[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1144561A - Ultrasonic flow rate and flow velocity meter - Google Patents

Ultrasonic flow rate and flow velocity meter

Info

Publication number
JPH1144561A
JPH1144561A JP9214047A JP21404797A JPH1144561A JP H1144561 A JPH1144561 A JP H1144561A JP 9214047 A JP9214047 A JP 9214047A JP 21404797 A JP21404797 A JP 21404797A JP H1144561 A JPH1144561 A JP H1144561A
Authority
JP
Japan
Prior art keywords
ultrasonic
conduit
pair
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214047A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shimizu
和義 清水
Hiroaki Ishikawa
博朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP9214047A priority Critical patent/JPH1144561A/en
Publication of JPH1144561A publication Critical patent/JPH1144561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy by setting an ultrasonic vibrator to a conduit of a nearly rectangular section having a pair of opposite sides of a breadth similar to or not larger than a size of the ultrasonic vibrator, and propagating ultrasonic waves uniformly at each area of different flow velocities in a fluid. SOLUTION: The breadth of the narrower inner wall face of a rectangular conduit 10 is set to a value similar to a size of ultrasonic vibrators 11a, 11b. The ultrasonic vibrators 11a, 11b are set on a pair of narrower confronting outer wall faces to be inclined to an axis of the conduit via wedges 12a, 12b. Many areas of different flow velocities are present in a lateral cross section of the conduit 10. Ultrasonic waves radiated from the ultrasonic vibrator 11a are propagated as nearly plane waves within the entire areas of the different flow velocities because a breadth of the conduit 10 is reduced almost to a breadth of the ultrasonic vibrator 11a. As a result, measured values of the flow velocities of all areas become a uniformly averaged value and approximate to a true value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波振動子を使
用して、管路内を流れる流体の流量や流速を計測する超
音波式流量・流速計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow / velocity meter for measuring a flow rate and a flow rate of a fluid flowing in a pipeline using an ultrasonic transducer.

【0002】[0002]

【従来の技術】従来、化学プラントや、浄水処理システ
ムなどにおいて、管路内を流れる気体や液体などの流体
の流量や流速を、超音波振動子を使用して計測する超音
波式流量・流速計が広く利用されている。上記従来の超
音波式流量・流速計の典型的なものでは、図4の横断面
図(A)と縦断面図(B)に例示するように、断面形状
が円形の管路20の外壁上の互いに対向する箇所に、プ
ラスチック楔22aと22bのそれぞれを介在させなが
ら超音波振動子21aと21bが設置される。
2. Description of the Related Art Conventionally, in a chemical plant, a water purification system, or the like, an ultrasonic flow rate and flow rate are used to measure the flow rate and flow rate of a fluid such as gas or liquid flowing in a pipeline using an ultrasonic vibrator. Meter is widely used. In a typical conventional ultrasonic flow / velocity meter, as shown in the cross-sectional view (A) and the vertical cross-sectional view (B) of FIG. The ultrasonic vibrators 21a and 21b are installed at the locations facing each other with the plastic wedges 22a and 22b interposed therebetween.

【0003】超音波振動子21a,21bは、プラスチ
ック楔22a,22bによって管軸に対して傾斜して設
置され、一方の超音波振動子から放射されて他方の超音
波振動子に受信される超音波は、(B)に示すように、
管軸と一定の角度θを成すように伝播する。各超音波振
動子に接続される図示しない算定手段において、時間差
法やシングアラウンド法などの適宜な計測手法を採用す
ることにより、各超音波振動子間を伝播する超音波の伝
播速度に基づき、管路20内を流れる気体や液体の流量
や流速が計測される。
The ultrasonic vibrators 21a and 21b are installed obliquely with respect to the tube axis by plastic wedges 22a and 22b, and are radiated from one ultrasonic vibrator and received by the other ultrasonic vibrator. The sound wave, as shown in (B),
It propagates so as to form a fixed angle θ with the tube axis. In the calculation means (not shown) connected to each ultrasonic transducer, by adopting an appropriate measurement method such as a time difference method or a sing-around method, based on the propagation speed of the ultrasonic wave propagating between each ultrasonic transducer, The flow rate and flow rate of the gas or liquid flowing in the pipe 20 are measured.

【0004】一般に、管路内を流れる流体の流速は、管
路の中心から管壁に接近するほど低下すると共に、この
流速の変化の様子は層流か乱流かに影響するレイノルズ
数によっても異なる。このため、流速の実測値にレイノ
ルズ数に応じた補正係数を乗算することにより、流速・
流量の補正が行われる。
In general, the flow velocity of a fluid flowing in a pipe decreases as the pipe approaches the pipe wall from the center of the pipe, and the change in the flow velocity also depends on the Reynolds number which affects laminar flow or turbulent flow. different. Therefore, by multiplying the measured value of the flow velocity by a correction coefficient corresponding to the Reynolds number, the flow velocity
Correction of the flow rate is performed.

【0005】[0005]

【発明が解決しようとする課題】図4を参照して説明し
た従来の超音波式流速・流量計では、実測値にレイノル
ズ数に応じた補正係数を乗算している。しかしながら、
レイノルズ数の算定の基礎となる流速自体が空間的に変
動する不正確な量であり、また、層流と乱流との遷移点
もレイノルズ数に応じた補正係数も不正確であることな
どにより、補正係数の誤差が大きくなり、測定精度が低
下するという問題がある。従って、本発明の一つの目的
は、超音波式流量・流速計の測定精度の向上を図ること
にある。
In the conventional ultrasonic flow velocity / flow meter described with reference to FIG. 4, the measured value is multiplied by a correction coefficient corresponding to the Reynolds number. However,
The velocity itself, which is the basis for calculating the Reynolds number, is an inaccurate quantity that fluctuates spatially, and the transition point between laminar flow and turbulent flow and the correction coefficient according to the Reynolds number are also inaccurate. In addition, there is a problem that the error of the correction coefficient increases and the measurement accuracy decreases. Therefore, one object of the present invention is to improve the measurement accuracy of an ultrasonic flow / velocity meter.

【0006】[0006]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明の超音波式流量・流速計は、超音波振動子
の寸法と同程度又はそれ以下の幅の対向する1対の辺を
持つほぼ矩形断面形状の管路と、この管路の前記対向す
る1対の辺のそれぞれの近傍に、又はこの1対の辺の一
方の近傍に管軸と傾斜させて設置される1対の超音波振
動子と、この超音波振動子の対の間の超音波の伝播時間
に基づき前記管路内を流れる流体の流量又は流速を算定
手段とを備えている。
According to the present invention, there is provided an ultrasonic flow / velocity meter for solving the above-mentioned problems of the prior art. And a pair of pipes installed in the vicinity of each of the pair of opposed sides of the pipe, or near one of the pair of sides and inclined with the pipe axis. And a means for calculating the flow rate or flow velocity of the fluid flowing in the pipeline based on the propagation time of the ultrasonic wave between the pair of ultrasonic transducers.

【0007】まず、本発明の説明に入る前に、従来の超
音波式流量・流速計が補正係数を必要とする理由につい
て考察する。従来の超音波式流量・流速計では、図4の
横断面図(A)に示すように、管路の横断面内に同心円
状の多数の異なる流速の領域が存在する。振動子から放
射された超音波は、流速の異なる領域内を直線状の実線
で例示するように伝播方向と直交する方向に拡がりなが
ら伝播してゆく。この際、超音波は流路の中心部分の比
較的高速の領域については、そのほぼ全域を伝播する。
これに対して、超音波は、管璧の近傍の比較的低速の領
域については、そのうちのほんの一部を伝播するだけで
ある。すなわち、図示の例では、断面積の大きな部分を
占める管璧近傍の左右の領域内はほとんど伝播しない。
Before describing the present invention, the reason why a conventional ultrasonic flow / velocity meter needs a correction coefficient will be considered. In the conventional ultrasonic flow rate / velocity meter, as shown in the cross-sectional view (A) of FIG. 4, there are a large number of concentric regions of different flow velocities in the cross-section of the pipeline. The ultrasonic waves radiated from the vibrator propagate in the regions having different flow velocities while spreading in a direction orthogonal to the propagation direction as exemplified by a linear solid line. At this time, the ultrasonic wave propagates in almost the entire region of a relatively high-speed region in the center of the flow path.
Ultrasound, on the other hand, propagates only a small portion of the relatively slow region near the wall. That is, in the example shown in the drawing, there is almost no propagation in the left and right regions near the pipe wall occupying a large cross-sectional area.

【0008】この結果、流速や流量の実測値は、管壁近
傍の小さな流速・流量に比較して中心部分の大きな流速
・流量を偏重して反映した値となり、真値よりも大きな
値となる。このため、実測値に対して1よりも小さな補
正係数が必要になる。
As a result, the actual measured values of the flow velocity and the flow rate are values reflecting the large flow velocity and the flow rate at the central portion in a more depressed manner than the small flow velocity and the flow rate near the pipe wall, and are larger than the true values. . Therefore, a correction coefficient smaller than 1 is required for the actually measured value.

【0009】本発明は、上述したような従来の超音波式
流量・流速計で補正係数が必要になる理由、すなわち、
流速・流量の実測値が管壁近傍の流速・流量に比較して
中心部分の大きな流速・流量を偏重して反映するという
点を改良することにより測定精度の向上を図っている。
以下、本発明を実施例と共に更に詳細に説明する。
[0009] The present invention is based on the reason why the correction coefficient is required in the conventional ultrasonic flow / velocity meter as described above.
The measurement accuracy is improved by improving the point that the measured values of the flow velocity and the flow rate reflect the large flow velocity and the flow rate in the central portion in comparison with the flow velocity and the flow rate near the pipe wall.
Hereinafter, the present invention will be described in more detail with reference to examples.

【0010】[0010]

【実施例】図1は本発明の一実施例の超音波式流量・流
速計の構成を示す横断面図(A)と、縦断面図(B)で
ある。プラスチック楔12a,12bを介して超音波振
動子11a,11bが設置される管路10の断面形状
は、細長い矩形状を呈している。この矩形状の管路10
の狭い方の辺の内壁面の幅は、超音波振動子11a,1
1bの寸法と同程度の値に設定され、対向する狭い方の
1対の辺の外壁面上には楔12a,12bを介して超音
波振動子11a,11bが管軸に傾斜して設置される。
1 is a cross-sectional view (A) and a vertical cross-sectional view (B) showing the structure of an ultrasonic flow / velocity meter according to an embodiment of the present invention. The cross-sectional shape of the conduit 10 in which the ultrasonic transducers 11a and 11b are installed via the plastic wedges 12a and 12b has an elongated rectangular shape. This rectangular pipe 10
The width of the inner wall surface of the narrow side of the ultrasonic transducer 11a, 1
Ultrasonic vibrators 11a and 11b are set on the outer wall surfaces of a pair of narrower sides facing each other and are inclined with respect to the tube axis via wedges 12a and 12b. You.

【0011】超音波振動子11aから放射されて他方の
超音波振動子11bに受信される超音波は、縦断面図
(B)に示すように、管軸と一定の角度θを成して伝播
する。各超音波振動子に接続されている算定手段(図示
せず)において、時間差法やシングアラウンド法などの
適宜な計測手法を適用することにより、超音波振動子1
1aと11bの間を伝播する超音波の伝播速度に基づ
き、管路10内を流れる気体や液体の流量や流速が計測
される。
The ultrasonic wave radiated from the ultrasonic vibrator 11a and received by the other ultrasonic vibrator 11b propagates at a fixed angle θ with respect to the tube axis as shown in FIG. I do. By applying an appropriate measurement method such as a time difference method or a sing-around method to a calculating means (not shown) connected to each ultrasonic transducer, the ultrasonic transducer 1
Based on the propagation speed of the ultrasonic wave propagating between 1a and 11b, the flow rate and flow velocity of the gas or liquid flowing in the pipeline 10 are measured.

【0012】図1の横断面図(A)において、管路の横
断面内に多数の相似の矩形状の領域で例示するように、
異なる流速の多数の領域が存在する。超音波振動子11
aから放射された超音波は、管路10の横幅がこの超音
波振動子11aの横幅程度に狭められているため、異な
る流速の全ての領域内をほぼ平面波のように伝播してゆ
く。
In the cross-sectional view (A) of FIG. 1, as exemplified by a number of similar rectangular regions in the cross-section of the pipeline,
There are many regions with different flow rates. Ultrasonic transducer 11
The ultrasonic wave radiated from a propagates in almost all regions of different flow velocities like a plane wave because the width of the pipe 10 is narrowed to about the width of the ultrasonic vibrator 11a.

【0013】この結果、超音波は、流路の中心部分の比
較的高速の領域も、管璧の近傍の比較的低速の領域も漏
れなく全て伝播する。この結果、流速の実測値は、全て
の領域の異なる流速を万遍なく平均化した値となり、真
の値に接近する。すなわち、レイノルズ数に対する補正
係数の依存性が小さくなると同時に1.0 に接近する。こ
のように不正確な補正係数の変動幅が狭められることに
より、測定精度が向上する。
As a result, the ultrasonic wave propagates without leakage in the relatively high-speed area in the center of the flow channel and in the relatively low-speed area near the pipe wall. As a result, the measured value of the flow velocity becomes a value obtained by averaging the different flow velocities in all the regions uniformly, and approaches the true value. In other words, the dependence of the correction coefficient on the Reynolds number decreases, and approaches 1.0 at the same time. As described above, the accuracy of measurement is improved by narrowing the range of variation of the incorrect correction coefficient.

【0014】図2に実験データを示す。この実験では、
グラフの右側に示すように、矩形断面形状の管路の長辺
側の幅を30mmに固定すると共に、短辺側の幅を可変量Wm
m とし、短辺側の外壁上に直径12mmの円形の超音波振動
子の対を取付けている。この管路内に流量が既知の流体
を流し、実測値をこの既知の流量に一致させるために必
要な補正係数を測定した。グラフの横軸はレイノルズ数
であり、縦軸は補正係数である。
FIG. 2 shows experimental data. In this experiment,
As shown on the right side of the graph, the width of the long side of the rectangular cross-section pipe is fixed to 30 mm, and the width of the short side is changed by a variable amount Wm.
m and a pair of circular ultrasonic transducers having a diameter of 12 mm is mounted on the outer wall on the short side. A fluid having a known flow rate was caused to flow through the conduit, and a correction coefficient required to match an actual measurement value to the known flow rate was measured. The horizontal axis of the graph is the Reynolds number, and the vertical axis is the correction coefficient.

【0015】矩形管路の短辺側の幅が超音波振動子の直
径の12φよりも大きな15mmや30mmの範囲では、レイノル
ズ数の変化に応じて補正係数が0.6 から0.9 程度の広い
範囲にわたって変動する。しかしながら、短辺側の幅を
超音波振動子の直径よりも小さな10mmや3mm に設定する
と、レイノルズ数の実用的な広範囲にわたって補正係数
が0.95から1.00までの 5%程度の変動範囲に収まる。こ
の場合、測定誤差を 1%〜2 %程度に保つことができ
る。
In the range of 15 mm or 30 mm where the width of the short side of the rectangular conduit is larger than the diameter of the ultrasonic transducer, 12 mm, the correction coefficient varies over a wide range of about 0.6 to 0.9 in accordance with the change in Reynolds number. I do. However, if the width of the short side is set to 10 mm or 3 mm, which is smaller than the diameter of the ultrasonic vibrator, the correction coefficient falls within the range of about 5% from 0.95 to 1.00 over a practically wide range of Reynolds number. In this case, the measurement error can be kept at about 1% to 2%.

【0016】図3は、本発明の他の実施例の構成を示す
断面図である。この実施例では、管路10内を流れる流
体は空気などの気体であり、超音波振動子11a,11
bは管路10内に設置されている。また、超音波振動子
11a,11bは、直接対向する代わりに、管路10の
他方の内壁面を反射面として利用するV字状の伝播経路
を形成するように、管路10の一方の内壁面に固定され
ている。超音波振動子11a,11bの対を更に離間さ
せて一方の内壁面に取付けることによりW字状の伝播経
路を形成する構成とすることもできる。
FIG. 3 is a sectional view showing the structure of another embodiment of the present invention. In this embodiment, the fluid flowing through the pipeline 10 is a gas such as air, and the ultrasonic vibrators 11a and 11
b is installed in the pipeline 10. Also, instead of directly facing the ultrasonic vibrators 11a and 11b, the ultrasonic transducers 11a and 11b form a V-shaped propagation path that uses the other inner wall surface of the pipe 10 as a reflection surface. It is fixed to the wall. A configuration in which a pair of ultrasonic transducers 11a and 11b are further separated and attached to one inner wall surface to form a W-shaped propagation path may be adopted.

【0017】以上、矩形管路の短辺側に超音波振動子を
取り付ける構成を例示した。しかしながら、長辺側の幅
が超音波振動子の幅と同程度であるか超音波振動子の幅
よりも小さい場合には、長辺側に取り付けることもでき
る。この場合、断面形状が短辺と長辺の等しい正方形で
あってもよい。
The configuration in which the ultrasonic vibrator is attached to the short side of the rectangular conduit has been described above. However, when the width on the long side is about the same as or smaller than the width of the ultrasonic transducer, it can be attached to the long side. In this case, the cross-sectional shape may be a square whose short side and long side are equal.

【0018】また、管路として超音波振動子を取り付け
る矩形断面形状の部分だけを説明した。しかしながら、
通常の管路は円形断面形状であるため、これを矩形断面
形状に変換するための形状変換部分を別個の管路として
用意したり、あるいは、この形状変換部分を上記矩形断
面形状の管路の両側に一体として形成する構成とするこ
ともできる。
In addition, only the rectangular cross section for mounting the ultrasonic transducer as the conduit has been described. However,
Since a normal conduit has a circular cross-sectional shape, a shape-converting portion for converting the same into a rectangular cross-sectional shape is prepared as a separate conduit, or this shape-converting portion is used as a conduit for the above-described rectangular cross-sectional shape. It may be configured to be formed integrally on both sides.

【0019】更に、管路の断面形状が矩形の場合を例示
した。しかしながら、管路の断面形状を、必要に応じ
て、楕円形状などほぼ矩形状の他の形状とすることもで
きる。さらに、プラスチック楔の素材を金属などプラス
チック以外のものに変更したり楔と管路を一体化するな
ど、必要に応じて各種の変更を行うことができる。
Furthermore, the case where the cross-sectional shape of the conduit is rectangular has been exemplified. However, the cross-sectional shape of the conduit may be any other substantially rectangular shape, such as an elliptical shape, if necessary. Furthermore, various changes can be made as needed, such as changing the material of the plastic wedge to something other than plastic such as metal, or integrating the wedge and the conduit.

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明の超
音波式流量・流速計は、超音波振動子の寸法と同程度又
はそれ以下の幅の対向する1対の辺を持つほぼ矩形断面
形状の管路に超音波振動子を取り付ける構成であるか
ら、流体内に放射された超音波が流体内の異なる流速の
各領域を万遍なく伝播することになり、レイノルズ数に
対する補正係数の変動範囲が狭められ、測定精度が大幅
に向上する。
As described in detail above, the ultrasonic flow / velocity meter of the present invention has a substantially rectangular shape having a pair of opposing sides having a width approximately equal to or smaller than the size of the ultrasonic vibrator. Since the ultrasonic vibrator is attached to the cross-sectional shape of the pipe, the ultrasonic waves radiated into the fluid will propagate uniformly in each region of different flow velocity in the fluid, and the correction coefficient for the Reynolds number The fluctuation range is narrowed, and the measurement accuracy is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の超音波式流量・流速計の構
成を示す横断面図(A)と縦断面図(B)である。
FIG. 1 is a transverse sectional view (A) and a longitudinal sectional view (B) showing a configuration of an ultrasonic flow / velocity meter according to an embodiment of the present invention.

【図2】本発明の実験データの示す図である。FIG. 2 is a view showing experimental data of the present invention.

【図3】本発明の他の実施例の超音波式流量・流速計の
構成を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a configuration of an ultrasonic flow / velocity meter according to another embodiment of the present invention.

【図4】従来の超音波式流量・流速計の構成を示す横断
面図(A)と縦断面図(B)である。
FIG. 4 is a cross-sectional view (A) and a vertical cross-sectional view (B) showing the configuration of a conventional ultrasonic flow / velocity meter.

【符号の説明】[Explanation of symbols]

10 矩形画面形状の管路 11a,11b 超音波振動子 12a, 12b プラスチック楔 10 Pipes with rectangular screen shape 11a, 11b Ultrasonic transducers 12a, 12b Plastic wedge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超音波振動子の幅と同程度又はそれ以下の
幅を有して対向する1対の辺を持つほぼ矩形断面形状の
管路と、 この管路の前記対向する1対の辺のそれぞれの近傍に、
又はこの1対の辺の一方の近傍に管軸と傾斜させて設置
される1対の超音波振動子と、 この超音波振動子の対の間の超音波の伝播時間に基づき
前記管路内を流れる流体の流量又は流速を算定する手段
とを備えたことを特徴とする超音波式流量・流速計。
1. A conduit having a width substantially equal to or less than the width of an ultrasonic transducer and having a substantially rectangular cross-sectional shape having a pair of opposed sides, and a pair of said opposed pair of said conduits. Near each of the sides,
Alternatively, a pair of ultrasonic vibrators installed in the vicinity of one of the pair of sides so as to be inclined with respect to the pipe axis; Means for calculating a flow rate or a flow rate of a fluid flowing through the apparatus.
【請求項2】 請求項1において、 前記1対の辺は、前記矩形断面形状の管路の短辺である
ことを特徴とする超音波式流量・流速計。
2. The ultrasonic flow / velocity meter according to claim 1, wherein the pair of sides is a short side of the conduit having the rectangular cross-sectional shape.
【請求項3】 請求項1又は2において、 前記管路の両側には、前記矩形断面形状の管路から円形
断面形状の管路への形状変換部分が一体として形成され
たことを特徴とする超音波式流量・流速計。
3. The shape conversion part according to claim 1, wherein a shape conversion portion from the rectangular cross-sectional shape to the circular cross-sectional shape is integrally formed on both sides of the pipeline. Ultrasonic flow / velocimeter.
JP9214047A 1997-07-24 1997-07-24 Ultrasonic flow rate and flow velocity meter Pending JPH1144561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214047A JPH1144561A (en) 1997-07-24 1997-07-24 Ultrasonic flow rate and flow velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214047A JPH1144561A (en) 1997-07-24 1997-07-24 Ultrasonic flow rate and flow velocity meter

Publications (1)

Publication Number Publication Date
JPH1144561A true JPH1144561A (en) 1999-02-16

Family

ID=16649396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214047A Pending JPH1144561A (en) 1997-07-24 1997-07-24 Ultrasonic flow rate and flow velocity meter

Country Status (1)

Country Link
JP (1) JPH1144561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075239A (en) * 2001-09-04 2003-03-12 Aichi Tokei Denki Co Ltd Sensor
JP2016057094A (en) * 2014-09-05 2016-04-21 アズビル株式会社 Ultrasonic flow meter and flow rate measurement method
GB2577093A (en) * 2018-09-13 2020-03-18 Univ Warwick Clamp-on ultrasonic transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter
JPH09189589A (en) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter
JPH09189589A (en) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075239A (en) * 2001-09-04 2003-03-12 Aichi Tokei Denki Co Ltd Sensor
JP2016057094A (en) * 2014-09-05 2016-04-21 アズビル株式会社 Ultrasonic flow meter and flow rate measurement method
GB2577093A (en) * 2018-09-13 2020-03-18 Univ Warwick Clamp-on ultrasonic transducer
US12196588B2 (en) 2018-09-13 2025-01-14 The University Of Warwick Low-cost and self calibrating clamp-on ultrasonic transducer

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
JP3246851B2 (en) Ultrasonic flowmeter detector
JP2008134267A (en) Ultrasonic flow measurement method
JPH07218307A (en) Method and device for measuring ultrasonic flow rate
JP6375519B2 (en) Gas meter
JP2895704B2 (en) Ultrasonic flow meter
JP2002520583A (en) Multi-code flow meter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP3328505B2 (en) Ultrasonic flow meter
JP2956805B2 (en) Ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP2935944B2 (en) Ultrasonic flow meter unit
JP2000065613A (en) Ultrasonic flowmeter
JP3217021B2 (en) Ultrasonic flow meter
JP2001317974A (en) Ultrasonic flowmeter
JP2956804B2 (en) Ultrasonic flow meter
JP4453341B2 (en) Ultrasonic flow meter
JP3194270B2 (en) Ultrasonic flow meter
KR101473645B1 (en) Method of Ultrasonic Flow Metering
JPH11237264A (en) Ultrasonic flowmeter
JPH11237263A (en) Ultrasonic flowmeter
JP2002267513A (en) Ultrasonic flowmeter
JP2022109347A (en) ultrasonic flow meter
JPH11271118A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808