[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4557829B2 - Inspection method of lead acid battery - Google Patents

Inspection method of lead acid battery Download PDF

Info

Publication number
JP4557829B2
JP4557829B2 JP2005212199A JP2005212199A JP4557829B2 JP 4557829 B2 JP4557829 B2 JP 4557829B2 JP 2005212199 A JP2005212199 A JP 2005212199A JP 2005212199 A JP2005212199 A JP 2005212199A JP 4557829 B2 JP4557829 B2 JP 4557829B2
Authority
JP
Japan
Prior art keywords
separator
voltage
positive
pulse
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005212199A
Other languages
Japanese (ja)
Other versions
JP2007035288A (en
Inventor
秀樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005212199A priority Critical patent/JP4557829B2/en
Publication of JP2007035288A publication Critical patent/JP2007035288A/en
Application granted granted Critical
Publication of JP4557829B2 publication Critical patent/JP4557829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、鉛蓄電池の検査方法、特に正・負極間に高電圧のパルスを印加し、極板間の空間ギャップ距離によって印加する電圧を可変させセパレータの抜けやバリを検出する鉛蓄電池の検査方法に関するものである。 The present invention relates to a lead-acid battery inspection method, in particular, a lead-acid battery inspection in which a high-voltage pulse is applied between the positive and negative electrodes, and the applied voltage is varied according to the space gap distance between the electrode plates to detect separation of the separator and burrs. It is about the method.

自動車用鉛蓄電池を製造する途中の工程として、搬送ラインを介して順次搬送されてくる正・負極板間にセパレータを挿入し、複数枚の極板とセパレータとが交互に積層されて構成される極板群が形成され、これを電槽内に収容しセパレータの良否判定の検査が行われる。この検査は、セパレータの有無や短絡を検知するものであり、正・負極間に高電圧を印加することで行われている。 As a process in the process of manufacturing lead-acid batteries for automobiles, a separator is inserted between positive and negative electrodes that are sequentially conveyed through a conveyance line, and a plurality of electrode plates and separators are alternately stacked. An electrode plate group is formed, and this is accommodated in a battery case, and the separator is checked for quality. This inspection detects the presence or absence of a separator or a short circuit, and is performed by applying a high voltage between the positive and negative electrodes.

例えば、未注液の蓄電池の極板間に電圧を印加し、この電圧の印加を開始してから所定時間経過後に、一定時間に渡って極板間の電圧の変動を検出し、極板間の電圧の変動の大きさが閾値を超えた場合に、蓄電池が不良であることを判定するもの(特許文献1)や、1000〜3000Vの高電圧で、且つパルス幅が5〜20μsの印加電圧を発生させ、セルをまたがって極板群の正・負極板間に加えて内部短絡の検出を行うもの(特許文献2)などが提案されている。
特開2002−110217号公報 特開昭51−16439号公報
For example, a voltage is applied between the electrode plates of an uninjected storage battery, and after a predetermined time has elapsed since the start of this voltage application, voltage fluctuations between the electrode plates are detected over a certain period of time. When the magnitude of voltage fluctuation exceeds the threshold value, it is determined that the storage battery is defective (Patent Document 1), or an applied voltage having a high voltage of 1000 to 3000 V and a pulse width of 5 to 20 μs. (Patent Document 2) and the like have been proposed in which an internal short circuit is detected across the cells and added between the positive and negative electrode plates of the electrode plate group.
JP 2002-110217 A Japanese Patent Laid-Open No. 51-16439

しかしながら、特許文献1記載の方法ではセパレータの抜け落ちや極板の曲がり等による不良を判定する際に極板間に高電圧を印加し続けるため、連続して印加された電圧により極板間で絶縁破壊が起きコロナ放電を起こし、正常なセパレータに穴を空けてしまう恐れがあった。特許文献2の方法では、高電圧パルスはパルス間隔17〜20ms、パルス幅20〜50μsに1パルスのみ発生するもので、セパレータが無い状態であっても、活物質の脱落を防止するため、極板表面に紙を貼り付ける場合があるが、この場合は紙により絶縁性が保たれているので、1パルスでは正確にセパレータの抜けや内部短絡の検出が行われない可能性があった。 However, in the method described in Patent Document 1, since a high voltage is continuously applied between electrode plates when a failure due to separator dropping or electrode plate bending is determined, insulation is performed between the electrode plates by continuously applied voltage. There was a risk of destruction, corona discharge, and opening a hole in a normal separator. In the method of Patent Document 2, only one pulse is generated with a pulse interval of 17 to 20 ms and a pulse width of 20 to 50 μs. In order to prevent the active material from dropping even when there is no separator, In some cases, paper is affixed to the surface of the plate. In this case, since insulation is maintained by the paper, there is a possibility that separation of the separator and internal short-circuit detection may not be accurately performed with one pulse.

このような背景の下、正・負極板間のセパレータの抜けを容易に、且つ、精度良く検出して、極板群の構造の良否を高い信頼性の下で判断することができ、同時にバリの発生を検知することで内部短絡の有無を判定できる鉛蓄電池の検査方法を提供することが望まれている。 Under such a background, it is possible to easily and accurately detect the separation of the separator between the positive and negative electrode plates, and judge the quality of the electrode plate group structure with high reliability. It is desired to provide a method for inspecting a lead storage battery that can determine the presence or absence of an internal short circuit by detecting the occurrence of this.

本発明は、複数枚の正・負極板をセパレータを介して交互に積層して構成される極板群の相対向する正・負極板群のストラップ部を介して群単位、または、相対向する正・負極板を1組ずつ順に高電圧のパルスを印加する検査方法において、該高電圧のパルスは相対向する正・負極板1組の空間ギャップ距離によって印加する印加電圧およびパルス間隔およびパルス幅およびパルス数を可変させ、前記印加電圧を絶縁破壊の起きる電圧以上とし、前記パルス間隔を5〜40msとし、前記パルス幅を1〜20μsとし、且つパルス数を下記の数式(数1)に示す印加電圧、パルス間隔、パルス幅との相関関係用いて算出し、セパレータの抜けやバリを検出することを特徴としたものである。 In the present invention, a plurality of positive / negative electrode plates are alternately stacked via separators, and a group unit or opposed to each other via strap portions of positive / negative electrode plate groups facing each other. In an inspection method in which a high voltage pulse is sequentially applied to each pair of positive and negative plates, the high voltage pulse is applied according to a spatial gap distance between a pair of opposite positive and negative plates, an applied voltage, a pulse interval, and a pulse width. Further, the number of pulses is varied, the applied voltage is set to be equal to or higher than the voltage at which dielectric breakdown occurs, the pulse interval is set to 5 to 40 ms, the pulse width is set to 1 to 20 μs, and the number of pulses is expressed by the following formula (Formula 1). It is calculated by using the correlation with the applied voltage, the pulse interval, and the pulse width, and detects the separation of the separator and burrs.

また、パルス数は、パルス間隔を印加電圧とパルス幅で除した値の相関関係を利用して算出し推定することを特徴としたものである。 Further, the number of pulses is obtained by, characterized in that calculated using correlation value obtained by dividing the pulse interval applied voltage and pulse width estimation.

本発明では、相対向する正・負極板1組のセパレータが抜けたときのギャップ距離(以下、空間ギャップ距離と称する)によって印加する印加電圧およびパルス間隔およびパルス幅およびパルス数を可変させセパレータの抜けやバリを検出するものである。極板間の距離が一定であるとき、コロナ放電が起こるのは印加電圧、印加時間(パルス間隔、パルス幅)およびパルス数によってほぼ決定される。そこで、空間ギャップ距離によってコロナ放電が起こり得る印加電圧、印加時間(パルス間隔、パルス幅)およびパルス数をセパレータが抜け極板表面に貼り付けられた紙等(以下、絶縁紙等と称する)がある場合にも誤判定しない値(コロナ放電が起こる値)としておくことで、セパレータが抜け絶縁紙等がある場合にも良否判定を正確に行うことができる。 In the present invention, the applied voltage, the pulse interval, the pulse width, and the number of pulses are varied by changing the gap distance (hereinafter referred to as the space gap distance) when a pair of opposing positive and negative electrode plates are removed. It detects missing or burrs. When the distance between the electrode plates is constant, the occurrence of corona discharge is substantially determined by the applied voltage, the applied time (pulse interval, pulse width), and the number of pulses. Therefore, there is a paper or the like (hereinafter referred to as insulating paper or the like) on which the separator is removed and the applied voltage, application time (pulse interval, pulse width) and number of pulses that can cause corona discharge depending on the space gap distance are adhered to the electrode plate surface. By setting a value that does not make an erroneous determination (a value that causes corona discharge) even in some cases, it is possible to accurately determine whether the separator is removed and there is insulating paper or the like.

なおコロナ放電とは、高電圧をかけ強い電場の領域が局在するとき局部的な放電が起きる領域のことである。本発明で言うコロナ放電とは、セパレータがない状態でコロナ放電を起こす場合(以下、導通と称する)と、セパレータがある状態で長時間の電圧のかけ過ぎでセパレータの貫通によるコロナ放電を起こす場合(以下、絶縁破壊と称する)との2通りに大別している。 The corona discharge is a region where a local discharge occurs when a high voltage is applied and a region of a strong electric field is localized. The corona discharge referred to in the present invention is a case where corona discharge occurs in the absence of a separator (hereinafter referred to as conduction), and a case where corona discharge due to penetration of the separator occurs due to excessive application of voltage for a long time in the presence of the separator. (Hereinafter referred to as dielectric breakdown).

本発明による鉛蓄電池の検査方法を用いることにより、極板間のセパレータの抜けを容易に精度良く検出することが可能であると共に、極板のバリの検出も行うことのできる鉛蓄電池の検査方法を提供することができる。 By using the lead storage battery inspection method according to the present invention, it is possible to easily detect the separation of the separator between the electrode plates with high accuracy, and also to detect the burr of the electrode plate. Can be provided.

本発明の実施の形態を、図1および図2により説明する。 An embodiment of the present invention will be described with reference to FIGS.

