JP4405692B2 - Purification method for underground pollution area - Google Patents
Purification method for underground pollution area Download PDFInfo
- Publication number
- JP4405692B2 JP4405692B2 JP2001116958A JP2001116958A JP4405692B2 JP 4405692 B2 JP4405692 B2 JP 4405692B2 JP 2001116958 A JP2001116958 A JP 2001116958A JP 2001116958 A JP2001116958 A JP 2001116958A JP 4405692 B2 JP4405692 B2 JP 4405692B2
- Authority
- JP
- Japan
- Prior art keywords
- persulfate
- contaminated
- underground
- groundwater
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、化学物質で汚染された地下汚染領域を物理化学的に浄化する方法に関する。本発明の浄化方法は、例えば、有機塩素化合物に汚染された土壌、底質、汚泥、地下水等の浄化に好適に使用される。
【0002】
【従来の技術】
トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)等の有機塩素化合物は、洗浄剤として各種工場やクリーニング店で広く使用されているが、これら有機塩素化合物は発癌性物質である疑いがあるため、近年、上記有機塩素化合物による土壌、地下水等の汚染が大きな社会問題となっている。
【0003】
従来、有機塩素化合物で汚染された土壌の処理法としては、汚染土壌の封じ込め処理、汚染土壌の掘削・封じ込め処理などが主に行われている。また、有機塩素化合物で汚染された地下水の処理法としては、揚水曝気と活性炭処理とを組み合わせたポンプ・アンド・トリート法などが主に行われている。ポンプ・アンド・トリート法は、揚水した地下水に空気を曝気することにより、水中の汚染化学物質を気相中に移行させて地下水を浄化した後、気相を活性炭処理する方法であり、浄化後の水は地表に流される。
【0004】
【発明が解決しようとする課題】
しかし、前述した汚染土壌の封じ込め処理法、汚染土壌の掘削・封じ込め処理法、汚染地下水のポンプ・アンド・トリート処理法は、汚染化学物質を積極的に分解して無害化する技術ではないこと、莫大なコスト、エネルギー、手間を要すること、浄化期間が10〜20年と長いことなどが問題となっていた。
【0005】
また、ポンプ・アンド・トリート法は、揚水した汚染地下水の浄化処理を地上で行うものであって、地下に存在する汚染源に対して直接除去処理を行うものではないため、地下に存在する汚染源の除去期間が非常に長くなるという問題があった。
【0006】
これに対し、近年、過酸化水素と鉄溶液(フェントン試薬)や、過マンガン酸カリウムを直接井戸に注入することにより、原位置において土壌、地下水等の酸化処理を行う方法が開発されている。しかし、過酸化水素と鉄溶液を用いる方法では、地中で過酸化水素が急激に分解するために過酸化水素の到達距離が短く、浄化エリアが小さいという問題があった。また、過マンガン酸カリウムを用いる方法では、過マンガン酸カリウム溶液は濃い紫色を呈しているため、過マンガン酸カリウム溶液を地下水に直接注入するのは好ましくないという問題があった。
【0007】
本発明は、前述した事情に鑑みてなされたもので、地下汚染領域、特に有機塩素化合物で汚染された土壌、底質、汚泥、地下水等を、短期間で、かつ低コスト、低エネルギーで効率的に浄化することができる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、前記目的を達成するために、トリクロロエチレン、テトラクロロエチレンなどの有機塩素化合物に汚染された土壌や地下水を浄化する酸化処理法について鋭意検討を行った。その結果、上記汚染土壌や汚染地下水に酸化剤として従来より高温(70℃以上)での強い酸化力が知られていた過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩を添加した場合、有機塩素化合物が常温(15〜30℃)においては緩やかに分解処理されることを見出した。また、本発明者は、地下汚染領域またはその付近から揚水した地下水に過硫酸塩を添加した後、この過硫酸塩を添加した水を再び地下汚染領域またはその付近に注入した場合、あるいは地下汚染領域またはその付近に存在する地下水に原位置において過硫酸塩を添加した場合、過硫酸塩は分解が比較的緩やかであるため酸化剤の到達距離が長く、浄化エリアを大きくすることができること、過硫酸塩は無色透明であるため地下水に注入しても問題が生じないことを見出した。
【0009】
本発明は、上述した知見に基づいてなされたもので、下記第1発明、第2発明の地下汚染領域の浄化方法を提供する。
(第1発明)
・有機塩素化合物で汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩のみを、地下水中の過硫酸塩濃度が0.005〜5重量%になるように地下汚染領域またはその付近に存在する地下水に添加することを特徴とする地下汚染領域の浄化方法(請求項1)。
・ベンゼン、トルエンまたはキシレンで汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩のみを、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近に存在する地下水に添加することを特徴とする地下汚染領域の浄化方法(請求項2)。
・有機塩素化合物で汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩および過酸化水素水を、地下水中の過硫酸塩濃度が0.005〜5重量%になるように地下汚染領域またはその付近に存在する地下水に添加することを特徴とする地下汚染領域の浄化方法(請求項5)。
・ベンゼン、トルエンまたはキシレンで汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩および過酸化水素水を、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近に存在する地下水に添加することを特徴とする地下汚染領域の浄化方法(請求項6)。
(第2発明)
・有機塩素化合物で汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩のみを、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近から揚水した地下水に添加した後、前記過硫酸塩を添加した水を再び地下汚染領域またはその付近に注入することを特徴とする地下汚染領域の浄化方法(請求項3)。
・ベンゼン、トルエンまたはキシレンで汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩のみを、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近から揚水した地下水に添加した後、前記過硫酸塩を添加した水を再び地下汚染領域またはその付近に注入することを特徴とする地下汚染領域の浄化方法(請求項4)。
・有機塩素化合物で汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩および過酸化水素水を、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近から揚水した地下水に添加した後、前記過硫酸塩および過酸化水素水を添加した水を再び地下汚染領域またはその付近に注入することを特徴とする地下汚染領域の浄化方法(請求項7)。
・ベンゼン、トルエンまたはキシレンで汚染された地下汚染領域の浄化方法であって、常温において、pH4以上pH7以下の条件で、酸化剤として過硫酸塩および過酸化水素水を、地下水中の過硫酸塩濃度が0.005〜5重量%となるように地下汚染領域またはその付近から揚水した地下水に添加した後、前記過硫酸塩および過酸化水素水を添加した水を再び地下汚染領域またはその付近に注入することを特徴とする地下汚染領域の浄化方法(請求項8)。
【0010】
以下、本発明につきさらに詳しく説明する。第1、第2発明において、過硫酸塩(ペルオキソ二硫酸塩)としては、例えば、過硫酸カリウム(ペルオキソ二硫酸カリウム)、過硫酸ナトリウム(ペルオキソ二硫酸ナトリウム)等を用いることができる。
【0012】
第1、第2発明では、地下水にpH7以下、特にpH4〜7の条件で過硫酸塩を添加することが適当である。反応時のpHを中性あるいは酸性とすることにより、過硫酸塩による汚染化学物質の酸化分解を促進することができる。この場合、地下水にpH7以下の条件で過硫酸塩を添加する手段としては、例えば地下水に過硫酸塩と共に硫酸等のpH調整剤を添加する手段が挙げられる。
【0013】
第1、第2発明では、地下水中の過硫酸塩濃度が0.005〜5重量%、特に0.01〜1重量%となるように地下水に過硫酸塩を添加することが適当である。過硫酸塩濃度を上記範囲とすることにより、汚染化学物質の酸化分解を効率的に促進することができる。
【0014】
また、第1、第2発明では、地下水に過硫酸塩と共に過酸化水素水を添加することができ、これにより汚染化学物質の酸化分解をさらに促進することができる。この場合、地下水中の過酸化水素濃度が1〜500mg/L、特に10〜100mg/Lとなるように地下水に過酸化水素水を添加することが適当である。
【0015】
第1、第2発明は、有機塩素化合物に汚染された土壌、底質、汚泥、地下水等の浄化に好適に使用されるが、これに限定されるものではない。すなわち、第1、第2発明は、有機塩素化合物(TCE、PCE、ダイオキシン類、PCB類など)による汚染物の浄化のみならず、ベンゼン、トルエン、キシレンによる汚染物の浄化にも適用可能である。
【0016】
【発明の実施の形態】
次に、図面を参照して本発明の実施の形態を説明する。図1は第1発明の一実施形態を示す図である。図1において52は過硫酸塩添加手段、54は揚水手段、56は曝気処理手段を示す。
【0017】
過硫酸塩添加手段52は、地下汚染領域またはその付近に存在する地下水に原位置において過硫酸塩(図示の例では過硫酸カリウム:K2S2O8)を添加するものである。過硫酸塩添加手段52は、地中に埋設され、管のスクリーンを通して外部に薬剤を流出させる注入井戸58と、過硫酸カリウム水溶液が貯留された薬剤貯槽60と、薬剤貯槽60に連結され、注入井戸58内に過硫酸カリウム水溶液を放出する薬剤注入管62と、薬剤注入管62に介装された薬剤注入ポンプ64とを備えている。過硫酸塩添加手段52によって地下水に原位置において過硫酸塩を添加すると、過硫酸塩を添加した地下水が下流の地下汚染領域Xを流れる間に、地下汚染領域Xに存在する汚染化学物質が過硫酸塩によって酸化分解される。この場合、過硫酸塩は分解が比較的緩やかであるため酸化剤の到達距離が長く、浄化エリアを大きくすることができる。
【0018】
揚水手段54は、地下汚染領域Xの下流側から、地下汚染領域Xを通過した後の前記地下水Wを揚水するものである。本例の揚水手段54は、地中に埋設され、管のスクリーンを通して内部に地下水を流入させる揚水井戸66と、揚水井戸66内に設置された揚水ポンプ68と、揚水ポンプ68に連結された揚水管70と、揚水管70に連結された地下水貯留タンク72とを備えている。揚水手段54は、過硫酸塩を添加した地下水の流速を揚水によって調整するもので、必要に応じて設置される。
【0019】
曝気処理手段56は、揚水手段54により揚水した地下水の曝気処理を行うものである。本例の曝気処理手段56は、曝気槽74と、地下水貯留タンク72内の地下水を曝気槽74に導入する配管76およびポンプ78とを備えている。曝気槽74は、内部を下向流で流れる地下水に空気80を曝気して、水中の汚染化学物質を気相中に移行させるものである。曝気処理水は排出管82から地表に流される。この曝気処理手段56は必要に応じて設置される。
【0020】
図2は第2発明の一実施形態を示す図である。図2において2は揚水手段、4は曝気処理手段、6は過硫酸塩添加手段、8は注入手段を示す。
【0021】
揚水手段2は、地下汚染領域Xまたはその付近から地下水Wを揚水するものである。本例の揚水手段2は、地中に埋設され、管のスクリーンを通して内部に地下水を流入させる揚水井戸10と、揚水井戸10内に設置された揚水ポンプ12と、揚水ポンプ12に連結された揚水管14と、揚水管14に連結された地下水貯留タンク16とを備えている。
【0022】
曝気処理手段4は、揚水手段2により揚水した地下水の曝気処理を行うものである。本例の曝気処理手段4は、曝気槽18と、地下水貯留タンク16内の地下水を曝気槽18に導入する配管20およびポンプ22とを備えている。曝気槽18は、内部を下向流で流れる地下水に空気24を曝気して、水中の汚染化学物質を気相中に移行させるものである。
【0023】
過硫酸塩添加手段6は、曝気処理手段4により曝気処理した水に混合槽26において過硫酸塩(図示の例では過硫酸カリウム:K2S2O8)を添加するものである。混合槽26には、曝気槽18の流出水を導入する配管28、過硫酸カリウム添加機構30および硫酸添加機構32が連結されている。そして、配管28から導入された曝気処理水に、過硫酸カリウム添加機構30および硫酸添加機構32から過硫酸カリウムおよび硫酸(pH調整剤)が添加されるようになっている。過硫酸塩添加手段6における処理例としては、曝気処理水にその過硫酸カリウム濃度が0.005〜5重量%、pHが4〜7になるように過硫酸カリウムおよび硫酸を添加する例が挙げられる。また、過硫酸塩添加手段6では、曝気処理水に過硫酸カリウムおよび硫酸と共に過酸化水素水を添加するようにしてもよい。
【0024】
注入手段8は、過硫酸塩添加手段6により過硫酸塩を添加した水を再び地下汚染領域Xまたはその付近に注入するものである。本例の注入手段8は、地中に埋設され、管のスクリーンを通して外部に水を流出させる注入井戸34と、混合槽26に連結され、注入井戸34内に水を放出する注入管36と、注入管36に介装された注入ポンプ38とを備えている。注入手段8によって過硫酸塩を添加した水を地下汚染領域Xまたはその付近に注入すると、過硫酸塩を添加した水が地下汚染領域Xを流れる間に、地下汚染領域Xに存在する汚染化学物質が過硫酸塩によって酸化分解される。この場合、過硫酸塩は分解が比較的緩やかであるため酸化剤の到達距離が長く、浄化エリアを大きくすることができる。
【0025】
ところで、図2の例では、地下汚染領域Xの浄化処理を行うに当たり、揚水手段2による揚水位置Aを地下水Wの流れFの下流側、注入手段8による注入位置Bを地下水Wの流れFの上流側に設定している。このようにすると、下流側で揚水した地下水に過硫酸塩を添加して上流側に注入するという、水の流れがほぼ閉鎖された系(閉鎖系)で浄化処理を行うことができるので、地下汚染領域の浄化を効率的に行うことが可能となる。
【0026】
また、過酸化水素を注入する場合は、過硫酸カリウムとは別のタンクに過酸化水素を調製しておき、過硫酸カリウムとは別配管を使って注入するか、過硫酸カリウム注入配管へ添加、混合した後に注入井戸への供給を行う。
【0027】
【実施例】
200mLのバイアルビンに、実汚染土20gおよび純水180mLを入れ、さらにバイアルビンに下記▲1▼〜▲6▼に示す条件で過硫酸カリウム、過酸化水素などを添加した後、バイアルビンを密閉して処理実験を開始した。そして、経時的に各バイアルビンのヘッドスペース中に含まれるトリクロロエチレン(TCE)の濃度をガスクロマトグラフィーで測定することにより、処理効果について評価した。下記条件▲1▼〜▲6▼の内、▲2▼〜▲5▼は本発明例、他は比較例である。
【0028】
(実験条件)
▲1▼ブランク試験
実汚染土20gおよび純水180mLに対して何も添加しなかった。
▲2▼過硫酸カリウム単独(pH7)
実汚染土20gおよび純水180mLの合計量に対して過硫酸カリウム1重量%を添加し、pH7で反応させた。
▲3▼過硫酸カリウム単独(pH9)
実汚染土20gおよび純水180mLの合計量に対して過硫酸カリウム1重量%を添加し、pH9で反応させた。
▲4▼過硫酸カリウム単独(pH5)
実汚染土20gおよび純水180mLの合計量に対して過硫酸カリウム1重量%を添加し、pH5で反応させた。
▲5▼過硫酸カリウムおよび過酸化水素(pH7)
実汚染土20gおよび純水180mLの合計量に対して過硫酸カリウム1重量%および過酸化水素100mg/Lを添加し、pH7で反応させた。
▲6▼過酸化水素単独
実汚染土20gおよび純水180mLの合計量に対して過酸化水素100mg/Lのみを添加し、反応させた。
【0029】
(処理結果)
図3に処理結果を示す。過硫酸カリウムを添加した▲2▼〜▲5▼ではTCEの分解が速やかに生じたのに対し、▲1▼のブランク試験および▲6▼の過酸化水素単独ではTCEの分解がそれほど認められなかった。また、過硫酸カリウムを添加した場合でも、反応時のpHがアルカリ側である▲3▼に比較して、中性または酸性側である▲2▼、▲4▼、▲5▼の方がTCEの分解が促進されることがわかった。さらに、過酸化水素を添加した▲5▼では分解がより促進されることがわかった。
【0030】
【発明の効果】
以上のように、本発明によれば、地下汚染領域、特に有機塩素化合物で汚染された土壌、底質、汚泥、地下水等を、短期間で、かつ低コスト、低エネルギーで効率的に浄化することができる
【図面の簡単な説明】
【図1】 第1発明の一実施形態を示す図である。
【図2】 第2発明の一実施形態を示す図である。
【図3】実施例の浄化処理における処理経過時間と溶出TCE濃度との関係を示すグラフである。
【符号の説明】
X 地下汚染領域
W 地下水
2 揚水手段
4 曝気処理手段
6 過硫酸塩添加手段
8 注入手段
10 揚水井戸
14 揚水管
16 地下水貯留タンク
18 曝気槽
26 混合槽
30 過硫酸カリウム添加機構
32 硫酸添加機構
34 注入井戸
36 注入管
52 過硫酸塩添加手段
54 揚水手段
56 曝気処理手段
58 注入井戸
60 薬剤貯槽
62 薬剤注入管
66 揚水井戸
70 揚水管
72 地下水貯留タンク
74 曝気槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of purifying an underground contaminated area contaminated with chemical substances physicochemically. The purification method of the present invention is suitably used, for example, for purification of soil, sediment, sludge, groundwater and the like contaminated with organochlorine compounds.
[0002]
[Prior art]
Organochlorine compounds such as trichlorethylene (TCE) and tetrachlorethylene (PCE) are widely used as cleaning agents in various factories and cleaning shops. However, these organochlorine compounds are suspected of being carcinogenic, and in recent years, Contamination of soil and groundwater with organochlorine compounds has become a major social problem.
[0003]
Conventionally, as a method for treating soil contaminated with organochlorine compounds, mainly containment treatment of contaminated soil, excavation / containment treatment of contaminated soil, and the like. In addition, as a method for treating groundwater contaminated with organochlorine compounds, a pump-and-treat method in which pumping aeration and activated carbon treatment are combined is mainly performed. The pump-and-treat method is a method in which the groundwater is purified by transferring pollutant chemicals in the water by aeration of air into the pumped groundwater, and then the gas phase is treated with activated carbon. Water will be washed to the surface.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned contaminated soil containment treatment method, contaminated soil excavation and containment treatment method, and contaminated groundwater pump and treat treatment method are not technologies that actively decompose and detoxify polluted chemical substances, There are problems such as enormous cost, energy and labor, and a long purification period of 10 to 20 years.
[0005]
In addition, the pump-and-treat method purifies contaminated groundwater that has been pumped up, and does not directly remove the contaminated groundwater. There was a problem that the removal period became very long.
[0006]
On the other hand, in recent years, a method for oxidizing soil, groundwater and the like in situ by injecting hydrogen peroxide and an iron solution (Fenton reagent) or potassium permanganate directly into a well has been developed. However, the method using hydrogen peroxide and an iron solution has a problem that the hydrogen peroxide is rapidly decomposed in the ground, so that the reach of hydrogen peroxide is short and the purification area is small. Moreover, in the method using potassium permanganate, since the potassium permanganate solution has a deep purple color, it is not preferable to inject the potassium permanganate solution directly into the ground water.
[0007]
The present invention has been made in view of the above, underground contaminated areas, soil is particularly polluted with organic chlorinated compounds, sediment, sludge, ground water or the like, a short period of time, and low cost, low energy It aims at providing the method which can be purified efficiently.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has intensively studied an oxidation treatment method for purifying soil and groundwater contaminated with organic chlorine compounds such as trichlorethylene and tetrachlorethylene. As a result, when persulfates such as potassium persulfate and sodium persulfate, which have been known to have strong oxidizing power at high temperatures (70 ° C or higher) as oxidants, are added to the above contaminated soil and groundwater. It has been found that the compound is slowly decomposed at room temperature (15-30 ° C.). In addition, the present inventor added a persulfate to groundwater pumped from or near the underground pollution area, and then injected the water to which the persulfate was added again into or near the underground pollution area, or the underground pollution. When persulfate is added in-situ to groundwater in or near the area, the persulfate decomposes relatively slowly so that the reach of the oxidant is long and the purification area can be enlarged. It has been found that sulfates are colorless and transparent, so that no problems occur even when injected into groundwater.
[0009]
The present invention has been made on the basis of the above-described findings, and provides a method for purifying an underground contaminated area according to the following first and second inventions .
(First invention)
A method for purifying an underground contaminated area contaminated with an organic chlorine compound, and at room temperature, at a pH of 4 or more and 7 or less, only persulfate is used as an oxidizing agent, and the concentration of persulfate in groundwater is 0.005 to 0.005. A method for purifying an underground contaminated area, characterized in that it is added to the underground water present in or near the underground contaminated area so as to be 5% by weight (Claim 1).
A method for purifying an underground polluted area contaminated with benzene, toluene or xylene at room temperature and under conditions of pH 4 or more and pH 7 or less, only persulfate is used as an oxidizing agent, and the concentration of persulfate in groundwater is 0. A method for purifying an underground polluted area, characterized by adding to the underground polluted area or in the vicinity thereof in an amount of 005 to 5% by weight (claim 2).
A method for purifying an underground contaminated area contaminated with an organic chlorine compound, and at room temperature, under conditions of pH 4 or more and pH 7 or less, persulfate and hydrogen peroxide are used as oxidizing agents, and the concentration of persulfate in groundwater is A method for purifying an underground contaminated area, comprising adding to groundwater present in or near the underground contaminated area so as to be 0.005 to 5% by weight (Claim 5).
A method for purifying underground contaminated areas contaminated with benzene, toluene or xylene, and at room temperature, under conditions of pH 4 to pH 7, persulfate and hydrogen peroxide are used as oxidants, and persulfate in groundwater. A method for purifying an underground contaminated area, characterized by adding to the underground contaminated area or the groundwater existing in the vicinity thereof so that the concentration becomes 0.005 to 5% by weight (Claim 6).
(Second invention)
A method for purifying an underground contaminated area contaminated with an organic chlorine compound, and at room temperature, at a pH of 4 or more and 7 or less, only persulfate is used as an oxidizing agent, and the concentration of persulfate in groundwater is 0.005 to 0.005. After adding to the underground water pumped from or near the underground pollution area so as to be 5% by weight, the water added with the persulfate is injected again into or near the underground pollution area. Purification method (Claim 3).
A method for purifying an underground polluted area contaminated with benzene, toluene or xylene at room temperature and under conditions of pH 4 or more and pH 7 or less, only persulfate is used as an oxidizing agent, and the concentration of persulfate in groundwater is 0. After adding to the underground water pumped from or near the underground contaminated area to become 005 to 5% by weight, the underground pollution characterized by injecting the water added with the persulfate again into the underground contaminated area or the vicinity thereof A method for purifying a region (Claim 4).
A method for purifying an underground contaminated area contaminated with an organic chlorine compound, and at room temperature, under conditions of pH 4 or more and pH 7 or less, persulfate and hydrogen peroxide are used as oxidizing agents, and the concentration of persulfate in groundwater is After adding to the underground water pumped from or near the underground contaminated area so as to be 0.005 to 5% by weight, the water added with the persulfate and hydrogen peroxide solution is injected again into or near the underground contaminated area. A method for purifying an underground polluted area (claim 7).
A method for purifying underground contaminated areas contaminated with benzene, toluene or xylene, and at room temperature, under conditions of pH 4 to pH 7, persulfate and hydrogen peroxide are used as oxidants, and persulfate in groundwater. After adding to the underground water pumped from or near the underground contaminated area so that the concentration becomes 0.005 to 5% by weight, the water added with the persulfate and hydrogen peroxide solution is again put into or near the underground contaminated area. A method for purifying an underground polluted region, characterized by being injected (claim 8).
[0010]
Hereinafter, the present invention will be described in more detail. In the first and second inventions, as persulfate (peroxodisulfate), for example, potassium persulfate (potassium peroxodisulfate), sodium persulfate (sodium peroxodisulfate) or the like can be used.
[0012]
In the first and second invention, pH 7 or less in groundwater, it is appropriate to add a persulfate particularly under conditions of pH 4-7. By making the pH during the reaction neutral or acidic, oxidative decomposition of the contaminating chemical substance by persulfate can be promoted. In this case, as a means for adding a persulfate in pH7 following conditions groundwater include means for adding a pH adjusting agent sulfate with persulfate into play groundwater example.
[0013]
In the first and second invention, the persulfate concentration is 0.005 to 5% by weight of the groundwater, it is appropriate to add a persulfate groundwater as particularly from 0.01 to 1 wt% is there. By setting the persulfate concentration within the above range, the oxidative decomposition of pollutant chemical substances can be efficiently promoted.
[0014]
In the first and second invention, it is possible to add a hydrogen peroxide solution with persulfate groundwater, thereby it is possible to further promote the oxidation decomposition of chemical pollutants. In this case, it is appropriate that the hydrogen peroxide concentration in the groundwater adding 1-500 mg / L, hydrogen peroxide in groundwater as particularly from 10-100 mg / L.
[0015]
Although 1st , 2nd invention is used suitably for purification | cleaning of the soil, bottom sediment, sludge, groundwater etc. which were polluted with the organic chlorine compound, it is not limited to this. That is, the first and second inventions can be applied not only to purification of contaminants by organochlorine compounds (TCE, PCE, dioxins, PCBs, etc.) but also to purification of contaminants by benzene, toluene, xylene. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the first invention. In FIG. 1, 52 is a persulfate addition means, 54 is a pumping means, and 56 is an aeration treatment means.
[0017]
The persulfate addition means 52 is for adding persulfate (potassium persulfate: K 2 S 2 O 8 in the illustrated example) to the groundwater existing in or near the underground contaminated area. The persulfate addition means 52 is connected to the injection well 58 which is buried in the ground and allows the drug to flow outside through the screen of the tube, the
[0018]
The pumping means 54 pumps the groundwater W after passing through the underground pollution area X from the downstream side of the underground pollution area X. The pumping means 54 of the present example is buried in the ground, a pumping well 66 that allows groundwater to flow into the inside through a pipe screen, a pumping
[0019]
The aeration treatment means 56 performs aeration treatment of groundwater pumped by the pumping means 54. The aeration treatment means 56 of this example includes an
[0020]
FIG. 2 is a diagram showing an embodiment of the second invention. In FIG. 2, 2 is a pumping means, 4 is an aeration treatment means, 6 is a persulfate addition means, and 8 is an injection means.
[0021]
The pumping means 2 pumps the groundwater W from the underground contamination area X or its vicinity. The pumping means 2 of this example is buried in the ground, a pumping well 10 that allows groundwater to flow into the inside through a pipe screen, a pumping
[0022]
The aeration treatment means 4 performs aeration treatment of the groundwater pumped by the pumping means 2. The aeration treatment means 4 of this example includes an
[0023]
The persulfate addition means 6 adds persulfate (potassium persulfate: K 2 S 2 O 8 in the illustrated example) to the water aerated by the aeration treatment means 4 in the
[0024]
The injection means 8 is for injecting the water to which the persulfate is added by the persulfate addition means 6 again into the underground contaminated region X or its vicinity. The injection means 8 of this example includes an injection well 34 that is buried in the ground and discharges water to the outside through a screen of the pipe, an
[0025]
By the way, in the example of FIG. 2, in performing the purification process of the underground pollution region X, the pumping position A by the pumping means 2 is the downstream side of the flow F of the groundwater W, and the pouring position B by the injection means 8 is the flow F of the groundwater W. Set upstream. In this way, the purification process can be performed in a system in which the flow of water is almost closed (closed system), in which persulfate is added to the groundwater pumped downstream and injected upstream. It is possible to efficiently purify the contaminated area.
[0026]
Also, when injecting hydrogen peroxide, prepare hydrogen peroxide in a tank separate from potassium persulfate and inject it using a separate pipe from potassium persulfate, or add it to the potassium persulfate injection pipe After mixing, supply to the injection well is performed.
[0027]
【Example】
Put 20 g of actual contaminated soil and 180 mL of pure water in a 200 mL vial, and add potassium persulfate, hydrogen peroxide, etc. to the vial under the conditions shown in (1) to (6) below, and then seal the vial Then, the treatment experiment was started. Then, the treatment effect was evaluated by measuring the concentration of trichlorethylene (TCE) contained in the head space of each vial bottle over time by gas chromatography. Of the following conditions (1) to (6), (2) to (5) are examples of the present invention, and others are comparative examples.
[0028]
(Experimental conditions)
(1) Blank test Nothing was added to 20 g of actual contaminated soil and 180 mL of pure water.
(2) Potassium persulfate alone (pH 7)
1% by weight of potassium persulfate was added to 20 g of actual contaminated soil and 180 mL of pure water, and reacted at pH 7.
(3) Potassium persulfate alone (pH 9)
1% by weight of potassium persulfate was added to 20 g of actual contaminated soil and 180 mL of pure water and reacted at pH 9.
(4) Potassium persulfate alone (pH 5)
1% by weight of potassium persulfate was added to a total amount of 20 g of actual contaminated soil and 180 mL of pure water, and reacted at
(5) Potassium persulfate and hydrogen peroxide (pH 7)
1% by weight of potassium persulfate and 100 mg / L of hydrogen peroxide were added to 20 g of actual contaminated soil and 180 mL of pure water, and reacted at pH 7.
(6) Only hydrogen peroxide 100 mg / L was added to the total amount of hydrogen peroxide alone actual contaminated soil 20 g and pure water 180 mL, and reacted.
[0029]
(Processing result)
FIG. 3 shows the processing result. In (2) to (5) where potassium persulfate was added, TCE decomposition occurred rapidly, whereas in (1) blank test and (6) hydrogen peroxide alone, TCE decomposition was not recognized so much. It was. In addition, even when potassium persulfate is added, TCE is more neutral (2), (4), (5) than neutral (3), compared to (3) where the pH during the reaction is alkaline. It was found that the decomposition of was promoted. Furthermore, it was found that decomposition was further promoted in (5) to which hydrogen peroxide was added.
[0030]
【The invention's effect】
As described above, according to the present invention, underground contaminated areas, soil is particularly polluted with organic chlorinated compounds, sediment, sludge, ground water or the like, a short period of time, and at low cost, efficient purification with low energy [Short description of drawings]
FIG. 1 is a diagram showing an embodiment of a first invention.
FIG. 2 is a diagram showing an embodiment of the second invention.
FIG. 3 is a graph showing a relationship between processing elapsed time and elution TCE concentration in the purification processing of the example.
[Explanation of symbols]
X Subsurface contaminated
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116958A JP4405692B2 (en) | 2001-04-16 | 2001-04-16 | Purification method for underground pollution area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116958A JP4405692B2 (en) | 2001-04-16 | 2001-04-16 | Purification method for underground pollution area |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002307049A JP2002307049A (en) | 2002-10-22 |
JP4405692B2 true JP4405692B2 (en) | 2010-01-27 |
Family
ID=18967605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001116958A Expired - Lifetime JP4405692B2 (en) | 2001-04-16 | 2001-04-16 | Purification method for underground pollution area |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4405692B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190139031A (en) * | 2018-06-07 | 2019-12-17 | (주)이데아이엔에스 | In-situ remediation apparatus and method for contaminated soil and groundwater by endocrine disrupting substance or medicinal substance |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4024658B2 (en) * | 2002-11-21 | 2007-12-19 | オルガノ株式会社 | Purification method and system for contamination by chemical substances |
ES2687753T3 (en) * | 2003-07-29 | 2018-10-29 | Peroxychem Llc | Treatment of environmental pollutants |
JP4912608B2 (en) * | 2005-04-20 | 2012-04-11 | 株式会社Adeka | Chemical substance decomposing agent and purification method using the same |
JP4548782B2 (en) * | 2005-06-09 | 2010-09-22 | オルガノ株式会社 | Purification method for organic pollutants |
JP4821384B2 (en) * | 2006-03-10 | 2011-11-24 | 株式会社大林組 | In-situ cleaning method for organic compound contaminated soil |
JP2007244983A (en) * | 2006-03-15 | 2007-09-27 | Nippon Oil Corp | Method for purifying soil |
JP5528840B2 (en) * | 2010-02-08 | 2014-06-25 | オルガノ株式会社 | Method and apparatus for treating chemical contamination |
JP5458948B2 (en) * | 2010-02-25 | 2014-04-02 | 栗田工業株式会社 | Method for purifying contaminated soil and / or groundwater |
JP7120706B2 (en) * | 2018-12-13 | 2022-08-17 | 株式会社竹中工務店 | Soil remediation method |
JP7462510B2 (en) | 2020-08-12 | 2024-04-05 | 国際航業株式会社 | PCB in-situ remediation system and PCB in-situ remediation method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH619911A5 (en) * | 1977-03-22 | 1980-10-31 | Schlatter Ag | |
JPH0699181A (en) * | 1992-09-24 | 1994-04-12 | Ebara Kogyo Senjo Kk | Method for treating waste liquid containing decomposition-resistant organic substance |
FR2716676B1 (en) * | 1994-02-28 | 1996-04-05 | Elf Aquitaine | Process for the oxidative decomposition of organic compounds present in aqueous effluents. |
JP3567412B2 (en) * | 1997-04-03 | 2004-09-22 | 清水建設株式会社 | How to clean contaminated soil by groundwater circulation |
JPH1199394A (en) * | 1997-07-29 | 1999-04-13 | Japan Organo Co Ltd | Method for removing organic matter in water |
US6019548A (en) * | 1998-05-05 | 2000-02-01 | United Technologies Corporation | Chemical oxidation of volatile organic compounds |
JP2000189945A (en) * | 1998-12-28 | 2000-07-11 | Kurita Water Ind Ltd | Treatment of water containing endocrine disrupting chemical |
JP2000301172A (en) * | 1999-04-15 | 2000-10-31 | Kurita Water Ind Ltd | Method for cleaning soil and/or ground water |
JP2001009478A (en) * | 1999-06-30 | 2001-01-16 | Kurita Water Ind Ltd | Total organic carbon heat-decomposing device |
JP2002136961A (en) * | 2000-10-31 | 2002-05-14 | Miyama Kk | Decontamination method for soil or underground water |
-
2001
- 2001-04-16 JP JP2001116958A patent/JP4405692B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190139031A (en) * | 2018-06-07 | 2019-12-17 | (주)이데아이엔에스 | In-situ remediation apparatus and method for contaminated soil and groundwater by endocrine disrupting substance or medicinal substance |
KR102072300B1 (en) * | 2018-06-07 | 2020-01-31 | (주)이데아이엔에스 | In-situ remediation apparatus and method for contaminated soil and groundwater by endocrine disrupting substance or medicinal substance |
Also Published As
Publication number | Publication date |
---|---|
JP2002307049A (en) | 2002-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4542703B2 (en) | Chemical oxidation of volatile organic compounds | |
KR100850165B1 (en) | Apparatus and method for remediation of contaminated soil and groundwater by electric resistance heating combined with the injection of oxidizing agents | |
JP4405692B2 (en) | Purification method for underground pollution area | |
JP3490247B2 (en) | How to clean the soil | |
JP5368201B2 (en) | Method and apparatus for treating chemical contamination | |
JP2002159959A (en) | Method and device for purifying underground polluted region | |
JP4167052B2 (en) | Purification method for organic compound contamination | |
JP5612820B2 (en) | Purification method for organic chlorine chemical contamination | |
JP2010075887A (en) | Cleaning method of contaminated soil and groundwater | |
JP4095490B2 (en) | Purification method for contamination by chemical substances | |
CN105481151A (en) | Removable rapid waste water treatment equipment | |
JP5528840B2 (en) | Method and apparatus for treating chemical contamination | |
JP3784654B2 (en) | Purification method for chemical contaminants | |
JP4548782B2 (en) | Purification method for organic pollutants | |
JP2000301172A (en) | Method for cleaning soil and/or ground water | |
JP4024658B2 (en) | Purification method and system for contamination by chemical substances | |
JP2002119977A (en) | Method and apparatus for cleaning polluted ground water | |
JP4027209B2 (en) | Purification method for contamination by chemical substances | |
JP3923403B2 (en) | Soil and groundwater purification methods | |
KR20090021749A (en) | Soil and groundwater treatment method and reagent | |
KR100554109B1 (en) | ozone injection and contact systems for water and wastewater treatment | |
JP3501719B2 (en) | Pollutant decomposition apparatus and method | |
JP2010075883A (en) | Cleaning method of contaminated soil and groundwater | |
KR101084371B1 (en) | Direct oxidation method using iron-bearing mineral to degrade volatile organic compounds generated from the process of contaminated soil remediation | |
JP4172415B2 (en) | Multistage treatment equipment for contaminated water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4405692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |