[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4414645B2 - Method for producing dimethyl ether - Google Patents

Method for producing dimethyl ether Download PDF

Info

Publication number
JP4414645B2
JP4414645B2 JP2002329320A JP2002329320A JP4414645B2 JP 4414645 B2 JP4414645 B2 JP 4414645B2 JP 2002329320 A JP2002329320 A JP 2002329320A JP 2002329320 A JP2002329320 A JP 2002329320A JP 4414645 B2 JP4414645 B2 JP 4414645B2
Authority
JP
Japan
Prior art keywords
methanol
water
dimethyl ether
evaporator
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002329320A
Other languages
Japanese (ja)
Other versions
JP2004161672A (en
Inventor
伸康 近松
勇 箭内
浩平 内田
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Mitsubishi Gas Chemical Co Inc
Original Assignee
JGC Corp
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Mitsubishi Gas Chemical Co Inc filed Critical JGC Corp
Priority to JP2002329320A priority Critical patent/JP4414645B2/en
Publication of JP2004161672A publication Critical patent/JP2004161672A/en
Application granted granted Critical
Publication of JP4414645B2 publication Critical patent/JP4414645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、反応器に供給する原料ガスに含まれる水の濃度を低下させる手法を備えたジメチルエーテルの製造方法に関する。
【0002】
【従来の技術】
従来、メタノールを気相反応により脱水してジメチルエーテルを製造するための方法は、不純物をほとんど含まないメタノールを蒸発器にて加熱・気化し、このメタノールガスを原料として、ジメチルエーテル合成反応を促進させる触媒が充填されている例えば連続流通式の反応塔に供給することにより、当該触媒の活性領域において反応式(1)に示すジメチルエーテルの合成反応を進行させる手法が用いられている(例えば、特許文献1参照。)。
2CH3OH → CH3OCH3 + H2O ΔH = -23.4 kJ/mol ・・ (1)
【0003】
【特許文献1】
特開昭59−199648号公報
【0004】
【発明が解決しようとする課題】
ところでジメチルエーテルの製造コストを下げるためには、安価な未精製のメタノール混合物(粗メタノール)を原料として用いることが得策であるが、粗メタノール中には例えば5〜40重量%程度の水が含まれている。このように原料中に水が多く含まれていると、化学平衡により反応式(1)の反応速度が低下するとともに、逆反応の速度が増加してジメチルエーテルの反応収率が低くなる。このため水を除去するための設備例えば蒸留塔を別途設けて水を分離する必要があるが、この場合、設備、運転コストが高くなり、結局製造コストの大きな低減にはならないという問題がある。
【0005】
本発明はこのような事情に基づいてされたものであり、その目的は水を含んだ純度の低い粗メタノールを原料に用いて安価にジメチルエーテルを製造することのできる技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明のジメチルエーテルの製造方法は、メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、
水を含んだ原料である液体メタノールを加熱し、蒸発器にてその一部を気化させる工程と、
還流用の液体メタノールを蒸発器に供給し、その還流用のメタノールと前記気化工程にて気化されたガスとを接触させて、ガス中の水蒸気を凝縮させかつ還流用の液体メタノールを蒸発させてガス中の水分濃度を減少させる工程と、
前記蒸発器にて水分濃度が減少したガスを反応器に供給してジメチルエーテルを合成する工程と、
前記反応器にて生成したジメチルエーテルを精製塔により分離する工程と、
前記精製塔にて分離された水を含む未反応メタノール及び前記蒸発器にて分離された未蒸発メタノールをメタノール回収塔にて精製してメタノールを回収する工程と、を含み、
前記還流用の液体メタノールは、前記メタノールを回収する工程にて回収されたメタノールであり、
前記還流用の液体メタノールの水分濃度は、前記水を含んだ原料である液体メタノールの水分濃度よりも低いことを特徴とする。
【0007】
また原料である液体メタノールは、水分濃度が例えば5重量%〜40重量%であってよく、還流用の液体メタノールは、水分濃度が例えば0重量%〜10重量%であってよい。更に前記蒸発器にて水分量が少なくなったメタノールガスの水分濃度は、例えば2重量%〜15重量%であってよい。更にまた水分濃度が例えば5重量%〜40重量%の原料のメタノールの質量流量に対して、水分濃度が例えば0重量%〜10重量%の還流用の液体メタノールを例えば20%〜100%の割合の質量流量で供給するようにしてよい。
コメント
1. 蒸発器における液体メタノールの供給口と還流液供給口との位置関係については引用文献1と同じであり、またこの記載がないことにより不明瞭であるとも指摘されていないことから、クレームには反映していません。
2.頂いたコメントには、(本発明は)引用文献1のように「回収メタノールを再び原料として使用するものではなく」と記載されていますが、本発明でも結果として回収メタノールの一部が気化して反応器に供給されていることから、この点についての主張はしていません。
【0008】
本発明によれば、水を含んだメタノール(粗メタノール)は蒸発器にてその一部が気化され、この気化されたガスと、別の場所から供給される還流用のメタノールとを接触させることでガス中の水分濃度を減少させることができる。即ち原料ガスとして、反応器においてジメチルエーテルの合成反応の進行速度を維持し、かつ反応器(反応領域)の小容量化を図ることのできる水分濃度に調整された状態で反応器に供給することができる。このため水を含んだ安価なメタノールを原料として用いることができると共に、設備の低コスト化を図ることができる。
【0009】
【発明の実施の形態】
本発明のジメチルエーテルの製造方法の実施の形態について説明する。この実施の形態の要部は水を含んだ未精製の粗メタノールを用いてジメチルエーテルを合成する際に、蒸発装置にて当該粗メタノール中の水分濃度を低下する工程にあるが、説明の手順として初めに蒸発装置、反応塔および反応塔下流側の処理を含めたシステム全体について図1を用いて簡単に述べておく。
【0010】
先ず原料である液体メタノール(粗メタノール)は、ポンプP1および予熱器10を介して蒸発装置2に供給される。蒸発装置2ではガス中から後述する手法にて水がある程度取り除かれ、ここで気化されたガスは予熱器40aで所定の温度に加熱された後、反応塔40内に供給される。なお蒸発装置2の塔底から排出される液体は後述するメタノール回収塔60に送られる。
【0011】
上述の例えば断熱型の流通式の反応塔40に供給された原料ガスは、反応塔40の触媒層41において「従来の技術」に記載の反応式(1)で示される合成反応が進行し、ジメチルエーテル、水蒸気および未反応メタノールを含む生成ガスとなる。しかる後冷却器40bで所定の温度に冷却されてジメチルエーテル精製塔50に供給される。
【0012】
続いて反応塔40の出口ガスをジメチルエーテル精製塔50にて蒸留することにより例えば未反応メタノール、水および微量の軽質ガスが分離され、ジメチルエーテル精製塔50の上段部から所望する純度のジメチルエーテルが製品として得られる。このとき未反応メタノール及び水は塔底から排出されてメタノール回収塔60に送られ、また軽質ガスは塔頂から排出される。
【0013】
一方、上述の蒸発装置2及びジメチルエーテル精製塔50の各塔底から排出された液体は、メタノール回収塔60にて精留することにより水及び高沸点成分が分離され、この水及び高沸点成分は塔底から排出されて図示しない処理設備で処理される。またメタノールはコンデンサー60bで液化され、ポンプP2を介して還流用の液体メタノールとして蒸発装置2に供給される。
【0014】
続いてこの実施の形態の要部である蒸発装置2の一例について図2を用いて説明する。先ず図2に示すように蒸発装置2は、蒸発器(蒸発塔)20を備えている。当該蒸発器20の内部には、例えば多数の充填物からなる充填物層21が設けられている。更に蒸発器20の下段部にはリボイラー3が設けられている。
【0015】
続いて粗メタノールを上述の蒸発装置2で気化し、反応塔40に供給するまでの工程について詳述する。先ず、例えば5〜40重量%の水分、その他に微量のエタノールやパラフィン系成分などの不純物を含む粗メタノールは、粗メタノール供給口25を介して蒸発器20に液体状態で供給され、一部は気化する。一方、粗メタノールよりも水分濃度が低い例えば0〜10重量%の水を含み、メタノール回収塔60から戻されてくる還流用の液体メタノール(回収メタノール)は還流液供給管24を介して例えば粗メタノールの質量流量に対して例えば20〜100%の割合となる流量で蒸発器20の上部から還流液として供給される。
【0016】
ここで前記気化されたガスと、還流用の液体メタノールとは、気液接触領域において向流接触された際に、メタノールよりも沸点の高い水蒸気はその一部が凝縮し、反対に液体メタノールの一部が気化する。このためガスに含まれる水(水蒸気)濃度は予定とする水(水蒸気)濃度例えば2〜15重量%になる。この水分濃度が低下したガスはガス留出口27を介して留出された後、予熱器40aにて所定の温度例えば250〜350℃に加温され、反応塔40に原料ガスとして供給される。なお蒸発器20の底部のメタノールと水を含む液は排出口28を介して排出され、メタノール回収塔60に供給される。
【0017】
このような実施の形態においては、ジメチルエーテルの原料として粗メタノールを用い、ジメチルエーテルを合成する工程の前段において還流用の液体メタノールを別の場所から、例えばメタノール回収塔60から蒸発器20に供給して反応器供給ガス中の水分濃度を低下させているので原料に高純度のメタノールを必要とせず、また簡易な設備で水分濃度を低下することができるので、ジメチルエーテルを合成するにあたって低コスト化を図ることができる。即ち、本実施の形態は、反応塔に供給するガス中の水を所定の濃度まで低下させることでジメチルエーテルの合成反応の速度を維持し反応塔40の小容量化を図ること、および水を分離するための蒸留塔を設けるのではなく、上述の水分調整手法を蒸発器で行うことで設備の低コスト化を図ることに着目して実現されたものである。
【0018】
【実施例】
続いて本発明の効果を確認するために行った実施例について説明する。
(実施例1)
図3に示すように、蒸発器20として理論段4段相当のポールリングを充填した塔を使用し、リボイラー3にて加熱して原料粗メタノールの一部を気化させた。蒸発器20に供給する粗メタノール(メタノール混合物)は50kg/hであり、その組成はメタノール:74.9重量%、水:25.0重量%、その他不純物:500ppmであった。また、メタノール回収塔60から送られてくる回収メタノールは24kg/hであり、メタノール:95.0重量%、水:5.0重量%、その他不純物:400ppmからなっていた。粗メタノールは塔頂から数えて3段目相当位置に供給し、還流用の液体メタノールは塔頂に供給した。また、メタノールと水を分離するためのメタノール回収塔60として理論段数30段相当のポールリングを充填した塔を使用した。なお図3には、その結果についても併せて示している。
【0019】
(実施例1の結果)
a.蒸発器20の塔頂圧力を2.2MPaとして部分蒸発を行い、メタノール89.9重量%、水10.0重量%、その他不純物500ppmを含む気体を得た。この気体の流量は59kg/hであった。リボイラー3の熱量は、使用したスチーム量から計算して、20200kcal/hであった。
b.塔頂から得た気体を280℃まで予熱器40aで加熱した。加熱量は3200kcal/hであった。
c.反応塔40でメタノールの70%をジメチルエーテルに転化して目的物であるジメチルエーテルを合成した。ジメチルエーテル精製塔50でジメチルエーテルを分離した後に得られメタノール49.6重量%、水50.4重量%、その他不純物400ppmから成る混合物32kg/hと、前記した蒸発器20で蒸発しなかったメタノール47.1重量%、水52.8重量%、その他不純物700ppmから成る混合物15kg/hを混合し、メタノール回収塔60に供給した。
d.メタノール回収塔60の還流比を1.0とした場合、塔頂温度は72℃となり、塔頂から液体で得られる還流用の液体メタノールの純度は95.0重量%、塔底から液体で得られる水の純度は99.9重量%であり、リボイラー60aの熱量は10000kcal/hであった。
e.ここに示した加熱量はリボイラー3、予熱器40aおよびメタノール回収塔60のリボイラー60aを合わせて33400kcal/hとなる。
【0020】
(比較例1)
本例は、原料の水分調整を蒸留塔であるメタノール回収塔60で行った場合の比較例1である。図4に示すように、蒸留原料としては、不純物を含む粗メタノール(メタノール混合物)および、反応塔40の出口ガスからジメチルエーテル精製塔50でジメチルエーテルを分離した後に得られる主に未反応分のメタノールと水から成る混合物がある。これらの原料中のメタノールを水から分離するため、メタノール回収塔60として実施例1と同様に理論段30段相当のポールリングを充填した塔を使用した。両原料を混合し、10段目相当位置に供給した。粗メタノールは実施例1と同様に50kg/hであり、組成はメタノール:74.9重量%、水:25.0重量%、その他不純物:500ppmからなっていた。また、前記未反応分のメタノールと水から成る混合物は32kg/hであり、組成はメタノール:49.6重量%、水:50.4重量%、その他不純物:400ppmからなっていた。なお図4には、その結果についても併せて示している。
【0021】
(比較例1の結果)
a.メタノール回収塔60の塔頂圧力を0.13MPaとして蒸留操作を行った。
b.メタノール回収塔60の還流比を0.4とした場合、塔頂温度は74℃となり、塔頂から液体で得られるメタノールの純度は89.9重量%、塔底から液体で得られる水の純度は99.9重量%であり、リボイラー60aの熱量は20800kcal/hであった。
c.塔頂から液体で得たメタノール89.9重量%、水10.0重量%、その他不純物500ppmを含む回収メタノールの流量は59kg/hであり、反応塔40に供給するためポンプで2.3MPaまで加圧した後にケトル型の蒸発器8で気化してから280℃まで予熱器40aで加熱した。その加熱量は蒸発器8にて18900kcal/h、予熱器40aにて3200kcal/hであった。
d.ここに示した加熱量はリボイラー60aと蒸発器8、予熱器40aとを合わせて42900kcal/hとなる。
【0022】
(比較例2)
本例は、図5に示すように、粗メタノールに回収メタノール(実施例で還流用として使用した液体メタノール)を混合して水分濃度を低くした後、底部から水や高沸点成分を抜き出すことが可能なケトル型の蒸発器8で気化して原料ガスを調整する比較例2である。粗メタノールの流量と組成は実施例1と同様であった。また、メタノール回収塔60から送られてくる回収メタノールは67kg/hであり、メタノール:95.0重量%、水:5.0重量%、その他不純物:400ppmからなっていた。この両者を混合して蒸発器8に供給し加熱してメタノールを主成分とした蒸気と、水や成分を主とした液に分離した。なお、メタノールと水を分離するためのメタノール回収塔60として比較例1と同様に理論段30段相当のポールリングを充填した塔を使用し、原料は10段目相当位置に供給した。なお図5には、その結果についても併せて示している。
【0023】
(比較例2の結果)
a.蒸発器8の圧力を2.2MPaとして部分蒸発を行い、メタノール89.9重量%、水10.0重量%、その他不純物500ppmを含む気体を得た。この気体の流量は59kg/hであった。蒸発器8の熱量は24100kcal/hであった。
b.蒸発器8から得た気体を反応塔40に供給するため280℃まで予熱器40aで加熱した。その加熱量は3200kcal/hであった。
c.反応塔40でジメチルエーテルを合成した。ジメチルエーテル精製塔50でジメチルエーテルを分離した後に得られるメタノール49.6重量%、水50.4重量%、その他不純物400ppmから成る混合物32kg/hと、前記した蒸発器8で蒸発しなかったメタノール82.9重量%、水17.1重量%、その他不純物400ppmから成る混合物58kg/hを混合し、メタノール回収塔60に供給した。
d.メタノール回収塔60の還流比を0.6とした場合、塔頂温度は72℃となり、塔頂から液体で得られるメタノールの純度は95.0重量%、塔底から液体で得られる水の純度は99.9重量%であり、リボイラー60aの熱量は23300kcal/hであった。
e.ここに示した加熱量は蒸発器8、予熱器40aおよびメタノール回収塔60のリボイラー60aを合わせて50600kcal/hとなる。
【0024】
(比較例3)
本例は、図6に示すように、粗メタノールに回収メタノール(実施例1で還流用として使用した液体メタノール)を混合して水分濃度を低くする点は比較例2と同じであるが、水分調整を行うことなく全量を蒸発器8で気化して原料ガスを得る例を比較例3とする。粗メタノールの流量と組成は実施例1と同様であった。また、メタノール回収塔60から送られてくる回収メタノールは17kg/hであり、メタノール:95.0重量%、水:5.0重量%、その他不純物:400ppmからなっていた。この両者を混合して蒸発器8に供給し、全量を気化した。なお、メタノールと水を分離するためのメタノール回収塔60として実施例1と同様に理論段30段相当のポールリングを充填した塔を使用し、原料は10段目相当位置に供給した。なお図6には、その結果についても併せて示している。断熱型のジメチルエーテル合成反応器である反応塔40の触媒量は、反応塔に供給される原料ガスの水分濃度が高いことから、実施例1と同様にメタノールの70%をジメチルエーテルに転化するために実施例1の2.3倍の触媒を要した。なお、比較例3の反応塔供給原料ガスに対して実施例1と同じ触媒量で実験を行ったところ、メタノールのジメチルエーテルへの転化率は21%と低く、多量のメタノールの循環が必要となり実施例や比較例1,2に用いた装置では処理が不可能であった。
【0025】
(比較例3の結果)
a.蒸発器8の圧力を2.2MPaとして完全蒸発を行い、メタノール79.9重量%、水20.0重量%、その他不純物500ppmを含む気体を得た。この気体の流量は67kg/hであった。蒸発器8の熱量は23200kcal/hであった。
b.蒸発器8から得た気体を反応塔40に供給するため280℃まで予熱器40aで加熱した。その加熱量は3300kcal/hであった。
c.実施例1よりも2.3倍の触媒量を充填した反応塔40でジメチルエーテルを合成し、ジメチルエーテル精製塔50でジメチルエーテルを分離した後に得られるメタノール40.1重量%、水59.9重量%、その他不純物400ppmから成る混合物40kg/hをメタノール回収塔60に供給した。
d.メタノール回収塔60の還流比を1.2とした場合、塔頂温度は72℃となり、塔頂から液体で得られるメタノールの純度は95.0重量%、塔底から液体で得られる水の純度は99.9重量%であり、リボイラー60aの熱量は7400kcal/hであった。
e.ここに示した加熱量は蒸発器8と予熱器40aおよびメタノール回収塔60のリボイラー60aを合わせて33900kcal/hとなる。
【0026】
(実施例1、比較例1および比較例2の考察)
実施例1、比較例1および比較例2においては、同様の原料(粗メタノール)を用いて、ジメチルエーテル合成反応器(反応塔40)の原料として同様の気相混合物を得て、メタノールと水を分離するための蒸留塔(メタノール回収塔60)の理論段数も同様で塔底から得られた水の純度も同様であった。実施例1と比較例1を比較すると、実施例1では理論段数4段相当の蒸発器20が必要ではあるものの、比較例1に比べると加熱量合計は78%相当まで減少していることがわかる。実施例1と比較例2を比較すると、比較例2では、気相の水分濃度を抑える目的のため、蒸発器20(比較例2では蒸発器8)から液として水と共に多量のメタノールが排出されることとなり、このメタノール分はメタノール回収塔60にて回収されて、再び蒸発器20(比較例2では蒸発器8)に供給される。実施例1では、蒸発器20を理論段数4段相当とする必要があるものの、塔頂から供給される還流用の液体メタノールが蒸留塔でいえば還流液の役割を果たすことによって蒸発器20に蒸留効果を持たせ、塔底液へのメタノール排出量を減少させてメタノール回収塔での負荷を削減し、加熱量合計は比較例2に比べると66%相当まで減少していることがわかる。つまり蒸発器を理論段4段相当として塔頂から還流用の液体メタノールを供給することによって、加熱量を大幅に低減出来ることが判る。更にはメタノール回収塔のコンデンサーの冷却量も同様に低減される。
【0027】
(比較例3の考察)
実施例1と比較例3を比較すると、比較例3では反応塔40に供給される水分濃度が高く、同等な反応成績を得るために必要な触媒量が2.3倍に増加している。比較例3ではメタノール回収塔60の負荷は実施例1のほうが多いが、実施例1では蒸発器20において多量の水を蒸発させる必要がないことから、加熱量合計は比較例3に比べると98%相当であることがわかる。実施例1では、理論段数4段相当の蒸発器20を必要とするものの、触媒量を大幅に削減することが出来ることから、加熱量はほぼ同等で設備費を低減出来ることが判る。
【0028】
【発明の効果】
以上のように本発明によれば、メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、反応器に供給する原料ガス中の水分濃度を低下させてジメチルエーテルの合成反応を行うことにより、水を含んだ安価なメタノールを原料として用いることができると共に、設備の低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明方法を備えた蒸発装置を組み込んだジメチルエーテル製造システムの全体構成を示す説明図である。
【図2】本発明方法を備えた蒸発装置の一例を示す縦断面図である。
【図3】本発明の効果を確認するために行った実施例を示す特性図である。
【図4】本発明の効果を確認するために行った比較例を示す特性図である。
【図5】本発明の効果を確認するために行った比較例を示す特性図である。
【図6】本発明の効果を確認するために行った比較例を示す特性図である。
【符号の説明】
2 蒸発装置
20 蒸発器
21 充填物層
22 充填物支持部
24 還流液供給口
25 粗メタノール供給口
3 リボイラー
40 反応塔
50 ジメチルエーテル精製塔
60 メタノール回収塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing dimethyl ether by dehydrating methanol by a gas phase reaction to provide a method for reducing the concentration of water contained in a raw material gas supplied to a reactor.
[0002]
[Prior art]
Conventionally, a method for producing dimethyl ether by dehydrating methanol by a gas phase reaction is a catalyst that heats and vaporizes methanol containing almost no impurities in an evaporator, and uses this methanol gas as a raw material to promote a dimethyl ether synthesis reaction. For example, a method is used in which the synthesis reaction of dimethyl ether shown in the reaction formula (1) is advanced in the active region of the catalyst by supplying it to, for example, a continuous flow reaction tower (for example, Patent Document 1). reference.).
2CH 3 OH → CH 3 OCH 3 + H 2 O ΔH = -23.4 kJ / mol ・ ・ (1)
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 59-199648 [0004]
[Problems to be solved by the invention]
By the way, in order to reduce the production cost of dimethyl ether, it is advisable to use an inexpensive unpurified methanol mixture (crude methanol) as a raw material, but the crude methanol contains, for example, about 5 to 40% by weight of water. ing. When the raw material contains a large amount of water, the reaction rate of the reaction formula (1) decreases due to chemical equilibrium, and the reverse reaction rate increases to lower the reaction yield of dimethyl ether. For this reason, it is necessary to separately provide equipment for removing water, for example, a distillation tower, to separate the water, but in this case, there is a problem that the equipment and operating costs are high, and the manufacturing cost is not greatly reduced.
[0005]
The present invention has been made based on such circumstances, and an object thereof is to provide a technique capable of producing dimethyl ether at low cost by using crude methanol containing water as a raw material and having a low purity.
[0006]
[Means for Solving the Problems]
The method for producing dimethyl ether of the present invention is a method for producing dimethyl ether by dehydrating methanol by a gas phase reaction.
Heating liquid methanol, which is a raw material containing water, and evaporating a part thereof in an evaporator;
Liquid methanol for reflux is supplied to the evaporator, the methanol for reflux and the gas vaporized in the vaporization step are brought into contact with each other, water vapor in the gas is condensed, and liquid methanol for reflux is evaporated. Reducing the moisture concentration in the gas;
Supplying a gas having a reduced water concentration in the evaporator to the reactor to synthesize dimethyl ether;
Separating the dimethyl ether produced in the reactor with a purification tower;
And a step of recovering the methanol was hand purified unevaporated methanol separated in methanol recovery column at unreacted methanol and the evaporator includes a water separated by the purification column,
The reflux liquid methanol is methanol recovered in the step of recovering the methanol ,
The water concentration of the liquid methanol for reflux is lower than the water concentration of liquid methanol which is a raw material containing the water.
[0007]
The liquid methanol as the raw material may have a water concentration of, for example, 5% by weight to 40% by weight, and the liquid methanol for reflux may have a water concentration of, for example, 0% by weight to 10% by weight. Furthermore, the moisture concentration of the methanol gas whose moisture content has decreased in the evaporator may be, for example, 2 wt% to 15 wt%. Furthermore, the ratio of the liquid methanol for reflux having a water concentration of, for example, 0% to 10% by weight, for example, from 20% to 100% with respect to the mass flow rate of the raw material methanol having a water concentration of, for example, 5% to 40% by weight. May be supplied at a mass flow rate of.
Comments 1. Since the positional relationship between the liquid methanol supply port and the reflux liquid supply port in the evaporator is the same as that of the cited reference 1, and it is not pointed out that it is unclear due to the absence of this description, it is reflected in the claims. I have not.
2. In the comments we have given, it is stated that (the present invention) does not use recovered methanol as a raw material again as in Cited Document 1. However, even in the present invention, part of the recovered methanol is vaporized as a result. This point is not asserted because it is supplied to the reactor.
[0008]
According to the present invention, methanol (crude methanol) containing water is partially vaporized in an evaporator, and the vaporized gas is brought into contact with refluxing methanol supplied from another location. Can reduce the moisture concentration in the gas. That is, the raw material gas can be supplied to the reactor in a state adjusted to a moisture concentration capable of maintaining the progress of the synthesis reaction of dimethyl ether in the reactor and reducing the volume of the reactor (reaction region). it can. Therefore, inexpensive methanol containing water can be used as a raw material, and the cost of equipment can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the method for producing dimethyl ether of the present invention will be described. The main part of this embodiment is in the step of reducing the water concentration in the crude methanol with an evaporator when synthesizing dimethyl ether using unpurified crude methanol containing water. First, the entire system including the evaporator, the reaction tower, and the processing on the downstream side of the reaction tower will be briefly described with reference to FIG.
[0010]
First, liquid methanol (crude methanol) as a raw material is supplied to the evaporator 2 via the pump P1 and the preheater 10. In the evaporator 2, water is removed from the gas to some extent by a method described later, and the vaporized gas is heated to a predetermined temperature by the preheater 40 a and then supplied into the reaction tower 40. The liquid discharged from the bottom of the evaporator 2 is sent to a methanol recovery tower 60 described later.
[0011]
For example, the raw material gas supplied to the above-described adiabatic flow-type reaction tower 40 undergoes the synthesis reaction represented by the reaction formula (1) described in “Conventional Technology” in the catalyst layer 41 of the reaction tower 40, The product gas contains dimethyl ether, water vapor and unreacted methanol. Thereafter, it is cooled to a predetermined temperature by the cooler 40b and supplied to the dimethyl ether purification tower 50.
[0012]
Subsequently, by distilling the outlet gas of the reaction tower 40 in the dimethyl ether purification tower 50, for example, unreacted methanol, water and a small amount of light gas are separated, and dimethyl ether having a desired purity is obtained as a product from the upper stage of the dimethyl ether purification tower 50. can get. At this time, unreacted methanol and water are discharged from the tower bottom and sent to the methanol recovery tower 60, and light gas is discharged from the tower top.
[0013]
On the other hand, the liquid discharged from the bottom of each of the evaporator 2 and the dimethyl ether purification tower 50 is subjected to rectification in the methanol recovery tower 60 to separate water and high-boiling components. It is discharged from the bottom of the tower and processed by a processing facility not shown. Further, the methanol is liquefied by the condenser 60b, and is supplied to the evaporator 2 as liquid methanol for reflux via the pump P2.
[0014]
Next, an example of the evaporation apparatus 2 which is a main part of this embodiment will be described with reference to FIG. First, as shown in FIG. 2, the evaporation apparatus 2 includes an evaporator (evaporation tower) 20. Inside the evaporator 20, for example, a packing layer 21 made of a large number of packings is provided. Further, a reboiler 3 is provided at the lower stage of the evaporator 20.
[0015]
Subsequently, the process from vaporizing crude methanol with the above-described evaporator 2 to supplying it to the reaction tower 40 will be described in detail. First, for example, crude methanol containing 5 to 40% by weight of moisture and other impurities such as trace amounts of ethanol and paraffinic components is supplied to the evaporator 20 in a liquid state via the crude methanol supply port 25, and a part thereof Vaporize. On the other hand, the liquid methanol for recovery (recovered methanol) returned from the methanol recovery tower 60 includes, for example, crude water having a water concentration lower than that of the crude methanol, for example, 0 to 10 wt%. It is supplied as a reflux liquid from the upper part of the evaporator 20 at a flow rate of, for example, 20 to 100% with respect to the mass flow rate of methanol.
[0016]
Here, when the vaporized gas and the liquid methanol for reflux are brought into countercurrent contact in the gas-liquid contact region, a part of the water vapor having a boiling point higher than that of methanol is condensed, and conversely, Some vaporize. For this reason, the concentration of water (water vapor) contained in the gas is a predetermined water (water vapor) concentration, for example, 2 to 15% by weight. The gas having a reduced moisture concentration is distilled through the gas distillation outlet 27 and then heated to a predetermined temperature, for example, 250 to 350 ° C. by the preheater 40a, and supplied to the reaction tower 40 as a raw material gas. The liquid containing methanol and water at the bottom of the evaporator 20 is discharged through the discharge port 28 and supplied to the methanol recovery tower 60.
[0017]
In such an embodiment, crude methanol is used as a raw material for dimethyl ether, and liquid methanol for reflux is supplied from another location, for example, from the methanol recovery tower 60 to the evaporator 20 in the previous stage of the step of synthesizing dimethyl ether. Since the water concentration in the reactor supply gas is reduced, high-purity methanol is not required as a raw material, and the water concentration can be reduced with simple equipment, thus reducing the cost for synthesizing dimethyl ether. be able to. That is, this embodiment maintains the speed of the synthesis reaction of dimethyl ether by reducing the water in the gas supplied to the reaction tower to a predetermined concentration, thereby reducing the capacity of the reaction tower 40 and separating the water. This is realized by paying attention to reducing the cost of the equipment by performing the above-described moisture adjustment method with an evaporator, instead of providing a distillation column for the purpose.
[0018]
【Example】
Next, examples performed to confirm the effects of the present invention will be described.
Example 1
As shown in FIG. 3, a tower packed with pole rings corresponding to four theoretical plates was used as the evaporator 20 and heated by the reboiler 3 to vaporize a part of the raw raw methanol. The crude methanol (methanol mixture) supplied to the evaporator 20 was 50 kg / h, and its composition was methanol: 74.9% by weight, water: 25.0% by weight, and other impurities: 500 ppm. The recovered methanol sent from the methanol recovery tower 60 was 24 kg / h, and consisted of methanol: 95.0 wt%, water: 5.0 wt%, and other impurities: 400 ppm. Crude methanol was supplied to the position corresponding to the third stage from the top of the column, and liquid methanol for reflux was supplied to the top of the column. Further, a column packed with a pole ring corresponding to 30 theoretical plates was used as the methanol recovery column 60 for separating methanol and water. FIG. 3 also shows the result.
[0019]
(Result of Example 1)
a. Partial evaporation was performed with the top pressure of the evaporator 20 being 2.2 MPa to obtain a gas containing 89.9% by weight of methanol, 10.0% by weight of water, and 500 ppm of other impurities. The flow rate of this gas was 59 kg / h. The amount of heat of the reboiler 3 was 20200 kcal / h calculated from the amount of steam used.
b. The gas obtained from the top of the tower was heated to 280 ° C. with the preheater 40a. The amount of heating was 3200 kcal / h.
c. 70% of methanol was converted to dimethyl ether in the reaction tower 40 to synthesize the target product, dimethyl ether. A mixture of 49.6% by weight of methanol, 50.4% by weight of water and 400 ppm of other impurities obtained after separation of dimethyl ether in the dimethyl ether purification tower 50, and methanol which has not evaporated in the evaporator 20 are obtained. 15 kg / h of a mixture consisting of 1% by weight, 52.8% by weight of water and 700 ppm of other impurities was mixed and supplied to the methanol recovery tower 60.
d. When the reflux ratio of the methanol recovery tower 60 is 1.0, the tower top temperature is 72 ° C., and the purity of the liquid methanol for reflux obtained as a liquid from the tower top is 95.0% by weight. The purity of the water obtained in the above was 99.9% by weight, and the amount of heat of the reboiler 60a was 10,000 kcal / h.
e. The heating amount shown here is 33400 kcal / h when the reboiler 3, the preheater 40a and the reboiler 60a of the methanol recovery tower 60 are combined.
[0020]
(Comparative Example 1)
This example is Comparative Example 1 in the case where the water content of the raw material is adjusted in the methanol recovery tower 60 which is a distillation tower. As shown in FIG. 4, as the distillation raw material, crude methanol (methanol mixture) containing impurities, methanol mainly obtained from the unreacted methanol obtained after separating dimethyl ether from the outlet gas of the reaction tower 40 by the dimethyl ether purification tower 50, and There is a mixture of water. In order to separate the methanol in these raw materials from the water, a column packed with pole rings corresponding to 30 theoretical plates was used as the methanol recovery column 60 in the same manner as in Example 1. Both raw materials were mixed and supplied to the position corresponding to the 10th stage. The crude methanol was 50 kg / h as in Example 1, and the composition was methanol: 74.9% by weight, water: 25.0% by weight, and other impurities: 500 ppm. The unreacted mixture of methanol and water was 32 kg / h, and the composition was methanol: 49.6% by weight, water: 50.4% by weight, and other impurities: 400 ppm. FIG. 4 also shows the results.
[0021]
(Results of Comparative Example 1)
a. Distillation operation was performed with the top pressure of the methanol recovery tower 60 being 0.13 MPa.
b. When the reflux ratio of the methanol recovery tower 60 is 0.4, the top temperature is 74 ° C., the purity of methanol obtained in liquid form from the top is 89.9% by weight, and water is obtained in liquid form from the bottom. The purity of the product was 99.9% by weight, and the amount of heat of the reboiler 60a was 20800 kcal / h.
c. The flow rate of recovered methanol containing 89.9% by weight of methanol obtained from the top of the tower, 10.0% by weight of water, and 500 ppm of other impurities is 59 kg / h. After pressurizing to 3 MPa, it was vaporized by the kettle type evaporator 8 and then heated to 280 ° C. by the preheater 40a. The heating amount was 18900 kcal / h in the evaporator 8 and 3200 kcal / h in the preheater 40a.
d. The heating amount shown here is 42900 kcal / h when the reboiler 60a, the evaporator 8, and the preheater 40a are combined.
[0022]
(Comparative Example 2)
In this example, as shown in FIG. 5, after recovering methanol (liquid methanol used for reflux in the examples) and mixing with crude methanol to lower the water concentration, water and high-boiling components can be extracted from the bottom. It is the comparative example 2 which vaporizes with the possible kettle type | mold evaporator 8, and adjusts source gas. The flow rate and composition of the crude methanol were the same as in Example 1. The recovered methanol sent from the methanol recovery tower 60 was 67 kg / h, consisting of methanol: 95.0 wt%, water: 5.0 wt%, and other impurities: 400 ppm. The two were mixed and supplied to the evaporator 8 and heated to separate into vapor mainly composed of methanol and liquid mainly composed of water and components. A column packed with a pole ring corresponding to 30 theoretical plates was used as the methanol recovery column 60 for separating methanol and water as in Comparative Example 1, and the raw material was supplied to the position corresponding to the 10th plate. FIG. 5 also shows the results.
[0023]
(Results of Comparative Example 2)
a. Partial evaporation was performed with the pressure of the evaporator 8 being set to 2.2 MPa to obtain a gas containing 89.9% by weight of methanol, 10.0% by weight of water, and 500 ppm of other impurities. The flow rate of this gas was 59 kg / h. The amount of heat of the evaporator 8 was 24100 kcal / h.
b. In order to supply the gas obtained from the evaporator 8 to the reaction tower 40, the gas was heated to 280 ° C. by the preheater 40a. The heating amount was 3200 kcal / h.
c. Dimethyl ether was synthesized in the reaction tower 40. 32 kg / h of a mixture consisting of 49.6% by weight of methanol, 50.4% by weight of water and 400 ppm of other impurities obtained after separating dimethyl ether in the dimethyl ether purification tower 50, and 82. 58 kg / h of a mixture consisting of 9% by weight, 17.1% by weight of water and 400 ppm of other impurities was mixed and supplied to the methanol recovery tower 60.
d. When the reflux ratio of the methanol recovery tower 60 is 0.6, the tower top temperature is 72 ° C., the purity of methanol obtained in liquid form from the tower top is 95.0% by weight, and water obtained in liquid form from the tower bottom. The purity of the product was 99.9% by weight, and the amount of heat of the reboiler 60a was 23300 kcal / h.
e. The heating amount shown here is 50600 kcal / h when the evaporator 8, the preheater 40a and the reboiler 60a of the methanol recovery tower 60 are combined.
[0024]
(Comparative Example 3)
This example is the same as Comparative Example 2 in that the water concentration is lowered by mixing recovered methanol (liquid methanol used for refluxing in Example 1) with crude methanol as shown in FIG. An example in which the raw material gas is obtained by evaporating the entire amount with the evaporator 8 without adjustment will be referred to as Comparative Example 3. The flow rate and composition of the crude methanol were the same as in Example 1. The recovered methanol sent from the methanol recovery tower 60 was 17 kg / h, and consisted of methanol: 95.0 wt%, water: 5.0 wt%, and other impurities: 400 ppm. Both were mixed and supplied to the evaporator 8, and the entire amount was vaporized. As the methanol recovery column 60 for separating methanol and water, a column packed with a pole ring corresponding to 30 theoretical plates was used as in Example 1, and the raw material was supplied to a position corresponding to the 10th plate. FIG. 6 also shows the results. In order to convert 70% of methanol to dimethyl ether, the amount of catalyst in the reaction tower 40, which is an adiabatic dimethyl ether synthesis reactor, is high because the moisture concentration of the raw material gas supplied to the reaction tower is high. The catalyst required 2.3 times that of Example 1 was required. In addition, when the experiment was performed with the same catalyst amount as in Example 1 for the reaction tower feed gas of Comparative Example 3, the conversion rate of methanol to dimethyl ether was as low as 21%, which required a large amount of methanol circulation. Processing was impossible with the apparatus used in the examples and comparative examples 1 and 2.
[0025]
(Result of Comparative Example 3)
a. Complete evaporation was performed with the pressure of the evaporator 8 being 2.2 MPa to obtain a gas containing 79.9% by weight of methanol, 20.0% by weight of water, and 500 ppm of other impurities. The flow rate of this gas was 67 kg / h. The amount of heat of the evaporator 8 was 23200 kcal / h.
b. In order to supply the gas obtained from the evaporator 8 to the reaction tower 40, the gas was heated to 280 ° C. by the preheater 40a. The heating amount was 3300 kcal / h.
c. Dimethyl ether was synthesized in the reaction column 40 packed with a catalyst amount 2.3 times that in Example 1, and 40.1% by weight of methanol and 59.9% of water obtained after separating the dimethyl ether in the dimethyl ether purification column 50. % And 40 kg / h of a mixture consisting of 400 ppm of other impurities were supplied to the methanol recovery tower 60.
d. When the reflux ratio of the methanol recovery tower 60 is 1.2, the tower top temperature is 72 ° C., the purity of methanol obtained in liquid form from the tower top is 95.0% by weight, and water obtained in liquid form from the tower bottom. The purity of the product was 99.9% by weight, and the amount of heat of the reboiler 60a was 7400 kcal / h.
e. The heating amount shown here is 33900 kcal / h when the evaporator 8, the preheater 40a and the reboiler 60a of the methanol recovery tower 60 are combined.
[0026]
(Consideration of Example 1, Comparative Example 1 and Comparative Example 2)
In Example 1, Comparative Example 1 and Comparative Example 2, the same raw material (crude methanol) was used to obtain the same gas phase mixture as the raw material of the dimethyl ether synthesis reactor (reaction tower 40), and methanol and water were used. The number of theoretical plates of the distillation column for separation (methanol recovery column 60) was the same, and the purity of the water obtained from the bottom was also the same. Comparing Example 1 and Comparative Example 1, in Example 1, although the evaporator 20 corresponding to four theoretical plates is necessary, the total heating amount is reduced to 78% compared to Comparative Example 1. Recognize. Comparing Example 1 and Comparative Example 2, in Comparative Example 2, a large amount of methanol is discharged together with water as a liquid from the evaporator 20 (evaporator 8 in Comparative Example 2) for the purpose of suppressing the moisture concentration in the gas phase. This methanol component is recovered by the methanol recovery tower 60 and supplied again to the evaporator 20 (evaporator 8 in the comparative example 2). In Example 1, although it is necessary to make the evaporator 20 correspond to four theoretical plates, the liquid methanol for reflux supplied from the top of the column plays the role of the reflux liquid in the distillation column, thereby causing the evaporator 20 to It can be seen that the distillation effect is provided, the amount of methanol discharged into the column bottom liquid is reduced to reduce the load on the methanol recovery tower, and the total heating amount is reduced to 66% compared to Comparative Example 2. In other words, it can be seen that the heating amount can be greatly reduced by supplying the liquid methanol for reflux from the top of the column with the evaporator equivalent to four theoretical plates. Further, the cooling amount of the condenser of the methanol recovery tower is similarly reduced.
[0027]
(Consideration of Comparative Example 3)
Comparing Example 1 and Comparative Example 3, in Comparative Example 3, the concentration of water supplied to the reaction tower 40 is high, and the amount of catalyst necessary to obtain an equivalent reaction result is increased 2.3 times. In Comparative Example 3, the load on the methanol recovery tower 60 is larger in Example 1, but in Example 1, it is not necessary to evaporate a large amount of water in the evaporator 20, so the total heating amount is 98 compared with Comparative Example 3. It turns out that it is equivalent to%. In Example 1, although the evaporator 20 corresponding to four theoretical plates is required, the amount of catalyst can be greatly reduced, so that it can be seen that the heating amount is substantially the same and the equipment cost can be reduced.
[0028]
【The invention's effect】
As described above, according to the present invention, in the method for producing dimethyl ether by dehydrating methanol by gas phase reaction, by performing the synthesis reaction of dimethyl ether by reducing the water concentration in the raw material gas supplied to the reactor, Inexpensive methanol containing water can be used as a raw material, and the cost of equipment can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the overall configuration of a dimethyl ether production system incorporating an evaporator equipped with the method of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of an evaporation apparatus provided with the method of the present invention.
FIG. 3 is a characteristic diagram showing an example carried out to confirm the effect of the present invention.
FIG. 4 is a characteristic diagram showing a comparative example performed to confirm the effect of the present invention.
FIG. 5 is a characteristic diagram showing a comparative example performed to confirm the effect of the present invention.
FIG. 6 is a characteristic diagram showing a comparative example performed to confirm the effect of the present invention.
[Explanation of symbols]
2 Evaporator 20 Evaporator 21 Packing Layer 22 Packing Support Portion 24 Reflux Supply Port 25 Crude Methanol Supply Port 3 Reboiler 40 Reaction Tower 50 Dimethyl Ether Purification Tower 60 Methanol Recovery Tower

Claims (5)

メタノールを気相反応により脱水してジメチルエーテルを製造する方法において、
水を含んだ原料である液体メタノールを加熱し、蒸発器にてその一部を気化させる工程と、
還流用の液体メタノールを蒸発器に供給し、その還流用のメタノールと前記気化工程にて気化されたガスとを接触させて、ガス中の水蒸気を凝縮させかつ還流用の液体メタノールを蒸発させてガス中の水分濃度を減少させる工程と、
前記蒸発器にて水分濃度が減少したガスを反応器に供給してジメチルエーテルを合成する工程と、
前記反応器にて生成したジメチルエーテルを精製塔により分離する工程と、
前記精製塔にて分離された水を含む未反応メタノール及び前記蒸発器にて分離された未蒸発メタノールをメタノール回収塔にて精製してメタノールを回収する工程と、を含み、
前記還流用の液体メタノールは、前記メタノールを回収する工程にて回収されたメタノールであり、
前記還流用の液体メタノールの水分濃度は、前記水を含んだ原料である液体メタノールの水分濃度よりも低いことを特徴とするジメチルエーテルの製造方法。
In a method for producing dimethyl ether by dehydrating methanol by a gas phase reaction,
Heating liquid methanol, which is a raw material containing water, and evaporating a part thereof in an evaporator;
Liquid methanol for reflux is supplied to the evaporator, the methanol for reflux is brought into contact with the gas evaporated in the vaporization step, water vapor in the gas is condensed, and liquid methanol for reflux is evaporated. Reducing the moisture concentration in the gas;
Supplying a gas having a reduced water concentration in the evaporator to the reactor to synthesize dimethyl ether;
Separating the dimethyl ether produced in the reactor with a purification tower;
And a step of recovering the methanol was hand purified unevaporated methanol separated in methanol recovery column at unreacted methanol and the evaporator includes a water separated by the purification column,
The refluxing liquid methanol is methanol recovered in the step of recovering the methanol ,
A method for producing dimethyl ether, wherein the water concentration of liquid methanol for reflux is lower than the water concentration of liquid methanol, which is a raw material containing water.
原料である液体メタノールは、水分濃度が5重量%〜40重量%であることを特徴とする請求項1記載のジメチルエーテルの製造方法。  2. The method for producing dimethyl ether according to claim 1, wherein the liquid methanol as a raw material has a water concentration of 5 wt% to 40 wt%. 還流用の液体メタノールは、水分濃度が0重量%〜10重量%であることを特徴とする請求項1または2に記載のジメチルエーテルの製造方法。  The method for producing dimethyl ether according to claim 1 or 2, wherein the liquid methanol for reflux has a water concentration of 0 wt% to 10 wt%. 前記蒸発器にて水分濃度が減少したメタノールガスの水分濃度は、2重量%〜15重量%であることを特徴とする請求項1ないし3のいずれか一つに記載のジメチルエーテルの製造方法。  The method for producing dimethyl ether according to any one of claims 1 to 3, wherein the moisture concentration of the methanol gas whose moisture concentration is reduced by the evaporator is 2 to 15 wt%. 水分濃度が5重量%〜40重量%の原料のメタノールの質量流量に対して、水分濃度が0重量%〜10重量%の還流用の液体メタノールを20%〜100%の割合の質量流量で供給することを特徴とする請求項1ないし4のいずれか一つに記載のジメチルエーテルの製造方法。  Supplying liquid methanol for reflux with a water concentration of 0% to 10% by weight at a flow rate of 20% to 100% with respect to the mass flow rate of the raw material methanol having a water concentration of 5% to 40% by weight. The method for producing dimethyl ether according to any one of claims 1 to 4, wherein:
JP2002329320A 2002-11-13 2002-11-13 Method for producing dimethyl ether Expired - Lifetime JP4414645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329320A JP4414645B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329320A JP4414645B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Publications (2)

Publication Number Publication Date
JP2004161672A JP2004161672A (en) 2004-06-10
JP4414645B2 true JP4414645B2 (en) 2010-02-10

Family

ID=32807352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329320A Expired - Lifetime JP4414645B2 (en) 2002-11-13 2002-11-13 Method for producing dimethyl ether

Country Status (1)

Country Link
JP (1) JP4414645B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553231B2 (en) * 2002-11-13 2010-09-29 日揮株式会社 Method for producing dimethyl ether
DE102008058931B4 (en) 2008-11-25 2010-12-30 Lurgi Gmbh Process and apparatus for producing dimethyl ether from methanol
WO2012059191A1 (en) 2010-11-02 2012-05-10 Saudi Basic Industries Corporation (Sabic) Process for producing light olefins by using a zsm - 5 - based catalyst
CN102229525A (en) * 2011-05-13 2011-11-02 河北凯跃化工集团有限公司 Process and equipment for pre-separation and low energy consumption dimethyl ether rectification of crude ether condensate
DE102012105212B3 (en) * 2012-06-15 2013-05-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procedure for commissioning a DME synthesis reactor

Also Published As

Publication number Publication date
JP2004161672A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US3983180A (en) Process for preparing methyl chloride
JP2008184378A (en) Method for producing high-purity trichlorosilane
JPS5874624A (en) Manufacture and purification of 1,2-dichloroethane
JPH04507411A (en) process
JP4414645B2 (en) Method for producing dimethyl ether
JPH1059878A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with water as extractant
CN102471194A (en) Method and device for producing methanol and dimethyl ether
JP4553231B2 (en) Method for producing dimethyl ether
KR20060109306A (en) Recovering method of acetic acid from the effluent of terephtalic acid production process
MXPA06010637A (en) Utilization of acetic acid reaction heat in other process plants.
JP6391389B2 (en) Method for producing octachlorotrisilane and octachlorotrisilane produced by the method
JPH1059877A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with methanol as extractant
JP2003119168A (en) Method for producing dimethyl carbonate
NO328297B1 (en) Process for the preparation of ethers, typically THF
WO2006109999A1 (en) Recovering method of acetic acid from effluent of terephthalic acid production process
KR20190063704A (en) A process for manufacturing 1,4-cyclohexanedimethanol
JP2003508458A (en) Continuous production method of glutaraldehyde
JP2000086592A (en) Purification of carbonic acid diester and purification apparatus therefor
JP3956396B2 (en) Method for producing high-purity isoaldehyde
CN101270034B (en) Technique for preparing dimethyl ether
JP2016064952A (en) Manufacturing method of pentachlorodisilane and pentachlorodisilane manufactured by the same
JPS6141497B2 (en)
JP4526142B2 (en) Method for simultaneous production of norbornene and high purity tetracyclododecene
CN110776408B (en) Purification method for acrolein
JP2681667B2 (en) Method for separating acetic acid / water / vinyl acetate mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term