本発明の鉛蓄電池の検査方法は、正・負極板をセパレータを介して交互に積層して構成される極板群を電槽に挿入し、電解液を注液する前に相対向する正・負極板群のストラップ部を介して群単位、または、相対向する正・負極板を1組ずつ順に高電圧パルスを印加することにより、セパレータの抜けやバリを正確に検出することを特徴としたものである。図1は本発明の一実施形態を示す説明図であり、図2は本発明品の検査方法を使用したときのチャート図である。 The method for inspecting a lead storage battery of the present invention inserts an electrode plate group formed by alternately laminating positive and negative electrode plates with separators into a battery case, and injects positive and negative electrodes before injecting an electrolyte solution. Separation of separators and burrs are accurately detected by applying a high voltage pulse in order to each group unit or each pair of opposing positive and negative electrode plates via the strap part of the negative electrode plate group. Is. FIG. 1 is an explanatory view showing an embodiment of the present invention, and FIG. 2 is a chart when the inspection method for the product of the present invention is used.

図1は、本発明の一実施形態を示す説明図であり、1は高電圧パルス発生器、11は計測用のプローブ、2は正極板21・負極板22をセパレータ23を介して交互に積層して構成される極板群、3a、3bは正・負極の極板群の耳部24をそれぞれキャストオンストラップ方式(以下、COS方式と称する)によって接続したストラップ部である。 FIG. 1 is an explanatory view showing an embodiment of the present invention, where 1 is a high voltage pulse generator, 11 is a probe for measurement, 2 is a laminate of positive plates 21 and negative plates 22 alternately with separators 23 interposed therebetween. The electrode plate groups 3a and 3b configured as described above are strap portions in which the ears 24 of the positive and negative electrode plate groups are connected by a cast-on-strap method (hereinafter referred to as COS method).

図1に示すように、正極板21と負極板22をセパレータ23を介して交互に積層して構成される極板群2をCOS方式によって正・負極板の各々の耳部24を接合した後、電槽(図示せず)に収納し、電解液の注液前にセパレータ23の抜けを検査する。パルス発生装置1により高電圧パルスを発生させ相対向する正・負極板群のストラップ部3a、3bにプローブ11を介して群単位で印加する。そして、高電圧の電圧パルスを印加しセパレータの抜けおよびバリの有無の良否判定を電流値により検出する。電流値を検出後、良品と判定されたものは次工程へ搬送され、不良品と判定されたものは工程から取り除かれる。なお、電圧パルスは相対向する正・負極のストラップ部3a、3bを介して群単位で印加したが、プロー11をそれぞれ相対向する一枚毎の正・負極板に順次当接することで正・負極各一枚からなる一組の極板間の良否判定を行うようにしても良い。 As shown in FIG. 1, after the electrode plate group 2 constituted by alternately stacking the positive electrode plates 21 and the negative electrode plates 22 via the separators 23 is joined to the respective ear portions 24 of the positive and negative electrode plates by the COS method. The battery is stored in a battery case (not shown), and the separator 23 is inspected for leakage before the electrolyte is injected. A high voltage pulse is generated by the pulse generator 1 and applied to the strap portions 3a and 3b of the opposing positive and negative electrode plate groups via the probe 11 in groups. Then, a voltage pulse of high voltage is applied, and the pass / fail determination of the presence or absence of separators and burrs is detected from the current value. After the current value is detected, those determined to be non-defective are conveyed to the next process, and those determined to be defective are removed from the process. Incidentally, the strap portion 3a of the positive and negative voltage pulses which faces have been applied in the group unit through 3b, positive by sequentially contacting the probe 11 to the positive and negative electrode plates of each one of opposed respectively -You may make it perform the quality determination between a pair of electrode plates which consist of one piece of each negative electrode.

セパレータの抜けの良否判定は、正・負極間で導通が起きたかどうかで判定する。導通が起きたかどうかは電流測定器(図示せず)を用いて電流値の変化により判定を行う。導通が起こるのは印加電圧、印加時間(パルス間隔、パルス幅)およびパルス数によってほぼ決定されるので、例えば高電圧パルス発生器を用いて印加電圧、印加時間(パルス間隔、パルス幅)およびパルス数を一定とし電流値の変化によりセパレータの抜けの良否判定を行うことが可能である。 Whether or not the separator is removed is determined by whether or not conduction has occurred between the positive and negative electrodes. Whether or not conduction has occurred is determined by a change in current value using a current measuring device (not shown). Since conduction is determined substantially by the applied voltage, the applied time (pulse interval, pulse width), and the number of pulses, the applied voltage, applied time (pulse interval, pulse width) and pulse using, for example, a high voltage pulse generator. It is possible to determine whether the separator is missing or not by changing the current value with a constant number.

セパレータが正常に入っている場合(良品)は、セパレータによって正・負極間の絶縁が保たれており、導通は起きず電流値は変化しない。本発明において、導通が起きるのは、セパレータが抜けた場合である。セパレータが抜けている場合(不良品)は、導通が起こり電流値が変化するのでセパレータの抜けを正確に検出することができる。なお、セパレータが抜けていて極板表面に貼り付けられた絶縁紙等により絶縁が保たれる場合があるが、本発明では空間ギャップ距離によってセパレータが抜けたときに、セパレータが抜け極板表面に貼り付けられた絶縁紙等がある場合にも誤判定しない値(導通する値)としてあるので、セパレータが抜け絶縁紙等がある場合にも良否判定を正確に行うことができる。 When the separator is in a normal state (non-defective product), the insulation between the positive and negative electrodes is maintained by the separator, no conduction occurs and the current value does not change. In the present invention, conduction occurs when the separator comes off. When the separator is missing (defective product), conduction occurs and the current value changes, so that the separator can be accurately detected. Insulation may be maintained by insulating paper or the like attached to the surface of the electrode plate when the separator is removed, but in the present invention, when the separator is removed due to the space gap distance, the separator is removed and the surface of the electrode plate is removed. Since there is a value that does not make an erroneous determination (a value that conducts) even when there is an attached insulating paper or the like, it is possible to accurately determine whether or not the separator is removed and there is insulating paper or the like.

また、バリの有無の検査もセパレータの抜けの良否判定と同様の方法で同時に行うことが可能であり、バリが無い場合には導通は起きず電流値に変化は無いが、バリがある場合には導通が起き電流値が変化するため、バリの有無を容易に判定することができる。なお、セパレータが正常に入っている場合でもバリが生じているものは、絶縁破壊が起こり不良品として判断され工程から取り除かれる。 In addition, the inspection for the presence or absence of burrs can be performed at the same time in the same manner as the determination of whether or not the separator is missing. When there is no burrs, conduction does not occur and there is no change in the current value. Since continuity occurs and the current value changes, the presence or absence of burrs can be easily determined. In addition, even if the separator is in a normal state, if a burr is generated, dielectric breakdown occurs and it is determined as a defective product and is removed from the process.

図2は電圧パルスを印加した本発明の検査のチャートを示したものである。例えば、印加電圧(v)を時間(t1)のパルス幅で印加した場合、導通電流(セパレータの有無)を電圧印加後時間(t2)で検出し、セパレータの抜けの良否判定を行い、良否判定時間(t3)の間に導通電流の有無を確認する。良否判定を行う際、電流値に変動が無い場合は良品と判定し次工程に搬送するが、電流値に変動がある場合はセパレータ抜けまたはバリによる内部短絡などによる不良品と判断する。高電圧を印加している時間はt1と極短い時間に限られるため、コロナ放電によりセパレータに穴をあける心配は無い。図示の例では、印加電圧により導通電流が流れ、良否判定信号がONして不良と判断した例である。その後出力の停止信号が出て次の電圧印加に備える。 FIG. 2 shows an inspection chart of the present invention in which a voltage pulse is applied. For example, when the applied voltage (v) is applied with a pulse width of time (t1), the conduction current (presence / absence of separator) is detected at time (t2) after voltage application, and the pass / fail judgment of separator separation is performed. During the time (t3), the presence or absence of conduction current is confirmed. When performing the pass / fail determination, if there is no fluctuation in the current value, it is judged as a non-defective product and conveyed to the next process, but if there is a fluctuation in the current value, it is judged as a defective product due to a separator missing or an internal short circuit due to burrs. Since the time during which the high voltage is applied is limited to a time as extremely short as t1, there is no fear of making a hole in the separator by corona discharge. In the example shown in the figure, a conduction current flows according to the applied voltage, and the pass / fail judgment signal is turned ON to determine that the failure is detected. After that, an output stop signal is output to prepare for the next voltage application.

(試験1)
公知の方法によって作製された正極板および負極板の表面に紙を貼付しセパレータを介して交互に積層して構成される極板群に、ストラップ部を公知のCOS方式を用いて溶接し、その後極板群を電槽内に収納し電槽に蓋を施す前の鉛蓄電池(半製品)を作製した。そして、電解液を注液する前に絶縁破壊の検査を行った。絶縁破壊検査は、パルス電圧発生装置により高電圧パルスを発生させ相対向する正・負極板群のストラップ部にプローブを介して群単位で印加した。この際、電槽に挿入した時に極板群の正負極板間に配置されたセパレータの厚みが0.35mmとなる様にし、印加電圧を1.2〜2.5kVと変化させ電流値を測定し、絶縁破壊が起こるか否かの測定を行った。印加したパルス幅は300μsとし、1パルスのみ印加した。
結果は、全ての電圧において、セパレータの抜けのない良品であるにも係らず絶縁破壊が発生した。
(Test 1)
The strap part is welded to the electrode plate group formed by pasting paper on the surfaces of the positive electrode plate and the negative electrode plate manufactured by a known method and alternately laminated via a separator using a known COS method, and then A lead storage battery (semi-finished product) was prepared before the electrode plate group was housed in the battery case and the battery case was covered. Then, the dielectric breakdown was inspected before the electrolyte solution was injected. In the dielectric breakdown test, a high voltage pulse was generated by a pulse voltage generator and applied to the strap portions of the opposing positive and negative electrode plate groups in groups via a probe. At this time, when inserted into the battery case, the thickness of the separator disposed between the positive and negative plates of the electrode plate group is set to 0.35 mm, the applied voltage is changed from 1.2 to 2.5 kV, and the current value is measured. Then, whether or not dielectric breakdown occurs was measured. The applied pulse width was 300 μs, and only one pulse was applied.
As a result, dielectric breakdown occurred at all voltages despite the fact that the separator was a non-defective product.

(試験2)
次に、試験1で用いた鉛蓄電池(半製品)と同じものを用い、セパレータを抜いた不良品とセパレータの抜けのない良品を用意し、印加するパルス電圧を20msの間隔で2μsのパルス幅の電圧を15パルス印加した。結果は、1.3kV迄はセパレータの無い不良品に対して導通せず良品と誤判定し、1.4kV以上ではセパレータが正常に配置されているものを絶縁破壊により不良と誤判定した。
(Test 2)
Next, use the same lead-acid battery (semi-finished product) used in Test 1, prepare a defective product with the separator removed, and a good product with no separator removed, and apply a pulse voltage of 2 μs at an interval of 20 ms. 15 pulses were applied. As a result, up to 1.3 kV, a defective product without a separator was judged not good because it did not conduct, and at 1.4 kV or more, a separator that was normally arranged was judged as defective due to dielectric breakdown.

(試験3)
更に、試験2において、印加するパルス電圧を20msの間隔で2μsのパルス幅の電圧を3パルス印加した結果、1.5kV以下の電圧ではセパレータの無い不良品を良品と誤判定し、1.7kV以上の電圧ではセパレータが正常に配置されているものを不良と誤判定したが、1.6kVの電圧の場合は、セパレータの無いものは不良品と判定し、セパレータのあるものは良品と判定し、その判定は良好なものであった。
(Test 3)
Furthermore, in Test 2, as a result of applying 3 pulses of a pulse width of 2 μs at an interval of 20 ms as a pulse voltage to be applied, a defective product without a separator is erroneously determined as a non-defective product at a voltage of 1.5 kV or less, and is 1.7 kV. With the above voltage, the separator with the separator arranged correctly was mistakenly judged as defective. However, when the voltage is 1.6 kV, the separator without the separator is judged as defective, and the separator with the separator is judged as non-defective. The determination was good.

(試験4)
上記試験結果を踏まえ、試験1で用いた鉛蓄電池(半製品)において、用いるセパレータの厚みを種々変えて電槽内に収納した際に正負極板間距離を0.15、0.275、0.325、0.35、0.4、0.45mmと種々変化させ、更にセパレータを抜いた不良品とし、印加電圧を1.0〜1.8kVと変化させ、試験3と同様にパルス電圧を20msの間隔で2μsのパルス幅の電圧を3パルス印加して、導通する電圧を測定した。その結果表1に示す。
(Test 4)
Based on the above test results, when the lead-acid battery (semi-finished product) used in Test 1 was stored in the battery case with various separator thicknesses, the distance between the positive and negative electrode plates was 0.15, 0.275, 0. .325, 0.35, 0.4, 0.45 mm, and a defective product with the separator removed. The applied voltage was changed from 1.0 to 1.8 kV, and the pulse voltage was changed in the same manner as in Test 3. Three pulses of a voltage having a pulse width of 2 μs were applied at intervals of 20 ms, and the conducting voltage was measured. The results are shown in Table 1.

表1に示すように、導通が起きる電圧は正・負極板の空間ギャップ距離(抜けたセパレータの電槽内での厚み)によって異なることが分かる。空間ギャップ距離が長くなると導通が起きる電圧も高くなり、逆に空間ギャップ距離が短くなると導通が起きる電圧も低くなる。空間ギャップ距離が0.35mmの場合、1.6kV未満の電圧では導通は起こらず、1.6kVより高い電圧では導通が起きた。例えば極板群を電槽に収納した際に0.35mmの正・負極板の間隔を保持するセパレータを用いた場合、セパレータが抜けた時の空間ギャップ距離は約0.35mmとなり、これを検出する場合、1.6Vの印加電圧が良いことが分かる。即ち、空間ギャップ距離において、導通が起きる電圧値以上を印加すれば良い。以下、表1に示した導通が起きる電圧と空間ギャップ距離の関係をもとに試験を行った。   As shown in Table 1, it can be seen that the voltage at which conduction occurs varies depending on the space gap distance between the positive and negative electrode plates (thickness of the separator in the battery case). As the spatial gap distance increases, the voltage at which conduction occurs increases, and conversely, as the spatial gap distance decreases, the voltage at which conduction occurs. When the spatial gap distance was 0.35 mm, conduction did not occur at a voltage lower than 1.6 kV, and conduction occurred at a voltage higher than 1.6 kV. For example, when a separator is used that holds a gap between the positive and negative electrode plates of 0.35 mm when the electrode plate group is stored in the battery case, the space gap distance when the separator is removed is about 0.35 mm, which is detected. When it does, it turns out that the applied voltage of 1.6V is good. That is, it is sufficient to apply a voltage value higher than the voltage at which conduction occurs at the spatial gap distance. Hereinafter, tests were conducted based on the relationship between the voltage at which conduction occurs and the space gap distance shown in Table 1.

(試験5)
次に、試験1と同様に鉛蓄電池(半製品)を作製し、表1に示される空間ギャップ距離において、それぞれ対応する導通が起きる電圧を用い、試験3におけるパルス間隔を5〜40msと5ms間隔で変化させた結果、パルス間隔が短い場合は、セパレータがある正常なものを絶縁破壊により不良品と誤判断し、パルス間隔の長い場合は、セパレータを抜いてあるものも導通せず良品とご判断する傾向にあった。
(Test 5)
Next, a lead-acid battery (semi-finished product) was produced in the same manner as in Test 1, and the pulse intervals in Test 3 were set to 5 to 40 ms and 5 ms intervals using the voltages at which the corresponding conduction occurs at the spatial gap distances shown in Table 1, respectively. If the pulse interval is short as a result of the change, the normal one with the separator is mistakenly judged as a defective product due to dielectric breakdown, and if the pulse interval is long, the one with the separator removed is not conductive and is regarded as a good product. There was a tendency to judge.

(試験6)
次に、試験1と同様に鉛蓄電池(半製品)を作製し、表1に示される空間ギャップ距離において、それぞれ対応する導通が起きる電圧を用い、試験3におけるパルス間隔を20msと一定にしてパルス幅をそれぞれ1、2、3、5、10、20μsと変化させた結果、パルス幅を大きくするとセパレータのある良品も絶縁破壊により不良品と誤判定する傾向にあった。
(Test 6)
Next, a lead-acid battery (semi-finished product) was prepared in the same manner as in Test 1, and the pulse with the pulse interval in Test 3 was kept constant at 20 ms using the voltage at which the corresponding conduction occurs at the spatial gap distance shown in Table 1. As a result of changing the width to 1, 2, 3, 5, 10, 20 μs, respectively, when the pulse width was increased, a good product with a separator tended to be erroneously determined as a defective product due to dielectric breakdown.

(試験7)
次に、試験1と同様に鉛蓄電池(半製品)を作製し、表1に示される空間ギャップ距離において、それぞれ対応する導通が起きる電圧を用い、試験3におけるパルス幅2μs、パルス間隔20msと一定にして印加するパルス数を1〜15回と変化させた結果、パルス数を多くするとセパレータのある良品も絶縁破壊により不良品と誤判定する傾向にあった。
(Test 7)
Next, a lead-acid battery (semi-finished product) was prepared in the same manner as in Test 1, and the voltage at which the corresponding conduction occurs at the spatial gap distance shown in Table 1 was used, and the pulse width in Test 3 was 2 μs and the pulse interval was 20 ms. As a result of changing the number of applied pulses to 1 to 15 times, when the number of pulses was increased, a good product with a separator tended to be erroneously determined as a defective product due to dielectric breakdown.

試験1〜7により、表1に示される空間ギャップ距離において、それぞれ対応する導通が起きる電圧を用いる場合、パルス数は印加電圧、パルス間隔、パルス幅とは相関関係があることが判った。
経験則により、その式はおおよそ以下の(数1)で表される。
From tests 1 to 7, it was found that the number of pulses correlates with the applied voltage, the pulse interval, and the pulse width when using voltages at which the corresponding conduction occurs at the spatial gap distances shown in Table 1.
According to an empirical rule, the equation is approximately expressed by the following (Equation 1).

(数1)
但し、定数Kは1.0/mm、絶縁破壊電界は空気の値で、3.35kV/mmである。
(Equation 1)
However, the constant K is 1.0 / mm, and the dielectric breakdown electric field is the value of air, which is 3.35 kV / mm.

同一空間ギャップ距離において、誤差判定無く検出することができるパルス数は、試験1〜7によりパルス間隔が広くなるほど多く、印加電圧が高くなるほど、またパルス幅が広くなるほど少なくなる。この相関関係より、何パルスで誤判定無く検出することが可能であるかを容易に推定し判断することができる。例えば、空間ギャップ距離が0.35mm、印加電圧1.6kV、パルス間隔20ms、パルス幅2μsの場合、パルス数は1.7〜3.7となり、可能なパルス数はほぼ2〜4で、この範囲の適当な数値を選択することで誤判定なく検出することが出来た。 In the same spatial gap distance, the number of pulses that can be detected without error determination increases as the pulse interval increases in tests 1 to 7, and decreases as the applied voltage increases and the pulse width increases. From this correlation, it is possible to easily estimate and determine how many pulses can be detected without erroneous determination. For example, when the spatial gap distance is 0.35 mm, the applied voltage is 1.6 kV, the pulse interval is 20 ms, and the pulse width is 2 μs, the number of pulses is 1.7 to 3.7, and the number of possible pulses is approximately 2 to 4. By selecting an appropriate value in the range, it was possible to detect without misjudgment.

試験1と同様に鉛蓄電池(半製品)を作製し、電解液を注液する前にパルス発生器を用いて印加電圧1.6kVでパルス間隔20ms、パルス幅2μsとしたとき(数1)よりパルス数3回とした。電圧パルスは相対向する正・負極のストラップ部を介して群単位で印加し100組の極板群の良否判定を行った。なお、正・負極板の空間ギャップ距離を0.35mmとした。 When a lead-acid battery (semi-finished product) is prepared in the same manner as in Test 1 and before applying the electrolyte, using a pulse generator with an applied voltage of 1.6 kV and a pulse interval of 20 ms and a pulse width of 2 μs (Equation 1) The number of pulses was three. A voltage pulse was applied in groups via positive and negative strap portions facing each other, and the quality of 100 electrode groups was determined. The space gap distance between the positive and negative electrode plates was 0.35 mm.

(比較例1)
パルス数を15回とした以外は実施例1と同様に極板群の良否判定を行った。
(比較例2)
パルス幅を300μs連続とし、パルス数を1回のみ印加した以外は実施例1と同様に極板群の良否判定を行った。
(Comparative Example 1)
The quality of the electrode plate group was determined in the same manner as in Example 1 except that the number of pulses was 15.
(Comparative Example 2)
The quality of the electrode plate group was determined in the same manner as in Example 1 except that the pulse width was 300 μs continuous and the number of pulses was applied only once.

本発明の実施例1のように印加電圧1.6kVでパルス間隔20ms、パルス幅2μs、パルス数3回としたものでは良否判定を正確に行うことができ100組の極板群のうち誤判定をするものはなかった。しかし、比較例1では100組の極板群の内3組の良品を誤判定した。また、比較例2のように連続印加した場合は、100組の極板群のうち半数以上を誤判定した。 As in the first embodiment of the present invention, when the applied voltage is 1.6 kV, the pulse interval is 20 ms, the pulse width is 2 μs, and the number of pulses is 3 times, the pass / fail judgment can be made accurately, and the misjudgment among the 100 electrode groups. There was nothing to do. However, in Comparative Example 1, 3 sets of non-defective products out of 100 sets of electrode plates were erroneously determined. Further, in the case of continuous application as in Comparative Example 2, more than half of the 100 electrode plate groups were erroneously determined.

以上のとおり、(数1)を用いて印加電圧、パルス間隔、パルス幅およびパルス数を空間ギャップ距離によって規定することにより、正・負極間のセパレータの抜けを容易に、且つ、精度良く検出して極板群の構造の良否を高い信頼性の下で判断することができる。 As described above, by using (Equation 1) to define the applied voltage, pulse interval, pulse width, and number of pulses according to the spatial gap distance, it is possible to easily and accurately detect the separation of the separator between the positive and negative electrodes. Therefore, the quality of the electrode group can be judged with high reliability.

本発明第の実施形態を示す説明図。Explanatory drawing which shows the 1st Embodiment of this invention. 本発明実施形態を示すチャート図。The chart which shows this invention embodiment.

符号の説明Explanation of symbols

1 高電圧発生装置
11 プローブ
2 極板群
21 正極板
22 負極板
23 セパレータ
24 耳部
3a ストラップ部
3b ストラップ部
DESCRIPTION OF SYMBOLS 1 High voltage generator 11 Probe 2 Electrode plate group 21 Positive electrode plate 22 Negative electrode plate 23 Separator 24 Ear | edge part 3a Strap part 3b Strap part

Claims (2)

複数枚の正・負極板をセパレータを介して交互に積層して構成される極板群の相対向する正・負極板群のストラップ部を介して群単位、または、相対向する正・負極板を1組ずつ順に高電圧のパルスを印加する検査方法において、該高電圧のパルスは相対向する正・負極板1組の空間ギャップ距離によって印加する印加電圧およびパルス間隔およびパルス幅およびパルス数を可変させ、前記印加電圧を絶縁破壊の起きる電圧以上とし、前記パルス間隔を5〜40msとし、前記パルス幅を1〜20μsとし、且つパルス数を下記の数1に示す印加電圧、パルス間隔、パルス幅との相関関係用いて算出し、セパレータの抜けやバリを検出することを特徴とする鉛蓄電池の検査方法。
(数1)
但し、定数Kは1.0/mm、絶縁破壊電界は空気の値で、3.35kV/mmである。
A group unit or a positive / negative electrode plate facing each other via a strap part of a positive / negative electrode plate group facing each other in a group of positive and negative electrode plates formed by alternately laminating a plurality of positive / negative electrode plates via separators In the inspection method in which high voltage pulses are sequentially applied to each pair, the high voltage pulses are determined by applying the applied voltage, pulse interval, pulse width, and number of pulses according to the space gap distance between the pair of positive and negative plates facing each other. The applied voltage is set to be equal to or higher than the voltage at which dielectric breakdown occurs, the pulse interval is set to 5 to 40 ms, the pulse width is set to 1 to 20 μs, and the number of pulses is expressed by the following formula 1, the applied voltage, the pulse interval, and the pulse A method for inspecting a lead-acid battery, characterized in that it is calculated using a correlation with the width and detects a separator missing or a burr.
(Equation 1)
However, the constant K is 1.0 / mm, and the dielectric breakdown electric field is the value of air, which is 3.35 kV / mm.
パルス数は、パルス間隔を印加電圧とパルス幅で除した値の相関関係を利用して算出し推定することを特徴とする請求項1記載の鉛蓄電池の検査方法。
2. The inspection method for a lead-acid battery according to claim 1, wherein the number of pulses is calculated and estimated using a correlation between a value obtained by dividing a pulse interval by an applied voltage and a pulse width.
JP2005212199A 2005-07-22 2005-07-22 Inspection method of lead acid battery Active JP4557829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212199A JP4557829B2 (en) 2005-07-22 2005-07-22 Inspection method of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212199A JP4557829B2 (en) 2005-07-22 2005-07-22 Inspection method of lead acid battery

Publications (2)

Publication Number Publication Date
JP2007035288A JP2007035288A (en) 2007-02-08
JP4557829B2 true JP4557829B2 (en) 2010-10-06

Family

ID=37794310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212199A Active JP4557829B2 (en) 2005-07-22 2005-07-22 Inspection method of lead acid battery

Country Status (1)

Country Link
JP (1) JP4557829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
CN105811031A (en) * 2016-05-13 2016-07-27 合肥国轩高科动力能源有限公司 Repairing method of diaphragm micro-damage battery
JP7124793B2 (en) * 2019-06-17 2022-08-24 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery
JP7360877B2 (en) * 2019-09-27 2023-10-13 旭化成株式会社 Separators for lead-acid batteries and lead-acid batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116439A (en) * 1974-07-31 1976-02-09 Japan Storage Battery Co Ltd
JPS56167277A (en) * 1980-05-27 1981-12-22 Shin Kobe Electric Mach Co Ltd Device for detecting reverse storage of electrode groups and separator deficiency in storage battery
JPS5835878A (en) * 1981-08-28 1983-03-02 Shin Kobe Electric Mach Co Ltd Inspection method of lead storage battery electrode group
JPS60155985A (en) * 1984-01-25 1985-08-16 Matsushita Electric Ind Co Ltd Short-circuiting inspection device
JPH1140210A (en) * 1997-07-18 1999-02-12 Furukawa Battery Co Ltd:The Method for inspecting short-circuit of alkaline secondary battery
JPH11135145A (en) * 1997-10-30 1999-05-21 Toshiba Battery Co Ltd Method for reducing short-circuit failure rate of alkaline storage battery
JP2000195565A (en) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd Inspection method of secondary battery
JP2001110458A (en) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd Method for inspecting short circuit of battery abd apparatus for inspecting short circuit of battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116439A (en) * 1974-07-31 1976-02-09 Japan Storage Battery Co Ltd
JPS56167277A (en) * 1980-05-27 1981-12-22 Shin Kobe Electric Mach Co Ltd Device for detecting reverse storage of electrode groups and separator deficiency in storage battery
JPS5835878A (en) * 1981-08-28 1983-03-02 Shin Kobe Electric Mach Co Ltd Inspection method of lead storage battery electrode group
JPS60155985A (en) * 1984-01-25 1985-08-16 Matsushita Electric Ind Co Ltd Short-circuiting inspection device
JPH1140210A (en) * 1997-07-18 1999-02-12 Furukawa Battery Co Ltd:The Method for inspecting short-circuit of alkaline secondary battery
JPH11135145A (en) * 1997-10-30 1999-05-21 Toshiba Battery Co Ltd Method for reducing short-circuit failure rate of alkaline storage battery
JP2000195565A (en) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd Inspection method of secondary battery
JP2001110458A (en) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd Method for inspecting short circuit of battery abd apparatus for inspecting short circuit of battery

Also Published As

Publication number Publication date
JP2007035288A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
CN111357145B (en) Method and apparatus for detecting damage to battery separator
US9076601B2 (en) Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
CN109856555B (en) Evaluation method and manufacturing method for power storage device, and test system
CN110168390B (en) Apparatus and method for inspecting secondary battery defects
US9917337B2 (en) Inspection method for film covered battery
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP2001236985A5 (en)
JP2008243439A (en) Abnormality detecting device of battery and abnormality detecting method of battery
KR20190078532A (en) Method of evaluating power storage device, evaluation jig, and method of manufacturing power storage device
JP4557829B2 (en) Inspection method of lead acid battery
CN105866181B (en) Inspection method and inspection system
JP5867089B2 (en) Short circuit inspection method for non-aqueous electrolyte secondary battery
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
JP6248751B2 (en) Power storage device inspection method
KR20180001351A (en) Method of the electrical and physical defect inspection between Lead-acid battery cell
JP2023525963A (en) Micro-short circuit detection method, test stand, and production line
JP6135469B2 (en) Power storage device inspection method
US20230160975A1 (en) Device for inspecting for electrode assembly defects before electrolyte injection and defect inspection method therefor
JP6295412B2 (en) Capacitor manufacturing method and capacitor inspection apparatus
US20240302454A1 (en) Method of evaluating power storage device, jig set, and method of producing power storage device
EP3943962B1 (en) Apparatus and method for inspecting defect of secondary battery
EP4249904A1 (en) Device and method for detecting internal defect of battery cell by using tdr
JP2023500225A (en) Welding defect inspection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3