[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4339822B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4339822B2
JP4339822B2 JP2005180721A JP2005180721A JP4339822B2 JP 4339822 B2 JP4339822 B2 JP 4339822B2 JP 2005180721 A JP2005180721 A JP 2005180721A JP 2005180721 A JP2005180721 A JP 2005180721A JP 4339822 B2 JP4339822 B2 JP 4339822B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
nitride semiconductor
semiconductor stack
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005180721A
Other languages
Japanese (ja)
Other versions
JP2006013500A (en
Inventor
震 歐
鼎洋 林
世國 ▲頼▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Publication of JP2006013500A publication Critical patent/JP2006013500A/en
Application granted granted Critical
Publication of JP4339822B2 publication Critical patent/JP4339822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

本発明は発光装置に関し、より詳細には、高効率の発光装置に関する。   The present invention relates to a light emitting device, and more particularly to a highly efficient light emitting device.

半導体発光装置は、光ディスプレイ装置、信号機、データ記憶装置、通信装置、照明装置及び医療機器で幅広く応用されている。   Semiconductor light emitting devices are widely applied in optical display devices, traffic lights, data storage devices, communication devices, lighting devices, and medical equipment.

従来の窒化物LEDは、透明導電層とみなされるNi/Au群の物質など、LEDの上面に薄い金属層を含む。しかしながら、LED光は部分的に金属を通過することはできない。LEDによって生成された光は薄い金属層によって吸収され、光の透過率は減少する。良好な透過率を有するために、薄い金属層の厚さは、数10から数100オングストローム内に制限される。薄い金属層の厚さが制限されるが、薄い金属層は単に60乃至70%の範囲の可視光線の透過率を有し、LEDの発光効率は低いままである。   Conventional nitride LEDs include a thin metal layer on top of the LED, such as Ni / Au group materials that are considered transparent conductive layers. However, LED light cannot partially pass through the metal. The light generated by the LED is absorbed by the thin metal layer and the light transmission is reduced. In order to have good transmission, the thickness of the thin metal layer is limited to tens to hundreds of angstroms. Although the thickness of the thin metal layer is limited, the thin metal layer simply has a visible light transmittance in the range of 60-70%, and the luminous efficiency of the LED remains low.

ここに参照として含まれるLED構造が開示されている(例えば、特許文献1参照。)。LEDの表面は、キャリア濃度が高いp型接触層上に形成された透明導電性の酸化物層を含む。一般的に、透明導電性の酸化物層は、90%よりも高い高透過率を有する。したがって、そのような層の厚さは厚くすることができ、電流の拡散が良好で、LEDの輝度及び発光効率が改善される。良好なオーミック接触を形成するように、透明導電性の酸化物層は5x1018cmよりも高いキャリア濃度のp型接触層と接するべきであることを注意する。 An LED structure included here as a reference is disclosed (for example, see Patent Document 1). The surface of the LED includes a transparent conductive oxide layer formed on a p-type contact layer having a high carrier concentration. Generally, the transparent conductive oxide layer has a high transmittance higher than 90%. Therefore, the thickness of such a layer can be increased, current spreading is good, and the brightness and luminous efficiency of the LED are improved. Note that the transparent conductive oxide layer should be in contact with a p-type contact layer with a carrier concentration higher than 5 × 10 18 cm 3 so as to form a good ohmic contact.

逆トンネル化層(a reverse tunneling layer)を形成する方法がここに参照として組み込まれており、開示されている(例えば、特許文献2参照。)。N+逆トンネル化接触層は、LEDの発光効率を改善し、操作電圧を減じるように、良好なオーミック接触の目的を達成する、透明な酸化物の電極層と半導体発光層との間に形成される。   A method of forming a reverse tunneling layer is incorporated herein by reference and disclosed (see, for example, Patent Document 2). An N + reverse tunneling contact layer is formed between the transparent oxide electrode layer and the semiconductor light emitting layer, which achieves the purpose of good ohmic contact so as to improve the luminous efficiency of the LED and reduce the operating voltage. The

加えて、関連する方法が開示される(例えば、非特許文献1参照。)。薄い金属層が窒化物LEDのp型接触層上に形成され、次いで、透明導電性の酸化物層が薄い金属層上に形成されたことが開示された。この方法は、p型接触層と透明導電性の酸化物層との間の接触抵抗を効率的に減じることができる。しかしながら、薄い金属層によって透過率はさらに減少され、LEDの発光効率は薄い金属層によってさらに影響が及ぼされる。   In addition, a related method is disclosed (for example, refer nonpatent literature 1). It was disclosed that a thin metal layer was formed on the p-type contact layer of the nitride LED, and then a transparent conductive oxide layer was formed on the thin metal layer. This method can efficiently reduce the contact resistance between the p-type contact layer and the transparent conductive oxide layer. However, the transmittance is further reduced by the thin metal layer, and the luminous efficiency of the LED is further influenced by the thin metal layer.

したがって、本発明は、上述のような接触層と透明導電性の酸化物層との間に生じる接触抵抗の問題を解決し、処理の複雑さを簡素化するように、LEDの輝度を改善することを狙ったものである。
米国特許第6,078,064号明細書 台湾特許第144,415号明細書 Y.C.Lin,“InGaN/GaN Light Emitting Diodes with Ni/Au,Ni/ITO and ITO p−Type Contacts”(Solid−State Electronics Vol.47 Page 849−853)
Therefore, the present invention improves the brightness of the LED so as to solve the contact resistance problem between the contact layer and the transparent conductive oxide layer as described above and simplify the processing complexity. It is aimed at.
US Pat. No. 6,078,064 Taiwan Patent No. 144,415 Specification Y. C. Lin, “InGaN / GaN Light Emitting Diodes with Ni / Au, Ni / ITO and ITO p-Type Contacts” (Solid-State Electronics Vol. 47 Page 849-853)

したがって、本発明の目的は、上述の問題を解決するために、高透過率の発光装置を提供することである。   Accordingly, an object of the present invention is to provide a light-emitting device with high transmittance in order to solve the above-described problems.

本発明は発光装置を開示する。発光装置は、基板と、基板上に形成された第一の窒化物半導体スタックと、第一の窒化物半導体スタック上に形成された窒化物発光層と、窒化物発光層上に形成された第二の窒化物半導体スタックとを含み、第二の窒化物半導体スタックは、窒化物発光層と反対の第二の窒化物半導体層の表面上に複数の六角形のピラミッド型の孔を有し、六角形のピラミッド型の孔は第二の窒化物半導体層の表面から下方に向かって延在し、第一の透明導電性の酸化物の層は第二の窒化物半導体スタック上に形成される。第二の窒化物半導体スタックの複数の六角形のピラミッド型の孔は、第一の透明導電性の酸化物層で満たされ、低抵抗のオーミック接触が透明導電性の酸化物層と複数の六角形のピラミッド型の孔の内面との間で生じる。   The present invention discloses a light emitting device. The light emitting device includes a substrate, a first nitride semiconductor stack formed on the substrate, a nitride light emitting layer formed on the first nitride semiconductor stack, and a first light emitting layer formed on the nitride light emitting layer. A second nitride semiconductor stack, the second nitride semiconductor stack having a plurality of hexagonal pyramidal holes on the surface of the second nitride semiconductor layer opposite the nitride light emitting layer; A hexagonal pyramidal hole extends downward from the surface of the second nitride semiconductor layer, and a first transparent conductive oxide layer is formed on the second nitride semiconductor stack. . The plurality of hexagonal pyramid-shaped holes of the second nitride semiconductor stack are filled with the first transparent conductive oxide layer, and a low resistance ohmic contact is formed between the transparent conductive oxide layer and the plurality of hexagonal holes. Occurs between the inner surface of a square pyramidal hole.

一般的に、第二の窒化物半導体スタックがp型物質であり、窒化物発光層に対するその表面が平滑であり、基板表面に対して平行な場合、透明導電性の酸化物層はp型の窒化物半導体スタックで良好なオーミック接触を直接的に形成できず、それによって、操作電圧を高める。   In general, when the second nitride semiconductor stack is a p-type material and its surface relative to the nitride light emitting layer is smooth and parallel to the substrate surface, the transparent conductive oxide layer is a p-type material. A good ohmic contact cannot be directly formed with a nitride semiconductor stack, thereby increasing the operating voltage.

対照的に、本発明は窒化物発光層と反対のp型の窒化物半導体スタックの表面に複数の六角形のピラミッド型の孔を提供し、ここで六角形のピラミッド型の孔は第二の窒化物半導体層の表面から下方に向かって延在し、次いで、表面上に透明導電性の酸化物層を形成し、ここで透明導電性の酸化物層は、孔領域を伴わないp型の窒化物半導体の表面の平らな領域(これ以降、“平らな外面”と呼ぶ)だけでなく、六角形のピラミッド型の孔の内面(これ以降、“孔の内面”と呼ぶ)にも接触する。平らな外面の表面エネルギー状態は、孔の内面の表面エネルギー状態とは異なる。表面エネルギー状態間の差異は、平らな外面と孔の内面との間の表面エネルギー電位での差異と同様に結晶方向の差異によって寄与される。透明導電性の酸化物層がp型の窒化物半導体スタックの平らな外面上に直接的に形成される場合、透明導電性の酸化物層と平らな外面との間の界面は高い接触抵抗を導く高電位の障壁を有する。しかしながら、透明導電性の酸化物層が孔の内面と接触する場合、孔の内面の界面と透明導電性の酸化物層との間が低電位の障壁であるので、良好なオーミック接触が形成できる。したがって、p型層は、以前の従来技術で言及したような高いキャリア濃度は必要としない。装置の操作電圧は、従来のNi/Auに基づいたLEDとしてのレベルまで減じることができる。   In contrast, the present invention provides a plurality of hexagonal pyramid holes on the surface of the p-type nitride semiconductor stack opposite the nitride light emitting layer, wherein the hexagonal pyramid holes are the second ones. Extending downward from the surface of the nitride semiconductor layer and then forming a transparent conductive oxide layer on the surface, wherein the transparent conductive oxide layer is a p-type without a pore region It contacts not only the flat area of the nitride semiconductor surface (hereinafter referred to as the “flat outer surface”) but also the inner surface of the hexagonal pyramid-shaped hole (hereinafter referred to as the “inner surface of the hole”). . The surface energy state of the flat outer surface is different from the surface energy state of the inner surface of the hole. The difference between the surface energy states is contributed by the difference in crystal orientation as well as the difference in surface energy potential between the flat outer surface and the inner surface of the hole. When the transparent conductive oxide layer is formed directly on the flat outer surface of the p-type nitride semiconductor stack, the interface between the transparent conductive oxide layer and the flat outer surface has a high contact resistance. Has a high potential barrier to guide. However, when the transparent conductive oxide layer is in contact with the inner surface of the hole, a good ohmic contact can be formed because the interface between the inner surface of the hole and the transparent conductive oxide layer is a low potential barrier. . Therefore, the p-type layer does not require a high carrier concentration as mentioned in the previous prior art. The operating voltage of the device can be reduced to the level as a conventional Ni / Au based LED.

操作電流が適用される場合、電流は最初に透明導電性の酸化物層によって広がり、次いで、主に、透明導電性の酸化物層と接触する孔の内面の低い抵抗接触領域により、p型の窒化物半導体スタック内に流れ込み、最終的に光を生じるように発光層に流れる。   When an operating current is applied, the current is first spread by the transparent conductive oxide layer and then mainly by the low resistance contact area on the inner surface of the hole in contact with the transparent conductive oxide layer. It flows into the nitride semiconductor stack and finally flows into the light emitting layer so as to generate light.

さらに、六角形のピラミッド型の孔の本発明の他の利点は、六角形のピラミッド型の孔が、装置表面の全反射効果及びp型の窒化物半導体スタックの光吸収効果の両者を効果的に減じることができる。さらに、発光効率は増大することができる。加えて、透明導電性の酸化物層の光透過率は、従来の薄い金属層の光透過率よりも良好である。一定にして、本発明は装置の発光効率を多大に改善でき、低い操作電圧の装置を提供できる。   Furthermore, another advantage of the present invention of the hexagonal pyramid hole is that the hexagonal pyramid hole effectively reduces both the total reflection effect on the device surface and the light absorption effect of the p-type nitride semiconductor stack. Can be reduced to Furthermore, the luminous efficiency can be increased. In addition, the light transmittance of the transparent conductive oxide layer is better than the light transmittance of the conventional thin metal layer. Being constant, the present invention can greatly improve the luminous efficiency of the device and provide a device with a low operating voltage.

本発明の前述及び他の目的は、様々な図面で例示される好ましい実施態様の下記の詳細な記載によって、当業者に明白となる。   The foregoing and other objects of the invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, which is illustrated in the various drawings.

本発明に基づく発光装置の図である図1を参照する。発光装置は、サファイア基板10と、サファイア基板上に形成された窒化物バッファー層11と、窒化物バッファー層11上に形成されたn型の窒化物半導体スタック12とを含み、ここで基板から離れたn型の窒化物半導体スタック12の表面は第一表面及び第二表面と、第一表面上に形成された窒化物多重量子井戸構造の発光層13と、窒化物多重量子井戸構造の発光層13上に形成されたp型の窒化物半導体スタック14とを含み、ここで窒化物多重量子井戸構造の発光層13から離れたp型の窒化物半導体スタック14の表面は、複数の六角形のピラミッド型の孔141を含み、透明導電性の酸化物層15がp型の窒化物半導体スタック14と六角形のピラミッド型の孔141の上に形成されて、ここで透明導電性の酸化物層15の物質は孔の内面1411に接触し、n型電極16がn型の窒化物半導体スタック12の第二表面上に形成され、p型電極17が透明導電性の酸化物層15上に形成される。図2は、複数の六角形のピラミッド型の孔141を有するp型の窒化物半導体スタック14の図である。   Reference is made to FIG. 1, which is a diagram of a light emitting device according to the present invention. The light emitting device includes a sapphire substrate 10, a nitride buffer layer 11 formed on the sapphire substrate, and an n-type nitride semiconductor stack 12 formed on the nitride buffer layer 11, where the light emitting device is separated from the substrate. The n-type nitride semiconductor stack 12 has a first surface and a second surface, a nitride multiple quantum well structure light emitting layer 13 formed on the first surface, and a nitride multiple quantum well structure light emitting layer. A p-type nitride semiconductor stack 14 formed on the surface of the p-type nitride semiconductor stack 14 away from the light emitting layer 13 having a nitride multiple quantum well structure. A transparent conductive oxide layer 15 including a pyramidal hole 141 is formed on the p-type nitride semiconductor stack 14 and the hexagonal pyramid hole 141, where the transparent conductive oxide layer is formed. 15 The material contacts the inner surface 1411 of the hole, the n-type electrode 16 is formed on the second surface of the n-type nitride semiconductor stack 12, and the p-type electrode 17 is formed on the transparent conductive oxide layer 15. . FIG. 2 is a diagram of a p-type nitride semiconductor stack 14 having a plurality of hexagonal pyramidal holes 141.

孔の内面1411と透明導電性の酸化物層15との間に形成された接触抵抗は、p型の窒化物半導体スタック14の平らな外面140と透明導電性の酸化物層15との間に形成された接触抵抗よりも低い。   The contact resistance formed between the inner surface 1411 of the hole and the transparent conductive oxide layer 15 is between the flat outer surface 140 of the p-type nitride semiconductor stack 14 and the transparent conductive oxide layer 15. Lower than the formed contact resistance.

六角形のピラミッド型の孔141の形状及び角度は、窒化物の結晶特性など窒化物の物理的な結晶の特性に依存する。例えば、C(0001)サファイア基板を例にすると、各隣接するピラミッド表面間の各角度は実質的に約120度であり、ピラミッドの表面は(10−11)又は(11−22)の格子表面群を含む。   The shape and angle of the hexagonal pyramidal hole 141 depends on the characteristics of the nitride's physical crystal, such as the crystal characteristics of the nitride. For example, taking a C (0001) sapphire substrate as an example, each angle between adjacent pyramid surfaces is substantially about 120 degrees, and the pyramid surface is a (10-11) or (11-22) lattice surface. Including groups.

六角形のピラミッド型の孔141の形成方法は、下記に示すように、少なくとも一つのステップ又は二つ以上のステップを含む。   The method of forming the hexagonal pyramid-shaped hole 141 includes at least one step or two or more steps as described below.

1.六角形のピラミッド型の孔141の初期層が形成し始めた場合、p型の窒化物半導体スタック14の表面又はp型の窒化物半導体スタック14の内側に六角形のピラミッド型の孔141を形成するように、Si又はMgなどの界面活性剤は、六角形のピラミッド型の孔141の結晶核形成を変形するために提供できる。   1. When the initial layer of the hexagonal pyramid hole 141 starts to be formed, the hexagonal pyramid hole 141 is formed on the surface of the p-type nitride semiconductor stack 14 or inside the p-type nitride semiconductor stack 14. As such, a surfactant such as Si or Mg can be provided to deform the crystal nucleation of the hexagonal pyramidal holes 141.

2.p型の窒化物半導体スタック14の表面又はp型の窒化物半導体スタック14の内側に六角形のピラミッド型の孔141を形成するように、六角形のピラミッド型の孔141の初期層は、結晶核形成を変形するためのエピタキシャル温度700℃と950℃との間で形成する。   2. The initial layer of the hexagonal pyramid hole 141 is a crystal so as to form a hexagonal pyramid hole 141 on the surface of the p-type nitride semiconductor stack 14 or inside the p-type nitride semiconductor stack 14. It is formed between an epitaxial temperature of 700 ° C. and 950 ° C. for deforming nucleation.

3.p型の窒化物半導体スタック14の表面又はp型の窒化物半導体スタック14の内側に六角形のピラミッド型の孔141を形成するように、六角形のピラミッド型の孔141の初期層は、結晶核形成を変形するための窒素が豊富な雰囲気で形成する。   3. The initial layer of the hexagonal pyramid hole 141 is a crystal so as to form a hexagonal pyramid hole 141 on the surface of the p-type nitride semiconductor stack 14 or inside the p-type nitride semiconductor stack 14. It forms in an atmosphere rich in nitrogen to deform nucleation.

4.p型の窒化物半導体スタック14が形成した後、p型の窒化物半導体スタック14の表面は、六角形のピラミッド型の孔141を形成するために、高温度のHPOなどで化学湿式エッチング処理を実行することによってエッチングできる。 4). After the p-type nitride semiconductor stack 14 is formed, the surface of the p-type nitride semiconductor stack 14 is chemically wetted with a high temperature H 3 PO 4 or the like to form hexagonal pyramid holes 141. It can etch by performing an etching process.

5.最初に、小型の六角形のピラミッド型の孔がエピタキシャル成長によって形成される。その後、発光効率を改善するように、大型の六角形のピラミッド型の孔141が小型の六角形のピラミッド型の孔に化学湿式エッチング処理を実行することによって形成できる。六角形のピラミッド型の孔141がエピタキシャル成長によって直接的に形成された場合、エピタキシャル質を減じて、かつLEDの電気的な特性に影響を及ぼすエピタキシャル欠損が生じるように、ストレスが六角形のピラミッド型の孔141の端部に生じる。しかしながら、最初に、小型の六角形のピラミッド型の孔がエピタキシャル成長によって形成され、次いで、小型の六角形のピラミッド型の孔をより大きくて深くするように、化学湿式エッチング処理によってエッチングされた場合、これは六角形のピラミッド型の孔141のエピタキシャル層の損傷を回避することができ得る。   5). Initially, small hexagonal pyramidal holes are formed by epitaxial growth. Thereafter, a large hexagonal pyramid hole 141 can be formed by performing a chemical wet etching process on the small hexagonal pyramid hole to improve luminous efficiency. When the hexagonal pyramidal hole 141 is formed directly by epitaxial growth, the stress is reduced to a hexagonal pyramidal shape so as to reduce epitaxial quality and cause epitaxial defects that affect the electrical characteristics of the LED. At the end of the hole 141. However, if a small hexagonal pyramid hole is first formed by epitaxial growth and then etched by a chemical wet etching process to make the small hexagonal pyramid hole larger and deeper, This may avoid damaging the epitaxial layer of the hexagonal pyramidal hole 141.

本発明の六角形のピラミッド型の孔141の密度は、1x10cm−2乃至1x1011cm−2の範囲内となることができる。本発明の六角形のピラミッド型の孔141の最良の密度範囲を示す図3を参照する。図3から、六角形のピラミッド型の孔141の密度が1x10cm−2から2x10cm−2まで高まる場合、輝度は117mcdから150mcdまで高まる。これは、六角形のピラミッド型の孔141の密度が高まることはLEDの輝度を改善することを示す。 The density of the hexagonal pyramidal holes 141 of the present invention can be in the range of 1 × 10 7 cm −2 to 1 × 10 11 cm −2 . Reference is made to FIG. 3 showing the best density range of the hexagonal pyramid-shaped holes 141 of the present invention. From FIG. 3, when the density of the hexagonal pyramid holes 141 increases from 1 × 10 8 cm −2 to 2 × 10 9 cm −2 , the luminance increases from 117 mcd to 150 mcd. This indicates that increasing the density of the hexagonal pyramidal holes 141 improves the brightness of the LED.

六角形のピラミッド型の孔141の上部の対角線の長さは、10nm乃至1μmの範囲内である。六角形のピラミッド型の孔141の対角線の長さの最良の範囲を示す図4を参照する。図4から、六角形のピラミッド型の孔141の対角線の長さが122nmから168nmまで長くなる場合、輝度は128mcdから173mcdまで高まり、六角形のピラミッド型の孔が大きくなると、LEDの輝度が明るくなることを意味する。   The length of the diagonal line at the top of the hexagonal pyramidal hole 141 is in the range of 10 nm to 1 μm. Reference is made to FIG. 4 which shows the best range of diagonal lengths for the hexagonal pyramidal hole 141. From FIG. 4, when the diagonal length of the hexagonal pyramid hole 141 is increased from 122 nm to 168 nm, the luminance increases from 128 mcd to 173 mcd, and when the hexagonal pyramid hole increases, the luminance of the LED becomes brighter. It means to become.

本発明の六角形のピラミッド型の孔141の深さは、10nm乃至1μmの範囲内である。六角形のピラミッド型の孔141の深さの最良の範囲を示す図5を参照する。図5から、六角形のピラミッド型の孔141の深さが60nmから125nmまで深くなる場合、輝度は130mcdから150mcdまで高まる。すなわち、六角形のピラミッド型の孔が深くなると、LEDの輝度が明るくなる。   The depth of the hexagonal pyramidal hole 141 of the present invention is in the range of 10 nm to 1 μm. Reference is made to FIG. 5 which shows the best range of depth for the hexagonal pyramid hole 141. From FIG. 5, when the depth of the hexagonal pyramid hole 141 increases from 60 nm to 125 nm, the luminance increases from 130 mcd to 150 mcd. That is, when the hexagonal pyramid hole is deepened, the brightness of the LED becomes brighter.

六角形のピラミッド型の孔141の底部は発光層13よりも上であることを注意する。六角形のピラミッド型の孔141の底部が発光層13まで延在する場合、LEDの電気的な特性は劣り得る。   Note that the bottom of the hexagonal pyramidal hole 141 is above the light emitting layer 13. If the bottom of the hexagonal pyramidal hole 141 extends to the light emitting layer 13, the electrical characteristics of the LED may be inferior.

さらに、透明導電性の酸化物層15と接触する各六角形のピラミッド型の孔141の周囲は、不連続又は破損するのではなくて、連続するように、透明導電性の酸化物層15は、六角形のピラミッド型の孔141の周辺を満たし、覆うように十分に厚くすべきである。そうでなければ、電流は、透明導電性の酸化物層15と接触する六角形のピラミッド型の孔141の内面の低抵抗の接触により、窒化物半導体スタック14に通過しないこともあり、したがって、操作電圧が高まるだろう。   Further, the transparent conductive oxide layer 15 is continuous so that the periphery of each hexagonal pyramid hole 141 in contact with the transparent conductive oxide layer 15 is continuous, not discontinuous or damaged. It should be thick enough to fill and cover the periphery of the hexagonal pyramid hole 141. Otherwise, current may not pass through the nitride semiconductor stack 14 due to the low resistance contact of the inner surface of the hexagonal pyramid hole 141 in contact with the transparent conductive oxide layer 15, and thus The operating voltage will increase.

六角形のピラミッド型の孔141の平均の深さ、透明導電性の酸化物層15の厚さ、及び操作電圧の表である図6を参照する。この実施例は、六角形のピラミッド型の孔141を有する窒化物LEDであり、その孔の平均の深さは150nmである。70nmと220nmの透明導電性の酸化物層15の異なる厚さが、窒化物半導体スタック14上にそれぞれ形成されると仮定する。電流が20mAの場合、70nmの透明導電性の酸化物層15でのLEDの操作電圧は約3.6Vである。しかしながら、220nmの透明導電性の酸化物層15でのLEDの操作電圧は同じ条件で約3.3Vである。これは、透明導電性の酸化物層15の厚さが十分な場合、操作電圧を削減できることを意味する。   Reference is made to FIG. 6 which is a table of the average depth of the hexagonal pyramidal holes 141, the thickness of the transparent conductive oxide layer 15, and the operating voltage. This example is a nitride LED having a hexagonal pyramidal hole 141, and the average depth of the holes is 150 nm. Assume that different thicknesses of the transparent conductive oxide layer 15 of 70 nm and 220 nm are respectively formed on the nitride semiconductor stack 14. When the current is 20 mA, the operating voltage of the LED with the transparent conductive oxide layer 15 of 70 nm is about 3.6V. However, the operating voltage of the LED with the 220 nm transparent conductive oxide layer 15 is about 3.3 V under the same conditions. This means that the operating voltage can be reduced when the thickness of the transparent conductive oxide layer 15 is sufficient.

光の波長が300nm乃至700nmの範囲内である場合、透明導電性の酸化物層15の透過率は50%よりも高い。透明導電性の酸化物層15は、電子ビーム蒸発装置、スパッター(sputter)、サーマルコーター(thermal coater)、又はそのような列記した任意の組み合わせによって形成できる。透明導電性の酸化物層15を形成する一方、LEDの操作電圧を効果的に減じるために低い抵抗接触の領域が増大されるように、最良の手法は六角形のピラミッド型の孔141を満たすことである。   When the wavelength of light is in the range of 300 nm to 700 nm, the transmittance of the transparent conductive oxide layer 15 is higher than 50%. The transparent conductive oxide layer 15 may be formed by an electron beam evaporator, a sputter, a thermal coater, or any combination listed. The best approach is to fill the hexagonal pyramidal hole 141 so that the area of low resistance contact is increased to form the transparent conductive oxide layer 15 while effectively reducing the operating voltage of the LED. That is.

加えて、透明導電性の酸化物層15が六角形のピラミッド型の孔141を満たした後、透明導電性の酸化物層15の表面は六角形のピラミッド型の孔141の特性を有しない。換言すると、六角形のピラミッド型の孔141の下と上で物質の屈折率の差異が最大化されるべきであり、光取出し効果が改善できる。したがって、透明導電性の酸化物層15の屈折率は、窒化物物質の屈折率とパッケージ物質の屈折率との間となるべきである。好ましくは、透明導電性の酸化物層15と窒化物物質との屈折率の差異の絶対値は、透明導電性の酸化物層15とパッケージ物質との屈折率の差異の絶対値よりも高い。   In addition, after the transparent conductive oxide layer 15 fills the hexagonal pyramid hole 141, the surface of the transparent conductive oxide layer 15 does not have the characteristics of the hexagonal pyramid hole 141. In other words, the difference in the refractive index of the material should be maximized under and above the hexagonal pyramidal hole 141, and the light extraction effect can be improved. Therefore, the refractive index of the transparent conductive oxide layer 15 should be between the refractive index of the nitride material and the refractive index of the package material. Preferably, the absolute value of the difference in refractive index between the transparent conductive oxide layer 15 and the nitride material is higher than the absolute value of the difference in refractive index between the transparent conductive oxide layer 15 and the package material.

図7は、3種類のLEDにおける光の強度と操作電流のグラフの比較を示し、ここでLED−Aは本発明の六角形のピラミッド型の孔141及び透明導電性の酸化物層15を有するLEDであり、LED−Bは薄い金属層を有するが六角形のピラミッド型の孔141を有しないLEDであり、LED−Cは導電性の酸化物層を有するが六角形のピラミッド型の孔141を有しないLEDである。図7から、LED−Bは、薄い金属層の光の透過率が導電性の酸化物層の光の透過率よりも劣るので、不完全な発光特性を有し輝度が低い。従来の薄い金属層が透明導電性の酸化物層と置き換わったLED−Cは良好な光の透過率を有し、それによって発光効果を改善し、発光効率を高める。しかしながら、LED−Aは、発光領域の合計を増加し、発光層上の半導体スタックのすべての反射効果及び光吸収によって引き起こされた光損失を減じる六角形のピラミッド型の孔141を利用する。したがって、LED−Aは輝度及び発光効率を多大に高めることができる。   FIG. 7 shows a comparison of light intensity and operating current graphs for three types of LEDs, where LED-A has a hexagonal pyramidal hole 141 and a transparent conductive oxide layer 15 of the present invention. LED-B is an LED with a thin metal layer but no hexagonal pyramid hole 141, and LED-C has a conductive oxide layer but a hexagonal pyramid hole 141. It is LED which does not have. From FIG. 7, LED-B has incomplete emission characteristics and low luminance because the light transmittance of the thin metal layer is inferior to the light transmittance of the conductive oxide layer. LED-C, in which a conventional thin metal layer is replaced with a transparent conductive oxide layer, has good light transmittance, thereby improving the light emission effect and increasing the light emission efficiency. However, LED-A utilizes hexagonal pyramidal holes 141 that increase the sum of the light emitting areas and reduce the light loss caused by all reflection effects and light absorption of the semiconductor stack on the light emitting layer. Therefore, LED-A can greatly increase the luminance and the luminous efficiency.

図8は3種類のLEDにおける正の電流対電圧の比較グラフを示し、ここでLED−Aは本発明の六角形のピラミッド型の孔141及び透明導電性の酸化物層15を有するLEDであり、LED−Bは薄い金属層を有するが六角形のピラミッド型の孔141を有しないLEDであり、LED−Cは導電性の酸化物層を有するが六角形のピラミッド型の孔141を有しないLEDである。図8から、薄い金属層を有するLED−Bの操作電圧は3種類のLEDのうち最も低い。不完全なオーミック接触により、導電性の酸化物層を有するLED−Cの操作電圧は非常に高い。例えば、電流が20mAである場合、LED−Cの操作電圧は5Vよりも大きい。それにも関わらず、導電性の酸化物層及び六角形のピラミッド型の孔141を有するLED−Aの操作電圧は、LED−Bと同様の操作電圧まで減じることができる。したがって、本発明は良好な性能を提供できる。   FIG. 8 shows a comparison graph of positive current versus voltage in three types of LEDs, where LED-A is an LED having a hexagonal pyramidal hole 141 and a transparent conductive oxide layer 15 of the present invention. LED-B is an LED having a thin metal layer but not having a hexagonal pyramid hole 141, and LED-C has a conductive oxide layer but not having a hexagonal pyramid hole 141. LED. From FIG. 8, the operating voltage of LED-B having a thin metal layer is the lowest among the three types of LEDs. Due to imperfect ohmic contact, the operating voltage of LED-C with a conductive oxide layer is very high. For example, when the current is 20 mA, the operation voltage of LED-C is larger than 5V. Nevertheless, the operating voltage of LED-A having a conductive oxide layer and hexagonal pyramidal holes 141 can be reduced to the same operating voltage as LED-B. Therefore, the present invention can provide good performance.

本発明による発光装置の第二実施態様である図9を参照する。発光装置のn型の窒化物半導体スタック12の第二表面はさらに、n型電極の接触領域121及び電極との非接触領域122を含む。n型電極16は、n型電極の接触領域121上に形成される。電極との非接触領域122はさらに、高効率の発光表面を含む。粗い表面又は複数の六角形のピラミッド型の孔は、高効率の発光表面にエッチング処理をなすか、又はエピタキシャル成長をすることによって形成される。この実施態様において、発光装置は粗い表面123を含む。電極との非接触領域122の粗い表面123により、基板10とn型の窒化物半導体スタック12との間で反射された側面の光が減少できて、LEDの発光効率を高めるために側面の光は効果的に放射できる。   Reference is made to FIG. 9, which is a second embodiment of a light emitting device according to the present invention. The second surface of the n-type nitride semiconductor stack 12 of the light emitting device further includes a contact region 121 of the n-type electrode and a non-contact region 122 with the electrode. The n-type electrode 16 is formed on the contact region 121 of the n-type electrode. The non-contact region 122 with the electrode further includes a highly efficient light emitting surface. The rough surface or the plurality of hexagonal pyramidal holes are formed by etching or epitaxially growing a highly efficient light emitting surface. In this embodiment, the light emitting device includes a rough surface 123. The rough surface 123 of the non-contact region 122 with the electrode can reduce the side light reflected between the substrate 10 and the n-type nitride semiconductor stack 12, and the side light to increase the luminous efficiency of the LED. Can radiate effectively.

本発明による発光装置の第三実施態様である図10を参照する。発光装置はまた、粗い表面123で、かつ電極との非接触領域122上に形成された第二の透明導電性の酸化物層18を含み、さらに、第二の透明導電性の酸化物層18はn型電極16と接触し、第二の透明導電性の酸化物層18での電流の広がりが良好となる。さらに、第二の透明導電性の酸化物層18の屈折率が窒化物物質の屈折率とパッケージ物質の屈折率との間である場合、発光効率は改善される。   Reference is made to FIG. 10, which is a third embodiment of a light emitting device according to the present invention. The light emitting device also includes a second transparent conductive oxide layer 18 formed on the rough surface 123 and on the non-contact region 122 with the electrode, and further includes a second transparent conductive oxide layer 18. Is in contact with the n-type electrode 16 and the current spread in the second transparent conductive oxide layer 18 is improved. Furthermore, if the refractive index of the second transparent conductive oxide layer 18 is between the refractive index of the nitride material and the refractive index of the package material, the luminous efficiency is improved.

上述の実施態様において、透明導電性の酸化物層は、n型電極16とn型の窒化物半導体スタック12の第二表面のn型電極との接触表面121との間に形成できる。   In the above-described embodiment, the transparent conductive oxide layer can be formed between the n-type electrode 16 and the contact surface 121 of the second surface of the n-type nitride semiconductor stack 12 with the n-type electrode.

上述の実施態様において、透明導電性の酸化物層は、n型電極としてみなすことができる。   In the above embodiment, the transparent conductive oxide layer can be regarded as an n-type electrode.

上述の実施態様において、n型電極との接触表面121は、複数の六角形のピラミッド型の孔を含む。   In the above-described embodiment, the contact surface 121 with the n-type electrode includes a plurality of hexagonal pyramidal holes.

上述の実施態様において、サファイア基板10は、0と10度との間のオフアングル(off angle)を有する。サファイア基板10は、GaN、AlN、SiC、GaAs、GaP、Si、ZnO、MgO、MgAl、及びガラスで構成する群から選択される物質で成る基板によって代替できる。 In the embodiment described above, the sapphire substrate 10 has an off angle between 0 and 10 degrees. The sapphire substrate 10 can be replaced by a substrate made of a material selected from the group consisting of GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl 2 O 4 , and glass.

上述の実施態様において、窒化物バッファー層11は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる。n型の窒化物半導体スタック12は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる。窒化物多重量子井戸構造の発光層13は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる。p型の窒化物半導体スタック14は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる。透明導電性の酸化物層15及び18は、酸化インジウムスズ(ITO)(indium tin oxide)、酸化カドミウムスズ(CTO)(cadmium tin oxide)、酸化アンチモンスズ(antimony tin oxide)、酸化インジウム亜鉛(indium zinc oxide)、酸化亜鉛アルミニウム(zinc aluminum oxide)及び酸化亜鉛スズ(zinc tin oxide)からなる。   In the embodiment described above, the nitride buffer layer 11 is made of AlN, GaN, AlGaN, InGaN, and AlInGaN. The n-type nitride semiconductor stack 12 is made of AlN, GaN, AlGaN, InGaN, and AlInGaN. The light emitting layer 13 having a nitride multiple quantum well structure is made of AlN, GaN, AlGaN, InGaN, and AlInGaN. The p-type nitride semiconductor stack 14 is made of AlN, GaN, AlGaN, InGaN, and AlInGaN. The transparent conductive oxide layers 15 and 18 are made of indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, indium zinc oxide (indium tin oxide). Zinc oxide, zinc aluminum oxide, and zinc tin oxide.

本発明の教示によって、本装置及び方法の多数の修正及び変形が成されることは当業者に容易に理解される。したがって、上述の開示は、単に請求項の範囲によってのみ限定されるように解釈されるべきである。   Those skilled in the art will readily appreciate that numerous modifications and variations of the apparatus and method may be made in accordance with the teachings of the present invention. Accordingly, the above disclosure should be construed as limited only by the scope of the claims appended hereto.

本発明による発光装置の第一実施態様の図である。It is a figure of the 1st embodiment of the light-emitting device by this invention. 本発明による複数の六角形のピラミッド型の孔のp型の窒化物半導体スタックの図である。FIG. 4 is a diagram of a plurality of hexagonal pyramid hole p-type nitride semiconductor stacks according to the present invention. 本発明の発光装置の輝度と六角形のピラミッド型の孔の密度の関係のグラフである。It is a graph of the relationship between the brightness | luminance of the light-emitting device of this invention, and the density of a hexagonal pyramid type | mold hole. 本発明の発光装置の輝度と六角形のピラミッド型の孔の対角線の長さの関係のグラフである。It is a graph of the relationship between the brightness | luminance of the light-emitting device of this invention, and the length of the diagonal of a hexagonal pyramid type | mold hole. 本発明の発光装置の輝度と六角形のピラミッド型の孔の深さの関係のグラフである。It is a graph of the relationship between the brightness | luminance of the light-emitting device of this invention, and the depth of a hexagonal pyramid type | mold hole. 六角形のピラミッド型の孔の平均の深さ、透明導電性の酸化物層の厚さ、及び操作電圧の表である。It is a table | surface of the average depth of a hexagonal pyramid type | mold hole, the thickness of a transparent conductive oxide layer, and an operating voltage. 異なるLEDでの強度と操作電流の関係のグラフである。It is a graph of the relationship between the intensity | strength in different LED, and operating current. 異なるLEDでの正の電流と電圧との関係のグラフである。It is a graph of the relationship between positive current and voltage at different LEDs. 本発明による発光装置の第二実施態様の図である。It is a figure of the 2nd embodiment of the light-emitting device by this invention. 本発明による発光装置の第三実施態様の図である。FIG. 4 is a diagram of a third embodiment of a light emitting device according to the present invention.

符号の説明Explanation of symbols

10 サファイア基板
11 窒化物バッファー層
12 n型の窒化物半導体スタック
13 発光層
14 p型の窒化物半導体スタック
15 透明導電性の酸化物層
16 n型電極
17 p型電極
121 n型電極との接触領域
122 電極との非接触領域
123 粗い表面
140 平らな外面
141 六角形のピラミッド型の孔
1411 孔の内面
DESCRIPTION OF SYMBOLS 10 Sapphire substrate 11 Nitride buffer layer 12 N-type nitride semiconductor stack 13 Light emitting layer 14 P-type nitride semiconductor stack 15 Transparent conductive oxide layer 16 N-type electrode 17 P-type electrode 121 Contact with n-type electrode Region 122 Non-contact region with electrode 123 Rough surface 140 Flat outer surface 141 Hexagonal pyramidal hole 1411 Inner surface of hole

Claims (26)

基板、
前記基板に形成された第一の窒化物半導体スタック、
前記第一の窒化物半導体スタックに形成された窒化物発光層、
前記窒化物発光層に形成された第二の窒化物半導体スタック、及び
前記第二の窒化物半導体スタックに形成された且つ電極が形成された第一の透明な導電性の酸化物層
を含む発光デバイスであって、
前記第二の窒化物半導体スタックは、前記窒化物発光層と反対の前記第二の窒化物半導体スタックの表面から下方に延在する、複数の六角錐の孔を含み、
前記第二の窒化物半導体スタックの前記複数の六角錐の孔は、前記第一の透明な導電性の酸化物層と前記複数の六角錘の孔の内面との間にオーミック接触が生じるように、前記第一の透明な導電性の酸化物層で実質的に満たされると共に、
前記基板から遠い前記第一の窒化物半導体スタックの表面は、第一の表面及び第二の表面を含み、
前記窒化物発光層は、前記第一の窒化物半導体スタックの第一の表面に形成され、
前記第一の窒化物半導体スタックの第二の表面に形成された第二の透明な導電性の酸化物層をさらに含む、発光デバイス。
substrate,
A first nitride semiconductor stack formed on the substrate;
A nitride light-emitting layer formed on the first nitride semiconductor stack;
Light emission including a second nitride semiconductor stack formed on the nitride light emitting layer, and a first transparent conductive oxide layer formed on the second nitride semiconductor stack and having an electrode formed thereon A device,
The second nitride semiconductor stack includes a plurality of hexagonal pyramid holes extending downward from a surface of the second nitride semiconductor stack opposite the nitride light emitting layer;
The plurality of hexagonal pyramidal holes of the second nitride semiconductor stack are configured to make ohmic contact between the first transparent conductive oxide layer and the inner surfaces of the plurality of hexagonal pyramid holes. Substantially filled with the first transparent conductive oxide layer ;
The surface of the first nitride semiconductor stack remote from the substrate includes a first surface and a second surface;
The nitride light emitting layer is formed on a first surface of the first nitride semiconductor stack;
The light emitting device further comprising a second transparent conductive oxide layer formed on the second surface of the first nitride semiconductor stack .
前記第二の窒化物半導体スタックの表面における前記六角錐の一つ孔の対角線の長さは、10nmから1μmまでの範囲にある、請求項1に記載の発光デバイス。   2. The light emitting device according to claim 1, wherein a diagonal length of one hole of the hexagonal pyramid on a surface of the second nitride semiconductor stack is in a range from 10 nm to 1 μm. 前記六角錐の孔の密度は、1x10cm−2から1x1011cm−2までの範囲にある、請求項1に記載の発光デバイス。 2. The light emitting device according to claim 1, wherein a density of the holes of the hexagonal pyramid is in a range of 1 × 10 7 cm −2 to 1 × 10 11 cm −2 . 前記六角錐の一つの孔の深さは、10nmから1μmまでの範囲にある、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein a depth of one hole of the hexagonal pyramid is in a range of 10 nm to 1 μm. 前記基板と前記第一の窒化物半導体スタックとの間に形成されたバッファー層をさらに含む、請求項1に記載の発光デバイス。   The light emitting device of claim 1, further comprising a buffer layer formed between the substrate and the first nitride semiconductor stack. 前記第一の透明な導電性の酸化物層は、酸化スズインジウム(ITO)、酸化スズカドミウム(CTO)、酸化スズアンチモン、酸化亜鉛インジウム、酸化アルミニウム亜鉛及び酸化スズ亜鉛からなる群より選択された少なくとも一つの材料を含む、請求項1に記載の発光デバイス。   The first transparent conductive oxide layer was selected from the group consisting of indium tin oxide (ITO), tin cadmium oxide (CTO), tin antimony oxide, indium zinc oxide, aluminum zinc oxide and zinc zinc oxide. The light emitting device of claim 1, comprising at least one material. 前記第一の透明な導電性の酸化物層の透過率は、光の波長が、300nmから700nmまでの範囲にあるとき、50%よりも高い、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the transmittance of the first transparent conductive oxide layer is higher than 50% when the wavelength of light is in the range of 300 nm to 700 nm. 前記第一の透明な導電性の酸化物層の厚さは、50nmから1μmまでの範囲にある、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the thickness of the first transparent conductive oxide layer is in a range of 50 nm to 1 μm. 前記基板は、C(0001)サファイア基板であり、
前記六角錐の孔の各々のあらゆる二つの隣接する錐体の表面間の角度は、実質的に120度であり、且つ、
前記錐体の表面の各々は、(10−11)又は(11−22)の格子表面群を含む、請求項1に記載の発光デバイス。
The substrate is a C (0001) sapphire substrate;
The angle between the surfaces of every two adjacent cones of each of the hexagonal pyramid holes is substantially 120 degrees; and
2. The light emitting device according to claim 1, wherein each of the surfaces of the cones includes (10-11) or (11-22) lattice surface groups.
前記基板は、0度から10度までのオフアングルを有する(0001)又は(11−20)サファイア基板である、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the substrate is a (0001) or (11-20) sapphire substrate having an off-angle of 0 degrees to 10 degrees. 前記基板は、GaN、AlN、SiC、GaAs、GaP、Si、ZnO、MgO、MgAl、及びガラスからなる群より選択された少なくとも一つの材料を含む、請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the substrate includes at least one material selected from the group consisting of GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl 2 O 4 , and glass. 前記第一の窒化物半導体スタックは、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる群より選択された少なくとも一つの材料を含む、請求項1に記載の発光デバイス。   The light emitting device of claim 1, wherein the first nitride semiconductor stack comprises at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN, and AlInGaN. 前記第一の窒化物半導体スタックは、少なくとも一つのn型の窒化物半導体層を含み、且つ、
前記第二の窒化物半導体スタックは、少なくとも一つのp型の窒化物半導体層を含む、請求項1に記載の発光デバイス。
The first nitride semiconductor stack includes at least one n-type nitride semiconductor layer; and
The light emitting device of claim 1, wherein the second nitride semiconductor stack includes at least one p-type nitride semiconductor layer.
前記第一の窒化物半導体スタックは、少なくとも一つのp型の窒化物半導体層を含み、且つ、
前記第二の窒化物半導体スタックは、少なくとも一つのn型の窒化物半導体層を含む、請求項1に記載の発光デバイス。
The first nitride semiconductor stack includes at least one p-type nitride semiconductor layer; and
The light emitting device of claim 1, wherein the second nitride semiconductor stack includes at least one n-type nitride semiconductor layer.
前記窒化物発光層は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる群より選択された少なくとも一つの材料を含む、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the nitride light emitting layer includes at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN, and AlInGaN. 前記窒化物発光層は、二重ヘテロ構造、単一の量子井戸構造、又は多重量子井戸構造を含む、請求項1に記載の発光デバイス。   The light emitting device of claim 1, wherein the nitride light emitting layer comprises a double heterostructure, a single quantum well structure, or a multiple quantum well structure. 前記第二の窒化物半導体スタックは、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる群より選択された少なくとも一つの材料を含む、請求項1に記載の発光デバイス。   The light emitting device of claim 1, wherein the second nitride semiconductor stack comprises at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN, and AlInGaN. 前記バッファー層は、AlN、GaN、AlGaN、InGaN及びAlInGaNからなる群より選択された少なくとも一つの材料を含む、請求項5に記載の発光デバイス。   The light emitting device according to claim 5, wherein the buffer layer includes at least one material selected from the group consisting of AlN, GaN, AlGaN, InGaN, and AlInGaN. 前記第二の窒化物半導体スタックの前記六角錐の孔は、エピタキシャル成長によって形成される、請求項1に記載の発光デバイス。   The light-emitting device according to claim 1, wherein the hexagonal pyramid hole of the second nitride semiconductor stack is formed by epitaxial growth. 前記第二の窒化物半導体スタックの前記六角錐の孔は、湿式エッチングの工程を実行することによって形成される、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the hexagonal pyramid hole of the second nitride semiconductor stack is formed by performing a wet etching process. 前記第二の窒化物半導体スタックの前記六角錐の孔は、エピタキシャル成長及び湿式エッチング処理の実行によって形成される、請求項1に記載の発光デバイス。   The light emitting device of claim 1, wherein the hexagonal pyramidal holes of the second nitride semiconductor stack are formed by performing epitaxial growth and wet etching processes. 前記六角錐の孔の底部から前記基板までの距離は、前記窒化物発光層の上面から前記基板までの距離よりも長い、請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein a distance from a bottom of the hexagonal pyramid hole to the substrate is longer than a distance from an upper surface of the nitride light emitting layer to the substrate. 前記第一の透明な導電性の酸化物層と接触する前記六角錐の孔の内面に形成された接触抵抗は、前記第一の透明な導電性の酸化物層と接触する前記第二の窒化物半導体スタックの表面に形成された接触抵抗よりも低い、請求項1に記載の発光デバイス。   The contact resistance formed on the inner surface of the hexagonal pyramid hole in contact with the first transparent conductive oxide layer is the second nitridation in contact with the first transparent conductive oxide layer. The light emitting device according to claim 1, wherein the light emitting device is lower than a contact resistance formed on a surface of the physical semiconductor stack. 前記第一の透明な導電性の酸化物層の屈折率は、窒化物材料の屈折率とパッケージ材料の屈折率との間にある、請求項1に記載の発光デバイス。   The light emitting device of claim 1, wherein the refractive index of the first transparent conductive oxide layer is between the refractive index of the nitride material and the refractive index of the package material. 前記第二の透明な導電性の酸化物層は、酸化スズインジウム、酸化スズカドミウム、酸化スズアンチモン、酸化亜鉛インジウム、酸化アルミニウム亜鉛及び酸化スズ亜鉛からなる群より選択された少なくとも一つの材料を含む、請求項に記載の発光デバイス。 The second transparent conductive oxide layer includes at least one material selected from the group consisting of indium tin oxide, tin cadmium oxide, tin antimony oxide, indium zinc oxide, zinc aluminum oxide, and zinc zinc oxide. The light emitting device according to claim 1 . 前記第二の透明な導電性の酸化物層の屈折率は、窒化物材料の屈折率とパッケージ材料の屈折率との間にある、請求項に記載の発光デバイス。

The light emitting device of claim 1 , wherein the refractive index of the second transparent conductive oxide layer is between the refractive index of the nitride material and the refractive index of the package material.

JP2005180721A 2004-06-24 2005-06-21 Light emitting device Active JP4339822B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93118481A TWI237903B (en) 2004-06-24 2004-06-24 High efficiency light emitting device

Publications (2)

Publication Number Publication Date
JP2006013500A JP2006013500A (en) 2006-01-12
JP4339822B2 true JP4339822B2 (en) 2009-10-07

Family

ID=35504676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180721A Active JP4339822B2 (en) 2004-06-24 2005-06-21 Light emitting device

Country Status (4)

Country Link
JP (1) JP4339822B2 (en)
KR (1) KR100687783B1 (en)
DE (1) DE102005029268B4 (en)
TW (1) TWI237903B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887067B1 (en) * 2006-02-14 2009-03-04 삼성전기주식회사 Manufacturing Method for Semiconductor Emitting Device with nano pattern structure
US9508902B2 (en) 2005-02-21 2016-11-29 Epistar Corporation Optoelectronic semiconductor device
DE102005056604A1 (en) * 2005-09-28 2007-03-29 Osram Opto Semiconductors Gmbh Semiconductor body comprises an active semiconductor layer sequence based on a nitride compound semiconductor material which produces electromagnetic radiation and an epitaxially grown coupling layer with openings
KR100755598B1 (en) * 2006-06-30 2007-09-06 삼성전기주식회사 Nitride semiconductor light emitting diode array
JP5201566B2 (en) * 2006-12-11 2013-06-05 豊田合成株式会社 Compound semiconductor light emitting device and manufacturing method thereof
JP5493252B2 (en) * 2007-06-28 2014-05-14 日亜化学工業株式会社 Semiconductor light emitting device
KR100905859B1 (en) * 2007-12-17 2009-07-02 삼성전기주식회사 Nitride semiconductor light emitting device and manufacturing method thereof
KR20090073935A (en) * 2007-12-31 2009-07-03 주식회사 에피밸리 Iii-nitride semiconductor light emitting device
TWI420694B (en) * 2008-07-29 2013-12-21 Epistar Corp Opto-electrical device
JP5282503B2 (en) 2008-09-19 2013-09-04 日亜化学工業株式会社 Semiconductor light emitting device
CN101859856B (en) 2010-06-04 2016-06-15 清华大学 Light emitting diode
KR101389462B1 (en) * 2013-04-10 2014-04-28 주식회사 소프트에피 Iii-nitride semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977280A3 (en) * 1998-07-28 2008-11-26 Interuniversitair Micro-Elektronica Centrum Vzw Devices for emitting radiation with a high efficiency and a method for fabricating such devices
JP2002164570A (en) * 2000-11-24 2002-06-07 Shiro Sakai Gallium nitride compound semiconductor device
JP4233268B2 (en) * 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
TWI237402B (en) * 2004-03-24 2005-08-01 Epistar Corp High luminant device

Also Published As

Publication number Publication date
TW200601575A (en) 2006-01-01
JP2006013500A (en) 2006-01-12
KR20060049672A (en) 2006-05-19
TWI237903B (en) 2005-08-11
DE102005029268A1 (en) 2006-01-19
DE102005029268B4 (en) 2017-04-13
KR100687783B1 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
US7385226B2 (en) Light-emitting device
JP5165276B2 (en) Vertical structure gallium nitride based light-emitting diode device and method of manufacturing the same
US9425361B2 (en) Light-emitting device
JP5283436B2 (en) Nitride semiconductor light emitting device
JP6934812B2 (en) Light emitting element and light emitting element array including it
JP2005277423A (en) High-efficiency light-emitting device
US20090159917A1 (en) Semiconductor light emitting device
JP2007521641A (en) Highly efficient (B, Al, Ga, In) N-based light emitting diode by surface roughening
JP2007165908A (en) Perpendicular type light emitting device and its manufacturing method
JP2008047860A (en) Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
KR20090101604A (en) Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
US20130015465A1 (en) Nitride semiconductor light-emitting device
CN110416377B (en) Light emitting element
JP4339822B2 (en) Light emitting device
CN102117870A (en) Vertical light emitting diode and manufacturing method of the same
JP2007184585A (en) Semiconductor light-emitting element and manufacturing method therefor
JP2005117006A (en) Light-emitting device of nitride
KR102043601B1 (en) Method for manufacturing a gallium nitride light emitting device
JP4751093B2 (en) Semiconductor light emitting device
KR20140035762A (en) Nitride light emitting device having high luminance and method for manufacturing of the same
KR100756842B1 (en) Light emitting diode having columns for light extraction and method of fabricating the same
KR102370021B1 (en) Method of manufacturing nano-structured semiconductor light emitting device
KR102175400B1 (en) Semiconductor light emitting device with nano structure
KR102043602B1 (en) Method for manufacturing a gallium nitride light emitting device
KR101480552B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

R150 Certificate of patent or registration of utility model

Ref document number: 4339822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250