 2003-01-31 Sumitomo Wiring Syst Ltd Terminal manufacturing method
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor

Also Published As

Publication number Publication date
JP2005307240A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
KR101639994B1 (en) Surface-treated plated material and method for producing same, and electronic component
JP2018078109A (en) Tin-plated copper terminal material and terminal, and electric wire terminal part structure
JP4632380B2 (en) Plating film connection terminal member, connection terminal using the same, plating film material and multilayer plating material used therefor, and method for producing plating film connection terminal member
JP2006045665A (en) Flexible printed wiring board terminal and flexible flat cable terminal
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
JP5373598B2 (en) PCB terminal
JP2002317295A (en) REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP4560642B2 (en) Method for producing Sn-coated conductive material
JP3998731B2 (en) Manufacturing method of current-carrying member
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP7226209B2 (en) Pin terminals, connectors, wire harnesses with connectors, and control units
JP5101235B2 (en) Sn plating material for electronic parts and electronic parts
JP7060514B2 (en) Conductive strip
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP7226210B2 (en) Pin terminals, connectors, wire harnesses with connectors, and control units
JPH1046363A (en) Tin or tin alloy-plated copper alloy for multipolar terminal and this multipolar terminal
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP2851245B2 (en) Sn alloy plating material
JP7080942B2 (en) Plating materials for electronic components and electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term