[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4326121B2 - アルカリ蓄電池 - Google Patents

アルカリ蓄電池 Download PDF

Info

Publication number
JP4326121B2
JP4326121B2 JP2000173695A JP2000173695A JP4326121B2 JP 4326121 B2 JP4326121 B2 JP 4326121B2 JP 2000173695 A JP2000173695 A JP 2000173695A JP 2000173695 A JP2000173695 A JP 2000173695A JP 4326121 B2 JP4326121 B2 JP 4326121B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
positive electrode
active material
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000173695A
Other languages
English (en)
Other versions
JP2001351673A (ja
Inventor
正夫 武江
功祐 里口
誠 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000173695A priority Critical patent/JP4326121B2/ja
Publication of JP2001351673A publication Critical patent/JP2001351673A/ja
Application granted granted Critical
Publication of JP4326121B2 publication Critical patent/JP4326121B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池に係り、特に、これらのアルカリ蓄電池に用いられる正極板と負極板とセパレータとからなる電極群の構造に関する。
【0002】
【従来の技術】
ニッケル・水素蓄電池をはじめとするアルカリ蓄電池は、近年の市場拡大に伴って、電動工具、アシスト自転車、電気自動車等への用途が拡大し、大型化、高容量化、高出力化への需要、要望が高まった。
このような背景にあって、この種のアルカリ蓄電池において、種々の高出力化の検討が行われた。例えば、図4に示すように、電極群40の上部に正極板41に接続された正極集電体44を溶接し、電極群40の下部に負極板42に接続された負極集電体45を溶接するとともに、正極集電体44を図示しない封口体の下部に溶接し、負極集電体45を図示しない電池缶の内底部に溶接する構造が採用されるようになった。
【0003】
ところで、電極群40の上部に正極板41に接続された正極集電体44を溶接し、電極群40の下部に負極板42に接続された負極集電体45を溶接する場合、正極板41の端部と負極板42の端部が同位置にあると、正極板41と負極集電体45あるいは負極板42と正極集電体44とが接触して、内部短絡を生じる恐れがある。このため、負極集電体45と正極板41との接触による短絡あるいは正極集電体44と負極板42との接触による短絡を防止する目的で、正極板41に対して負極板42を下側にずらして配置する構造となっている。
【0004】
【発明が解決しようとする課題】
ところが、この種のアルカリ蓄電池に用いられる水酸化ニッケルを主正極活物質とする正極板は、充放電サイクルの進行に伴って水酸化ニッケルが高次化して膨潤し、膨潤した活物質が正極板よりせり出すようになるという現象を生じる。そして、上述のように正極板41に対して負極板42を下側にずらして配置すると、電極群40の下部では負極板42の一部に正極板41と対向しない部分42bが存在することとなる。
【0005】
この結果、この負極板42の正極板41に対向しない部分42bと正極板41の下端部41cとの間(図4の符号Zを参照)で充放電反応(この充放電反応を以下では回り込み反応という)が生じて、正極板41の下端部41cは活物質の膨潤によってせり出しを生じるという現象を生じた。
正極板41の下端部41cでの活物質の膨潤によってせり出しを生じると、やがては正極活物質の脱落によって、容量低下を引き起こしたり、場合によっては、負極集電体45との短絡を引き起こすという問題を生じた。
【0006】
そこで、本発明は上記問題点を解決するためになされたものであって、正極板に対して負極板をずらして配置しても、正極板が回り込み反応を起こさないような構造として、正極活物質の脱落による容量低下を防止するとともに、負極集電体との短絡を防止して、高容量で長寿命のアルカリ蓄電池が得られるようにすることを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のアルカリ蓄電池は、正極活物質が充填された正極板と負極活物質が充填された負極板とこれらを隔離するセパレータとからなる電極群を備え、電極群の下部に負極板に接続された負極集電体を備えている。そして、この電極群は正極板上部および負極板下部で正極板と負極板とが互いに対向しないようにずらして配置されており、正極板上部の負極板と対向しない部分には正極活物質が充填されている。そして、負極板下部の正極板と対向しない部分には負極活物質が充填されていないか、負極活物質が充填されている場合は当該負極活物質の表面に耐アルカリ性の保護膜が備えられているか、耐アルカリ性の樹脂が塗布されていて、正極板との充放電反応が阻害されるようにしている。
【0008】
このように、負極板下部の正極板と対向しない部分には負極活物質が充填されていないと、正極板の下端部が回り込み反応を起こさないような構造となるため、正極活物質の脱落による容量低下が防止できて、負極集電体との短絡を防止することが可能となり、高容量で長寿命のアルカリ蓄電池が得られるようになる。
【0009】
そして、負極板下部の正極板と対向しない部分に負極活物質が充填されている場合は当該負極活物質の表面に耐アルカリ性の保護膜が備えられているか、耐アルカリ性の樹脂が塗布されていると、保護膜あるいは塗布された樹脂は充放電反応を阻害するように作用するため、正極板の下端部が回り込み反応を起こすことが防止できるようになる
【0010】
【発明の実施の形態】
ついで、本発明の一実施の形態を図1〜図4に基づいて以下に説明する。なお、図1は本発明の実施例1の電極群の要部の一部を模式的に示す断面図であり、図2は本発明の実施例2の電極群の要部の一部を模式的に示す断面図であり、図3は本発明の実施例3の電極群の要部の一部を模式的に示す断面図であり、図4は比較例の電極群の要部の一部を模式的に示す断面図である。また、本発明は以下の実施の形態に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
【0011】
1.ニッケル正極板の作製
水酸化ニッケル粉末を90質量部と、水酸化コバルト粉末を10質量部と、酸化亜鉛粉末を3質量部とを添加混合した混合粉末に、結着剤としてのヒドロキシプロピルセルロース0.2質量%水溶液を50質量部を添加混合して正極活物質スラリーを作製した。この正極活物質スラリーをニッケル発泡体(多孔度が約95%で、目付が約600g/m2のもの)からなる発泡ニッケル基板11a,21a,31a,41aの空孔内にそれぞれ充填した後、乾燥させた。この後、所定の厚みにロール圧延した後、所定の形状に切断してニッケル正極板11,21,31,41をそれぞれ作製した。
【0012】
なお、各ニッケル正極板11,21,31,41においては、発泡ニッケル基板11a,21a,31a,41aの上部に充填された正極活物質を欠き落として、該部分を圧縮して高密度化した後、この高密度化した部分にニッケル箔(具体的には上端から約0.5mm幅)が溶着されており、後述する各正極集電体14,24,34,44との溶接部11b,21b,31b,41bがそれぞれ形成されている。
【0013】
2.水素吸蔵合金粉末の作製
ミツシュメタル(Mm:La,Ce,Nd,Pr等の希土類元素を主成分とする化合物)と、ニッケルと、コバルトと、アルミニウムと、マンガンとを元素比で1.0:3.2:1.0:0.2:0.6に秤量して混合し、これをるつぼに入れて高周波溶解炉で溶融した後、冷却して、Mml.0Ni3.2Col.0A10.2MnO.6の組成式で表される水素吸蔵合金を作製した。ついで、得られた水素吸蔵合金の鋳塊(インゴット)を、予め粗粉砕した後、不活性ガス中で平均粒径が約50μmになるように機械的に粉砕した。
【0014】
3.水素吸蔵合金負極板の作製
(1)実施例1
ついで、粉砕した水素吸蔵合金の粉末に、結着剤としてポリエチレンオキサイド0.5質量%水溶液を10質量部だけ添加混合して負極活物質スラリーを作製した。このように作製した負極活物質スラリーをパンチングメタル12aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約1.5mm幅の負極活物質を欠き落としてパンチングメタル12aの露出部12bを形成して、実施例1の水素吸蔵合金負極板12を作製した。なお、露出部12bの下端部分(下端から約0.5mm幅の部分)12cは後述する負極集電体15との溶接部となる。
【0015】
(2)実施例2
実施例1と同様に作製した負極活物質スラリーをパンチングメタル22aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅だけ負極活物質を欠き落としてパンチングメタル22aの露出部22cを形成した。ついで、露出部22cの上端から上方に約1.0mm幅の耐アルカリ性のポリプロピレン製テープ(PPテープ)22bを負極活物質上に貼り付けて、充放電反応の阻害部を形成して、実施例2の水素吸蔵合金負極板22を作製した。なお、パンチングメタル22aの露出部22c(約0.5mm幅の部分)は後述する負極集電体25との溶接部となる。
【0016】
(3)実施例3
実施例1と同様に作製した負極活物質スラリーをパンチングメタル32aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅だけ負極活物質を欠き落としてパンチングメタル32aの露出部32cを形成した。ついで、露出部32cの上端から上方に約1.0mm幅だけに約8.0質量%のフッ素樹脂液(例えば、PTFE液)を塗布して、充放電反応の阻害部となるフッ素樹脂塗布部32bを形成した後、乾燥させて実施例3の水素吸蔵合金負極板32を作製した。なお、パンチングメタル32aの露出部32c(約0.5mm幅の部分)は後述する負極集電体35との溶接部となる。
【0017】
(4)比較例
実施例1と同様に作製した負極活物質スラリーをパンチングメタル42aの両面に塗着し、乾燥した後、所定の厚みにロール圧延し、所定の形状に切断した。ついで、切断された極板の下端から約0.5mm幅の負極活物質を欠き落としてパンチングメタル42aの露出部42cを形成し、比較例の水素吸蔵合金負極板42を作製した。なお、パンチングメタル42aの露出部42c(約0.5mm幅の部分)は後述する負極集電体45との溶接部となる。
【0018】
4.ニッケル−水素蓄電池の作製
(1)実施例1
上述のように作製したニッケル正極板11と水素吸蔵合金負極板12を用い、これらのニッケル正極板11と水素吸蔵合金負極板12が正極集電体14および負極集電体15の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ13を介して渦巻状に巻回して、渦巻状電極群10を作製した。
【0019】
ついで、正極板11の溶接部11bに正極集電体14を溶接するとともに、負極板12のパンチングメタル12aの露出部12bの下端部分12cに負極集電体15を溶接して電極体とした後、この電極体を図示しない負極端子を兼ねる有底円筒形の金属外装缶(AAサイズ)内に挿入した。ついで、負極集電体15を金属外装缶の内底部に溶接するとともに、正極集電体14を正極端子を兼ねる封口体に溶接した後、電解液(水酸化ナトリウム及び水酸化リチウムを含む水酸化カリウムを主体とした7mol/lのアルカリ水溶液)を金属外装缶内に注入した。ついで、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例1のニッケル−水素蓄電池Aを作製した。
【0020】
(2)実施例2
上述のように作製したニッケル正極板21と水素吸蔵合金負極板22を用い、これらのニッケル正極板21と水素吸蔵合金負極板22が正極集電体24および負極集電体25の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ23を介して渦巻状に巻回して、渦巻状電極群20を作製した。
【0021】
ついで、に正極板21の溶接部21bに正極集電体24を溶接するとともに、負極板22のパンチングメタル22aの露出部22cに負極集電体25を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体25を金属外装缶の内底部に溶接するとともに、正極集電体24を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例2のニッケル−水素蓄電池Bを作製した。
【0022】
(3)実施例3
上述のように作製したニッケル正極板31と水素吸蔵合金負極板32を用い、これらのニッケル正極板31と水素吸蔵合金負極板32が正極集電体34および負極集電体35の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ33を介して渦巻状に巻回して、渦巻状電極群30を作製した。
【0023】
ついで、正極板31の溶接部31bに正極集電体34を溶接するとともに、負極板32のパンチングメタル32aの露出部32cに負極集電体35を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体35を金属外装缶の内底部に溶接するとともに、正極集電体34を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの実施例3のニッケル−水素蓄電池Cを作製した。
【0024】
(4)比較例
上述のように作製したニッケル正極板41と水素吸蔵合金負極板42を用い、これらのニッケル正極板41と水素吸蔵合金負極板42が正極集電体44および負極集電体45の溶接時に短絡を生じないように、高さ方向に約1.5mmだけずらすようにして配置した後、ポリオレフィン製不織布(例えば、ポリプロピレンおよびポリエチレンを主成分とし、厚みが約0.15mmで、目付が約60g/m2のもの)からなるセパレータ43を介して渦巻状に巻回して、渦巻状電極群40を作製した。
【0025】
ついで、正極板41の溶接部41bに正極集電体44を溶接するとともに、負極板42のパンチングメタル42aの露出部42cに負極集電体45を溶接して電極体とした後、この電極体を実施例1と同様に、金属外装缶(AAサイズ)内に挿入し、負極集電体45を金属外装缶の内底部に溶接するとともに、正極集電体44を封口体に溶接した後、電解液を注入し、封口体を絶縁ガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にかしめることにより開口部を封ロして、公称容量が1200mAhの比較例のニッケル−水素蓄電池Xを作製した。
【0026】
5.試験
(1)活性化処理
ついで、上述のようにして作製した各ニッケル−水素蓄電池A,B,C,Xを用いて、室温(約25℃)で120mA(0.1C)の充電電流で16時間充電した後に1時間休止させ、その後、240mA(0.2C)の放電電流で放電終止電圧が1.0Vになるまで放電させた後に、1時間休止させるという充放電サイクルを3サイクル繰り返して、各ニッケル−水素蓄電池A,B,C,Xを活性化した。
【0027】
(2)充放電サイクル試験
ついで、上述のようにして活性化した各ニッケル−水素蓄電池A,Xを用いて、室温(約25℃)で、1.2A(1C)の充電々流で充電を行い、充電末期の電池電圧のピーク値を記憶し、これを基準として一定値(10mV)だけ電圧が低下した時点で充電を終了し、1時間休止した後、1.2A(1C)の放電電流で電池電圧が1.0Vになるまで放電させ、1時間休止するという−ΔVサイクル試験を行い、各充放電サイクル毎の放電容量を求めると、図5に示すような結果が得られた。
【0028】
図5から明らかなように、負極板42の正極板41と対向しない部分42bに負極活物質が充填されている比較例の電池Xは、数10サイクル経過後に数%の容量低下が生じ、約300サイクル経過した時点では初期容量の90%程度の放電容量となり、300サイクル以降での容量低下が顕著となり、約550サイクルで寿命(初期容量の60%)となっていることが分かる。
一方、負極板12の正極板11と対向しない部分にパンチングメタル12aの露出部(負極活物質が充填されていない部分)12bが形成された実施例1の電池Aは、300サイクル付近までは安定して初期容量が維持され、その後に放電容量が徐々に低下し、約700サイクルで寿命となって、比較例の電池Xよりも充放電サイクル特性が優れていることが分かる。
【0029】
ここで、寿命後の各ニッケル−水素蓄電池A,Xを解体して調査した結果、比較例の電池Xは、電極群40の正極板41の下端部41cで活物質が下側にせり出しており、また、外装缶の内底部に正極板41から脱落した活物質が滞留していることが確認できた。一方、実施例1の電池Aの正極板11には下端部11cに活物質のせり出しは見られず、外装缶の内底部にも脱落した活物質がほとんど認められなかった。
【0030】
これらの事実を勘案すると、比較例の電池Xにおいては、負極板42の正極板41と対向しない部分42bにも負極活物質が存在するため、正極板41の下端部41cに回り込み反応が生じて、正極活物質が膨潤して正極板41の下端部41cから下方にせり出し、この正極活物質がせり出した部分が大きくなって、やがては正極板41から脱落して、充放電初期から容量が低下したと考えられる。一方、実施例1の電池Aにおいては、負極板12の正極板11と対向しない部分(パンチングメタル12aの露出部12b)には負極活物質が存在しないため、正極板11の下端部11cでの回り込み反応が抑制されて、活物質のせり出しおよび脱落が抑制されたと考えられる。
【0031】
(3)高率充放電サイクル試験
ついで、上述のようにして活性化した各ニッケル−水素蓄電池B,C,Xを用いて、室温(約25℃)で、2.4A(2C)の充電々流で高率充電を行い、充電末期の電池電圧のピーク値を記憶し、これを基準として一定値(5mV)だけ電圧が低下した時点で充電を終了し、1時間休止した後、4.8A(4C)の放電電流で電池電圧が1.0Vになるまで高率放電させ、1時間休止するという−ΔVサイクル試験を行い、各充放電サイクル毎の放電容量を求めると、図6に示すような結果が得られた。
【0032】
図6から明らかなように、負極板42の正極板41と対向しない部分42bに負極活物質が充填されている比較例の電池Xは、充放電の初期から徐々に容量低下が生じ、約200サイクル経過した時点では初期容量の約85%程度まで低下し、その後に全く充放電できなくなった。また、寿命(初期容量の60%)に至った比較例の電池Xの開放電圧を測定すると0Vとなっていた。
一方、負極板22の正極板21と対向しない部分にPPテープ22bを貼り付けた実施例2の電池B、および正極板31と対向しない部分にフッ素樹脂塗布部32bを形成した実施例3の電池Cは、共に200サイクル付近までは安定して初期容量が維持され、その後に容量低下が徐々に始まり、いずれも約500サイクルで寿命となっていることが分かる。
【0033】
ここで、寿命に至った比較例の電池Xを解体して調査した結果、電極群40の正極板41の下端部41cより下方にせり出した活物質と外装缶の内底部に脱落して滞留した活物質とが接触しているとともに、滞留した活物質が負極集電体45に接触して、正極板41と負極板42とが短絡していることが確認できた。一方、実施例2の電池Bの正極板21および実施例3の電池Cの正極板31には活物質のせり出しは見られず、外装缶の内底部にも脱落した活物質がほとんど認められなかった。
【0034】
これは、高率充放電試験は通常の充放電試験に比べて充放電電流が大きいために、正極活物質のせり出しおよび脱落への影響が大きくなったものと考えられ、その影響が大きい場合には短絡までに至ったと考えられる。一方、負極板22の正極板21と対向しない部分に、PPテープ22bを貼り付けた電池Bおよびフッ素樹脂塗布部32bを形成した電池Cにおいては、正極板21の下端部21cあるいは正極板31の下端部31cでの回り込み反応が抑制されて、活物質のせり出しおよび脱落が抑制されたものと考えられる。
【0035】
上述したように、本発明においては、負極板12の正極板11と対向しない部分(パンチングメタル12aの露出部12b)に負極活物質が充填されていないか、あるいは負極板22(32)の正極板21(31)と対向しない部分に、PPテープ22bを貼り付けたり、フッ素樹脂塗布部32bを形成して充放電反応を阻害しているため、正極板11(21,31)の下端部11c(21c,31c)での回り込み反応が起こらないような構造となり、正極活物質の脱落による容量低下が防止できて、負極集電体15(25,35)との短絡を防止することが可能となって、高容量で、長寿命のアルカリ蓄電池が得られるようになる。
【0036】
なお、上述した実施形態においては、発泡ニッケルに正極活物質を充填した正極板を用いる例について説明したが、ニッケルメッシュなどの基材に正極活物質を充填した正極板、あるいはパンチングメタル、エキスパンドメタル等の芯材に正極活物質を塗着した正極板を用いるようにしてもよい。
また、上述した実施形態においては、パンチングメタルに負極活物質を塗着した負極板を用いる例について説明したが、エキスパンドメタル等の芯材に負極活物質を塗着した負極板、あるいは発泡ニッケルやニッケルメッシュ等の基材に負極活物質を充填した負極板を用いるようにしてもよい。
さらに、上述した実施形態においては、本発明をニッケル−水素蓄電池に適用する例について説明したが、本発明のアルカリ蓄電池として、ニッケル−カドミウム蓄電池に適用してもほぼ同様である。
【図面の簡単な説明】
【図1】 本発明の実施例1の電極群の要部の一部を模式的に示す断面図である。
【図2】 本発明の実施例2の電極群の要部の一部を模式的に示す断面図である。
【図3】 本発明の実施例3の電極群の要部の一部を模式的に示す断面図である。
【図4】 従来例(比較例)の電極群の要部の一部を模式的に示す断面図である。
【図5】 充放電サイクルに対する放電容量の関係を示す図である。
【図6】 高率充放電サイクルに対する放電容量の関係を示す図である。
【符号の説明】
10,20,30,40…電極群、11,21,31,41…正極板、11a,21a,31a,41a…発泡ニッケル基板(多孔性基板)、11b,21b,31b,41b…正極集電体との溶接部、11c,21c,31c,41c…正極板の下端部、12,22,32,42…負極板、12a,22a,32a,42a…パンチングメタル(多孔性基板)、13,23,33,43…セパレータ、14,24,34,44…正極集電体、15,25,35,45…負極集電体、12b…パンチングメタルの露出部(活物質が充填されていない部分)、22b…ポリプロピレン製テープ、32b…フッ素樹脂塗布部、42b…負極板の正極板に対向しない部分

Claims (3)

  1. 多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
    前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
    前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されていないことを特徴とするアルカリ蓄電池。
  2. 多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
    前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
    前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されているとともに、当該負極活物質の表面に耐アルカリ性の保護膜が備えられていて前記正極板との充放電反応が阻害されていることを特徴とするアルカリ蓄電池。
  3. 多孔性基板に水酸化ニッケルを主成分とする正極活物質が充填された正極板と、多孔性基板に負極活物質が充填された負極板と、これらを隔離するセパレータとからなる電極群を備えるとともに、前記電極群の下部に前記負極板に接続された負極集電体を備えたアルカリ蓄電池であって、
    前記電極群は正極板上部および負極板下部で前記正極板と前記負極板とが互いに対向しないようにずらして配置されており、
    前記正極板上部の前記負極板と対向しない部分には正極活物質が充填されており、前記負極板下部の前記正極板と対向しない部分には負極活物質が充填されているとともに、当該負極活物質の表面に耐アルカリ性の樹脂が塗布されていて前記正極板との充放電反応が阻害されていることを特徴とするアルカリ蓄電池。
JP2000173695A 2000-06-09 2000-06-09 アルカリ蓄電池 Expired - Fee Related JP4326121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173695A JP4326121B2 (ja) 2000-06-09 2000-06-09 アルカリ蓄電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173695A JP4326121B2 (ja) 2000-06-09 2000-06-09 アルカリ蓄電池

Publications (2)

Publication Number Publication Date
JP2001351673A JP2001351673A (ja) 2001-12-21
JP4326121B2 true JP4326121B2 (ja) 2009-09-02

Family

ID=18675878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173695A Expired - Fee Related JP4326121B2 (ja) 2000-06-09 2000-06-09 アルカリ蓄電池

Country Status (1)

Country Link
JP (1) JP4326121B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061582B2 (ja) * 2006-11-10 2012-10-31 株式会社Gsユアサ 電池
JP5630859B2 (ja) * 2010-08-06 2014-11-26 Fdkトワイセル株式会社 円筒型蓄電池
EP2523202A1 (en) * 2011-05-13 2012-11-14 Eika, S.Coop Electrical double - layer capacitor, and method for manufacturing such a capacitor

Also Published As

Publication number Publication date
JP2001351673A (ja) 2001-12-21

Similar Documents

Publication Publication Date Title
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
US20120052353A1 (en) Cylindrical nickel-hydrogen storage battery
US20100248024A1 (en) Alkaline storage battery system
US7393612B2 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4931492B2 (ja) 円筒型蓄電池
JP5322392B2 (ja) 水素吸蔵合金電極およびその製造方法ならびにアルカリ蓄電池
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
JP5717125B2 (ja) アルカリ蓄電池
JP4326121B2 (ja) アルカリ蓄電池
JP4868809B2 (ja) 円筒型アルカリ蓄電池
JP6105389B2 (ja) アルカリ蓄電池
JP3598665B2 (ja) 電池用活物質および電池
JP2962326B1 (ja) バックアップ電源用ニッケル−水素蓄電池
JP2004296394A (ja) ニッケル−水素蓄電池および組電池
JP3895984B2 (ja) ニッケル・水素蓄電池
JP2013178882A (ja) アルカリ蓄電池
JP3071026B2 (ja) 金属水素化物蓄電池
JP4236399B2 (ja) アルカリ蓄電池
JP4567990B2 (ja) 二次電池
JPH05144432A (ja) 水素吸蔵合金電極
JPH05263171A (ja) 水素吸蔵合金とその電極および水素吸蔵合金電池
JP2004327146A (ja) アルカリ蓄電池
JP2005056679A (ja) 円筒型アルカリ蓄電池
JP2003317712A (ja) ニッケル−水素蓄電池
JPH11233105A (ja) 水素吸蔵合金電極とアルカリ蓄電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees