[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4488696B2 - Lead storage battery inspection equipment - Google Patents

Lead storage battery inspection equipment Download PDF

Info

Publication number
JP4488696B2
JP4488696B2 JP2003186757A JP2003186757A JP4488696B2 JP 4488696 B2 JP4488696 B2 JP 4488696B2 JP 2003186757 A JP2003186757 A JP 2003186757A JP 2003186757 A JP2003186757 A JP 2003186757A JP 4488696 B2 JP4488696 B2 JP 4488696B2
Authority
JP
Japan
Prior art keywords
specific gravity
storage battery
electrolytic solution
lead storage
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003186757A
Other languages
Japanese (ja)
Other versions
JP2005025954A (en
Inventor
清正 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003186757A priority Critical patent/JP4488696B2/en
Publication of JP2005025954A publication Critical patent/JP2005025954A/en
Application granted granted Critical
Publication of JP4488696B2 publication Critical patent/JP4488696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電槽化成後の蓄電池の短絡状態を検査する蓄電池の検査装置に関する。
【0002】
【従来の技術】
一般に、鉛蓄電池は、硫酸電解液中に正極と負極を配置したセルが複数個直列接続された構造となっている。また、正極は鉛合金格子基板に過酸化鉛の活物質が充填されたものであり、負極は鉛合金格子基板に海綿状金属鉛の活物質が充填されたものである。なお、一般に正極の活物質である過酸化鉛および負極の活物質である海綿状金属鉛は、それぞれ酸化鉛および硫酸鉛を主原料としており、電槽化成工程を経て、正極の活物質は過酸化鉛となり、負極の活物質は海綿状金属鉛となる。
【0003】
ところで、上記のような鉛蓄電池の電槽化成工程においては、極板間の短絡が発生することがある。この短絡には、両極間に起電力が発生しなくなる程度の重度な短絡と、電槽化成後に数日間放置して電圧の低下がわかる程度の軽度な短絡がある。
【0004】
鉛蓄電池の短絡を検知するための方法として、電槽化成前の極板間に電圧をかける方法(特許文献1参照)、充電中に各セル内で発生するガスの圧力又は量を計測する方法(特許文献2参照)などが知られている。また、特許文献2には、鉛蓄電池の充電完了後に、両極端子間のオープン電圧を測定する方法や電解液比重を測定する方法なども従来技術として記載されている。
【0005】
【特許文献1】
特開平4−138674号公報
【特許文献2】
特開昭57−196481号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に記載された技術には、電槽化成後の極板間の短絡状態を検知することができないという問題点がある。また、特許文献2に記載された技術には、ガスの圧力や量を正確に計測することが難しいという問題点がある。
【0007】
そこで、本発明は、電槽化成後の極板間の短絡状態を短時間で検知することが可能な鉛蓄電池の検査装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、電槽化成後の電解液の比重が所定の値となるように、電槽化成前の電解液の比重を小さく設定し、電槽化成後の鉛蓄電池の電解液の比重を計測することにより前記鉛蓄電池の各セル内の短絡状態を検査する鉛蓄電池の検査装置において、前記鉛蓄電池の電解液の比重を計測する電解液比重計測手段を前記鉛蓄電池のセル数と同数備え、該電解液比重計測手段に連結され該電解液比重計測手段に前記鉛蓄電池内の電解液を導入する電解液導入手段を備え、該電解液導入手段は、前記鉛蓄電池内の電解液を各電解液比重計測手段へ一括して導入する機能を有することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0010】
図1は、本発明の実施形態である鉛蓄電池の検査装置を蓄電池に取り付けた状態を示す概略側面図であり、図2は図1に対応する概略正面図であり、図3および図4は図1に対応する概略上面図である。
【0011】
図1〜図4において、1は鉛蓄電池であって、11は端子、12はセルである。鉛蓄電池1はその内部でセル12が6個直列に接続されている。
【0012】
また、図1〜図4において、2は電解液比重計測手段としての比重検出装置であって、比重検出装置2はセル12の数と同数であり、各セル12の電解液の比重を検出することができるようになっている。比重検出装置2は、蓄電池1の各セル12と比重検出装置2とを連結する連結管21、比重検出装置2内で上下に移動可能な比重計22を備えている。なお、23は鉛蓄電池1から吸い上げられた電解液、24は電解液23の液面である。
【0013】
また、図1〜図4において、3は比重検出装置2に電解液を導入する電解液導入手段としての電解液導入装置、4は比重検出装置2と電解液導入装置3とを連結する連結管である。
【0014】
電解液導入装置3は、比重検出装置2と連結されたシリンダー31を備えている。シリンダー31は、往復運動するピストン軸31aと、ピストン軸31aのうちシリンダー31内側の一端にヘッド31bとを有している。シリンダー31は、ヘッド31bのピストン軸31a側において外気に開放されている。
【0015】
ここで、図3に例示されるように、電解液導入装置3のシリンダー31の数は比重検出装置2の数と同数であって各シリンダー31はそれぞれ比重検出装置2に1対1で接続されているものであってもよく、図4に例示されるように、1本のシリンダー31が連結管4を通して各比重検出装置2に一括して接続されているものであってもよい。
【0016】
また、電解液導入装置3は、シリンダー31のピストン軸31aを動作させるための駆動用シリンダー32を備えており、駆動用シリンダー32は往復運動するピストン軸32aと、ピストン軸32aのうち駆動用シリンダー32内側の一端にヘッド32bとを有している。駆動用シリンダー32には、電磁弁33が設けられており、ピストン軸32aを空気等により駆動する。ピストン軸31aとピストン軸32aとは、連結体34で連結されている。ここで、図1および図3に例示されるように、各ピストン軸31aは連結体34を介して1本のピストン軸32aに接続されていてもよく、図4に例示されるように、1本のピストン軸31が連結体34を介して1本のピストン軸32aに接続されていてもよい。
【0017】
以下、図1および図3を用いて、電解液導入装置3の動作状態の一例について説明する。まず、電磁弁33により駆動用シリンダー32が動作し、ピストン軸32aが図1の右側(図3の上側)に動く。このピストン軸32aは、連結体34を介して各ピストン軸31aを図1の右側(図3の上側)に動かし、各ヘッド31bが各シリンダー31内を図1の右側(図3の上側)に動く。
【0018】
次に、図1および図2を用いて、比重検出装置2における電解液23の比重の検出について説明する。上述のように各ヘッド31bが動くことにより、比重検出装置2内の空気が図1および図2の上側に引っ張られ、鉛蓄電池1の各セル12内の電解液23が図1および図2の液面24まで引っ張られる。そして、比重検出装置2内の比重計22が電解液に所定の目盛位置で浮き、これを目視等により検知することで、電解液23の比重を検出することができる。
【0019】
以上、本発明の実施形態である鉛蓄電池の検査装置の一例を説明したが、本発明の実施形態はこれに限られるものではない。
【0020】
また、本発明の実施形態である鉛蓄電池の検査装置を用いて、両極間に起電力が発生しなくなる程度の重度な短絡のほか、電槽化成後に数日間放置して電圧の低下がわかる程度の軽度な短絡についても検出することができる。以下、その一例を説明する。
【0021】
電槽化成前の正極の活物質である過酸化鉛および負極の活物質である海綿状金属鉛は、それぞれ酸化鉛および硫酸鉛を主原料としており、電槽化成工程を経て、正極の活物質は過酸化鉛となり、負極の活物質は海綿状金属鉛となる。この電槽化成工程において、活物質中の硫酸分が電解液中に放出されるため、電槽化成後の電解液の比重が所定の値となるように、電槽化成前の電解液の比重を小さく設定することで、電解液の交換などをする必要がなくすことができる。
【0022】
電槽化成前の電解液の比重を小さく設定しておくと、極板間に重度の短絡が発生している場合には電槽化成後の電解液の比重がほとんど変化せず、また、極板間に軽度の短絡が発生している場合には電槽化成後の電解液の比重の変化の割合が小さくなるため、電槽化成後の電解液の比重を検出することにより、極板間の短絡を検知することができる。
【0023】
実際に、電槽化成前の電解液の比重を1.230(20℃、以下同様)、電槽化成後の電解液の比重を1.280となるように両極の活物質材料を選定したところ、極板間に重度の短絡が発生している場合の電槽化成後の電解液の比重は1.230〜1.250、極板間に軽度の短絡が発生している場合には電槽化成後の電解液の比重は1.260〜1.270であり、本発明の実施形態である鉛蓄電池の検査装置を用いて極板間の短絡を検知することが可能であった。
【0024】
また、電槽化成後の電解液の比重が1.260〜1.270である鉛蓄電池を48時間放置したところ、いずれも蓄電池電圧が12.50〜12.70Vまで低下しており、軽度の短絡が発生していたことが確認された。
【0025】
また、本発明の実施形態である鉛蓄電池の検査装置を用いて鉛蓄電池の短絡状態を検査するための所要時間は、図1〜図4に例示された状態で1回の測定で数秒〜10数秒であり、鉛蓄電池の短絡をその度合いにかかわらず短時間で検知することができ、特に軽度の短絡を検知するための時間短縮効果が大きくなる。
【0026】
【発明の効果】
以上のとおり、本発明によれば、鉛蓄電池の電解液の比重を計測する電解液比重計測手段を鉛蓄電池のセル数と同数備え、電解液比重計測手段に連結され電解液比重計測手段に鉛蓄電池内の電解液を導入する電解液導入手段を備え、電解液導入手段は、鉛蓄電池内の電解液を各電解液比重計測手段へ一括して導入する機能を有しているため、電槽化成後の鉛蓄電池の短絡を短時間で検知することができ、特に軽度の短絡を検知するための時間短縮効果が大きくなる。
【図面の簡単な説明】
【図1】 本発明の実施形態である鉛蓄電池の検査装置を蓄電池に取り付けた状態の一例を示す概略側面図である。
【図2】 図1に対応する概略正面図である。
【図3】 図1に対応する概略上面図の第1例である。
【図4】 図1に対応する概略上面図の第2例である。
【符号の説明】
1 鉛蓄電池
2 比重検出装置
3 電解液導入装置
4 連結管
11 端子
12 セル
21 連結管
22 比重計
23 電解液
24 液面
31 シリンダー
31a、32a ピストン軸
31b、32b ヘッド
32 駆動用シリンダー
33 電磁弁
34 連結体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage battery inspection device that inspects a short circuit state of a storage battery after battery case formation.
[0002]
[Prior art]
In general, a lead storage battery has a structure in which a plurality of cells in which a positive electrode and a negative electrode are arranged in a sulfuric acid electrolyte solution are connected in series. The positive electrode is a lead alloy lattice substrate filled with an active material of lead peroxide, and the negative electrode is a lead alloy lattice substrate filled with an active material of spongy metallic lead. In general, lead peroxide as the active material of the positive electrode and spongy metal lead as the active material of the negative electrode are mainly made of lead oxide and lead sulfate, respectively. It becomes lead oxide, and the active material of the negative electrode becomes spongy metallic lead.
[0003]
By the way, in the battery case formation process of the above lead acid battery, the short circuit between electrode plates may generate | occur | produce. This short circuit includes a severe short circuit that does not generate an electromotive force between the two electrodes, and a short circuit that can be left for several days after forming the battery case to show a voltage drop.
[0004]
As a method for detecting a short circuit of a lead storage battery, a method of applying a voltage between electrode plates before battery case formation (see Patent Document 1), a method of measuring the pressure or amount of gas generated in each cell during charging (See Patent Document 2) and the like. Patent Document 2 also describes a method for measuring the open voltage between the two electrode terminals and a method for measuring the specific gravity of the electrolyte after completing the charging of the lead storage battery as the prior art.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-138673 [Patent Document 2]
Japanese Patent Laid-Open No. 57-196481 [0006]
[Problems to be solved by the invention]
However, the technique described in Patent Document 1 has a problem that it is impossible to detect a short circuit state between electrode plates after the formation of the battery case. Further, the technique described in Patent Document 2 has a problem that it is difficult to accurately measure the pressure and amount of gas.
[0007]
Then, an object of this invention is to provide the inspection apparatus of the lead storage battery which can detect the short circuit state between the electrode plates after battery case formation in a short time.
[0008]
[Means for Solving the Problems]
The invention of claim 1 sets the specific gravity of the electrolyte before battery case formation small so that the specific gravity of the electrolyte after battery case formation becomes a predetermined value, and the electrolyte solution of the lead storage battery after battery case formation In the lead storage battery inspection device that inspects the short circuit state in each cell of the lead storage battery by measuring the specific gravity, the electrolyte specific gravity measuring means for measuring the specific gravity of the electrolyte of the lead storage battery is the number of cells of the lead storage battery. The electrolyte solution specific gravity measuring means connected to the electrolyte specific gravity measuring means, and the electrolyte specific gravity measuring means for introducing the electrolyte solution in the lead storage battery into the electrolyte solution specific gravity measuring means. It has the function to introduce in a batch into each electrolyte solution specific gravity measuring means.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0010]
FIG. 1 is a schematic side view showing a state where an inspection apparatus for a lead storage battery according to an embodiment of the present invention is attached to a storage battery, FIG. 2 is a schematic front view corresponding to FIG. 1, and FIGS. FIG. 2 is a schematic top view corresponding to FIG. 1.
[0011]
1 to 4, 1 is a lead storage battery, 11 is a terminal, and 12 is a cell. The lead storage battery 1 has six cells 12 connected in series.
[0012]
1 to 4, reference numeral 2 denotes a specific gravity detection device as an electrolyte specific gravity measuring means, and the specific gravity detection device 2 is the same as the number of cells 12 and detects the specific gravity of the electrolyte in each cell 12. Be able to. The specific gravity detection device 2 includes a connecting pipe 21 that connects each cell 12 of the storage battery 1 and the specific gravity detection device 2, and a specific gravity meter 22 that can move up and down within the specific gravity detection device 2. In addition, 23 is the electrolyte solution sucked up from the lead storage battery 1, and 24 is the liquid level of the electrolyte solution 23.
[0013]
1 to 4, reference numeral 3 denotes an electrolytic solution introduction device as an electrolytic solution introduction means for introducing an electrolytic solution into the specific gravity detection device 2, and 4 denotes a connecting pipe that connects the specific gravity detection device 2 and the electrolytic solution introduction device 3. It is.
[0014]
The electrolytic solution introduction device 3 includes a cylinder 31 connected to the specific gravity detection device 2. The cylinder 31 has a piston shaft 31a that reciprocates, and a head 31b at one end of the piston shaft 31a inside the cylinder 31. The cylinder 31 is open to the outside air on the piston shaft 31a side of the head 31b.
[0015]
Here, as illustrated in FIG. 3, the number of cylinders 31 of the electrolyte introduction device 3 is the same as the number of specific gravity detection devices 2, and each cylinder 31 is connected to the specific gravity detection device 2 on a one-to-one basis. As illustrated in FIG. 4, one cylinder 31 may be collectively connected to each specific gravity detection device 2 through the connecting pipe 4.
[0016]
The electrolyte introduction device 3 also includes a drive cylinder 32 for operating the piston shaft 31a of the cylinder 31, and the drive cylinder 32 is a reciprocating piston shaft 32a and the drive cylinder of the piston shaft 32a. 32 has a head 32b at one end inside. The drive cylinder 32 is provided with an electromagnetic valve 33 to drive the piston shaft 32a with air or the like. The piston shaft 31a and the piston shaft 32a are connected by a connecting body 34. Here, as illustrated in FIGS. 1 and 3, each piston shaft 31 a may be connected to one piston shaft 32 a via a coupling body 34, and as illustrated in FIG. The single piston shaft 31 may be connected to the single piston shaft 32 a via the coupling body 34.
[0017]
Hereinafter, an example of the operation state of the electrolytic solution introduction device 3 will be described with reference to FIGS. 1 and 3. First, the driving cylinder 32 is operated by the electromagnetic valve 33, and the piston shaft 32a moves to the right side in FIG. 1 (upper side in FIG. 3). The piston shaft 32a moves each piston shaft 31a to the right side in FIG. 1 (upper side in FIG. 3) via the coupling body 34, and each head 31b moves inside each cylinder 31 to the right side in FIG. 1 (upper side in FIG. 3). Move.
[0018]
Next, detection of the specific gravity of the electrolytic solution 23 in the specific gravity detection device 2 will be described with reference to FIGS. 1 and 2. As the heads 31b move as described above, the air in the specific gravity detection device 2 is pulled upward in FIG. 1 and FIG. 2, and the electrolyte solution 23 in each cell 12 of the lead storage battery 1 is in FIG. 1 and FIG. Pulled to liquid level 24. And the specific gravity of the electrolyte solution 23 can be detected by the hydrometer 22 in the specific gravity detection device 2 floating in the electrolyte solution at a predetermined scale position and detecting this visually.
[0019]
As mentioned above, although an example of the inspection apparatus of the lead storage battery which is embodiment of this invention was demonstrated, embodiment of this invention is not restricted to this.
[0020]
In addition to using a lead storage battery inspection device according to an embodiment of the present invention, in addition to a severe short circuit that does not generate an electromotive force between the two electrodes, it can be left to stand for several days after the battery is formed, and a decrease in voltage can be seen. Even a slight short circuit can be detected. An example will be described below.
[0021]
Lead peroxide, which is the active material of the positive electrode before the formation of the battery case, and spongy metal lead, which is the active material of the negative electrode, are mainly made of lead oxide and lead sulfate. Becomes lead peroxide, and the active material of the negative electrode becomes spongy metallic lead. In this battery case formation step, the sulfuric acid content in the active material is released into the electrolyte solution. Therefore, the specific gravity of the electrolyte solution before battery case formation is such that the specific gravity of the electrolyte solution after battery case formation becomes a predetermined value. By setting the value small, it is possible to eliminate the need to exchange the electrolyte.
[0022]
If the specific gravity of the electrolyte before battery case formation is set small, the specific gravity of the electrolyte after battery case formation will hardly change if a severe short circuit occurs between the electrode plates. When a slight short circuit occurs between the plates, the rate of change in the specific gravity of the electrolytic solution after battery case formation becomes small, so by detecting the specific gravity of the electrolytic solution after battery case formation, Can be detected.
[0023]
Actually, the active material of both electrodes was selected so that the specific gravity of the electrolytic solution before forming the battery case was 1.230 (20 ° C., the same applies hereinafter) and the specific gravity of the electrolytic solution after forming the battery case was 1.280. The specific gravity of the electrolyte after the formation of the battery case when a severe short circuit occurs between the electrode plates is 1.230 to 1.250, and the battery case when a slight short circuit occurs between the electrode plates The specific gravity of the electrolytic solution after chemical conversion was 1.260 to 1.270, and it was possible to detect a short circuit between the electrode plates using the lead storage battery inspection device according to the embodiment of the present invention.
[0024]
Moreover, when the lead acid battery whose specific gravity of the electrolyte solution after battery case formation is 1.260-1.270 was left for 48 hours, all the battery voltage fell to 12.50-12.70V, and it was mild. It was confirmed that a short circuit had occurred.
[0025]
Moreover, the time required to test | inspect the short circuit state of lead acid battery using the test | inspection apparatus of lead acid battery which is embodiment of this invention is several seconds-10 by one measurement in the state illustrated in FIGS. It is several seconds, and a short circuit of the lead storage battery can be detected in a short time regardless of the degree thereof, and the time shortening effect for detecting a light short circuit is particularly great.
[0026]
【The invention's effect】
As described above, according to the present invention, the electrolytic solution specific gravity measuring means for measuring the specific gravity of the electrolytic solution of the lead storage battery is provided in the same number as the number of cells of the lead storage battery, and connected to the electrolytic solution specific gravity measuring means. An electrolytic solution introducing means for introducing the electrolytic solution in the storage battery is provided, and the electrolytic solution introducing means has a function of collectively introducing the electrolytic solution in the lead storage battery to each electrolytic solution specific gravity measuring means. The short circuit of the lead storage battery after chemical conversion can be detected in a short time, and the effect of shortening the time for detecting a light short circuit in particular is increased.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an example of a state in which a lead storage battery inspection device according to an embodiment of the present invention is attached to a storage battery.
FIG. 2 is a schematic front view corresponding to FIG. 1;
FIG. 3 is a first example of a schematic top view corresponding to FIG. 1;
FIG. 4 is a second example of a schematic top view corresponding to FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Specific gravity detection apparatus 3 Electrolyte introducing apparatus 4 Connecting pipe 11 Terminal 12 Cell 21 Connecting pipe 22 Hydrometer 23 Electrolytic solution 24 Liquid level 31 Cylinder 31a, 32a Piston shaft 31b, 32b Head 32 Driving cylinder 33 Electromagnetic valve 34 Connected body

Claims (1)

電槽化成後の電解液の比重が所定の値となるように、電槽化成前の電解液の比重を小さく設定し、電槽化成後の鉛蓄電池の電解液の比重を計測することにより前記鉛蓄電池の各セル内の短絡状態を検査する鉛蓄電池の検査装置において、前記鉛蓄電池の電解液の比重を計測する電解液比重計測手段を前記鉛蓄電池のセル数と同数備え、該電解液比重計測手段に連結され該電解液比重計測手段に前記鉛蓄電池内の電解液を導入する電解液導入手段を備え、該電解液導入手段は、前記鉛蓄電池内の電解液を各電解液比重計測手段へ一括して導入する機能を有することを特徴とする鉛蓄電池の検査装置。 By setting the specific gravity of the electrolytic solution before the formation of the battery case to be small so that the specific gravity of the electrolytic solution after the formation of the battery case becomes a predetermined value, the specific gravity of the electrolytic solution of the lead storage battery after the formation of the battery case is measured. In the lead storage battery inspection device for inspecting a short circuit state in each cell of the lead storage battery, the electrolyte specific gravity measuring means for measuring the specific gravity of the electrolyte of the lead storage battery is provided in the same number as the number of cells of the lead storage battery, and the specific gravity of the electrolyte Electrolytic solution introduction means connected to the measurement means to introduce the electrolytic solution in the lead storage battery into the electrolytic solution specific gravity measurement means, and the electrolytic solution introduction means converts the electrolytic solution in the lead storage battery into each electrolytic solution specific gravity measurement means. Lead-acid battery inspection device characterized by having a function to be introduced into a batch.
JP2003186757A 2003-06-30 2003-06-30 Lead storage battery inspection equipment Expired - Fee Related JP4488696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186757A JP4488696B2 (en) 2003-06-30 2003-06-30 Lead storage battery inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186757A JP4488696B2 (en) 2003-06-30 2003-06-30 Lead storage battery inspection equipment

Publications (2)

Publication Number Publication Date
JP2005025954A JP2005025954A (en) 2005-01-27
JP4488696B2 true JP4488696B2 (en) 2010-06-23

Family

ID=34185802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186757A Expired - Fee Related JP4488696B2 (en) 2003-06-30 2003-06-30 Lead storage battery inspection equipment

Country Status (1)

Country Link
JP (1) JP4488696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162029B2 (en) * 2013-11-22 2017-07-12 古河電池株式会社 Specific gravity measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210771A (en) * 1989-02-09 1990-08-22 Japan Storage Battery Co Ltd Sealed type lead storage battery
JPH0945379A (en) * 1995-04-22 1997-02-14 Kenichi Fujita Electrolyte for lead-acid battery, lead-acid battery using it, and reproduction possibility judging method of lead-acid battery
JP2002110217A (en) * 2000-09-27 2002-04-12 Japan Storage Battery Co Ltd Battery inspection method
JP2003168472A (en) * 2001-11-29 2003-06-13 Yuasa Corp Formation method for battery jar of control valve type lead-acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2020290A1 (en) * 1968-10-10 1970-07-10 Gould National Batteries Inc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210771A (en) * 1989-02-09 1990-08-22 Japan Storage Battery Co Ltd Sealed type lead storage battery
JPH0945379A (en) * 1995-04-22 1997-02-14 Kenichi Fujita Electrolyte for lead-acid battery, lead-acid battery using it, and reproduction possibility judging method of lead-acid battery
JP2002110217A (en) * 2000-09-27 2002-04-12 Japan Storage Battery Co Ltd Battery inspection method
JP2003168472A (en) * 2001-11-29 2003-06-13 Yuasa Corp Formation method for battery jar of control valve type lead-acid battery

Also Published As

Publication number Publication date
JP2005025954A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
Sauerteig et al. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
US11686699B2 (en) System and method for anomaly detection and total capacity estimation of a battery
JP5930342B2 (en) Secondary battery short circuit inspection method
CN109655760A (en) A kind of lossless detection method and its application method of lithium ion battery analysis lithium
CN107516750A (en) A kind of method and device for determining lithium ion battery safe charging condition
CN111766518B (en) Quantitative determination method for reversible lithium separation of lithium ion battery
CN111505502A (en) Lithium ion battery aging test method under time-varying cycle working condition based on micro mechanism
CN111665451B (en) Aging test method for lithium ion battery under time-varying cycle working condition
CN103323387A (en) Electro-chemical corrosion simulator with in-situ loading
CN108519558A (en) Detection method for lithium separation of power battery, controller and automobile
Shi et al. Identification and remediation of sulfation in lead-acid batteries using cell voltage and pressure sensing
CN109238912A (en) A kind of test device and test method of battery grid growth corrosion
CN102053084B (en) Method for analyzing and testing quality of storage battery
CN104614678B (en) A kind of lead-acid accumulator is internalized into the on-line measuring device and method of process battery electrode current potential
CN111504414B (en) Battery cell gas production rate detection method and battery cell gas production rate detection device
JP4488696B2 (en) Lead storage battery inspection equipment
CN108414940A (en) A kind of lead acid accumulator plate grid corrosion measurement device and its test method
JP3720555B2 (en) Battery cell inspection method and battery cell inspection apparatus
CN107632267A (en) A kind of battery exception monomer localization method and system
CN111830416A (en) Device and method for in-situ detection of silicon cathode expansion and failure mechanism of lithium ion battery
CN116625810A (en) Method for evaluating damage of hydrogen diffusion to elastic property of material of hydrogen-contacting equipment
CN114414460A (en) Metal bipolar plate corrosion resistance detection system and accelerated detection method
US11360152B1 (en) Battery cell end of life and defect detection system
JPH11233162A (en) Method for judging life of sealed lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees