[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4424936B2 - Uniform flow rate structure and flow rate measuring device in flow path - Google Patents

Uniform flow rate structure and flow rate measuring device in flow path Download PDF

Info

Publication number
JP4424936B2
JP4424936B2 JP2003280531A JP2003280531A JP4424936B2 JP 4424936 B2 JP4424936 B2 JP 4424936B2 JP 2003280531 A JP2003280531 A JP 2003280531A JP 2003280531 A JP2003280531 A JP 2003280531A JP 4424936 B2 JP4424936 B2 JP 4424936B2
Authority
JP
Japan
Prior art keywords
flow
flow path
flow rate
divided
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003280531A
Other languages
Japanese (ja)
Other versions
JP2005049181A (en
Inventor
貴之 古川
輝彦 友広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003280531A priority Critical patent/JP4424936B2/en
Publication of JP2005049181A publication Critical patent/JP2005049181A/en
Application granted granted Critical
Publication of JP4424936B2 publication Critical patent/JP4424936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流路内において、ガス・水などの流体を均一に流すための均一化構造およびこの均一化構造を用いた超音波式流量計測装置に関するものである。   The present invention relates to a homogenization structure for uniformly flowing a fluid such as gas or water in a flow path, and an ultrasonic flow measuring device using the homogenization structure.

従来、矩形状の流路の流量を計測する装置として、超音波を用いたものがある(例えば、特許文献1参照)。
この超音波式流量計測装置は、図7および図8に示すように、断面が矩形状の管体51の左右の両側壁部51aに、流体の流速を計測するための超音波送受信部52(52A,52B)を配置するとともに、これら超音波送受信部52A,52Bにて検出された超音波の伝播時間に基づき流体の流速を計測し、この流速から管体51内を流れる流体の流量を算出する流量演算部53を具備したものである。
Conventionally, as an apparatus for measuring the flow rate of a rectangular flow path, there is an apparatus using ultrasonic waves (see, for example, Patent Document 1).
As shown in FIGS. 7 and 8, this ultrasonic flow measuring device has an ultrasonic transmission / reception unit 52 (on the left and right side walls 51 a of a tubular body 51 having a rectangular cross section for measuring the fluid flow velocity. 52A, 52B), and the flow rate of the fluid is measured based on the propagation time of the ultrasonic waves detected by the ultrasonic transmission / reception units 52A, 52B, and the flow rate of the fluid flowing in the tubular body 51 is calculated from the flow velocity. The flow rate calculation unit 53 is provided.

そして、超音波送受信部52が配置された管体51の計測流路部Kには、管体51内を流れる流体の流速分布の二次元性を高めるために、流れRと平行に且つ高さ方向において2枚の仕切り板54が等間隔でもって配置されている。図7および図8に示すように、計測流路部Kより上流側において、高さ方向および奥行き方向に放物線状(放物線に近いという意味で用いており、以下、同じ。)の分布を有する三次元的な流速分布P61を持つ流れが、計測流路部Kにて3つに分割され、すなわち縦横比の小さな流路から縦横比の大きな流路に分割されることで奥行き方向の分布が平坦化される。このように、仕切り板54を配置することにより、計測流路部Kでの流れの二次元性が高められ、上記超音波送受信部52に、流速分布の全域が包含され易くなることで、計測精度の向上が図られている。
特開平9−43015号公報;2頁〔0003〕〜3頁〔0019〕
In addition, the measurement flow path portion K of the tube body 51 in which the ultrasonic transmission / reception unit 52 is disposed has a height parallel to the flow R and height in order to enhance the two-dimensionality of the flow velocity distribution of the fluid flowing in the tube body 51. Two partition plates 54 are arranged at equal intervals in the direction. As shown in FIGS. 7 and 8, a tertiary having a parabolic distribution (used in the sense of being close to a parabola, and the same shall apply hereinafter) in the height direction and the depth direction on the upstream side of the measurement flow path portion K. The flow having the original flow velocity distribution P61 is divided into three at the measurement flow path section K, that is, the flow in the depth direction is flattened by dividing the flow from the small aspect ratio into the large aspect ratio. It becomes. As described above, by arranging the partition plate 54, the two-dimensionality of the flow in the measurement flow path section K is enhanced, and the ultrasonic transmission / reception section 52 is easily included in the entire flow velocity distribution. The accuracy is improved.
JP 9-43015 A; pages 2 [0003] to pages 3 [0019]

しかしながら、上述した従来の構成によると、各仕切り板54の上流端である前端縁の位置が流れに対して同じ位置にされているため、その上流側での流速分布P61でもってそのまま計測流路部Kに流れ込み、したがって各分割流路における流速分布(速度の大きさ、例えば平均流速)P62が異なるため、すなわち各分割流路を流れる流体の流量が均一にならないため、計測流速の絶対値が、真の平均流速と大きくずれるという問題があった。   However, according to the above-described conventional configuration, the position of the front end edge, which is the upstream end of each partition plate 54, is set to the same position with respect to the flow. Since the flow velocity distribution (the magnitude of the velocity, for example, the average flow velocity) P62 in each divided flow path P62 is different, that is, the flow rate of the fluid flowing through each divided flow path is not uniform, the absolute value of the measured flow velocity is There was a problem that it deviated greatly from the true average flow velocity.

そこで、本発明は、上記課題を解決するもので、仕切り板により分割された各分割流路を流れる流体の流量が、より均一となるような流路における流量均一化構造、およびこの流量均一化構造を用いて、流量の計測精度の向上を図り得る超音波式流量計測装置を提供することを目的とする。   Accordingly, the present invention solves the above-described problem, and a flow rate equalization structure in a flow channel in which the flow rate of a fluid flowing through each divided flow channel divided by a partition plate becomes more uniform, and the flow rate uniformization An object of the present invention is to provide an ultrasonic flow rate measuring device capable of improving the flow rate measurement accuracy using the structure.

上記目的を達成するために、本発明の請求項1に係る流路における流量均一化構造は、断面が矩形状の流路内に流れと平行に、且つ当該流路断面積を均等に分割するように第1仕切り板を配置し、
上記第1仕切り板により分割された分割流路内に流れと平行に、且つ当該分割管路断面積を均等に分割するように第2仕切り板を配置するとともに、当該第2仕切り板の上流端を第1仕切り板の上流端よりも下流側に位置させ、
上記第1仕切り板の上流側における流路壁面および上記第2仕切り板の上流側における分割流路壁面に乱流促進部を設けたものである。
In order to achieve the above object, the flow rate equalization structure in the flow channel according to claim 1 of the present invention divides the flow channel cross-sectional area evenly in parallel with the flow into the rectangular flow channel. Arrange the first partition as
The second partition plate is disposed in the divided flow path divided by the first partition plate in parallel with the flow and so as to divide the divided pipe cross-sectional area equally, and the upstream end of the second partition plate Is positioned downstream of the upstream end of the first partition plate,
A turbulent flow promoting portion is provided on the channel wall surface on the upstream side of the first partition plate and on the split channel wall surface on the upstream side of the second partition plate.

この流量均一化構造によると、流路を分割する仕切り板の上流側の流路の壁面に乱流促進部を配置して乱流を促進するようにしたので、壁面近傍で急な速度勾配となり、また壁面近傍以外の部分では、全体として緩やかな速度勾配を有する中央がやや平坦な流速分布となり、したがって仕切り板により分割される各流路における流量の均一化を図り得る。 According to this flow equalization structure, a turbulent flow promoting portion is arranged on the wall surface of the flow channel upstream of the partition plate that divides the flow channel to promote turbulent flow. In addition, in the portion other than the vicinity of the wall surface, the center having a gentle velocity gradient as a whole has a slightly flat flow velocity distribution, so that the flow rate in each flow path divided by the partition plate can be made uniform.

特に、流路断面を仕切り板により、大分割流路から小分割流路へと2段でもって分割するとともに、これら各分割流路への上流側の流路の壁面に、それぞれ乱流促進部を配置したので、小分割流路における壁面近傍以外の部分では、全体として緩やかな速度勾配を有する中央がより平坦な流速分布となり、したがって当該小分割流路における流量の均一化を一層図り得る。 In particular, the channel cross-section is divided into two stages from the large divided flow channel to the small divided flow channel by the partition plate, and the turbulence promoting portions are respectively formed on the wall surfaces of the upstream flow channels to these divided flow channels. than placing the, in the portion other than the near-wall in the small split flow channel, the center becomes more flat flow velocity distribution with moderate velocity gradient as a whole, thus further obtaining achieving uniform flow rate in the subdivision passage .

さらに、請求項2に係る超音波式流量計測装置は、請求項1に記載の流量均一化構造を有する流路の途中に、当該流路を横切る方向でもって超音波の送受信部を配置するとともに、
この超音波送受信部における超音波の伝播時間に基づき流路を流れる流体の流量を演算する流量演算部を具備したものである。
Furthermore, ultrasonic type flow measuring device according to claim 2, in the middle of the channel having a flow equalizing structure according to claim 1, together with a direction crossing the flow path to place the transmission and reception of ultrasonic waves ,
A flow rate calculation unit that calculates the flow rate of the fluid flowing through the flow path based on the propagation time of the ultrasonic wave in the ultrasonic transmission / reception unit is provided.

この流量計測装置によると、請求項1に記載の流量均一化構造に係る部分に、超音波送受信部を配置して分割流路を流れる流量を計測するようにしたので、流体の流量を、より正確に計測し得る。 According to this flow rate measuring device, since the ultrasonic transmission / reception unit is arranged in the portion related to the flow rate equalizing structure according to claim 1 to measure the flow rate flowing through the divided flow path, the flow rate of the fluid is further increased. It can be measured accurately.

以上のように本発明の請求項1に係る流量均一化構造によると、流路を分割する仕切り板の上流側の流路の壁面に乱流促進部を配置して乱流を促進するようにしたので、壁面近傍以外の部分では、全体として緩やかな速度勾配を有する中央がやや平坦な流速分布となり、したがって仕切り板により分割される各流路における流量の均一化を図ることができる。 As described above, according to the flow equalization structure according to the first aspect of the present invention, the turbulent flow promoting portion is arranged on the wall surface of the flow channel on the upstream side of the partition plate dividing the flow channel so as to promote the turbulent flow. Therefore, in the portion other than the vicinity of the wall surface, the center having a gentle velocity gradient as a whole has a slightly flat flow velocity distribution, so that the flow rate in each flow path divided by the partition plate can be made uniform.

特に、流路断面を第1仕切り板およびその下流側に配置された第2仕切り板により、大分割流路から小分割流路へと2段でもって分割するとともに、これら各分割流路への上流側の流路の壁面に、それぞれ乱流促進部を配置したので、小分割流路における壁面近傍以外の部分では、全体として緩やかな速度勾配を有する中央がより平坦な流速分布となり、したがって当該小分割流路における流量の均一化を一層図ることができる。 In particular, the flow path cross section is divided into two stages from the large divided flow path to the small divided flow path by the first partition plate and the second partition plate disposed downstream thereof , and the wall surface of the upstream side of the flow channel, in each of arranging the turbulence promoting portion, the portion other than the near-wall in the small split flow channel, the center becomes more flat flow velocity distribution with moderate velocity gradient as a whole, thus The flow rate in the small divided flow path can be made more uniform.

さらに、請求項2に係る流量計測装置によると、請求項1に記載の流量均一化構造に係る部分に、超音波送受信部を配置して分割流路を流れる流量を計測するようにしたので、流体の流量を、より正確に計測することができる。 Furthermore, according to the flow rate measuring device according to claim 2 , since the ultrasonic transmission / reception unit is arranged in the portion related to the flow rate equalizing structure according to claim 1 , the flow rate flowing through the divided flow path is measured. The flow rate of the fluid can be measured more accurately.

以下、本発明の実施の形態に係る流路における流量均一化構造を、図面を参照しながら説明するが、まず、本発明の流量均一化構造に係る基本的構成について説明する。
[基本的構成について]
図1および図2は、本発明の基本的構成における流路の均一化構造および流れの流速分布を示す断面図である。
Hereinafter, a flow rate uniformizing structure in a flow channel according to an embodiment of the present invention will be described with reference to the drawings . First, a basic configuration according to the flow uniformizing structure of the present invention will be described.
[Basic configuration]
FIG. 1 and FIG. 2 are cross-sectional views showing a flow path homogenizing structure and a flow velocity distribution in the basic configuration of the present invention .

本基本的構成に係る流体(例えば、ガス、水など)を流す管体(流路および管路でもある)1としては、断面が矩形状のものが使用される。
すなわち、この管体1は、左右の側板2と、これら両側板2,2の上下に配置された上板3および下板(底板)4とから構成されており、例えば高さよりも幅が広くされている。
As a tubular body (which is also a flow path and a pipeline) 1 for flowing a fluid (for example, gas, water, etc.) according to this basic configuration, one having a rectangular cross section is used.
That is, the tubular body 1 is composed of left and right side plates 2, and an upper plate 3 and a lower plate (bottom plate) 4 disposed above and below the both side plates 2 and 2, for example, wider than the height. Has been.

そして、この管体1内には、所定長さの仕切り板5が高さ方向において2枚(1枚、または3枚以上でもよい)等間隔でもって且つ流れRに沿う方向で配置されている。言い換えれば、管体1内の流路断面積が高さ方向で3等分されて、3つの分割流路S(多層流路部ともいう)が形成されたことになる。   And in this pipe body 1, the partition plate 5 of predetermined length is arrange | positioned in the direction along the flow R at equal intervals in the height direction (it may be 1 sheet or 3 sheets or more). . In other words, the channel cross-sectional area in the tube body 1 is divided into three equal parts in the height direction, and three divided channels S (also referred to as multilayer channel portions) are formed.

さらに、これら仕切り板5より少し離れた上流側位置の管体1の内壁面1aの上下に乱流促進部材(乱流促進部)6が設けられている。
この乱流促進部材6としては例えば表面が粗くされた紙やすりが用いられ、所定幅でもって、内壁面1aの上下(上板3および下板4の内表面である)に沿って貼り付けられている。
Furthermore, turbulent flow promoting members (turbulent flow promoting portions) 6 are provided above and below the inner wall surface 1a of the tubular body 1 at a position slightly upstream from these partition plates 5.
As the turbulent flow promoting member 6, for example, a sandpaper having a rough surface is used, and is pasted along the upper and lower sides of the inner wall surface 1a (the inner surfaces of the upper plate 3 and the lower plate 4) with a predetermined width. ing.

この構成において、上流側にて速度勾配が大きい放物線状の流速分布P11を持つ流れは、乱流促進部材6により乱流が促進されるため、壁面近傍以外の部分では、全体として緩やかな速度勾配を有するとともに中央がやや平坦な台形状に近い流速分布P12に変化し、そしてこの台形状に近い流速分布の流れが仕切り板5により分割されるため、各分割流路Sを流れる流量の均一化が図られる。なお、図中、P13は各分割流路Sでの流速分布を示す。   In this configuration, the flow having a parabolic flow velocity distribution P11 having a large velocity gradient on the upstream side is promoted by the turbulent flow promoting member 6, and therefore, as a whole, a gentle velocity gradient is provided in portions other than the vicinity of the wall surface. The flow rate distribution P12 near the trapezoidal shape is changed to a substantially flat trapezoidal shape at the center, and the flow of the flow velocity distribution close to the trapezoidal shape is divided by the partition plate 5. Is planned. In addition, P13 shows the flow-velocity distribution in each division | segmentation flow path S in the figure.

すなわち、管体1内に複数枚の仕切り板5を配置して、管体1内を流れる流量を均等に分割する際に、その上流側に配置された乱流促進部材6により、流れを乱流に促進させて、壁面近傍を除いた中央部分の流速分布が平坦状になる流れとしたので、仕切り板6にて仕切られる各分割流路Sをそれぞれ通過する流量の均一化を図ることができる。なお、壁面の粗さスケールが粘性底層厚みより大きい場合に、流速分布P12には普遍性があることが知られているので、仕切り板5で流れを分割する際に、流量配分の制御が容易となる。   That is, when a plurality of partition plates 5 are arranged in the tubular body 1 and the flow rate flowing through the tubular body 1 is equally divided, the flow is disturbed by the turbulence promoting member 6 disposed on the upstream side thereof. Since the flow velocity is promoted to flow and the flow velocity distribution in the central portion excluding the vicinity of the wall surface is made flat, it is possible to equalize the flow rate passing through each divided flow path S partitioned by the partition plate 6. it can. In addition, when the wall surface roughness scale is larger than the viscous bottom layer thickness, it is known that the flow velocity distribution P12 has universality. Therefore, when the flow is divided by the partition plate 5, the flow distribution can be easily controlled. It becomes.

さらに、乱流促進部材6にて流速分布が平坦状にされた流れを仕切り板5により分割するため、仕切り板5が管体1内で、組立て誤差などの理由により、上下に微妙にずれて配置された場合でも、各分割流路Sを流れる流量の差が大きくならず、したがって仕切り板5の位置の設計上の公差を緩く(甘く)することができる。   Further, since the flow whose flow velocity distribution is made flat by the turbulent flow promoting member 6 is divided by the partition plate 5, the partition plate 5 is slightly shifted up and down in the tube 1 due to an assembly error or the like. Even in the case of the arrangement, the difference in the flow rate flowing through each divided flow path S does not increase, and therefore the design tolerance of the position of the partition plate 5 can be loosened (sweetened).

なお、上述した基本的構成においては、乱流促進部材6を内壁面の上面および下面に設置したが、両側面に且つ高さ方向でもって設けてもよい(例えば、図1の番号7にて示す)。 In the basic configuration described above , the turbulent flow promoting members 6 are installed on the upper surface and the lower surface of the inner wall surface, but may be provided on both side surfaces and in the height direction (for example, at reference numeral 7 in FIG. 1). Show).

[実施の形態1]
図3および図4は、上述した基本的構成を踏まえた本発明の実施の形態1に係る流路の均一化構造および流れの流速分布を示すものである。
[Embodiment 1]
3 and 4 show the flow channel homogenization structure and flow velocity distribution according to Embodiment 1 of the present invention based on the basic configuration described above .

実施の形態1に係る流体(例えば、ガス、水など)を流す管体(流路および管路でもある)は、上述した基本的構成と同様に、断面が矩形状のものを使用するとともに、流路の分割を大から小へと2段で行うようにしたものである。 The tubular body (which is also a flow path and a pipeline) through which a fluid (for example, gas, water, etc.) according to the first embodiment is used has a rectangular cross section as in the basic configuration described above. The flow path is divided into two stages from large to small.

すなわち、この管体11は、左右の側板12と、これら両側板12,12の上下に配置された上板13および下板(底板)14とから構成されており、例えば高さよりも幅が広くされている。   That is, the tubular body 11 is composed of left and right side plates 12, and an upper plate 13 and a lower plate (bottom plate) 14 disposed above and below the both side plates 12 and 12, for example, wider than the height. Has been.

そして、この管体11は、所定長さの第1仕切り板15が高さ方向の中央位置に配置されて上下に2つの大分割流路S1が形成されるとともに、これら各大分割流路S1が、第1仕切り板15より所定距離だけ下流側位置で且つ各大分割流路部S1の高さ方向の中央位置に配置された第2仕切り板16により、それぞれ上下に2つの小分割流路部S2に分割されている。なお、第2仕切り板16は、第1仕切り板15よりも流れRの下流側に配置されるが、その下流端である後端縁は同一の位置にされている。   In the tubular body 11, the first partition plate 15 having a predetermined length is disposed at the center position in the height direction to form two large divided flow paths S1 up and down, and each of the large divided flow paths S1. However, the second partition plate 16 disposed at a position downstream of the first partition plate 15 by a predetermined distance and at the center in the height direction of each of the large divided flow channel portions S1 has two small divided flow channels vertically. Divided into part S2. In addition, although the 2nd partition plate 16 is arrange | positioned in the downstream of the flow R rather than the 1st partition plate 15, the rear-end edge which is the downstream end is made into the same position.

さらに、上記第1仕切り板15の上流端である前端縁よりも上流側位置の内壁面11aの上下には、第1乱流促進部材(乱流促進部)17が設けられるとともに、第2仕切り板16の上流端である前端縁よりも上流側位置の内壁面11aおよび壁面15aには、第2乱流促進部材(乱流促進部)18が設けられている。   Furthermore, a first turbulent flow promoting member (turbulent flow promoting portion) 17 is provided above and below the inner wall surface 11a at a position upstream from the front edge that is the upstream end of the first partition plate 15, and a second partition is provided. A second turbulent flow promoting member (turbulent flow promoting portion) 18 is provided on the inner wall surface 11a and the wall surface 15a on the upstream side of the front edge that is the upstream end of the plate 16.

これら乱流促進部材17,18としては、例えば表面が粗くされた紙やすりが用いられるとともに、所定幅でもって、内壁面11aおよび第1仕切り板15の上下の壁面15a(以下、内壁面と壁面とを一緒に述べる場合、壁面等と称する)に貼り付けられる。   As these turbulent flow promoting members 17 and 18, for example, sandpaper having a rough surface is used, and the inner wall surface 11 a and the upper and lower wall surfaces 15 a of the first partition plate 15 (hereinafter referred to as the inner wall surface and the wall surface) have a predetermined width. Is referred to as a wall surface or the like).

この構成において、上流側にて速度勾配が大きい放物線状の流速分布P21を持つ流れは、第1乱流促進部材17にて乱流が促進されて、壁面近傍以外の部分では、全体として緩やかな速度勾配を有するとともに中央がやや平坦な台形状に近い流速分布P22に変化し、そしてこの台形状に近い流速分布の流れが、第1仕切り板15により上下に等しく分割されるとともに、第2乱流促進部材18により、さらに各小分割流路S2での乱流が促進され、やはり、壁面近傍以外の部分では、全体としてより緩やかな速度勾配を有するとともに中央がより平坦な台形状の流速分布P23に変化した後、それぞれ第2仕切り板16により上下にさらに等しく分割される。なお、図中、P24は各小分割流路S2での流速分布を示す。   In this configuration, the flow having the parabolic flow velocity distribution P21 having a large velocity gradient on the upstream side is promoted by the first turbulence promoting member 17 and is gentle as a whole in portions other than the vicinity of the wall surface. The flow velocity distribution P22 has a velocity gradient and the center changes to a slightly flat trapezoidal shape, and the flow of the flow velocity distribution close to the trapezoidal shape is equally divided vertically by the first partition plate 15, and the second disturbance The flow promoting member 18 further promotes the turbulent flow in each of the small divided flow paths S2. Again, the portion other than the vicinity of the wall surface has a gentler velocity gradient as a whole and a trapezoidal flow velocity distribution with a flatter center. After changing to P23, it is further divided equally up and down by the second partition plate 16, respectively. In the figure, P24 indicates the flow velocity distribution in each small divided flow path S2.

すなわち、管体11内の流れを、第1仕切り板15により、大きく2つに分割した後、それぞれをさらに2つに分割するとともに、大小の分割流路S1,S2の上流側にはそれぞれ乱流促進部材17,18を設けたので、基本的構成にて説明したものに比べて、管体1内における流量の均一化を、より一層図ることができる。 That is, the flow in the tube body 11 is roughly divided into two parts by the first partition plate 15 and then divided into two parts, and the upstream side of the large and small divided flow paths S1 and S2 is turbulent. Since the flow promoting members 17 and 18 are provided, the flow rate in the tube 1 can be made more uniform than that described in the basic configuration .

なお、本実施の形態1においても、上述した基本的構成にて説明したように、乱流促進部材17,18を壁面等の上面および下面に設置したが、両側面に且つ高さ方向でもって設けてもよい。 In the first embodiment as well, as described in the basic configuration described above, the turbulence promoting members 17 and 18 are installed on the upper and lower surfaces of the wall surface or the like, but on both sides and in the height direction. It may be provided.

また、上記実施の形態1においては、乱流促進部材として壁面に紙やすりを貼り付けたものを用いたが、同様の粗さスケールに相当する粗さで壁面等1a,11a,15aをサンドブラスト等の手段で粗くしてもよい。この場合、この粗い壁面部が乱流促進部となる。 In the first embodiment , the turbulent flow promoting member is made of sandpaper pasted on the wall surface. However, the wall surface 1a, 11a, 15a is sandblasted or the like with a roughness corresponding to the same roughness scale. It may be roughened by the means. In this case, this rough wall surface portion becomes a turbulent flow promoting portion.

また、同様の粗さスケールに相当する粗さ機能を発揮し得る金網を内壁面に貼り付けたり、同様の粗さスケールに相当する直径を有するワイヤを、その軸心方向が流れ方向R1と直交するように、壁面等1a,11a,15a上に配置してもよい。   In addition, a wire mesh capable of exhibiting a roughness function corresponding to the same roughness scale is attached to the inner wall surface, or a wire having a diameter corresponding to the same roughness scale has an axial direction orthogonal to the flow direction R1. As shown, it may be arranged on the wall surfaces 1a, 11a, 15a.

また、同様の粗さスケールに相当する高さを有する微細な円柱を、その軸心方向が流れ方向R1と直交するように、壁面等1a,11a,15a上に垂直に立設してもよい。
また、同様の粗さスケールに相当する高さを有する微細な凹凸部を、流れ方向Rに伸びるストライプ状の部材でもって、壁面等1a,11a,15aに形成してもよい。
Further, a fine cylinder having a height corresponding to the same roughness scale may be erected vertically on the wall surfaces 1a, 11a, and 15a such that the axial direction is perpendicular to the flow direction R1. .
Further, fine uneven portions having a height corresponding to the same roughness scale may be formed on the wall surfaces 1a, 11a, and 15a with striped members extending in the flow direction R.

さらに、図3および図4(図1および図2も同様であるが)において、乱流促進部材6,17,18を流れ方向Rに沿って有限の長さとして図示したが、壁面等1a,11a,15aの全面に設けることもできる。 Further, in FIGS. 3 and 4 (the same applies to FIGS. 1 and 2) , the turbulence promoting members 6, 17 and 18 are illustrated as having a finite length along the flow direction R. It can also be provided on the entire surface of 11a, 15a.

次に、本発明の実施の形態に係る流路における流量計測装置を、図面を参照しながら説明する。
なお、以下に説明する流量計測装置は、上述した流路における流量均一化構造を用いたもので、この流量均一化構造における流路内の流量を超音波を用いて計測するものである。したがって、流量均一化構造については、基本的構成および実施の形態1において説明したものと同一であるため、同一符号を用いて、その詳細な説明を省略する。
Next, a flow rate measuring device in a flow channel according to an embodiment of the present invention will be described with reference to the drawings.
The flow rate measuring apparatus described below uses the above-described flow rate uniforming structure in the flow channel, and measures the flow rate in the flow channel in the flow rate uniforming structure using ultrasonic waves. Accordingly, the flow rate uniform structure is the same as that described in the basic configuration and the first embodiment, and therefore, the same reference numerals are used and detailed description thereof is omitted.

[基本的構成に係る流量計測装置]
本発明の基本的構成に係る流量計測装置は、上述した基本的構成に係る管路の流量均一化構造を用いたもので、その計測対象の流体としては、例えば、ガス、水などである。
[Flow measurement device according to basic configuration]
The flow rate measuring device according to the basic configuration of the present invention uses the flow rate uniformizing structure of the pipe line according to the basic configuration described above, and examples of the fluid to be measured include gas and water.

すなわち、図5に示すように、この流量計測装置21は、上述した基本的構成にて説明した流量均一化構造、すなわち上流側に乱流促進部材6が設けられた分割流路Sが具備された断面矩形状の管体部22と、この管体部22の外壁部を形成する左右の側板2にそれぞれ筒状の取付部材23を介して取り付けられた一対の超音波送受信部(超音波振動子などが用いられる)24(24A,24B)と、この超音波送受信部24間での超音波の伝播時間(伝達時間、到達時間ともいう)を検出するとともに当該伝播時間に基づき流速を求めた後、この流速に基づき流体の流量を算出する流量演算部25とから構成されている。なお、超音波送受信部24は、超音波が分割流路Sの中間部を横切るような位置に取り付けられる。 That is, as shown in FIG. 5, the flow rate measuring device 21 includes the flow rate uniformizing structure described in the basic configuration described above, that is, the divided flow path S in which the turbulent flow promoting member 6 is provided on the upstream side. A pair of ultrasonic transmission / reception units (ultrasonic vibration) each having a tubular section 22 having a rectangular cross section and left and right side plates 2 forming the outer wall of the tubular section 22 via cylindrical mounting members 23. 24 (24A, 24B) and the ultrasonic wave transmission time (also referred to as transmission time or arrival time) between the ultrasonic wave transmitting / receiving unit 24 and the flow velocity were obtained based on the propagation time. Thereafter, the flow rate calculation unit 25 calculates the flow rate of the fluid based on the flow velocity. The ultrasonic transmission / reception unit 24 is attached at a position where the ultrasonic wave crosses the middle part of the divided flow path S.

また、この流量演算部25においては、予め、被計測流体の種々の流れに応じて、分割流路(超音波計測領域ともいう)S内での流速と管体(流路)1内の平均流速との関係が補正係数として記憶されており、計測された流速から補正係数を用いて管体1内での平均流速が求められる。   In the flow rate calculation unit 25, the flow velocity in the divided flow path (also referred to as an ultrasonic measurement region) S and the average in the pipe body (flow path) 1 are previously determined according to various flows of the fluid to be measured. The relationship with the flow velocity is stored as a correction coefficient, and the average flow velocity in the tube 1 is obtained from the measured flow velocity using the correction coefficient.

なお、超音波送受信部24A,24Bの取り付け方向は、流れ方向Rに対して、水平面内で所定角度θ(但し、0°<θ<90°の範囲であるが、0°に近い方が望ましい)でもって傾斜するように取り付けられる。   Note that the ultrasonic transmitting / receiving units 24A and 24B are attached to the flow direction R in a horizontal plane at a predetermined angle θ (however, 0 ° <θ <90 °, but preferably close to 0 °. ) So that it can be tilted.

この構成において、分割流路S内を流れる流体の流速は、超音波送受信部24A,24B間で交互に発信されて受信される超音波の伝播時間として検出され、この伝播時間の差に基づき流体の平均流速が求められ、この流速に流路の断面積を掛けることにより、管体1内を流れる流体の流量を求める、すなわち計測することができる。   In this configuration, the flow velocity of the fluid flowing in the divided flow path S is detected as the propagation time of ultrasonic waves transmitted and received alternately between the ultrasonic transmission / reception units 24A and 24B, and based on the difference in propagation time The flow rate of the fluid flowing in the tube 1 can be obtained, that is, measured, by multiplying the flow velocity by the cross-sectional area of the flow path.

上述したように、分割流路Sを流れる流体の速度を計測して流量を求める際に、乱流促進部材6にて当該分割流路Sに流入する流体の流速分布の平坦化を図るようにしたので、単に、仕切り板により管体内を分割しただけの構成に比べて、各分割流路Sを流れる流量の均一化が図られ、したがって流体の流量を、より正確に計測することができる。   As described above, when the flow rate of the fluid flowing through the divided flow path S is measured to obtain the flow rate, the turbulence promoting member 6 flattens the flow velocity distribution of the fluid flowing into the divided flow path S. Therefore, compared to a configuration in which the tubular body is simply divided by the partition plate, the flow rate flowing through each divided flow path S is made uniform, and thus the flow rate of the fluid can be measured more accurately.

[実施の形態2]
本発明の実施の形態2に係る流量計測装置は、上述した実施の形態1に係る流路の流量均一化構造を用いたもので、その計測対象の流体としては、例えばガス、水などである。
[Embodiment 2]
The flow rate measuring apparatus according to the second embodiment of the present invention uses the flow rate uniformizing structure of the flow path according to the above-described first embodiment , and examples of the fluid to be measured include gas and water. .

すなわち、図6に示すように、この流量計測装置31は、実施の形態1にて説明した流量均一化構造、すなわち上流側にそれぞれ乱流促進部材17,18が設けられた各分割流路S1,S2が具備された断面矩形状の管体部32と、この管体部32の外壁部を形成する左右の側板2にそれぞれ筒状の取付部材33を介して取り付けられた一対の超音波送受信部(超音波振動子などが用いられる)34(34A,34B)と、この超音波送受信部34A,34B間での超音波の伝播時間(伝達時間、到達時間ともいう)を検出するとともに当該伝播時間の差に基づき流速を求めた後、この流速に基づき流体の流量を算出する流量演算部35とから構成されている。なお、この超音波送受信部34は、超音波が小分割流路S2の中間部を横切るような位置に取り付けられる。 That is, as shown in FIG. 6, the flow rate measuring device 31 includes the flow equalization structure described in the first embodiment , that is, each divided flow path S <b> 1 provided with the turbulent flow promoting members 17 and 18 on the upstream side. , S2 and a pair of ultrasonic transmission / reception units attached to the left and right side plates 2 forming the outer wall portion of the tubular body part 32 through cylindrical attachment members 33, respectively. The ultrasonic wave propagation time (also referred to as transmission time or arrival time) is detected between the transmission unit 34 (34A, 34B) and the ultrasonic transmission / reception units 34A, 34B. The flow rate calculation unit 35 calculates the flow rate of the fluid based on the flow rate after obtaining the flow rate based on the time difference. In addition, this ultrasonic transmission / reception part 34 is attached in the position where an ultrasonic wave crosses the intermediate part of small division flow path S2.

また、この流量演算部35においては、予め、被計測流体の種々の流れに応じて、小分割流路(超音波計測領域ともいう)S2内での流速と管体(流路)11内の平均流速との関係が補正係数として記憶されており、計測された流速から補正係数を用いて管体11内での平均流速が求められる。   Further, in the flow rate calculation unit 35, the flow rate in the small divided flow path (also referred to as an ultrasonic measurement region) S2 and the flow rate in the tube body (flow path) 11 according to various flows of the fluid to be measured in advance. The relationship with the average flow velocity is stored as a correction coefficient, and the average flow velocity in the tube body 11 is obtained from the measured flow velocity using the correction coefficient.

なお、超音波送受信部34A,34Bの取り付け方向は、流れ方向Rに対して、水平面内で所定角度θ(但し、0°<θ<90°の範囲であるが、0°に近い方が望ましい)でもって傾斜するように取り付けられる。   Note that the attachment direction of the ultrasonic transmission / reception units 34A and 34B is a predetermined angle θ in the horizontal plane with respect to the flow direction R (however, 0 ° <θ <90 °, but is preferably close to 0 °. ) So that it can be tilted.

この構成において、小分割流路S2内を流れる流体の流速は、超音波送受信部34A,34B間で交互に発信されて受信される超音波の伝播時間として検出され、この伝播時間に基づき流体の平均流速が求められ、この流速に流路の断面積を掛けることにより、管体11内を流れる流体の流量を求める、すなわち計測することができる。   In this configuration, the flow velocity of the fluid flowing in the small divided flow path S2 is detected as the propagation time of the ultrasonic wave transmitted and received alternately between the ultrasonic transmission / reception units 34A and 34B, and based on this propagation time, the flow rate of the fluid is detected. An average flow velocity is obtained, and by multiplying the flow velocity by the cross-sectional area of the flow path, the flow rate of the fluid flowing in the tube body 11 can be obtained, that is, measured.

上述したように、大分割流路S1から小分割流路S2内に流入する流体の速度を計測して流量を求める際に、各乱流促進部材17,18により、大分割流路S1および小分割流路S2に流入する流体の流速分布の平坦化を一層図るようにしたので、単に、仕切り板により1段でもって分割しただけの構成に比べて、流体の流量を、より一層、正確に計測することができる。すなわち、各小分割流路S2を流れる流量は一定となり、流量の大小に拘わらず、補正係数を一定に設定でき、したがって流量の演算が容易となる。   As described above, when the flow rate is obtained by measuring the velocity of the fluid flowing from the large divided flow path S1 into the small divided flow path S2, the large divided flow path S1 and the small divided flow path S1 and the small divided flow paths 17 and 18 are obtained. Since the flow velocity distribution of the fluid flowing into the divided flow path S2 is further flattened, the flow rate of the fluid can be more accurately and accurately compared with a configuration in which the flow is divided only by one stage by the partition plate. It can be measured. That is, the flow rate flowing through each of the small divided flow paths S2 is constant, and the correction coefficient can be set constant regardless of the flow rate, thus facilitating calculation of the flow rate.

ところで、上記実施の形態2においては、大分割流路S1および小分割流路S2がそれぞれ2つずつとなるように分割したが、勿論、それぞれ2つに限定されるものではなく、例えば一方を3つまたは4つ以上に分割したり、また両方を3つまたは4つ以上に分割してもよい。 By the way, in the said Embodiment 2 , although it divided | segmented so that each of the large division | segmentation flow path S1 and the small division | segmentation flow path S2 might become two each, of course, it is not limited to two each, For example, one side is divided. You may divide | segment into 3 or 4 or more, and may divide both into 3 or 4 or more.

また、上記基本的構成に係る流量計測装置および実施の形態2に係る流量計測装置において説明した流量均一化構造についても、基本的構成に係る流量均一化構造および実施の形態1に係る流量均一化構造の箇所で、追加説明した内容を適用することができる。 As for the flow rate uniform structures Oite described flow rate measuring apparatus according to the flow measurement apparatus and the second embodiment according to the basic configuration, the flow rate in accordance with the first flow rate equalizing structure and implementation according to the basic configuration The contents additionally described can be applied at the location of the uniform structure .

再度、説明しておくと、乱流促進部材として壁面に紙やすりを貼り付けたものを用いたが、同様の粗さスケールに相当する粗さで壁面等1a,11a,15aをサンドブラスト等の手段で粗くしてもよい。この場合、この粗い壁面部が乱流促進部となる。   To explain again, a turbulent flow promoting member with a sandpaper affixed to the wall surface is used. However, the wall surface 1a, 11a, 15a has a roughness equivalent to the same roughness scale and is a means such as sandblasting. It may be roughened with. In this case, this rough wall surface portion becomes a turbulent flow promoting portion.

また、同様の粗さスケールに相当する粗さ機能を発揮し得る金網を内壁面に貼り付けたり、同様の粗さスケールに相当する直径を有するワイヤを、その軸心方向が流れ方向R1と直交するように、壁面等1a,11a,15a上に配置してもよい。   In addition, a wire mesh capable of exhibiting a roughness function corresponding to the same roughness scale is attached to the inner wall surface, or a wire having a diameter corresponding to the same roughness scale has an axial direction orthogonal to the flow direction R1. As shown, it may be arranged on the wall surfaces 1a, 11a, 15a.

また、同様の粗さスケールに相当する高さを有する微細な円柱を、その軸心方向が流れ方向R1と直交するように、壁面等1a,11a,15a上に垂直に立設してもよい。
また、同様の粗さスケールに相当する高さを有する微細な凹凸部を、流れ方向Rに伸びるストライプ状の部材でもって、壁面等1a,11a,15aに形成してもよい。
Further, a fine cylinder having a height corresponding to the same roughness scale may be erected vertically on the wall surfaces 1a, 11a, and 15a such that the axial direction is perpendicular to the flow direction R1. .
Further, fine uneven portions having a height corresponding to the same roughness scale may be formed on the wall surfaces 1a, 11a, and 15a with striped members extending in the flow direction R.

なお、図5および図6において、乱流促進部材7,17,18を流れ方向Rに沿って有限の長さとして図示したが、壁面等1a,11a,15aの全面に設けることもできる。   5 and 6, the turbulent flow promoting members 7, 17, and 18 are illustrated as having a finite length along the flow direction R, but may be provided on the entire surface of the wall surfaces 1a, 11a, and 15a.

本発明に係る流量均一化構造の基本的構成を示す管体の断面図である。It is sectional drawing of the tubular body which shows the fundamental structure of the flow volume equalization structure which concerns on this invention. 基本的構成における管体の要部切欠斜視図である。It is a principal part notch perspective view of the tubular body in the same basic composition . 本発明の実施の形態1に係る流量均一化構造を示す管体の断面図である。It is sectional drawing of the tubular body which shows the flow volume equalization structure which concerns on Embodiment 1 of this invention. 実施の形態1に係る管体の要部切欠斜視図である。It is a principal part notch perspective view of the tubular body concerning Embodiment 1. FIG. 本発明に係る超音波式流量計測装置の基本的構成を示す要部切欠斜視図である。It is a principal part notch perspective view which shows the basic composition of the ultrasonic type flow measuring device concerning the present invention. 本発明の実施の形態2に係る超音波式流量計測装置の構造を示す要部切欠斜視図である。It is a principal part notch perspective view which shows the structure of the ultrasonic flow measuring device which concerns on Embodiment 2 of this invention. 従来例に係る超音波式流量計測装置の構造を示す要部切欠斜視図である。It is a principal part notch perspective view which shows the structure of the ultrasonic type flow measuring device which concerns on a prior art example. 従来例に係る管体の断面図である。It is sectional drawing of the tubular body which concerns on a prior art example.

1 管体
5 仕切り板
6 乱流促進部材
11 管体
15 第1仕切り板
16 第2仕切り板
17 第1乱流促進部材
18 第2乱流促進部材
21 超音波式流量計測装置
22 管体部
24 超音波送受信部
25 流量演算部
31 超音波式流量計測装置
32 管体部
34 超音波送受信部
35 流量演算部
DESCRIPTION OF SYMBOLS 1 Tube 5 Partition plate 6 Turbulence promotion member 11 Tube 15 1st partition plate 16 2nd partition plate 17 1st turbulence promotion member 18 2nd turbulence promotion member 21 Ultrasonic flow measuring device 22 Tube part 24 Ultrasonic transmission / reception unit 25 Flow rate calculation unit 31 Ultrasonic flow measurement device 32 Tubular unit 34 Ultrasonic transmission / reception unit 35 Flow rate calculation unit

Claims (2)

断面が矩形状の流路内に流れと平行に、且つ当該流路断面積を均等に分割するように第1仕切り板を配置し、
上記第1仕切り板により分割された分割流路内に流れと平行に、且つ当該分割管路断面積を均等に分割するように第2仕切り板を配置するとともに、当該第2仕切り板の上流端を第1仕切り板の上流端よりも下流側に位置させ、
上記第1仕切り板の上流側における流路壁面および上記第2仕切り板の上流側における分割流路壁面に乱流促進部を設けたことを特徴とする流路における流量均一化構造。
The first partition plate is disposed so that the cross section of the flow path is parallel to the flow in the rectangular flow path and the flow path cross-sectional area is equally divided .
The second partition plate is disposed in the divided flow path divided by the first partition plate in parallel with the flow and so as to divide the divided pipe cross-sectional area equally, and the upstream end of the second partition plate Is positioned downstream of the upstream end of the first partition plate,
A flow equalization structure in a flow path, wherein a turbulent flow promoting portion is provided on a flow path wall surface upstream of the first partition plate and a divided flow path wall surface upstream of the second partition plate.
請求項1に記載の流量均一化構造を有する流路の途中に、当該流路を横切る方向でもって超音波の送受信部を配置するとともに、
この超音波送受信部における超音波の伝播時間に基づき流路を流れる流体の流量を演算する流量演算部を具備したことを特徴とする超音波式流量計測装置。
In the middle of the flow path having the flow uniform structure according to claim 1, an ultrasonic transmission / reception unit is arranged in a direction crossing the flow path,
An ultrasonic flow measuring device comprising a flow rate calculation unit for calculating a flow rate of a fluid flowing through a flow path based on an ultrasonic propagation time in the ultrasonic transmission / reception unit.
JP2003280531A 2003-07-28 2003-07-28 Uniform flow rate structure and flow rate measuring device in flow path Expired - Fee Related JP4424936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280531A JP4424936B2 (en) 2003-07-28 2003-07-28 Uniform flow rate structure and flow rate measuring device in flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280531A JP4424936B2 (en) 2003-07-28 2003-07-28 Uniform flow rate structure and flow rate measuring device in flow path

Publications (2)

Publication Number Publication Date
JP2005049181A JP2005049181A (en) 2005-02-24
JP4424936B2 true JP4424936B2 (en) 2010-03-03

Family

ID=34266329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280531A Expired - Fee Related JP4424936B2 (en) 2003-07-28 2003-07-28 Uniform flow rate structure and flow rate measuring device in flow path

Country Status (1)

Country Link
JP (1) JP4424936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585434A (en) * 2018-09-10 2021-03-30 松下知识产权经营株式会社 Ultrasonic flowmeter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014673A (en) * 2007-07-09 2009-01-22 Panasonic Corp Multilayer flow channel member for ultrasonic fluid measuring instrument
NZ598472A (en) 2009-08-18 2014-07-25 Rubicon Res Pty Ltd Flow meter assembly, gate assemblies and methods of flow measurement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708282B2 (en) * 1991-02-18 1998-02-04 株式会社竹中製作所 Fluidic flow meter with micro flow sensor
JP2709203B2 (en) * 1991-05-14 1998-02-04 東京瓦斯株式会社 Fluidic flow meter
JPH06241858A (en) * 1993-02-15 1994-09-02 Oval Corp Straightening apparatus
JP3528347B2 (en) * 1995-08-03 2004-05-17 松下電器産業株式会社 Ultrasonic flow measurement device
JP2002228499A (en) * 2001-01-30 2002-08-14 Osaka Gas Co Ltd Ultrasonic flow rate measuring instrument
JP2002243515A (en) * 2001-02-14 2002-08-28 Ricoh Co Ltd Flow velocity measuring device
JP2003083791A (en) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd Flow rate-measuring apparatus and gas meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585434A (en) * 2018-09-10 2021-03-30 松下知识产权经营株式会社 Ultrasonic flowmeter
EP3851811A4 (en) * 2018-09-10 2021-11-03 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2005049181A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
US9453748B2 (en) Flow meter device
US9091575B2 (en) Ultrasonic flow-meter
JP4424936B2 (en) Uniform flow rate structure and flow rate measuring device in flow path
JP2002520583A (en) Multi-code flow meter
JP2020024149A (en) Ultrasonic flowmeter
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP2009264906A (en) Flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP6229144B2 (en) Flow measuring device
JP7021832B2 (en) Flow measuring device
KR100793088B1 (en) Ultrasonic multi circuit speed measurement, ultrasonic multi circuit flow measurement and ultrasonic distance measurement
JP4007861B2 (en) Ultrasonic flow meter
JP3935069B2 (en) Flow measuring device
JP4604520B2 (en) Flow measuring device
JP4007853B2 (en) Ultrasonic flow meter
JP4346458B2 (en) Ultrasonic flow meter
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP6496905B2 (en) Ultrasonic flow meter
JP7023105B2 (en) Flow measuring tube
JP4804872B2 (en) Ultrasonic flow meter
JP3953617B2 (en) Ultrasonic flow meter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP5145580B2 (en) Ultrasonic flow meter and flow measurement method
JP2017181230A (en) Flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees