JP4448758B2 - Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties - Google Patents
Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties Download PDFInfo
- Publication number
- JP4448758B2 JP4448758B2 JP2004319445A JP2004319445A JP4448758B2 JP 4448758 B2 JP4448758 B2 JP 4448758B2 JP 2004319445 A JP2004319445 A JP 2004319445A JP 2004319445 A JP2004319445 A JP 2004319445A JP 4448758 B2 JP4448758 B2 JP 4448758B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- aluminum alloy
- sacrificial anode
- clad
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 243
- 238000005219 brazing Methods 0.000 title claims description 124
- 238000005260 corrosion Methods 0.000 title claims description 85
- 230000007797 corrosion Effects 0.000 title claims description 73
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 53
- 238000005098 hot rolling Methods 0.000 title claims description 25
- 239000011162 core material Substances 0.000 claims description 94
- 239000010405 anode material Substances 0.000 claims description 81
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 58
- 229910045601 alloy Inorganic materials 0.000 description 39
- 239000000956 alloy Substances 0.000 description 39
- 238000012360 testing method Methods 0.000 description 21
- 230000004907 flux Effects 0.000 description 16
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 229910018131 Al-Mn Inorganic materials 0.000 description 10
- 229910018461 Al—Mn Inorganic materials 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 238000005324 grain boundary diffusion Methods 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910018137 Al-Zn Inorganic materials 0.000 description 4
- 229910018573 Al—Zn Inorganic materials 0.000 description 4
- 229910052792 caesium Inorganic materials 0.000 description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 1
- 102100023774 Cold-inducible RNA-binding protein Human genes 0.000 description 1
- 101000906744 Homo sapiens Cold-inducible RNA-binding protein Proteins 0.000 description 1
- -1 MgF 2 Chemical class 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Prevention Of Electric Corrosion (AREA)
- Laminated Bodies (AREA)
Description
本発明は、熱交換器とくに自動車熱交換器に使用されるアルミニウム合金クラッド材、とくに、フッ化物系フラックスやセシウム系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータ、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器のチューブ材として好適なろう付け性、耐食性および熱間圧延性に優れた熱交換器用アルミニウム合金クラッド材に関する。 The present invention relates to an aluminum alloy clad material used in heat exchangers, particularly automobile heat exchangers, in particular evaporators, condensers, radiators, which are joined by brazing in an inert gas atmosphere using a fluoride-based flux or a cesium-based flux. The present invention relates to an aluminum alloy clad material for a heat exchanger excellent in brazing property, corrosion resistance and hot rolling property, which is suitable as a tube material for an aluminum alloy automobile heat exchanger such as a heater, an intercooler, and an oil cooler.
自動車熱交換器、例えばラジエータは、外面にフィンを有し、内面が作動流体(冷媒)の通路となるチューブおよびヘッダーから構成されている。このような自動車のラジエータまたはヒータなどのチューブ材としては、JIS A3003などのAl−Mn系合金を芯材とし、芯材の片面にAl−Si系合金ろう材をクラッドした二層構造のアルミニウム合金クラッド材、芯材の一方の面にろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金クラッド材が用いられている。 2. Description of the Related Art An automobile heat exchanger, for example, a radiator, includes a tube and a header that have fins on the outer surface and the inner surface serves as a passage for working fluid (refrigerant). As a tube material for such an automobile radiator or heater, an aluminum alloy having a two-layer structure in which an Al—Mn alloy such as JIS A3003 is used as a core and an Al—Si alloy brazing material is clad on one side of the core. A clad material, a three-layer aluminum alloy clad material in which a brazing material is clad on one surface of the core material and a sacrificial anode material of an Al-Zn alloy or Al-Zn-Mg alloy is clad on the other surface is used. It has been.
アルミニウム合金製熱交換器は、フッ化物系フラックスやセシウム系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されることが多く、クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブとフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からチューブを製造する場合のろう付け接合のためにクラッドされている。また、犠牲陽極材は、たとえばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、芯材の孔食や隙間腐食の発生を防止する。 Aluminum alloy heat exchangers are often joined by brazing with an inert gas atmosphere using a fluoride flux or a cesium flux, and the Al-Si brazing filler metal is an aluminum alloy heat exchanger. When the tube is manufactured, it is clad for joining the tube and the fin, joining the tube and the header plate, or brazing when manufacturing the tube from the clad plate. The sacrificial anode material is used, for example, on the inner surface side of the tube, and exerts a sacrificial anode action in contact with the working fluid, thereby preventing pitting corrosion and crevice corrosion of the core material.
近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。チューブ材を薄肉化するためには、材料の強度をさらに高める必要があり、芯材に多量のMn、Cu、Siなどが含有されるが、これらの元素の含有により芯材の耐食性が低下するため、犠牲陽極材に多量のZnを添加して芯材との電位差を確保し、確実に犠牲陽極効果が得られるようにした材料構成が提案されている。また、芯材や犠牲陽極材にMgを添加して、さらに強度を高めた材料構成のものも提案されている。 In recent years, with the demand for lighter automobiles, automobile heat exchangers are also required to be made thinner from the viewpoint of energy saving and resource saving, and the tube materials are also becoming thinner. In order to reduce the thickness of the tube material, it is necessary to further increase the strength of the material, and the core material contains a large amount of Mn, Cu, Si, etc., but the inclusion of these elements reduces the corrosion resistance of the core material. Therefore, a material configuration has been proposed in which a large amount of Zn is added to the sacrificial anode material to ensure a potential difference from the core material and to ensure the sacrificial anode effect. In addition, a material structure in which Mg is added to the core material and the sacrificial anode material to further increase the strength has been proposed.
しかしながら、芯材や犠牲陽極材にMgが添加された場合、Mgが、ろう付け工程において、ろう材表面に拡散し、フラックスと反応してMgF2 などの化合物が形成され、フラックスとしての機能が損なわれて、ろう付け欠陥が生じたり、材料中のMgが減少するため、十分なろう付け強度が得られないという問題がある。 However, when Mg is added to the core material or sacrificial anode material, Mg diffuses to the surface of the brazing material in the brazing process and reacts with the flux to form a compound such as MgF 2 , which functions as a flux. There is a problem that a sufficient brazing strength cannot be obtained because the brazing defect occurs or Mg in the material is reduced.
この問題は、前記3層構造のアルミニウム合金クラッド材を曲成して溶接により偏平チューブとし、これにヘッダープレートを組付けて一体ろう付けする場合にも生じるが、近年、省エネルギーや作業効率化の観点から使用が増加している板材を曲げ加工するだけで溶接することなくチューブ形状とするもの、すなわち、図1、図2に示すように、芯材3の片面にろう材4、他の片面に犠牲陽極材5をクラッドしてなるアルミニウム合金クラッド材の両端面6または両端面6と両端部7のろう材4が犠牲陽極材5と当接するように曲げ加工するだけで、B型のチューブ形状1または2とし、ヘッダープレートに組付けて一体ろう付けして製造されるろう付け型において、とくに問題となっている。従来、この問題を解決するために、芯材とろう材との間にMnを含有するアルミニウム合金からなる中間材を設ける手法が提案されている(特許文献1、2、3参照)。
This problem also arises when the aluminum alloy clad material having the three-layer structure is bent and welded to form a flat tube, and a header plate is assembled to this and integrally brazed. However, in recent years, energy saving and work efficiency have been improved. A plate material that is increasing in use from the viewpoint is formed into a tube shape without being welded only by bending, that is, as shown in FIGS. 1 and 2, a
Al−Mn系合金の中間材を設けることにより、芯材や犠牲陽極材からのMgの拡散は抑制されるが、例えば、Al−Mn系合金芯材の片面にAl−Mn系合金の中間材層を介してAl−Si系合金ろう材をクラッドし、芯材の他の片面にAl−Zn系合金またはAl−Zn−Mg系合金からなる犠牲陽極材をクラッドしたアルミニウム合金クラッド材を製造する場合、熱間圧延中に中間材層と犠牲陽極材がろう材や芯材より優先的に延びるため、クラッド材の圧延方向のクラッド率にバラツキが生じ、とくに薄肉化されたクラッド材においては、少しでもクラッド率が相違した個所があった場合には、ろう付け性、耐食性などの材料特性が大きく異なったものとなるため、安定したクラッド材の製造が困難となるという他の問題点がある。 Although the diffusion of Mg from the core material and the sacrificial anode material is suppressed by providing the intermediate material of the Al—Mn alloy, for example, the intermediate material of the Al—Mn alloy on one side of the Al—Mn alloy core material. An aluminum alloy clad material is produced in which an Al—Si alloy brazing material is clad through a layer and a sacrificial anode material made of an Al—Zn alloy or an Al—Zn—Mg alloy is clad on the other surface of the core material. In this case, since the intermediate material layer and the sacrificial anode material preferentially extend over the brazing material and the core material during the hot rolling, the clad rate in the rolling direction of the clad material varies, and particularly in the clad material that is thinned, If there is a part where the clad rate is slightly different, the material characteristics such as brazing and corrosion resistance will be greatly different, which makes it difficult to produce a stable clad material. .
Al−Mn系合金芯材の片面に中間材をクラッドし、中間材と芯材の他の面にAl−Si−Mg系ろう材をクラッドした4層クラッド材において、中間材の変形抵抗を芯材の変形抵抗の70〜130%として、安定したクラッド熱間圧延性を得ることも提案されている(特許文献4参照)が、芯材の他の面にろう材でなくAl−Zn系合金またはAl−Zn−Mg系合金からなる犠牲陽極材をクラッドした場合には、クラッド熱間圧延性の改善は得られず、前記のように、熱間圧延中に中間材層と犠牲陽極材がろう材や芯材より優先的に延びる現象が生じる。
発明者らは、Al−Mn系合金芯材の片面にAl−Mn系合金の中間材層を介してAl−Si系合金ろう材をクラッドし、芯材の他の片面に犠牲陽極材をクラッドしてなる熱交換器のチューブ材における上記の問題点を解消し、耐食性、薄肉化のための高強度および適正な熱間圧延性を達成し得るアルミニウム合金クラッドを得るために、芯材、中間材、ろう材および犠牲陽極材の組み合わせについて検討を行った。 The inventors clad an Al—Si alloy brazing material on one side of an Al—Mn alloy core material through an intermediate layer of Al—Mn alloy, and clad a sacrificial anode material on the other surface of the core material. In order to obtain the aluminum alloy clad that can solve the above-mentioned problems in the tube material of the heat exchanger and can achieve corrosion resistance, high strength for thinning and proper hot rolling properties, The combination of brazing material, brazing material and sacrificial anode material was studied.
薄肉化されたクラッド材について十分な強度と耐食性を達成し、その製造において適正な熱間圧延性を得るために、犠牲陽極材として従来のA7072合金など、低強度のAl−Zn系合金を適用した場合には、以下に説明するように、強度低下が大きくなり高強度化を達成することができない。犠牲陽極材にMgを添加した場合には、十分な強度は得られるが、ろう付け性や熱間圧延牲に問題があることは前記のとおりである。 In order to achieve sufficient strength and corrosion resistance for the thinned clad material, and to obtain appropriate hot rollability in its production, a low-strength Al-Zn alloy such as the conventional A7072 alloy is applied as a sacrificial anode material In such a case, as will be described below, the strength decrease is large, and the increase in strength cannot be achieved. When Mg is added to the sacrificial anode material, a sufficient strength can be obtained, but as described above, there are problems in brazability and hot rolling property.
すなわち、従来のようにクラッド材の厚さが0.3mmのように比較的大きい場合には、内面の耐食性を維持するためには犠牲陽極材層の厚さは0.030mm程度必要とされ、全板厚に占める割合は10%となるから、犠牲陽極材としてA7072合金のような低強度合金を用いたとしてもチューブ材としての強度低下は僅かであったが、クラッド材の厚さが0.15mmのように薄肉化された場合でも、内面の耐食性を維持するためには犠牲陽極材層の厚さは同じく0.030mm程度必要とされ、全板厚に占める割合は20%となるから、犠牲陽極材としてA7072合金のような低強度合金を用いた場合には強度低下が大きくなる。 That is, when the thickness of the clad material is relatively large as in the conventional case, such as 0.3 mm, the thickness of the sacrificial anode material layer is required to be about 0.030 mm in order to maintain the corrosion resistance of the inner surface. Since the ratio to the total plate thickness is 10%, even if a low-strength alloy such as an A7072 alloy is used as the sacrificial anode material, the strength decrease as a tube material is slight, but the thickness of the clad material is 0 Even when the thickness is reduced to 15 mm, the thickness of the sacrificial anode material layer is also required to be about 0.030 mm in order to maintain the corrosion resistance of the inner surface, and the proportion of the total plate thickness is 20%. When a low-strength alloy such as an A7072 alloy is used as the sacrificial anode material, the strength is greatly reduced.
試験、検討を重ねた結果、犠牲陽極材にZnとMnを含有させることにより、犠牲陽極材の強度が改善され、耐食性も維持されて、薄肉化されたクラッド材において十分な強度と耐食性を達成することが可能となり、熱間圧延性についても、Al−Si系合金ろう材、Al−Mn系合金中間材、Al−Mn系合金芯材およびZnとMnとを含有する犠牲陽極材を組み合わせて熱間圧延した場合には、良好な熱間クラッド圧延性が得られることを見出した。 As a result of repeated tests and studies, by adding Zn and Mn to the sacrificial anode material, the strength of the sacrificial anode material is improved and the corrosion resistance is maintained, and sufficient strength and corrosion resistance are achieved in the thinned cladding material. The hot-rollability can also be combined with an Al—Si alloy brazing material, an Al—Mn alloy intermediate material, an Al—Mn alloy core material, and a sacrificial anode material containing Zn and Mn. It has been found that good hot clad rollability can be obtained when hot rolling.
本発明は、上記の知見に基づいてさらに検討を加えた結果としてなされたものであり、その目的は、ろう付け工程において芯材からろう材表面へのMgの拡散が抑制され、フラックスと反応してろう付け性を害することがなく、製造工程においても、良好な熱間クラッド圧延性をそなえ、クラッド率にバラツキを生じることがなく、高強度と優れた耐食性を達成することを可能とし、熱交換器とくに自動車熱交換器に使用されるアルミニウム合金クラッド材、とくに、フッ化物系フラックスやセシウム系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータ、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器のチューブ材として好適な熱交換器用アルミニウム合金クラッド材を提供することにある。 The present invention has been made as a result of further investigation based on the above knowledge, and its purpose is to suppress the diffusion of Mg from the core material to the brazing material surface in the brazing process and to react with the flux. It does not impair brazeability, has good hot clad rollability in the manufacturing process, does not cause variations in the clad rate, and can achieve high strength and excellent corrosion resistance. Aluminum alloy clad materials used in exchangers, especially automotive heat exchangers, especially evaporators, condensers, radiators, heaters, intercoolers, joined by brazing in an inert gas atmosphere using fluoride or cesium fluxes, Aluminum for heat exchangers suitable as a tube material for aluminum alloy automotive heat exchangers such as oil coolers It is to provide an alloy cladding material.
上記の目的を達成するための請求項1による熱交換器用アルミニウム合金クラッド材は、芯材の片面に犠牲陽極材をクラッドし、他の面に中間材を介してろう材をクラッドしてなるアルミニウム合金の4層クラッド材であって、芯材は、Mn:0.8〜1.8%、Mg:0.1〜1.0%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成され、中間材は、Mn:0.8〜1.8%、Cu:0.4〜0.8%、Si:0.7〜1.1%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Mn:0.8〜1.8%、Zn:0.5〜10%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成され、ろう材は、Si:6〜13%を含有し、残部Alおよび不純物からなるアルミニウム合金で構成されることを特徴とする。 In order to achieve the above object, an aluminum alloy clad material for a heat exchanger according to claim 1 is formed by clad a sacrificial anode material on one surface of a core material and clad a brazing material on the other surface with an intermediate material. A four-layer clad material of an alloy, the core material comprising Mn: 0.8 to 1.8%, Mg: 0.1 to 1.0%, and composed of an aluminum alloy composed of the balance Al and impurities. The intermediate material is an aluminum alloy containing Mn: 0.8 to 1.8%, Cu: 0.4 to 0.8% , Si: 0.7 to 1.1% , and the balance Al and impurities. The sacrificial anode material is composed of an aluminum alloy containing Mn: 0.8 to 1.8%, Zn: 0.5 to 10%, the balance Al and impurities, and the brazing material is Si: 6 Aluminum containing about 13%, balance Al and impurities It is characterized by being comprised with a hum alloy.
請求項2による熱交換器用アルミニウム合金クラッド材は、請求項1において、前記芯材が、Mn:0.8〜1.8%、Mg:0.1〜1.0%を含有し、さらに、Si:0.7〜1.1%、Fe:0.5〜1.0%、Cu:0.8%以下、Ni:0.1〜1.0%、Cr:0.02〜0.3%、Zr:0.02〜0.3%、Ti:0.05〜0.35%のうちの1種または2種以上を含有し、残部Alおよび不純物からなるアルミニウム合金で構成されることを特徴とする。
The aluminum alloy clad material for a heat exchanger according to
請求項3による熱交換器用アルミニウム合金クラッド材は、請求項1または2において、前記中間材が、さらに、Fe:0.5〜1.0%、Ni:0.1〜1.0%、Cr:0.02〜0.3%、Zr:0.02〜0.3%、Ti:0.05〜0.35%のうちの1種または2種以上を含有することを特徴とする。
An aluminum alloy clad material for a heat exchanger according to
請求項4による熱交換器用アルミニウム合金クラッド材は、請求項1〜3のいずれかにおいて、前記犠牲陽極材が、さらに、Si:0.7〜1.1%、Fe:0.5〜1.0%、Ni:0.1〜1.0%、Cr:0.02〜0.3%、Zr:0.02〜0.3%、Ti:0.05〜0.35%のうちの1種または2種以上を含有することを特徴とする。
The aluminum alloy clad material for a heat exchanger according to
請求項5による熱交換器用アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、前記ろう材が、さらに、Fe:0.8〜2.0%、Zn:0.5〜5.0%、Cu:0.5〜5.0%、Sr:0.005〜0.1%のうちの1種または2種以上を含有することを特徴とする。
The aluminum alloy clad material for a heat exchanger according to
請求項6による熱交換器用アルミニウム合金クラッド材は、請求項1〜5のいずれかにおいて、前記芯材が、さらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。
Aluminum alloy clad sheet according to
請求項7による熱交換器用アルミニウム合金クラッド材は、請求項1〜6のいずれかにおいて、前記中間材が、さらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。
Aluminum alloy clad sheet according to
請求項8による熱交換器用アルミニウム合金クラッド材は、請求項1〜7のいずれかにおいて、前記犠牲陽極材が、さらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。 Aluminum alloy clad sheet according to claim 8, in any one of claims 1 to 7, wherein the sacrificial anode material further, V: 0.01~0.3%, B: 0.01~0. It is characterized by containing one or two of 3%.
請求項9による熱交換器用アルミニウム合金クラッド材は、請求項1〜8のいずれかにおいて、前記ろう材が、さらに、In:0.05%以下、Sn:0.05%以下の1種または2種を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger according to claim 9 is the aluminum alloy clad material for heat exchanger according to any one of claims 1 to 8 , wherein the brazing material further includes one or two of In: 0.05% or less and Sn: 0.05% or less. It contains seeds.
本発明によれば、ろう付け工程において芯材からろう材表面へのMgの拡散が抑制され、フラックスと反応してろう付け性を害することがなく、製造工程においても、良好な熱間クラッド圧延性をそなえ、クラッド率にバラツキを生じることがなく、高強度と優れた耐食性を達成することを可能とし、熱交換器とくに自動車熱交換器に使用されるアルミニウム合金クラッド材、とくに、フッ化物系フラックスやセシウム系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されるエバポレータ、コンデンサ、ラジエータ、ヒータ、インタークーラ、オイルクーラなどのアルミニウム合金製自動車熱交換器のチューブ材として好適な熱交換器用アルミニウム合金クラッド材が提供される。 According to the present invention, Mg diffusion from the core material to the brazing material surface is suppressed in the brazing process, and it does not adversely affect the brazing property by reacting with the flux. It is possible to achieve high strength and excellent corrosion resistance without any variation in cladding ratio, and aluminum alloy cladding material used in heat exchangers, especially automotive heat exchangers, especially fluoride-based. Aluminum for heat exchangers suitable as a tube material for aluminum alloy automotive heat exchangers such as evaporators, condensers, radiators, heaters, intercoolers, and oil coolers that are joined by brazing in an inert gas atmosphere using flux or cesium flux An alloy cladding material is provided .
以下、本発明のアルミニウム合金クラッド材における芯材、中間材、犠牲陽極材およびろう材の成分およびその限定理由について説明する。
(芯材)
Mn:0.8〜1.8%
Mnは、芯材の強度を向上させるとともに、芯材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。Mnの好ましい含有量は0.8〜1.8%の範囲であり、0.8%未満ではその効果が小さく、1.8%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材(芯材)が得難くなる。Mnのさらに好ましい含有範囲は1.0〜1.3%である。
Hereinafter, the components of the core material, the intermediate material, the sacrificial anode material and the brazing material in the aluminum alloy clad material of the present invention and the reasons for the limitation will be described.
(Core material)
Mn: 0.8 to 1.8%
Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. The preferable content of Mn is in the range of 0.8 to 1.8%. If the content is less than 0.8%, the effect is small. If the content exceeds 1.8%, a coarse compound is produced during casting, and the rolling processability is low. It decreases and it becomes difficult to obtain a healthy plate (core material). A more preferable content range of Mn is 1.0 to 1.3%.
Mg:0.1〜1.0%
Mgは、芯材の強度を向上させる。Mgの好ましい含有量は0.1〜1.0%の範囲であり、0.1%未満ではその効果が小さく、1.0%を越えて含有すると、フッ化物系フラックスを用いて不活性ガス雰囲気中で加熱ろう付けを行う場合、中間材を配しても、ろう付け時にMgがろう材表面まで拡散してフッ化物系フラックスと反応し、ろう付け性が阻害され易く、MgF2 などの化合物が生成してろう付け欠陥が生じ易くなる。Mgのさらに好ましい含有範囲は0.1〜0.6%である。
Mg: 0.1 to 1.0%
Mg improves the strength of the core material. The preferable content of Mg is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is small. If the content exceeds 1.0%, an inert gas is used using a fluoride-based flux. When heat brazing is performed in an atmosphere, even if an intermediate material is disposed, Mg diffuses to the brazing material surface during brazing and reacts with the fluoride-based flux, brazing properties are easily hindered, such as MgF 2 A compound is formed and a brazing defect is likely to occur. A more preferable content range of Mg is 0.1 to 0.6%.
Si:0.7〜1.1%
Siは、芯材の強度を向上させる効果を有する。Siの好ましい含有量は0.7〜1.1%の範囲であり、0.7%未満ではその効果が小さく、1.1%を越えると、芯材の耐食性が低下するとともに、芯材の融点を下げ、加熱ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.8〜1.0%である。
Si: 0.7 to 1.1%
Si has the effect of improving the strength of the core material. The preferable content of Si is in the range of 0.7 to 1.1%. If the content is less than 0.7%, the effect is small. If the content exceeds 1.1%, the corrosion resistance of the core material decreases, and The melting point is lowered, and local melting tends to occur during brazing with heating. The more preferable content range of Si is 0.8 to 1.0%.
Fe:0.5〜1.0%
Feは、芯材の強度を向上させる効果を有する。Feの好ましい含有量は0.5〜1.0%の範囲であり、0.5%未満ではその効果が小さく、1.0%を越えると、芯材の自己腐食性が増大する。Feのさらに好ましい含有範囲は0.5〜0.8%である。
Fe: 0.5 to 1.0%
Fe has the effect of improving the strength of the core material. The preferable content of Fe is in the range of 0.5 to 1.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the core material increases. The more preferable content range of Fe is 0.5 to 0.8%.
Cu:0.8%以下
Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材との電位差を大きくして耐食性を向上させるよう機能する。また、芯材中のCuは加熱ろう付け時に犠牲陽極材および中間材中に拡散して、犠牲陽極材および中間材の厚さ方向になだらかなCuの濃度勾配を形成させ、この結果、芯材側の電位は貴となり、犠牲陽極材の表面側および中間材の表面側の電位は卑となって、犠牲陽極材および中間材の厚さ方向になだらかな電位勾配が形成されるため、腐食形態が全面腐食型となる。Cuの好ましい含有量は0.8%以下の範囲であり、0.8%を越えると芯材の耐食性が低下し、また融点が低下して加熱ろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.4〜0.6%である。
Cu: 0.8% or less Cu functions to improve the corrosion resistance by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference from the sacrificial anode material. Further, Cu in the core material diffuses into the sacrificial anode material and the intermediate material at the time of heat brazing, and forms a gentle Cu concentration gradient in the thickness direction of the sacrificial anode material and the intermediate material. The potential on the side becomes noble, the potential on the surface side of the sacrificial anode material and the surface side of the intermediate material becomes base, and a gentle potential gradient is formed in the thickness direction of the sacrificial anode material and intermediate material. Becomes a full corrosive type. The preferable content of Cu is in the range of 0.8% or less. If it exceeds 0.8%, the corrosion resistance of the core material is lowered, and the melting point is lowered, so that local melting is likely to occur during heat brazing. The more preferable content range of Cu is 0.4 to 0.6%.
Ni:0.1〜1.0%
Niは、芯材の強度を向上させよう機能する。Niの好ましい含有量は0.1〜1.0%の範囲であり、0.1%未満ではその効果が小さく、1.0%を越えると、芯材の自己腐食性が増大する。Niのさらに好ましい含有範囲は0.5〜0.8%である。
Ni: 0.1 to 1.0%
Ni functions to improve the strength of the core material. The preferable content of Ni is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the core material increases. A more preferable content range of Ni is 0.5 to 0.8%.
Cr:0.02〜0.3%、Zr:0.02〜0.3%
CrおよびZrは、上記の範囲内で含有させた場合、芯材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.02%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。CrおよびZrのさらに好ましい含有範囲は、それぞれ0.05〜0.2%である。
Cr: 0.02-0.3%, Zr: 0.02-0.3%
When Cr and Zr are contained within the above range, the crystal grain size of the core material is coarsened, and Mg grain boundary diffusion during brazing heating is suppressed. If the content is less than 0.02%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected. The more preferable content ranges of Cr and Zr are each 0.05 to 0.2%.
Ti:0.05〜0.35%
Tiは、芯材の厚さ方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではその効果が小さく、0.35%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。
Ti: 0.05 to 0.35%
Ti is divided into a high concentration region and a low region in the thickness direction of the core material, and these regions are alternately distributed in a layered manner, and the low Ti concentration region corrodes preferentially compared to the high region. It has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, the effect is small, and if it exceeds 0.35%, casting becomes difficult and workability is reduced. It becomes difficult to produce sound materials. A more preferable content range of Ti is 0.1 to 0.2%.
V:0.01〜0.3%、B:0.01〜0.3%
VおよびBは、上記の範囲内で含有させた場合、芯材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.01%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。
V: 0.01 to 0.3%, B: 0.01 to 0.3%
When V and B are contained within the above range, the crystal grain size of the core material is coarsened, and Mg grain boundary diffusion during brazing heating is suppressed. If the content is less than 0.01%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected.
(中間材)
Mn:0.8〜1.8%
Mnは、中間材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、犠牲陽極材およびろう材との変形抵抗の差を小さくする。Mnの好ましい含有量は0.8〜1.8%の範囲であり、0.8%未満ではその効果が小さく、1.8%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材が得難くなる。Mnのさらに好ましい含有範囲は1.0〜1.3%である。
(Intermediate material)
Mn: 0.8 to 1.8%
Mn improves the strength of the intermediate material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the sacrificial anode material and the brazing material. The preferable content of Mn is in the range of 0.8 to 1.8%. If the content is less than 0.8%, the effect is small. If the content exceeds 1.8%, a coarse compound is produced during casting, and the rolling processability is low. It becomes difficult to obtain a healthy plate material. A more preferable content range of Mn is 1.0 to 1.3%.
Si:0.7〜1.1%
Siは、中間材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、犠牲陽極材およびろう材との変形抵抗の差を小さくする。Siの好ましい含有量は0.7〜1.1%の範囲であり、0.7%未満ではその効果が小さく、1.1%を越えると、中間材の耐食性が低下するとともに、中間材の融点を下げ、加熱ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.8〜1.0%である。
Si: 0.7 to 1.1%
Si improves the strength of the intermediate material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the sacrificial anode material and the brazing material. The preferable content of Si is in the range of 0.7 to 1.1%. If the content is less than 0.7%, the effect is small. If the content exceeds 1.1%, the corrosion resistance of the intermediate material decreases, and The melting point is lowered, and local melting tends to occur during brazing with heating. The more preferable content range of Si is 0.8 to 1.0%.
Fe:0.5〜1.0%
Feは、中間材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、犠牲陽極材およびろう材との変形抵抗の差を小さくする。Feの好ましい含有量は0.5〜1.0%の範囲であり、0.5%未満ではその効果が小さく、1.0%を越えると、中間材の自己腐食性が増大する。Feのさらに好ましい含有範囲は0.5〜0.8%である。
Fe: 0.5 to 1.0%
Fe improves the strength of the intermediate material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the sacrificial anode material and the brazing material. The preferable content of Fe is in the range of 0.5 to 1.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the intermediate material increases. The more preferable content range of Fe is 0.5 to 0.8%.
Cu:0.8%以下
Cuは、中間材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、犠牲陽極材およびろう材との変形抵抗の差を小さくする。また、中間材の電位を貴にし、ろう材との電位差を大きくして防食効果を向上させるよう機能する。さらに中間材中のCuは加熱ろう付け時に芯材およびろう材中に拡散して、芯材およびろう材の厚さ方向になだらかなCuの濃度勾配を形成させ、この結果、中間材と芯材の電位は貴となり、ろう材の表面側の電位は卑となって、ろう材の厚さ方向になだらかな電位勾配が形成されるため、腐食形態が全面腐食型となる。Cuの好ましい含有量は0.8%以下の範囲であり、0.8%を越えると中間材の耐食性が低下し、また融点が低下して加熱ろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.4〜0.6%である。なお、中間材にCuを含有させる場合には、Znを添加しないことが望ましい。
Cu: 0.8% or less Cu improves the strength of the intermediate material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the sacrificial anode material, and the brazing material. Further, it functions to make the potential of the intermediate material noble and increase the potential difference from the brazing material to improve the anticorrosion effect. Furthermore, Cu in the intermediate material diffuses into the core material and the brazing material during the heat brazing to form a gentle Cu concentration gradient in the thickness direction of the core material and the brazing material. As a result, the intermediate material and the core material Since the potential on the surface side of the brazing material becomes base and a gentle potential gradient is formed in the thickness direction of the brazing material, the corrosion form becomes a full corrosion type. The preferable content of Cu is in the range of 0.8% or less. If it exceeds 0.8%, the corrosion resistance of the intermediate material is lowered, and the melting point is lowered, so that local melting is likely to occur during heat brazing. The more preferable content range of Cu is 0.4 to 0.6%. In addition, when making Cu contain in an intermediate material, it is desirable not to add Zn.
Ni:0.1〜1.0%
Niは、中間材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、犠牲陽極材およびろう材との変形抵抗の差を小さくするよう機能する。Niの好ましい含有量は0.1〜1.0%の範囲であり、0.1%未満ではその効果が小さく、1.0%を越えると、中間材の自己腐食性が増大する。Niのさらに好ましい含有範囲は0.5〜0.8%である。
Ni: 0.1 to 1.0%
Ni functions to improve the strength of the intermediate material, increase the deformation resistance during hot rolling, and reduce the difference in deformation resistance between the core material, the sacrificial anode material and the brazing material. The preferable content of Ni is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the intermediate material increases. A more preferable content range of Ni is 0.5 to 0.8%.
Cr:0.02〜0.3%、Zr:0.02〜0.3%
CrおよびZrは、上記の範囲内で含有させた場合、中間材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.02%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。CrおよびZrのさらに好ましい含有範囲は、それぞれ0.05〜0.2%である。
Cr: 0.02-0.3%, Zr: 0.02-0.3%
When Cr and Zr are contained within the above range, the grain size of the intermediate material is coarsened and Mg grain boundary diffusion during brazing heating is suppressed. If the content is less than 0.02%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected. The more preferable content ranges of Cr and Zr are each 0.05 to 0.2%.
Ti:0.05〜0.35%
Tiは、中間材の厚さ方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではその効果が小さく、0.35%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。
Ti: 0.05 to 0.35%
Ti is divided into a high concentration region and a low region in the thickness direction of the intermediate material, and these regions are alternately distributed in layers, and the low Ti concentration region corrodes preferentially compared to the high region. It has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, the effect is small, and if it exceeds 0.35%, casting becomes difficult and workability is reduced. It becomes difficult to produce sound materials. A more preferable content range of Ti is 0.1 to 0.2%.
V:0.01〜0.3%、B:0.01〜0.3%
VおよびBは、上記の範囲内で含有させた場合、中間材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.01%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。
V: 0.01 to 0.3%, B: 0.01 to 0.3%
When V and B are contained within the above range, the grain size of the intermediate material is coarsened, and Mg grain boundary diffusion during brazing heating is suppressed. If the content is less than 0.01%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected.
In:0.05%以下、Sn:0.05%以下
中間材において、Cuを含有しない場合、In、Snの添加は中間材の電位を卑にし、芯材に対する犠牲陽極効果を確実にし、芯材の孔食や隙間腐食を防止するよう機能する。好ましい含有量は0.05%以下の範囲であり、それぞれ0.05%を越えると中間材の自己腐食性が増大する。InとSnのさらに好ましい含有範囲は、それぞれ0.01〜0.03%である。
In: 0.05% or less, Sn: 0.05% or less In the case where Cu is not contained in the intermediate material, the addition of In and Sn makes the potential of the intermediate material low, and ensures the sacrificial anode effect on the core material. It functions to prevent pitting and crevice corrosion of the material. The preferred content is in the range of 0.05% or less, and if it exceeds 0.05%, the self-corrosion property of the intermediate material increases. More preferable content ranges of In and Sn are 0.01 to 0.03%, respectively.
(犠牲陽極材)
Mn:0.8〜1.8%
Mnは、犠牲陽極材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、中間材およびろう材との変形抵抗の差を小さくする。また、Al−Mn系化合物が腐食の起点となって孔食が分散される結果、耐食性が向上する。Mnの好ましい含有量は0.8〜1.8%の範囲であり、0.8%未満ではその効果が小さく、1.8%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材が得難くなる。Mnのさらに好ましい含有範囲は1.0〜1.3%である。
(Sacrificial anode material)
Mn: 0.8 to 1.8%
Mn improves the strength of the sacrificial anode material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the intermediate material and the brazing material. Further, as a result of the pitting corrosion being dispersed by the Al—Mn compound as a starting point of corrosion, the corrosion resistance is improved. The preferable content of Mn is in the range of 0.8 to 1.8%. If the content is less than 0.8%, the effect is small. If the content exceeds 1.8%, a coarse compound is produced during casting, and the rolling processability is low. It becomes difficult to obtain a healthy plate material. A more preferable content range of Mn is 1.0 to 1.3%.
Zn:0.5〜10.0%
Znは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を保持し、芯材の孔食や隙間腐食を防止する。Znの好ましい含有量は0.5〜10.0%の範囲であり、0.5%未満ではその効果が小さく、10.0%を越えると犠牲陽極材の自己腐食性が増大する。Znのさらに好ましい含有範囲は2.0〜5.0%である。
Zn: 0.5 to 10.0%
Zn lowers the potential of the sacrificial anode material, maintains the sacrificial anode effect on the core material, and prevents pitting corrosion and crevice corrosion of the core material. The preferable content of Zn is in the range of 0.5 to 10.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 10.0%, the self-corrosion property of the sacrificial anode material increases. A more preferable content range of Zn is 2.0 to 5.0%.
Si:0.7〜1.1%
Siは、犠牲陽極材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、中間材およびろう材との変形抵抗の差を小さくする。また、Al−Mn−Fe−Si系化合物が腐食の起点となって腐食が分散される結果、耐食性が向上する。Siの好ましい含有量は0.7〜1.1%の範囲であり、0.7%未満ではその効果が小さく、1.1%を越えると、犠牲陽極材の耐食性が低下する。Siのさらに好ましい含有範囲は0.8〜1.0%である。
Si: 0.7 to 1.1%
Si improves the strength of the sacrificial anode material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the intermediate material and the brazing material. In addition, as a result of the Al—Mn—Fe—Si based compound becoming a starting point of corrosion and the corrosion being dispersed, the corrosion resistance is improved. The preferable content of Si is in the range of 0.7 to 1.1%. If the content is less than 0.7%, the effect is small. If the content exceeds 1.1%, the corrosion resistance of the sacrificial anode material is lowered. The more preferable content range of Si is 0.8 to 1.0%.
Fe:0.5〜1.0%
Feは、犠牲陽極材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、中間材およびろう材との変形抵抗の差を小さくする。また、Al−Mn−Fe−Si系化合物が腐食の起点となって腐食が分散される結果、耐食性が向上する。Feの好ましい含有量は0.5〜1.0%の範囲であり、0.5%未満ではその効果が小さく、1.0%を越えると、犠牲陽極材の自己腐食性が増大する。Feのさらに好ましい含有範囲は0.5〜0.8%である。
Fe: 0.5 to 1.0%
Fe improves the strength of the sacrificial anode material, increases the deformation resistance during hot rolling, and reduces the difference in deformation resistance between the core material, the intermediate material and the brazing material. In addition, as a result of the Al—Mn—Fe—Si based compound becoming a starting point of corrosion and the corrosion being dispersed, the corrosion resistance is improved. The preferable content of Fe is in the range of 0.5 to 1.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the sacrificial anode material increases. The more preferable content range of Fe is 0.5 to 0.8%.
Ni:0.1〜1.0%
Niは、犠牲陽極材の強度を向上させるとともに、熱間圧延時の変形抵抗を高め、芯材、中間材およびろう材との変形抵抗の差を小さくするよう機能する。Niの好ましい含有量は0.1〜1.0%の範囲であり、0.1%未満ではその効果が小さく、1.0%を越えると、犠牲陽極材の自己腐食性が増大する。Niのさらに好ましい含有範囲は0.5〜0.8%である。
Ni: 0.1 to 1.0%
Ni functions to improve the strength of the sacrificial anode material, increase the deformation resistance during hot rolling, and reduce the difference in deformation resistance from the core material, intermediate material and brazing material. The preferable content of Ni is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the self-corrosion property of the sacrificial anode material increases. A more preferable content range of Ni is 0.5 to 0.8%.
Ti:0.05〜0.35%
Tiは、犠牲陽極材の厚さ方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではその効果が小さく、0.35%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。
Ti: 0.05 to 0.35%
Ti is divided into high-concentration regions and low-concentration regions in the thickness direction of the sacrificial anode material, and these regions are alternately distributed in layers, and the low-Ti concentration regions corrode preferentially over the high regions. This has the effect of making the corrosion form into a layer, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, the effect is small, and if it exceeds 0.35%, casting becomes difficult and workability is reduced. It becomes difficult to produce sound materials. A more preferable content range of Ti is 0.1 to 0.2%.
Cr:0.02〜0.3%、Zr:0.02〜0.3%
CrおよびZrは、上記の範囲内で含有させた場合、犠牲陽極材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.02%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。CrおよびZrのさらに好ましい含有範囲は、それぞれ0.05〜0.2%である。
Cr: 0.02-0.3%, Zr: 0.02-0.3%
When Cr and Zr are contained within the above range, the grain size of the sacrificial anode material is coarsened, and Mg grain boundary diffusion during brazing heating is suppressed. If the content is less than 0.02%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected. The more preferable content ranges of Cr and Zr are each 0.05 to 0.2%.
V:0.01〜0.3%、B:0.01〜0.3%
VおよびBは、上記の範囲内で含有させた場合、犠牲陽極材の結晶粒度を粗大にし、ろう付け加熱中のMgの粒界拡散を抑制する。それぞれ0.01%未満では効果が小さく、それぞれ0.3%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。
V: 0.01 to 0.3%, B: 0.01 to 0.3%
V and B, when contained within the above range, make the grain size of the sacrificial anode material coarse and suppress Mg grain boundary diffusion during brazing heating. If the content is less than 0.01%, the effect is small. If the content exceeds 0.3%, the effect is saturated, and no further effect can be expected.
In:0.05%以下、Sn:0.05%以下
InとSnは、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を確実にし、芯材の孔食や隙間腐食を防止するよう機能する。好ましい含有量は0.05%以下の範囲であり、それぞれ0.05%を越えると犠牲陽極材の自己腐食性が増大する。InとSnのさらに好ましい含有範囲は、それぞれ0.01〜0.03%である。
In: 0.05% or less, Sn: 0.05% or less In and Sn lower the potential of the sacrificial anode material, ensure the sacrificial anode effect on the core material, and prevent pitting corrosion and crevice corrosion of the core material. It works as follows. The preferred content is in the range of 0.05% or less, and if it exceeds 0.05%, the self-corrosion property of the sacrificial anode material increases. More preferable content ranges of In and Sn are 0.01 to 0.03%, respectively.
(ろう材)
Si:6〜13%
ろう材としては、通常使用されるSi6〜13%含有Al−Si系合金が適用される。Siが6%未満では流動性が低下し、ろうとして有効に作用せず、Siが13%を越えると健全な材料の製造が難しくなる。
(Brazing material)
Si: 6-13%
As the brazing material, a commonly used Al—Si alloy containing 6 to 13% of Si is applied. If Si is less than 6%, the fluidity is lowered and does not act effectively as a wax. If Si exceeds 13%, it is difficult to produce a sound material.
Fe:0.8〜2.0%
Feは、Al−Fe系またはAl−Fe−Si系化合物を形成し、これらの化合物が腐食の起点となって腐食が分散される結果、外面(ろう材側)の耐食性が向上する。Feの好ましい含有量は0.8〜2.0%の範囲であり、0.8%未満ではその効果が小さく、2.0%を越えると、外面の耐食性が低下する。Feのさらに好ましい含有範囲は0.8〜1.0%である。
Fe: 0.8 to 2.0%
Fe forms an Al-Fe-based or Al-Fe-Si-based compound, and these compounds serve as a starting point for corrosion to disperse the corrosion. As a result, the corrosion resistance of the outer surface (the brazing filler metal side) is improved. The preferable content of Fe is in the range of 0.8 to 2.0%. If the content is less than 0.8%, the effect is small, and if it exceeds 2.0%, the corrosion resistance of the outer surface is lowered. A more preferable content range of Fe is 0.8 to 1.0%.
Zn:0.5〜5.0%
Znは、ろう材の電位を卑にし、中間材や芯材に対する犠牲陽極効果を保持し、外面からの芯材の孔食や隙間腐食を防止する。また、Cuと共存させることにより、ろう材の融点を低下させる。Znの好ましい含有量は0.5〜5.0%の範囲であり、0.5%未満ではその効果が小さく、5.0%を越えると、ろう材の自己腐食性が増大する。Znのさらに好ましい含有範囲は0.9〜1.5%である。
Zn: 0.5 to 5.0%
Zn lowers the potential of the brazing material, maintains the sacrificial anode effect on the intermediate material and the core material, and prevents pitting corrosion and crevice corrosion of the core material from the outer surface. Further, the coexistence with Cu lowers the melting point of the brazing material. The preferable content of Zn is in the range of 0.5 to 5.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 5.0%, the self-corrosion of the brazing material increases. The more preferable content range of Zn is 0.9 to 1.5%.
Cu:0.5〜5.0%
Cuは、Znと共存させることにより、ろう材の融点を低下させる。Cuの好ましい含有量は0.5〜5.0%の範囲であり、0.5%未満ではその効果が小さく、5.0%を越えると、ろう材の自己耐食性が増大する。Cuのさらに好ましい含有範囲は1〜3%である。
Cu: 0.5 to 5.0%
Cu coexists with Zn to lower the melting point of the brazing material. The preferable content of Cu is in the range of 0.5 to 5.0%. If the content is less than 0.5%, the effect is small. If the content exceeds 5.0%, the self-corrosion resistance of the brazing material increases. A more preferable content range of Cu is 1 to 3%.
Sr:0.005〜0.1%
Srは、Si粒子の存在形態をより微細かつ均一にする効果があり、その結果、ろうの溶融が均一になり、ろう付け性が向上する。また、ろう付け後のSi粒子の存在形態も均一になるため、外面の耐食性が向上する。Srの好ましい含有量は0.005〜0.1%の範囲であり、0.005%未満ではその効果が小さく、0.1%を越えて含有しても効果が飽和して、それ以上の効果が期待し得ない。なお、Na:1〜100ppm、Sb:0.001〜0.5%を含有させることによっても同等の効果が得られる。
Sr: 0.005 to 0.1%
Sr has the effect of making the presence form of Si particles finer and uniform, and as a result, the melting of the brazing becomes uniform and the brazing property is improved. Moreover, since the presence form of the Si particles after brazing becomes uniform, the corrosion resistance of the outer surface is improved. The preferable content of Sr is in the range of 0.005 to 0.1%. If the content is less than 0.005%, the effect is small, and even if the content exceeds 0.1%, the effect is saturated. The effect cannot be expected. In addition, an equivalent effect is acquired also by containing Na: 1-100 ppm and Sb: 0.001-0.5%.
In:0.05%以下、Sn:0.05%以下
InとSnは、ろう材の電位を卑にし、中間材や芯材に対する犠牲陽極効果を確実に保持させ、芯材の孔食や隙間腐食を防止するよう機能する。好ましい含有量は0.05%以下の範囲であり、それぞれ0.05%を越えると、ろう材の自己腐食性が増大する。InとSnのさらに好ましい含有範囲は、それぞれ0.01〜0.03%である。
In: 0.05% or less, Sn: 0.05% or less In and Sn make the sacrificial anode effect on the intermediate material and the core material reliable by lowering the potential of the brazing material, and pitting corrosion and gaps in the core material. Functions to prevent corrosion. The preferable content is in the range of 0.05% or less, and when it exceeds 0.05%, the self-corrosion property of the brazing material increases. More preferable content ranges of In and Sn are 0.01 to 0.03%, respectively.
本発明のアルミニウム合金クラッド材は、芯材、中間材、犠牲陽極材およびろう材を構成するアルミニウム材料を、たとえば、連続鋳造により造塊し、必要に応じて均質化処理後、例えば、中間材、犠牲陽極材およびろう材の鋳塊については、それぞれ所定厚さまで熱間圧延し、ついで、芯材の鋳塊と組み合わせて、常法に従って熱間圧延によりクラッド材とし、その後冷間圧延、中間焼鈍、冷間圧延により所定の厚さとすることによって製造される。芯材の鋳塊も熱間圧延して所定の厚さとし、芯材の熱間圧延材を数枚重ね合わせ、中間材、犠牲陽極材およびろう材の熱間圧延材と組み合わせて熱間クラッド圧延することもできる。 The aluminum alloy clad material of the present invention is formed by, for example, ingot-making an aluminum material constituting a core material, an intermediate material, a sacrificial anode material and a brazing material by, for example, continuous casting, and after homogenizing treatment as necessary, for example, an intermediate material The ingots of the sacrificial anode material and the brazing material are each hot-rolled to a predetermined thickness and then combined with the core material ingot to form a clad material by hot rolling according to a conventional method, and then cold-rolled, intermediate It is manufactured by setting it to a predetermined thickness by annealing and cold rolling. The ingot of the core material is also hot-rolled to a predetermined thickness, several hot-rolled core materials are stacked, and hot-clad rolling is combined with the intermediate material, sacrificial anode material and brazing material hot-rolled material You can also
この場合、例えばアルミニウム合金クラッド材の各構成材の成分調整により、組み合わせ後の熱間圧延時(熱間圧延温度:400〜500℃)における芯材、中間材、犠牲陽極材およびろう材の変形抵抗の比、(ろう材の変形抵抗/中間材の変形抵抗)、(ろう材の変形抵抗/芯材の変形抵抗)、(ろう材の変形抵抗/犠牲陽極材の変形抵抗)、(中間材の変形抵抗/芯材の変形抵抗)、(中間材の変形抵抗/犠牲陽極材の変形抵抗)、(芯材の変形抵抗/犠牲陽極材の変形抵抗)を0.7〜1.4の範囲とするのが望ましく、これにより、中間材や犠牲陽極材の優先的な延びを低減され、クラッド率にバラツキを生じることがない良好な熱間クラッド圧延性が達成できる。 In this case, the core material, intermediate material, sacrificial anode material and brazing material are deformed during hot rolling after combination (hot rolling temperature: 400 to 500 ° C.) by adjusting the components of each constituent material of the aluminum alloy clad material, for example. Resistance ratio, (deformation resistance of brazing material / deformation resistance of intermediate material), (deformation resistance of brazing material / deformation resistance of core material), (deformation resistance of brazing material / deformation resistance of sacrificial anode material), (intermediate material) (Deformation resistance of core material / deformation resistance of core material), (deformation resistance of intermediate material / deformation resistance of sacrificial anode material), and (deformation resistance of core material / deformation resistance of sacrificial anode material) in the range of 0.7 to 1.4 As a result, it is possible to reduce the preferential extension of the intermediate material and the sacrificial anode material, and to achieve good hot clad rollability without causing variations in the clad rate.
以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.
実施例1
連続鋳造によって表1〜2に示す組成を有する芯材用合金、表3〜4に示す組成を有する中間材用合金、表5〜6に示す組成を有する犠牲陽極材用合金、および表7〜8に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、芯材用合金、中間材用合金および犠牲陽極材用合金の鋳塊については均質化処理を行った。
Example 1
Alloys for core materials having compositions shown in Tables 1-2 by continuous casting, alloys for intermediate materials having compositions shown in Tables 3-4, alloys for sacrificial anode materials having compositions shown in Tables 5-6, and Tables 7-7 The alloy for brazing filler metal having the composition shown in FIG. 8 was ingot, and among the obtained ingots, the ingots for the core alloy, the intermediate alloy, and the sacrificial anode alloy were homogenized.
ついで、中間材用合金、犠牲陽極材用合金およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊とを合わせ材として熱間圧延しクラッド材を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.15mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、中間材を0.02〜0.03mm、犠牲陽極材は0.02〜0.03mm、ろう材を0.02〜0.03mmとし、残りを芯材とした。 Next, the ingot of the alloy for intermediate material, the alloy for sacrificial anode material, and the alloy for brazing material is hot-rolled to a predetermined thickness, and the hot-rolled sheet and the ingot of the core material alloy are heated as a combined material. Cold rolling was performed to obtain a clad material. Thereafter, a plate material (cladding material, tempered H14) having a thickness of 0.15 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The composition of the clad material was 0.02 to 0.03 mm for the intermediate material, 0.02 to 0.03 mm for the sacrificial anode material, 0.02 to 0.03 mm for the brazing material, and the rest as the core material.
得られたアルミニウム合金クラッド材を試験材として、以下の方法により(1)引張強さ、(2)ろう付け性、(3)内面(犠牲陽極材側)の耐食性、(3)各構成材間の変形抵抗比を評価した。結果を表9〜15に示す。 Using the obtained aluminum alloy clad material as a test material, (1) Tensile strength, (2) Brazing property, (3) Corrosion resistance of the inner surface (sacrificial anode material side), (3) Between each constituent material The deformation resistance ratio was evaluated. The results are shown in Tables 9-15.
引張強さ:得られたクラッド材(試験材)を、単板のままフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、引張試験を行って引張強さを測定する。 Tensile strength: The obtained clad material (test material) is applied as a single plate with fluoride-based flux and heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere. Go and measure the tensile strength.
ろう付け性:得られたクラッド材(試験材)と3003合金板(厚さ1.0mm)を、図3に示すように、スペーサーロッドを介して試験材と3003合金板間に間隙が形成されるよう組み合わせ、SUS304の細線で固定して逆T字型の間隙充填試験片(寸法単位:mm)を作製し、フッ化物系フラックスを塗布して、窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱し、ろう材の充填長さを測定してろう付け性を評価した。 Brazing property: As shown in FIG. 3, a gap is formed between the obtained clad material (test material) and the 3003 alloy plate (thickness: 1.0 mm) via the spacer rod. Combined with each other, fixed with a thin wire of SUS304 to produce an inverted T-shaped gap filling test piece (dimension unit: mm), applied with a fluoride-based flux, and 600 ° C. (material temperature) in a nitrogen gas atmosphere The brazing temperature was evaluated by measuring the filling length of the brazing material.
内面(犠牲陽極材側)の耐食性:得られたクラッド材(試験材)を、単板のままフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、内面について下記の条件で腐食試験を行った。
腐食液:Cl- :300ppm、SO4 2- :100ppm、Cu2+:10pm
比液量:5mL/cm2
シール:ろう材面と端面をシリコン樹脂でシールした。
試験方法:88℃に加熱した腐食液中に8時間浸漬した後、冷却して25℃で16時間保持するサイクルを4か月間繰り返し、最大腐食深さを測定した。
Corrosion resistance of the inner surface (sacrificial anode material side): The obtained clad material (test material) is heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere by applying a fluoride flux as a single plate. After that, the inner surface was subjected to a corrosion test under the following conditions.
Corrosion solution: Cl − : 300 ppm, SO 4 2− : 100 ppm, Cu 2+ : 10 pm
Specific liquid volume: 5 mL / cm 2
Seal: The brazing filler metal surface and the end surface were sealed with silicon resin.
Test method: After immersing in a corrosive liquid heated to 88 ° C. for 8 hours, a cycle of cooling and holding at 25 ° C. for 16 hours was repeated for 4 months, and the maximum corrosion depth was measured.
各構成材間の変形抵抗比:芯材については鋳塊を均質化処理した状態、中間材、犠牲陽極材およびろう材については鋳塊を熱間圧延して熱間圧延材とし、各材料から直径8mm、高さ16mmの円筒状の試験片を切り出し、熱間クラッド圧延温度と同じ400〜500℃で据え込み試験を行って変形抵抗を測定し、各構成材間の変形抵抗比率、(ろう材の変形抵抗/中間材の変形抵抗)、(ろう材の変形抵抗/芯材の変形抵抗)、(ろう材の変形抵抗/犠牲陽極材の変形抵抗)、(中間材の変形抵抗/芯材の変形抵抗)、(中間材の変形抵抗/犠牲陽極材の変形抵抗)、(芯材の変形抵抗/犠牲陽極材の変形抵抗)を求めた。据え込み試験条件は、ストローク速度は10mm/分、据え込み率は20%から80%まで変えて変形抵抗を測定し、平均値を求めた。なお、変形抵抗の測定については、据え込み試験により荷重−変位線図および応力−歪み線図を求め、各試験の最大荷重P、初期断面積A0 、および据え込み率から求めた補正係数fにより、変形抵抗=P/(A0 ×f)の式から各据え込み率における変形抵抗を計算し平均値を求めるものとした(小坂田、川崎、森:Annals of the CIRP、Vol.30、No.1、1981年参照)。 Deformation resistance ratio between each component: For the core material, the ingot is homogenized, and for the intermediate material, sacrificial anode material and brazing material, the ingot is hot-rolled into a hot-rolled material. A cylindrical test piece having a diameter of 8 mm and a height of 16 mm is cut out and subjected to an upsetting test at 400 to 500 ° C., which is the same as the hot clad rolling temperature, and the deformation resistance is measured. Deformation resistance of brazing material / deformation resistance of intermediate material), (deformation resistance of brazing material / deformation resistance of core material), (deformation resistance of brazing material / deformation resistance of sacrificial anode material), (deformation resistance of intermediate material / core material) Deformation resistance), (deformation resistance of intermediate material / deformation resistance of sacrificial anode material), and (deformation resistance of core material / deformation resistance of sacrificial anode material). The upsetting test conditions were that the stroke speed was 10 mm / min, the upsetting rate was changed from 20% to 80%, the deformation resistance was measured, and the average value was obtained. Regarding the measurement of deformation resistance, a load-displacement diagram and a stress-strain diagram are obtained by upsetting tests, and the correction coefficient f obtained from the maximum load P, initial cross-sectional area A 0 , and upsetting rate of each test. Thus, the deformation resistance at each upsetting rate is calculated from the equation of deformation resistance = P / (A 0 × f) to obtain an average value (Kosakada, Kawasaki, Mori: Annals of the CIRP, Vol. 30, No.1, see 1981).
表9〜15にみられるように、本発明に従う試験材No.1〜133(No.2、4、36,38、70、72、75、77、80、82、85、87、90、92、95、97、100、103、105、108、110、113、115、118、120、123、125、128、130、133を除く)はいずれも、190MPaを越える引張強さを有し、間隙充填試験において充填長さが10mmを越える優れたろう付け性をそなえ、内面腐食試験における最大腐食深さはいずれも0.1mm未満であり、良好な耐食性をそなえていた。各構成材間の変形抵抗比も0.7〜1.4の範囲であった。なお、試験材No.2、4、36,38、70、72、75、77、80、82、85、87、90、92、95、97、100、103、105、108、110、113、115、118、120、123、125、128、130、133は参考例として示すものである。 As can be seen in Tables 9-15, the test materials No. 1-133 (No. 2, 4, 36, 38, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 103, 105, 108, 110, 113, 115, 118, 120, 123, 125, 128, 130, and 133) all have a tensile strength exceeding 190 MPa, and have excellent brazing properties with a filling length exceeding 10 mm in the gap filling test. The maximum corrosion depth in the internal corrosion test was less than 0.1 mm, and it had good corrosion resistance. The deformation resistance ratio between the components was also in the range of 0.7 to 1.4. The test material No. 2, 4, 36, 38, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 103, 105, 108, 110, 113, 115, 118, 120, Reference numerals 123, 125, 128, 130, and 133 are shown as reference examples.
また、ろう付け性を向上させる方法として、芯材中のMgが中間材を通ってろう材側へ拡散する量を制御するため、ろう付け時のヒートパターンをMgの拡散係数の時間積分、∫D(t)dt=D0 exp{−Q/RT(t)}(但し、D0 :振動数項(1.24×10-4m2 /s)、Q:活性化エネルギー(131000J/mol)、R:気体定数(8.3145J/mol・K)、T:温度(K)、t:時間(s))が、3×10-10 (m2 )以下になるよう制御し、中間材とろう材との界面のMg濃度を0.1%以下とすることが有効であり、ろう付け時の拡散係数の時間積分を求めた結果、いずれの試験材についても2×10-10 であった。 In addition, as a method for improving the brazing property, in order to control the amount of Mg in the core material that diffuses through the intermediate material to the brazing material side, the heat pattern during brazing is calculated by integrating the diffusion coefficient of Mg over time, D (t) dt = D 0 exp {-Q / RT (t)} ( where, D 0: number term vibration (1.24 × 10 -4 m 2 / s), Q: activation energy (131000J / mol ), R: gas constant (8.3145 J / mol · K), T: temperature (K), t: time (s)) are controlled to be 3 × 10 −10 (m 2 ) or less, intermediate material It is effective to set the Mg concentration at the interface with the brazing material to 0.1% or less. As a result of obtaining the time integral of the diffusion coefficient at the time of brazing, it was 2 × 10 −10 for all the test materials. It was.
比較例1
連続鋳造によって表16に示す組成を有する芯材用合金および表17に示す組成を有する犠牲陽極材用合金を造塊して、実施例1と同様に処理し、実施例1の芯材、中間材、犠牲陽極材およびろう材を組み合わせて熱間圧延してクラッド材とし、その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.15mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、実施例1と同様、中間材を0.020〜0.030mm、犠牲陽極材は0.020〜0.030mm、ろう材を0.020〜0.030mmとし、残りを芯材とした。
Comparative Example 1
The core material alloy having the composition shown in Table 16 and the sacrificial anode material alloy having the composition shown in Table 17 were ingot by continuous casting and treated in the same manner as in Example 1. The material, the sacrificial anode material, and the brazing material are combined and hot-rolled to obtain a clad material, and then a plate material (clad material, tempered H14) having a thickness of 0.15 mm is obtained by cold rolling, intermediate annealing, and cold rolling. It was. The configuration of the clad material is the same as in Example 1, the intermediate material is 0.020 to 0.030 mm, the sacrificial anode material is 0.020 to 0.030 mm, the brazing material is 0.020 to 0.030 mm, and the rest is the core. A material was used.
得られたクラッド材を試験材として、実施例1と同じ方法で(1)引張強さ、(2)ろう付け性、(3)内面(犠牲陽極材側)の耐食性、(3)各構成材間の変形抵抗比を評価した。結果を表18に示す。 Using the obtained clad material as a test material, (1) Tensile strength, (2) Brazing property, (3) Corrosion resistance of the inner surface (sacrificial anode material side), (3) Each component The deformation resistance ratio between them was evaluated. The results are shown in Table 18.
表18に示すように、試験材No.134は、芯材がMgを含有しないものであるため引張強さが劣る。試験材No.135は、犠牲陽極材がMnを含有しないものであるため引張強さが劣る。また、各構成材間の変形抵抗比が1.5と大きくなるためクラッド率のバラツキが大きく、JISで規定されるクラッド率公差(中央値±中央値×0.2)の範囲を外れている。 As shown in Table 18, the test material No. No. 134 is inferior in tensile strength because the core material does not contain Mg. Test material No. No. 135 is inferior in tensile strength because the sacrificial anode material does not contain Mn. In addition, since the deformation resistance ratio between each component is as large as 1.5, the variation in the clad rate is large, and it is outside the range of the clad rate tolerance (median ± median × 0.2) defined by JIS. .
1 B型のチューブ形状
2 B型のチューブ形状
3 芯材
4 ろう材
5 犠牲陽極材
6 両端面
7 両端部
DESCRIPTION OF SYMBOLS 1 B type tube shape 2 B
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319445A JP4448758B2 (en) | 2004-11-02 | 2004-11-02 | Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319445A JP4448758B2 (en) | 2004-11-02 | 2004-11-02 | Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006131923A JP2006131923A (en) | 2006-05-25 |
JP4448758B2 true JP4448758B2 (en) | 2010-04-14 |
Family
ID=36725735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004319445A Expired - Fee Related JP4448758B2 (en) | 2004-11-02 | 2004-11-02 | Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4448758B2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5049488B2 (en) * | 2005-12-08 | 2012-10-17 | 古河スカイ株式会社 | Method for producing aluminum alloy brazing sheet |
JP4916334B2 (en) * | 2006-03-13 | 2012-04-11 | 住友軽金属工業株式会社 | Aluminum alloy clad material for heat exchangers with excellent strength and brazing |
JP4916333B2 (en) * | 2006-03-13 | 2012-04-11 | 住友軽金属工業株式会社 | Aluminum alloy clad material for heat exchangers with excellent strength and brazing |
JP4996909B2 (en) * | 2006-10-27 | 2012-08-08 | 古河スカイ株式会社 | Aluminum alloy brazing sheet and method for producing the same |
US8142907B2 (en) * | 2007-07-19 | 2012-03-27 | Furukawa-Sky Aluminum Corp | Aluminum alloy brazing sheet having high-strength and production method therefor |
JP5275592B2 (en) * | 2007-08-06 | 2013-08-28 | 古河スカイ株式会社 | Aluminum alloy brazing sheet for automotive heat exchangers |
SE533287C2 (en) * | 2008-04-18 | 2010-08-10 | Sapa Heat Transfer Ab | Sandwich material for soldering with high strength at high temperature |
JP5469323B2 (en) * | 2008-09-05 | 2014-04-16 | 株式会社Uacj | Automotive heat exchanger with excellent corrosion resistance |
JP5577616B2 (en) * | 2009-04-06 | 2014-08-27 | 株式会社デンソー | Heat exchanger tubes and heat exchangers |
JP5336967B2 (en) | 2009-07-28 | 2013-11-06 | 株式会社神戸製鋼所 | Aluminum alloy clad material |
CN101862921B (en) * | 2010-06-25 | 2012-02-15 | 南京航空航天大学 | Sn-Cu-Ni lead-free solder containing Pr, Sr and Ga |
US20140322558A1 (en) * | 2011-11-02 | 2014-10-30 | Uacj Corporation | Aluminum alloy clad material for forming |
JP5284542B1 (en) | 2011-11-02 | 2013-09-11 | 古河スカイ株式会社 | Method for producing aluminum alloy clad material |
US20140356647A1 (en) * | 2011-11-02 | 2014-12-04 | Uacj Corporation | Aluminum alloy clad material for forming |
JP2012148344A (en) * | 2012-03-12 | 2012-08-09 | Kobe Steel Ltd | Aluminum alloy composite material and heat exchanger |
JP6351205B2 (en) * | 2013-03-26 | 2018-07-04 | 株式会社Uacj | High corrosion resistance aluminum alloy brazing sheet |
JP6351206B2 (en) * | 2013-03-26 | 2018-07-04 | 株式会社Uacj | High corrosion resistance aluminum alloy brazing sheet and flow path forming part for automotive heat exchanger |
JP6300747B2 (en) * | 2015-03-17 | 2018-03-28 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
CN115038805A (en) | 2020-02-04 | 2022-09-09 | 株式会社神户制钢所 | Aluminum alloy brazing sheet |
CN115308088B (en) * | 2022-08-15 | 2024-06-25 | 吉林大学 | Multifunctional clamp for brazing test, testing method and application |
CN118011578B (en) * | 2024-04-09 | 2024-06-11 | 江苏亨通华海科技股份有限公司 | Composite aluminum strip for optical cable and brazing process thereof |
-
2004
- 2004-11-02 JP JP2004319445A patent/JP4448758B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006131923A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4448758B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties | |
JP5057439B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4832354B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4916334B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JP3910506B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP4220410B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP4916333B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JP4266919B2 (en) | Aluminum alloy clad material for heat exchangers with excellent erosion / corrosion resistance and general corrosion resistance | |
JP4236183B2 (en) | Aluminum alloy clad material for automotive heat exchanger | |
JP4030006B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP4236185B2 (en) | Aluminum alloy clad material for automotive heat exchanger | |
JP4220411B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
JP4236184B2 (en) | Aluminum alloy clad material for automotive heat exchanger | |
JP3968024B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP4236187B2 (en) | Aluminum alloy clad material for automotive heat exchanger | |
JP2006037135A (en) | Highly corrosion resistant aluminum clad material for heat exchanger | |
JP5498214B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JP3876179B2 (en) | Aluminum alloy three-layer clad material | |
JP3968023B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP3968025B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP5354909B2 (en) | Aluminum alloy bare fin material for heat exchanger | |
JP4386225B2 (en) | Automotive heat exchanger components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130129 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4448758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140129 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |