[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4310998B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4310998B2
JP4310998B2 JP2002333797A JP2002333797A JP4310998B2 JP 4310998 B2 JP4310998 B2 JP 4310998B2 JP 2002333797 A JP2002333797 A JP 2002333797A JP 2002333797 A JP2002333797 A JP 2002333797A JP 4310998 B2 JP4310998 B2 JP 4310998B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
active layer
contact layer
type contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333797A
Other languages
Japanese (ja)
Other versions
JP2004172217A (en
Inventor
正治 安田
信之 高倉
一功 葛原
孝典 明田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2002333797A priority Critical patent/JP4310998B2/en
Publication of JP2004172217A publication Critical patent/JP2004172217A/en
Application granted granted Critical
Publication of JP4310998B2 publication Critical patent/JP4310998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に、積層方向(厚み方向)に対向する最外層の各々にバイアスを印加するための電極を有した積層構造の半導体発光素子に関するものである。
【0002】
【従来の技術】
従来の半導体発光素子としては、例えば、特許文献1には、炭化珪素等の低抵抗性の支持基板と、酸化チタン膜と、GaNからなるバッファ層と、n型半導体領域と、発光層である活性層と、p型半導体領域とを順に積層して形成した積層体を備え、この積層体の積層方向(厚み方向)に対向する最外層の各々に電極(以降、n型半導体領域側に設けた電極をn側電極と称し、支持基板側に設けた電極をp側電極と称する。)を設けてなるものを挙げることができる。
【0003】
上述の半導体発光素子にあっては、積層体の最外層の各々に電極、つまり、n側電極)と、p側電極とが、積層方向に対してはお互いに重なり合わない構成であり、順方向バイアスを印加する(p側電極にプラス電圧を印加する)ことにより、p側電極からn側電極に向って電流が流れ、活性層で、ホール(正孔)と電子が結合し発光する。
【0004】
【特許文献1】
特開2000−77712号公報
【0005】
【発明が解決しようとする課題】
ところが、上述のような従来の半導体発光素子においては、n側電極、p側電極間に順方向バイアスを印加したときに、発光層である活性層中を流れる電流は、活性層中において抵抗が比較的小さくなる領域を主として流れる傾向があるので、n側電極とp側電極との間の領域でも、抵抗が低い領域に偏るため、活性層中での均一な発光の実現が困難であるという問題があった。
【0006】
また、活性層中で発生する光が素子外部に放出される際には、素子を取り囲む空気と、発光素子を構成するn型半導体領域やp型半導体領域との屈折率が異なるため、両者が接する界面で全反射が起こり、発光層で発生する光が、100%素子から取り出せない可能性があったり、n側電極やp側電極により吸収されるという問題があった。
【0007】
本発明は上記問題点を改善するためになされたものであり、発光強度を向上させ、素子内部で発生する光を効率良く外部に取り出すことができる半導体発光素子を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
請求項1に記載の半導体発光素子は、透光性を有する第1導電型コンタクト層2と、発光層である活性層3と、透光性を有する第2導電型コンタクト層4とを順次積層して備えてなり、第1導電型コンタクト層2及び第2導電型コンタクト層4は、各々第1電極6及び第2電極7を表面に備えてなる半導体発光素子であって、第1導電型コンタクト層2の表面は、少なくとも第1電極6を設けた箇所以外に、透光性を有する導電性の第1薄膜1を備え、第2導電型コンタクト層4の表面は、少なくとも第2電極7を設けた箇所以外に、透光性を有する導電性の第2薄膜5を備え、第1電極6及び第2電極7は、くし歯形状であり、各電極6、7がお互いに歯合するパターンを備え、各電極6、7が積層方向から見てお互い重ならないように配置されたことを特徴とするものである。
【0010】
また、請求項に記載の半導体発光素子は、図3、図4にその一例を示すように、請求項1に記載の発明において、第1導電型コンタクト層4の表面における第1電極6が設けられた領域と、第2導電型コンタクト層4の表面における第2電極6が設けられた領域とは、各領域が積層方向から見てお互い重ならないように対向したことを特徴とするものである。
【0012】
また、請求項に記載の半導体発光素子は、請求項1又は請求項2に記載の発明において、第1導電型コンタクト層2は、活性層3との界面であり第1電極6の積層方向裏面側に相当する領域に透光性の絶縁層8を備えたことを特徴とするものである。
【0013】
また、請求項に記載の半導体発光素子は、図7にその一例を示すように、請求項1又は請求項2に記載の発明において、第2導電型コンタクト層4は、活性層3との界面であり第2電極7の積層方向裏面側に相当する領域に透光性の絶縁層8を備えたことを特徴とするものである。
【0014】
【発明の実施の形態】
本発明の第1実施形態を図1及び図2に基づいて説明する。図1は、本発明の第1実施形態に係る半導体発光素子を示す上面図であり、図2は、半導体発光素子を示すA-A断面での概略断面図である。なお、図1において、第2薄膜5の図示は簡略のため省略する。
【0015】
第1実施形態における半導体発光素子は、図1、図2に示すように、透光性つまり光透過性を有する導電性の第1薄膜1と、n型の導電型つまり電気伝導を示す例えばGaN基板である第1導電型コンタクト層2と、発光層である例えば3族窒化物半導体である活性層3と、p型の電気伝導を示すGaN基板である第2導電型コンタクト層4と、透光性を有する導電性の第2薄膜5と、第1導電型コンタクト層2側の表面に設けた第1電極6であるn側電極と、第2導電型コンタクト層4側の表面に設けた第2電極7であるp側電極とを備え、第1導電型コンタクト層2と、活性層3と、第2導電型コンタクト層4とを順次積層した構成であり、第1導電型コンタクト層2は、半導体発光素子のベースとなる支持基板も兼ねている。
【0016】
なお、活性層3は、例えば、InGaNからなる半導体で形成されている。また、この活性層3は、色純度のよい発光を得るために不純物を注入せずにニュートラルなInGaN層としている。なお、活性層3は、そのInとGaの組成比を調整したり、n型あるいはp型の導電型にすることにより、バンドギャップを変化させて発光波長を紫外から青色の範囲で所望の色に調整可能に変化させることができる。なお、n型の導電型にするにはSi、Ge、S、Te等の不純物を適宜注入すればよく、p型の導電型にするにはMg、Zn、Cd、Be、Ca等の不純物を適宜注入すればよい。
【0017】
ここで、第1導電型コンタクト層2の表面は、少なくとも第1電極6を設けた箇所以外に、透光性を有する導電性の第1薄膜1を備え、第2導電型コンタクト層4の表面は、少なくとも第2電極7を設けた箇所以外に、透光性を有する導電性の第2薄膜5を備え、第1電極6及び第2電極7は、各電極が積層方向(厚み方向)から見てお互い重ならないように配置されている。
【0018】
なお、第1薄膜1及び第2薄膜5の材料は、透光性を有する導電性材料である、例えばNi、Ti、Au、Pt、Al等であり、第1薄膜1及び第2薄膜5の膜厚は、蒸着やスパッタ等により第1薄膜1及び第2薄膜5が透光性を有するように所望の厚みに膜厚調整される。
【0019】
ここで、第1電極6及び第2電極7は、材料は、例えばAlであり、図1に示すように、平面視において略四角形状をなす棟部電極61、71と、この棟部電極61、71各々と直交するとともに所定の間隔を有して配設された複数の歯部電極62、72とで形成された所望の厚みであるくし歯形状であり、各電極6、7がお互いに歯合するパターンを備えており、第1電極6のくし歯の先端と第2電極7のくし歯の先端との距離は、それぞれ等間隔になるように配置されている。なお、第1電極6及び第2電極7は、そのくし歯の先端部は、その隅角部が面取りされた形状(不図示)であってもよい。なお、第1電極6及び第2電極7の材料は、Ni、Ti、Au等であってもよい。
【0020】
なお、発光半導体素子の動作は、発光半導体素子に順方向のバイアス、すなわち、p型電極である第2電極7にプラス電圧を加え、n型電極である第1電極6にマイナス電圧を加えることで、活性層3内に多数キャリアである電子と多数キャリアであるホール(正孔)とが注入され、電子とホールとが再結合して消滅するときにエネルギーを放出する。このエネルギーの放出が光となって発光し、青色又は紫外の光が伝播経路を経由して素子の外部に伝わる。
【0021】
かかる半導体発光素子においては、第1導電型コンタクト層2の表面は、少なくとも第1電極6を設けた箇所以外に、透光性を有する導電性の第1薄膜1を備え、第2導電型コンタクト層4の表面は、少なくとも第2電極7を設けた箇所以外に、透光性を有する導電性の第2薄膜5を備えるので、第1薄膜1及び第2薄膜5が透光性を備えながらも導電性を有していることで、活性層3で発生する光を第1電極6、第2電極7で遮られることなく効率よく取り出すことができて、しかも活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0022】
また、第1電極6及び第2電極7は、各電極6、7が積層方向から見てお互い重ならないように配置することで、第1電極6と第2電極7とを結ぶ線上近傍に、第1電極6、第2電極7間の活性層3内を経由して電流を流すことができるので、第1電極6、第2電極7直下での発光を抑えて、第1電極6、第2電極7にて吸収される光を低減することにより、素子内部からの外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【0023】
また、第1電極6及び第2電極7をくし歯形状とし、各電極6、7がお互いに歯合するパターンを備えることで、電流経路の抵抗を低くかつ等しくして、発光が始まる動作電圧を低くでき、かつ活性層3内に流れる電流密度は全領域でほぼ一定にすることができるので、第1電極6、第2電極7間の活性層3内を経由して流れる電流が局所的に集中することが防止でき、活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0024】
次に、第1電極6を設けた第1導電型コンタクト層2の領域と、第2電極7を設けた第2導電型コンタクト層4の領域との各領域が積層方向から見てお互い重ならないようにした実施形態を、本発明の第2実施形態として図3及び図4に基づいて説明する。図3は、本発明の第2実施形態に係る半導体発光素子を示す上面図であり、図4は、半導体発光素子を示すB-B断面での概略断面図である。なお、第1実施形態との同一箇所には同一符号を付して、共通部分の説明は省略する。
【0025】
まず、第2実施形態においては、図3、図4に示すように、半導体発光素子は、第1実施形態において、第1電極6及び第2電極7の形状がくし歯形状ではなく、平面視において四角型であり、第1電極6を設けた第1導電型コンタクト層2の領域と、第2電極7を設けた第2導電型コンタクト層4の領域とは、各領域が積層方向から見てお互い重ならない、つまり積層方向から見て対向の位置になるような構成である。なお、第1電極6及び第2電極7の材料は、例えばAlであるが、Ni、Ti、Au等であってもよい。
【0026】
かかる半導体発光素子においては、第1電極6を設けた第1導電型コンタクト層2の領域と、第2電極7を設けた第2導電型コンタクト層4の領域とが、お互い積層方向から見て重ならないように対向させたことで、第1電極6、第2電極7間の活性層3内を経由して流れる電流を効率的に拡散することができるので、電流が活性層3の特定領域に集中して、動作時に活性層3で発熱するのことを緩和でき、素子の動作温度を下げられるので、素子の信頼性向上と、活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0027】
なお、第2実施形態においては、第1電極6の数及び第2電極7の数は、各々1つずつであったが、各々少なくとも1つ以上であれば、複数個であっても勿論よい。また、第1電極6、第2電極7の平面視における大小関係は、図3、図4に示すように、第1電極6に比べて第2電極7の面積が大きいが、第1電極6と第2電極7との面積が同一であっても、第2電極7に比べて第1電極6の面積が大きくてもよい。また、第1電極6、第2電極7の厚みは、所望の厚みでよい。
【0028】
次に、他の実施形態を、本発明の第3実施形態として図5及び図6に基づいて説明する。図5は、本発明の第3実施形態に係る半導体発光素子を示す上面図であり、図6は、半導体発光素子を示すC-C断面での概略断面図である。なお、第1実施形態、第2実施形態との同一箇所には同一符号を付して、共通部分の説明は省略する。
【0029】
まず、第3実施形態においては、図5、図6に示すように、半導体発光素子は、第2実施形態において、積層方向から見て第1電極6であるn側電極を第2電極7であるp側電極がその周囲を取り囲むように配置して構成されている。
【0030】
なお、図5に示すように、例えば、第1電極6は、平面視において円形状であり、第2電極7は、平面視において四角形状から、円形状をくり抜いた形状であり、両電極6、7とも、材料は、例えばAlであるが、Ni、Ti、Au等であってもよい。なお、第1電極6及び第2電極7の厚みは、所望の厚みでよい。
【0031】
かかる半導体発光素子においては、第1電極6及び第2電極7を、積層方向から見て一方の電極が他方の電極を囲むように配置することで、第1電極6、第2電極7間を結ぶ特定箇所に電界が集中するのを防止できるので、耐静電気性が向上し、しかも第1電極6、第2電極7間の活性層内を経由して流れる電流を広範囲に拡散することができるので、活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0032】
次に、第3実施形態において半導体発光素子内部に透光性の絶縁層8を設けた実施形態を、本発明の第4実施形態として図7に基づいて説明する。図7は、本発明の第4実施形態に係る半導体発光素子を示すC-C断面(図5参照)での概略断面図である。なお、第3実施形態との同一箇所には同一符号を付して、共通部分の説明は省略する。また、半導体発光素子を示す上面図は、図5と同様であるので図示は省略する。
【0033】
まず、第4実施形態においては、図7に示すように、半導体発光素子は、第2導電型コンタクト層4内の活性層3との界面であり、積層方向から見て第2電極7の裏面に相当する箇所全面に透光性の絶縁層8である絶縁膜を設けた構成である。
【0034】
ここで、絶縁層8は、SiO2や、SiN等の透光性を有するものであり、その厚みは、第2導電型コンタクト層4の厚みより薄くかつ、透光性を損なわない範囲での所望の厚みであればよい。
【0035】
かかる半導体発光素子においては、第2導電型コンタクト層4内の活性層3との界面であり、積層方向から見て第2電極7の裏面に相当する箇所に透光性の絶縁層8を設けたことで、第2電極7の直下の領域の活性層3に電流が流れることを防止して、第2電極7で遮られる第2電極7直下での発光をなくすとともに、第2電極7の直下の領域の活性層3に電流が集中するのを防止することで、第1電極6、第2電極7間の活性層3内を経由して流れる電流を拡散することができるので、活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0036】
なお、第4実施形態においては、第2導電型コンタクト層4内の活性層との界面に絶縁層8を設けているが、半導体発光素子は、第1導電型コンタクト層2内の活性層3との界面で、積層方向から見て第1電極6の裏面に相当する箇所に、透光性の絶縁層(不図示)である絶縁膜を形成するような構成であってもよい。この場合も、第1導電型コンタクト層2内の活性層3との界面であり、積層方向から見て第1電極6の裏面に相当する箇所に透光性の絶縁層を設けることで、第1電極6の直下の領域の活性層3に電流が流れることを防止して、第1電極6で遮られる第1電極6直下での発光をなくすとともに、第1電極6の直下の領域の活性層3に電流が集中するのを防止することで、第1電極6、第2電極7間の活性層内を経由して流れる電流を拡散することができるので、活性層3内での電流を均一に分布させることができ、活性層3内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0037】
ここで、第1実施形態乃至第4実施形態においては、第1導電型コンタクト層2及び第2導電型コンタクト層4は、透光性基板としてGaN基板を用いているが、SiCであってもよい。第1導電型コンタクト層2及び第2導電型コンタクト層4にGaNやSiCを用いることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上する。
【0038】
【発明の効果】
上記のように本願の請求項1に係る発明の半導体発光素子にあっては、透光性を有する第1導電型コンタクト層と、発光層である活性層と、透光性を有する第2導電型コンタクト層とを順次積層して備えてなり、第1導電型コンタクト層及び第2導電型コンタクト層は、各々第1電極及び第2電極を表面に備えてなる半導体発光素子であって、第1導電型コンタクト層の表面は、少なくとも第1電極を設けた箇所以外に、透光性を有する導電性の第1薄膜を備え、第2導電型コンタクト層の表面は、少なくとも第2電極を設けた箇所以外に、透光性を有する導電性の第2薄膜を備えており、第1薄膜及び第2薄膜が透光性を備えながらも導電性を有していることで、活性層で発生する光を第1電極、第2電極で遮られることなく効率よく取り出すことができて、しかも活性層内での電流を均一に分布させることができ、活性層内での発光を均一に拡大させ、発光面積を増加させることにより、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【0039】
また、第1電極及び第2電極は、くし歯形状であり、各電極がお互いに歯合するパターンを備え、各電極が積層方向から見てお互い重ならないように配置することで、電流経路の抵抗を低くかつ等しくして、発光が始まる動作電圧を低くでき、かつ活性層内に流れる電流密度は全領域でほぼ一定にすることができるので、第1電極、第2電極間の活性層内を経由して流れる電流が局所的に集中することが防止でき、活性層内での電流を均一に分布させることができ、活性層内での発光を均一に拡大させ、発光面積を増加させることにより、更に、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【0041】
また、請求項に係る発明の半導体発光素子にあっては、請求項1に記載の発明における効果に加えて、第1電極を設けた第1導電型コンタクト層の領域と、第2電極を設けた第2導電型コンタクト層の領域とは、各領域が積層方向から見てお互い重ならないように対向しているので、第1電極、第2電極間の活性層内を経由して流れる電流を効率的に拡散することができるので、電流が活性層の特定領域に集中して、動作時に活性層で発熱することを緩和でき、素子の動作温度を下げられるので、素子の信頼性向上と、活性層内での電流を均一に分布させることができ、活性層内での発光を均一に拡大させ、発光面積を増加させることにより、更に、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【0043】
また、請求項に係る発明の半導体発光素子にあっては、請求項1又は請求項2に記載の発明における効果に加えて、第1導電型コンタクト層は、活性層との界面であり第1電極の積層方向裏面側に相当する領域に透光性の絶縁層を設けたことで、第1電極の直下の領域の活性層に電流が流れることを防止して、第1電極で遮られる第1電極直下での発光をなくすとともに、第1電極の直下の領域の活性層に電流が集中するのを防止することで、第1電極、第2電極間の活性層内を経由して流れる電流を拡散することができるので、活性層内での電流を均一に分布させることができ、活性層内での発光を均一に拡大させ、発光面積を増加させることにより、更に、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【0044】
また、請求項に係る発明の半導体発光素子にあっては、請求項1又は請求項2に記載の発明における効果に加えて、第2導電型コンタクト層は、活性層との界面であり第2電極の積層方向裏面側に相当する領域に透光性の絶縁層を設けたことで、第2電極の直下の領域の活性層に電流が流れることを防止して、第2電極で遮られる第2電極直下での発光をなくすとともに、第1電極、第2電極間の活性層内を経由して流れる電流を拡散することができるので、活性層内での電流を均一に分布させることができ、活性層内での発光を均一に拡大させ、発光面積を増加させることにより、更に、素子内部からの素子外部への光の取り出し効率が向上し、発光強度が向上するという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る半導体発光素子を示す上面図である。
【図2】本発明の第1実施形態に係る半導体発光素子を示す概略断面図である。
【図3】本発明の第2実施形態に係る半導体発光素子を示す上面図である。
【図4】本発明の第2実施形態に係る半導体発光素子を示す概略断面図である。
【図5】本発明の第3実施形態に係る半導体発光素子を示す上面図である。
【図6】本発明の第3実施形態に係る半導体発光素子を示す概略断面図である。
【図7】本発明の第4実施形態に係る半導体発光素子を示す概略断面図である。
【符号の説明】
1 第1薄膜
2 第1導電型コンタクト層
3 活性層
4 第2導電型コンタクト層
5 第2薄膜
6 第1電極
7 第2電極
8 絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a semiconductor light emitting device having a laminated structure having an electrode for applying a bias to each of the outermost layers facing each other in the lamination direction (thickness direction).
[0002]
[Prior art]
As a conventional semiconductor light emitting element, for example, Patent Document 1 discloses a low resistance support substrate such as silicon carbide, a titanium oxide film, a buffer layer made of GaN, an n-type semiconductor region, and a light emitting layer. A stacked body formed by sequentially stacking an active layer and a p-type semiconductor region is provided, and an electrode (hereinafter, provided on the n-type semiconductor region side) is provided on each outermost layer facing the stacking direction (thickness direction) of the stacked body. The electrode provided on the support substrate side is referred to as an n-side electrode, and the electrode provided on the support substrate side is referred to as a p-side electrode).
[0003]
In the semiconductor light emitting device described above, an electrode, that is, an n-side electrode) and a p-side electrode are not overlapped with each other in the stacking direction in each outermost layer of the stacked body. By applying a directional bias (a positive voltage is applied to the p-side electrode), a current flows from the p-side electrode to the n-side electrode, and holes and electrons are combined in the active layer to emit light.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-77712
[Problems to be solved by the invention]
However, in the conventional semiconductor light emitting device as described above, when a forward bias is applied between the n-side electrode and the p-side electrode, the current flowing in the active layer which is the light emitting layer has a resistance in the active layer. Since there is a tendency to mainly flow in a relatively small region, even in the region between the n-side electrode and the p-side electrode, it is biased toward a region with low resistance, and it is difficult to realize uniform light emission in the active layer. There was a problem.
[0006]
Further, when light generated in the active layer is emitted to the outside of the element, the refractive index of the air surrounding the element and the n-type semiconductor region and the p-type semiconductor region constituting the light-emitting element are different. There is a problem that total reflection occurs at the contact interface, and light generated in the light emitting layer may not be 100% extracted from the element, or may be absorbed by the n-side electrode and the p-side electrode.
[0007]
The present invention has been made in order to improve the above-described problems, and has as its object to provide a semiconductor light emitting device capable of improving light emission intensity and efficiently extracting light generated inside the device to the outside. It is.
[0008]
[Means for Solving the Problems]
The semiconductor light-emitting device according to claim 1 is formed by sequentially laminating a first conductive contact layer 2 having translucency, an active layer 3 as a light emitting layer, and a second conductive contact layer 4 having translucency. The first conductivity type contact layer 2 and the second conductivity type contact layer 4 are semiconductor light emitting devices each having a first electrode 6 and a second electrode 7 on the surface, respectively. The surface of the contact layer 2 is provided with a conductive first thin film 1 having translucency other than at least the portion where the first electrode 6 is provided, and the surface of the second conductivity type contact layer 4 is at least the second electrode 7. In addition to the portion where the electrode is provided, a conductive second thin film 5 having translucency is provided, the first electrode 6 and the second electrode 7 are comb-shaped, and the electrodes 6 and 7 mesh with each other. with patterns, distribution as each of the electrodes 6 and 7 do not overlap each other when viewed from the laminating direction It is characterized in that it has been.
[0010]
Further, as shown in FIG. 3 and FIG. 4, the semiconductor light emitting device according to claim 2 has the first electrode 6 on the surface of the first conductivity type contact layer 4 in the invention according to claim 1. The provided region and the region where the second electrode 6 is provided on the surface of the second conductivity type contact layer 4 are opposed to each other so that they do not overlap each other when viewed from the stacking direction. is there.
[0012]
According to a third aspect of the present invention, in the semiconductor light emitting device according to the first or second aspect of the present invention, the first conductivity type contact layer 2 is an interface with the active layer 3 and the first electrode 6 is laminated in the stacking direction. A translucent insulating layer 8 is provided in a region corresponding to the back surface side.
[0013]
The semiconductor light emitting device according to claim 4, as an example of which is shown in FIG. 7, in the invention described in claim 1 or claim 2, the second conductive type contact layer 4, the active layer 3 A translucent insulating layer 8 is provided in a region corresponding to the back surface side of the second electrode 7 in the stacking direction, which is an interface.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1st Embodiment of this invention is described based on FIG.1 and FIG.2. FIG. 1 is a top view showing a semiconductor light emitting device according to the first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view taken along the line AA showing the semiconductor light emitting device. In FIG. 1, the second thin film 5 is not shown for simplicity.
[0015]
As shown in FIGS. 1 and 2, the semiconductor light emitting device according to the first embodiment includes a conductive first thin film 1 having translucency, that is, light transmissivity, and n-type conductivity, that is, electric conductivity, for example, GaN. A first conductivity type contact layer 2 that is a substrate, an active layer 3 that is a light emitting layer, for example, a group III nitride semiconductor, a second conductivity type contact layer 4 that is a GaN substrate that exhibits p-type electrical conduction, The conductive second thin film 5 having optical properties, the n-side electrode which is the first electrode 6 provided on the surface on the first conductivity type contact layer 2 side, and the surface on the second conductivity type contact layer 4 side. A p-side electrode that is the second electrode 7, and is configured by sequentially laminating the first conductivity type contact layer 2, the active layer 3, and the second conductivity type contact layer 4, and the first conductivity type contact layer 2 Also serves as a support substrate serving as a base of the semiconductor light emitting device.
[0016]
The active layer 3 is made of a semiconductor made of InGaN, for example. The active layer 3 is a neutral InGaN layer without implanting impurities in order to obtain light emission with good color purity. The active layer 3 has a desired wavelength in the ultraviolet to blue range by adjusting the composition ratio of In and Ga or by changing the band gap by changing the n-type or p-type conductivity type. Can be adjusted to be adjustable. It should be noted that impurities such as Si, Ge, S, and Te may be implanted as appropriate in order to obtain n-type conductivity, and impurities such as Mg, Zn, Cd, Be, and Ca may be provided in order to obtain p-type conductivity. What is necessary is just to inject | pour suitably.
[0017]
Here, the surface of the first conductivity type contact layer 2 includes the conductive first thin film 1 having translucency in addition to at least the portion where the first electrode 6 is provided, and the surface of the second conductivity type contact layer 4. Includes a conductive second thin film 5 having translucency in addition to at least the portion where the second electrode 7 is provided. Each of the first electrode 6 and the second electrode 7 has a structure in which each electrode is from the stacking direction (thickness direction). They are arranged so that they do not overlap each other.
[0018]
The material of the first thin film 1 and the second thin film 5 is a conductive material having translucency, such as Ni, Ti, Au, Pt, Al, etc. The film thickness is adjusted to a desired thickness so that the first thin film 1 and the second thin film 5 have translucency by vapor deposition, sputtering, or the like.
[0019]
Here, the material of the first electrode 6 and the second electrode 7 is, for example, Al. As shown in FIG. 1, the ridge electrode 61, 71 having a substantially square shape in a plan view, and the ridge electrode 61 , 71 is a comb-tooth shape having a desired thickness formed by a plurality of tooth part electrodes 62, 72 that are orthogonal to each other and arranged at a predetermined interval, and each electrode 6, 7 is mutually connected It has a meshing pattern, and the distance between the tip of the comb teeth of the first electrode 6 and the tip of the comb teeth of the second electrode 7 is arranged at equal intervals. In addition, as for the 1st electrode 6 and the 2nd electrode 7, the shape (not shown) where the corner | angular part was chamfered may be sufficient as the front-end | tip part of the comb tooth. The material of the first electrode 6 and the second electrode 7 may be Ni, Ti, Au, or the like.
[0020]
The operation of the light emitting semiconductor element is that a forward bias is applied to the light emitting semiconductor element, that is, a positive voltage is applied to the second electrode 7 which is a p-type electrode, and a negative voltage is applied to the first electrode 6 which is an n-type electrode. Thus, electrons that are majority carriers and holes (holes) that are majority carriers are injected into the active layer 3, and energy is released when the electrons and holes recombine and disappear. This emission of energy is emitted as light, and blue or ultraviolet light is transmitted to the outside of the device via a propagation path.
[0021]
In such a semiconductor light emitting device, the surface of the first conductivity type contact layer 2 is provided with the conductive first thin film 1 having translucency in addition to at least the portion where the first electrode 6 is provided, and the second conductivity type contact is provided. Since the surface of the layer 4 includes the conductive second thin film 5 having translucency in addition to at least the portion where the second electrode 7 is provided, the first thin film 1 and the second thin film 5 have translucency. Can also efficiently extract the light generated in the active layer 3 without being blocked by the first electrode 6 and the second electrode 7, and the current in the active layer 3 can be taken out. The light can be uniformly distributed, the light emission in the active layer 3 is uniformly expanded, and the light emission area is increased, so that the light extraction efficiency from the inside of the device to the outside of the device is improved, and the light emission intensity is improved. .
[0022]
In addition, the first electrode 6 and the second electrode 7 are arranged so that the electrodes 6 and 7 do not overlap each other when viewed from the stacking direction, so that the first electrode 6 and the second electrode 7 are close to each other on the line connecting the first electrode 6 and the second electrode 7. Since current can flow through the active layer 3 between the first electrode 6 and the second electrode 7, light emission immediately below the first electrode 6 and the second electrode 7 is suppressed, and the first electrode 6, By reducing the light absorbed by the two electrodes 7, the light extraction efficiency from the inside of the device to the outside is improved, and the light emission intensity is improved.
[0023]
In addition, the first electrode 6 and the second electrode 7 have a comb-like shape, and each electrode 6, 7 has a pattern in which the electrodes 6 and 7 mesh with each other. And the current density flowing in the active layer 3 can be made almost constant in the entire region, so that the current flowing through the active layer 3 between the first electrode 6 and the second electrode 7 is locally localized. Concentration in the active layer 3, the current in the active layer 3 can be uniformly distributed, the light emission in the active layer 3 is uniformly expanded, and the light emission area is increased, thereby increasing the element from the inside of the element. The light extraction efficiency to the outside is improved, and the light emission intensity is improved.
[0024]
Next, each region of the region of the first conductivity type contact layer 2 provided with the first electrode 6 and the region of the second conductivity type contact layer 4 provided with the second electrode 7 do not overlap each other when viewed from the stacking direction. Such an embodiment will be described with reference to FIGS. 3 and 4 as a second embodiment of the present invention. FIG. 3 is a top view showing a semiconductor light emitting device according to the second embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view taken along the line BB showing the semiconductor light emitting device. In addition, the same code | symbol is attached | subjected to the same location as 1st Embodiment, and description of a common part is abbreviate | omitted.
[0025]
First, in the second embodiment, as shown in FIGS. 3 and 4, in the semiconductor light emitting device, the shape of the first electrode 6 and the second electrode 7 is not a comb shape in the first embodiment, but in a plan view. The region of the first conductivity type contact layer 2 provided with the first electrode 6 and the region of the second conductivity type contact layer 4 provided with the second electrode 7 are square type, and each region is viewed from the stacking direction. The configuration is such that they do not overlap with each other, that is, they are opposite to each other when viewed from the stacking direction. The material of the first electrode 6 and the second electrode 7 is, for example, Al, but may be Ni, Ti, Au, or the like.
[0026]
In such a semiconductor light emitting device, the region of the first conductivity type contact layer 2 provided with the first electrode 6 and the region of the second conductivity type contact layer 4 provided with the second electrode 7 are viewed from the stacking direction. By facing each other so as not to overlap, the current flowing through the active layer 3 between the first electrode 6 and the second electrode 7 can be efficiently diffused, so that the current flows in a specific region of the active layer 3. It is possible to alleviate heat generation in the active layer 3 during operation and reduce the operating temperature of the element, so that the reliability of the element can be improved and the current in the active layer 3 can be distributed uniformly. By uniformly expanding the light emission in the active layer 3 and increasing the light emission area, the light extraction efficiency from the inside of the device to the outside of the device is improved, and the light emission intensity is improved.
[0027]
In the second embodiment, the number of the first electrodes 6 and the number of the second electrodes 7 are one each, but a plurality of the first electrodes 6 and the number of the second electrodes 7 may be used as long as each is at least one. . In addition, as shown in FIG. 3 and FIG. 4, the first electrode 6 and the second electrode 7 are larger in size than the first electrode 6. Even if the area of the second electrode 7 is the same, the area of the first electrode 6 may be larger than that of the second electrode 7. Moreover, the thickness of the 1st electrode 6 and the 2nd electrode 7 may be a desired thickness.
[0028]
Next, another embodiment will be described based on FIGS. 5 and 6 as a third embodiment of the present invention. FIG. 5 is a top view showing a semiconductor light emitting device according to the third embodiment of the present invention, and FIG. 6 is a schematic cross-sectional view taken along a CC line showing the semiconductor light emitting device. In addition, the same code | symbol is attached | subjected to the same location as 1st Embodiment and 2nd Embodiment, and description of a common part is abbreviate | omitted.
[0029]
First, in the third embodiment, as shown in FIGS. 5 and 6, in the semiconductor light emitting device, in the second embodiment, the n-side electrode that is the first electrode 6 when viewed from the stacking direction is the second electrode 7. A p-side electrode is arranged so as to surround it.
[0030]
As shown in FIG. 5, for example, the first electrode 6 has a circular shape in plan view, and the second electrode 7 has a shape in which a circular shape is cut out from a quadrangular shape in plan view. 7 and 7 are made of, for example, Al, but may be Ni, Ti, Au, or the like. The first electrode 6 and the second electrode 7 may have a desired thickness.
[0031]
In such a semiconductor light emitting device, the first electrode 6 and the second electrode 7 are arranged so that one electrode surrounds the other electrode when viewed from the stacking direction, so that the gap between the first electrode 6 and the second electrode 7 is established. Since it is possible to prevent the electric field from concentrating on a specific place to be connected, the electrostatic resistance is improved, and the current flowing through the active layer between the first electrode 6 and the second electrode 7 can be diffused over a wide range. Therefore, the current in the active layer 3 can be uniformly distributed, the light emission in the active layer 3 is uniformly expanded, and the light emission area is increased, thereby extracting light from the inside of the element to the outside of the element. Efficiency is improved and emission intensity is improved.
[0032]
Next, an embodiment in which a translucent insulating layer 8 is provided in the semiconductor light emitting device in the third embodiment will be described as a fourth embodiment of the present invention with reference to FIG. FIG. 7 is a schematic cross-sectional view taken along the line CC (see FIG. 5) showing the semiconductor light emitting device according to the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same location as 3rd Embodiment, and description of a common part is abbreviate | omitted. A top view showing the semiconductor light emitting element is the same as FIG.
[0033]
First, in the fourth embodiment, as shown in FIG. 7, the semiconductor light emitting element is an interface with the active layer 3 in the second conductivity type contact layer 4, and the back surface of the second electrode 7 as viewed from the stacking direction. The insulating film which is the translucent insulating layer 8 is provided on the entire surface corresponding to the above.
[0034]
Here, the insulating layer 8 has translucency such as SiO 2 and SiN, and the thickness thereof is thinner than the thickness of the second conductivity type contact layer 4 and does not impair the translucency. Any desired thickness may be used.
[0035]
In such a semiconductor light emitting device, a translucent insulating layer 8 is provided at a location corresponding to the back surface of the second electrode 7 as viewed from the stacking direction, which is an interface with the active layer 3 in the second conductivity type contact layer 4. This prevents current from flowing through the active layer 3 in the region immediately below the second electrode 7, eliminates light emission directly below the second electrode 7 that is blocked by the second electrode 7, and By preventing the current from concentrating on the active layer 3 in the region immediately below, the current flowing through the active layer 3 between the first electrode 6 and the second electrode 7 can be diffused. 3 can be uniformly distributed, the light emission within the active layer 3 is uniformly expanded, and the light emission area is increased, thereby improving the light extraction efficiency from the inside of the device to the outside of the device. , The emission intensity is improved.
[0036]
In the fourth embodiment, the insulating layer 8 is provided at the interface with the active layer in the second conductivity type contact layer 4. However, in the semiconductor light emitting device, the active layer 3 in the first conductivity type contact layer 2 is provided. An insulating film, which is a light-transmitting insulating layer (not shown), may be formed at a position corresponding to the back surface of the first electrode 6 when viewed from the stacking direction at the interface. Also in this case, by providing a translucent insulating layer at a position corresponding to the back surface of the first electrode 6 as viewed from the stacking direction, which is an interface with the active layer 3 in the first conductivity type contact layer 2, The current is prevented from flowing through the active layer 3 in the region immediately below the first electrode 6, the light emission immediately below the first electrode 6 blocked by the first electrode 6 is eliminated, and the activity in the region immediately below the first electrode 6 is activated. By preventing the current from concentrating on the layer 3, the current flowing through the active layer between the first electrode 6 and the second electrode 7 can be diffused. The light can be uniformly distributed, the light emission in the active layer 3 is uniformly expanded, and the light emission area is increased, so that the light extraction efficiency from the inside of the device to the outside of the device is improved, and the light emission intensity is improved. .
[0037]
Here, in the first to fourth embodiments, the first conductivity type contact layer 2 and the second conductivity type contact layer 4 use a GaN substrate as a translucent substrate, but even if it is SiC. Good. By using GaN or SiC for the first conductivity type contact layer 2 and the second conductivity type contact layer 4, the light extraction efficiency from the inside of the device to the outside of the device is improved, and the emission intensity is improved.
[0038]
【The invention's effect】
As described above, in the semiconductor light emitting device according to the first aspect of the present invention, the first conductive contact layer having translucency, the active layer as the light emitting layer, and the second conductive having translucency. The first conductive contact layer and the second conductive contact layer are semiconductor light emitting devices each having a first electrode and a second electrode on the surface, respectively. The surface of the first conductivity type contact layer is provided with a conductive first thin film having translucency in addition to at least the portion where the first electrode is provided, and the surface of the second conductivity type contact layer is provided with at least the second electrode. In addition to the spot, the light-transmitting conductive second thin film is provided, and the first thin film and the second thin film have light-transmitting properties, but are conductive, and thus are generated in the active layer. Efficiently captures light that is not blocked by the first and second electrodes In addition, the current in the active layer can be uniformly distributed, the light emission in the active layer can be uniformly expanded, and the light emission area can be increased to increase the light emission area from the inside of the device to the outside of the device. The light extraction efficiency is improved, and the light emission intensity is improved.
[0039]
In addition, the first electrode and the second electrode have a comb-tooth shape, and each electrode has a pattern that meshes with each other, and the electrodes are arranged so that they do not overlap each other when viewed from the stacking direction. Since the operating voltage at which light emission starts can be lowered by making the resistance low and equal, and the current density flowing in the active layer can be made almost constant in the entire region, the resistance in the active layer between the first electrode and the second electrode can be reduced. The current flowing through the active layer can be prevented from being concentrated locally, the current in the active layer can be distributed uniformly, the light emission in the active layer can be uniformly expanded, and the light emission area can be increased. As a result, the light extraction efficiency from the inside of the device to the outside of the device is improved, and the light emission intensity is improved.
[0041]
In the semiconductor light emitting device of the invention according to claim 2 , in addition to the effect of the invention of claim 1, the region of the first conductivity type contact layer provided with the first electrode and the second electrode are provided. Since the regions of the second conductivity type contact layer provided are opposed to each other so that they do not overlap each other when viewed from the stacking direction, the current flowing through the active layer between the first electrode and the second electrode it is possible to diffuse efficiently, current is concentrated in a particular region of the active layer, can be relaxed and Turkey to heating the active layer during operation, since lowered the operating temperature of the device, the reliability of the device With the improvement, the current in the active layer can be distributed uniformly, the light emission in the active layer is uniformly expanded and the light emission area is increased, and further, the light from the inside of the device to the outside of the device can be increased. The effect of improving the extraction efficiency and the emission intensity Unlikely to.
[0043]
Further, in the semiconductor light emitting device of the invention according to claim 3 , in addition to the effect of the invention of claim 1 or 2 , the first conductivity type contact layer is an interface with the active layer and By providing a translucent insulating layer in a region corresponding to the back side in the stacking direction of one electrode, current is prevented from flowing in the active layer in a region immediately below the first electrode, and is blocked by the first electrode. By eliminating light emission immediately below the first electrode and preventing current from concentrating on the active layer in the region immediately below the first electrode, the current flows through the active layer between the first electrode and the second electrode. Since the current can be diffused, the current in the active layer can be evenly distributed, and the light emission in the active layer can be uniformly expanded and the light emission area can be increased. The light extraction efficiency to the outside of the device is improved and the emission intensity is improved. The effect say.
[0044]
Further, in the semiconductor light emitting device of the invention according to claim 4 , in addition to the effect of the invention of claim 1 or 2 , the second conductivity type contact layer is an interface with the active layer and By providing a translucent insulating layer in a region corresponding to the back side in the stacking direction of the two electrodes, current is prevented from flowing through the active layer in the region immediately below the second electrode and is blocked by the second electrode. Light emission directly under the second electrode can be eliminated and the current flowing through the active layer between the first electrode and the second electrode can be diffused, so that the current in the active layer can be uniformly distributed. In addition, by uniformly expanding the light emission in the active layer and increasing the light emission area, the light extraction efficiency from the inside of the device to the outside of the device is further improved, and the light emission intensity is improved.
[Brief description of the drawings]
FIG. 1 is a top view showing a semiconductor light emitting element according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing the semiconductor light emitting element according to the first embodiment of the present invention.
FIG. 3 is a top view showing a semiconductor light emitting device according to a second embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing a semiconductor light emitting element according to a second embodiment of the present invention.
FIG. 5 is a top view showing a semiconductor light emitting device according to a third embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view showing a semiconductor light emitting element according to a third embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view showing a semiconductor light emitting element according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st thin film 2 1st conductivity type contact layer 3 Active layer 4 2nd conductivity type contact layer 5 2nd thin film 6 1st electrode 7 2nd electrode 8 Insulating layer

Claims (4)

透光性を有する第1導電型コンタクト層と、発光層である活性層と、透光性を有する第2導電型コンタクト層とを順次積層して備えてなり、
前記第1導電型コンタクト層及び前記第2導電型コンタクト層は、各々第1電極及び第2電極を表面に備えてなる半導体発光素子であって、
前記第1導電型コンタクト層の表面は、少なくとも前記第1電極を設けた箇所以外に、透光性を有する導電性の第1薄膜を備え、
前記第2導電型コンタクト層の表面は、少なくとも前記第2電極を設けた箇所以外に、透光性を有する導電性の第2薄膜を備え、
前記第1電極及び前記第2電極は、くし歯形状であり、各電極がお互いに歯合するパターンを備え、各電極が積層方向から見てお互い重ならないように配置されたことを特徴とする半導体発光素子。
A first conductive contact layer having translucency, an active layer which is a light emitting layer, and a second conductive contact layer having translucency are sequentially stacked;
The first conductivity type contact layer and the second conductivity type contact layer are semiconductor light emitting devices each having a first electrode and a second electrode on the surface, respectively.
The surface of the first conductivity type contact layer includes a conductive first thin film having translucency in addition to at least the portion where the first electrode is provided,
The surface of the second conductivity type contact layer includes a conductive second thin film having translucency in addition to at least the portion where the second electrode is provided,
The first electrode and the second electrode have a comb-tooth shape, and each electrode has a pattern of meshing with each other, and the electrodes are arranged so as not to overlap each other when viewed from the stacking direction. Semiconductor light emitting device.
前記第1導電型コンタクト層の表面における前記第1電極が設けられた領域と、前記第2導電型コンタクト層の表面における前記第2電極が設けられた領域とは、各領域が積層方向から見てお互い重ならないように対向した請求項1に記載の半導体発光素子。 The region where the first electrode is provided on the surface of the first conductivity type contact layer and the region where the second electrode is provided on the surface of the second conductivity type contact layer are each viewed from the stacking direction. The semiconductor light emitting device according to claim 1, which is opposed so as not to overlap each other. 前記第1導電型コンタクト層は、前記活性層との界面であり前記第1電極の積層方向裏面側に相当する領域に透光性の絶縁層を備えた請求項1又は請求項2に記載の半導体発光素子。The first conductive-type contact layer is the interface between the active layer according to claim 1 or claim 2 comprising a light-transmitting insulating layer in a region corresponding to the stacking direction back side of the first electrode Semiconductor light emitting device. 前記第2導電型コンタクト層は、前記活性層との界面であり前記第2電極の積層方向裏面側に相当する領域に透光性の絶縁層を備えた請求項1又は請求項2に記載の半導体発光素子。The second conductive-type contact layer is the interface between the active layer according to claim 1 or claim 2 comprising a light-transmitting insulating layer in a region corresponding to the stacking direction rear side of the second electrode Semiconductor light emitting device.
JP2002333797A 2002-11-18 2002-11-18 Semiconductor light emitting device Expired - Fee Related JP4310998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333797A JP4310998B2 (en) 2002-11-18 2002-11-18 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333797A JP4310998B2 (en) 2002-11-18 2002-11-18 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004172217A JP2004172217A (en) 2004-06-17
JP4310998B2 true JP4310998B2 (en) 2009-08-12

Family

ID=32698412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333797A Expired - Fee Related JP4310998B2 (en) 2002-11-18 2002-11-18 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4310998B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388515C (en) * 2005-09-30 2008-05-14 晶能光电(江西)有限公司 Semiconductor light emitting device and manufacturing method for the same
CN100438108C (en) * 2006-06-15 2008-11-26 厦门大学 P.N electrode of tree leaf vein-shaped high power gallium nitride LED chip
JP4583487B2 (en) * 2009-02-10 2010-11-17 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
JP4871967B2 (en) 2009-02-10 2012-02-08 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2012033800A (en) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd Semiconductor light-emitting device
TWI452730B (en) * 2010-09-14 2014-09-11 Formosa Epitaxy Inc Light emitting diode
JP5741164B2 (en) * 2011-04-12 2015-07-01 日亜化学工業株式会社 Light emitting element
JP2012142630A (en) * 2012-04-27 2012-07-26 Hitachi Cable Ltd Light-emitting device

Also Published As

Publication number Publication date
JP2004172217A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US6380564B1 (en) Semiconductor light emitting device
TW571448B (en) Light-emitting diode array
JP2009510730A (en) Semiconductor light emitting device and manufacturing method thereof
KR101763072B1 (en) LED Device For Enhancing Light Extraction Efficiency And Current Injection Efficiency
JP2000174339A (en) GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND GaN- BASED SEMICONDUCTOR PHOTODETECTING ELEMENT
CN108346726B (en) Light emitting diode element
US8829558B2 (en) Semiconductor light-emitting device
KR101179606B1 (en) Semiconductor light emitting device
TWI343659B (en)
JP4310998B2 (en) Semiconductor light emitting device
JP2019531606A (en) Optoelectronic semiconductor chip and method of manufacturing optoelectronic semiconductor chip
JP5165254B2 (en) Flip chip type light emitting device
KR20080005314A (en) Radiation emitting semi-conductor element
JP2004311677A (en) Semiconductor light emitting device
JP3556080B2 (en) Nitride semiconductor device
JP3934730B2 (en) Semiconductor light emitting device
KR101916369B1 (en) Light emitting diode
JP2000049376A (en) Light emitting element
JP2004221112A (en) Oxide semiconductor light emitting element
CN110034219B (en) Light emitting diode and method of manufacturing the same
KR101160599B1 (en) Semiconductor light emitting device
JP2005347493A (en) Semiconductor light emitting element
JP3674613B2 (en) Semiconductor light emitting device
JP3906736B2 (en) Nitride semiconductor device
KR101643688B1 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees