【0001】
【発明の属する技術分野】
本発明は、半導体発光素子に関し、特に発光層に電圧印加するための電極をそれぞれ支持基板の同一面側において形成した構造を有する半導体発光素子に関するものである。
【0002】
【従来の技術】
従来の半導体発光素子としては、例えば、図5に示すように、支持基板1であるサファイア基板の上に、バッファ層2であるAlNと、n型窒化ガリウム系化合物半導体からなるn層3と、発光層であり活性層である低キャリア濃度n層4であるn−GaNと、p型窒化ガリウム系化合物半導体からなるp層5と、p層5の上面からn層3に至るまで形成された溝50と、p層5の上面からn層3に至るまで形成された孔60と、孔60にn層3と接合しp層5の上面にまで形成された第1電極7と、p層5の上面に溝50によって第1電極7と電気的に絶縁分離されるように形成された第2電極8とを備えたものを挙げることができる(特許文献1参照。)。
【0003】
上述の半導体発光素子は、溝50により第1電極7と第2電極8との電気的な絶縁分離を実現しているので、半導体発光素子を順方向バイアスにする、つまり、第2電極8をプラス電圧にし第1電極7をマイナス電圧に印加することにより、第2電極8から第1電極7に向かって電流が流れ、p層5とn層3の界面に位置する低キャリア濃度n層4にてホールと電子が結合し発光する。
【0004】
【特許文献1】
特許第2696095号公報
【0005】
【発明が解決しようとする課題】
上述のような半導体発光素子においては、前述の溝により第1電極と第2電極との間の電気的な絶縁分離を実現されているため、溝を形成する分だけ、半導体発光素子全体に占める活性層の面積が制約を受けてしまい、単位電力あたりの発光効率が低下するという問題点があった。
【0006】
本発明は上記問題点を改善するためになされたものであり、単位電力あたりの発光効率が向上するような半導体発光素子を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明の請求項1に係る半導体発光素子は、支持基板と、第1導電型半導体層と、発光層である活性層と、第2導電型半導体層とを順次積層して備えた半導体発光素子であって、前記第2導電型半導体層より前記活性層を貫通し前記第1導電型半導体層に至る溝部を備え、該溝部に第1電極を設け、前記第2導電型半導体層に第2電極を設けるとともに、少なくとも、前記第1電極と前記第2電極との対向面に絶縁部を設けている。
【0008】
このような構成の半導体発光素子は、少なくとも前記第1電極と前記第2電極との対向面に前記絶縁部を設けることで、半導体発光素子全体に占める前記活性層の面積割合を大きくすることができ、単位電力あたりの発光効率が向上する。
【0009】
また、本発明の請求項2に係る半導体発光素子は、請求項1に記載の半導体発光素子において、少なくとも前記溝部の側面を覆うように設けている。
【0010】
このような構成の半導体発光素子は、少なくとも前記溝部の側面を覆うことで、前記第2電極から前記第1電極に向けて流れる漏れ電流の経路となりうる前記溝部の側面、つまり、前記溝部の前記活性層側及び前記第2導電型半導体層側に対して少なくとも前記絶縁部を形成して、漏れ電流の影響を取り除くことで、更に単位電力あたりの発光効率が向上する。
【0011】
また、本発明の請求項3に係る半導体発光素子は、請求項1又は請求項2に記載の半導体発光素子において、前記溝部が平面視においてクシ歯状である。
【0012】
このような構成の半導体発光素子は、溝部が平面視においてクシ歯状に形成することで、発光に寄与する活性層を流れる電流の均一化がされるので、更に単位電力あたりの発光効率が向上する。
【0013】
また、本発明の請求項4に係る半導体発光素子は、請求項1乃至請求項3のいずれかに記載の半導体発光素子において、前記第1電極及び前記第2電極を構成する材料が透光性を有する。
【0014】
このような構成の半導体発光素子は、第1電極及び第2電極を構成する材料が透光性を有することで、活性層より生じる光を半導体発光素子表面(上面)からも取り出せるようになるので、更に単位電力あたりの発光効率が向上する。
【0015】
また、本発明の請求項5に係る半導体発光素子は、請求項4に記載の半導体発光素子において、前記絶縁部は、表面に凹凸部を備えている。
【0016】
このような構成の半導体発光素子は、絶縁部が表面に凹凸部を備えることで、絶縁部の表面で全反射する光量が低減できるため、半導体発光素子表面(上面)からの光の取り出し効率が更に向上する。
【0017】
【発明の実施の形態】
本発明の第1実施形態を図1、図2に基づいて説明する。図1は、本発明の第1実施形態に係る半導体発光素子を示す概略断面図であり、図2は、第1実施形態に係る半導体発光素子の変形例を示す概略断面図である。
【0018】
第1実施形態においては、半導体発光素子は、図1に示すように、支持基板1と、バッファ層2と、第1導電型半導体である第1導電型クラッド層3と、第1導電型クラッド層3と後述の第2導電型クラッド層5とに挟まれた発光半導体層であり低キャリア濃度n層である活性層4と、第2導電型半導体である第2導電型クラッド層5とが順次積層された構成であり、第2導電型クラッド層5より活性層4を貫通し第1導電型クラッド層3に至る溝部6と、Alで形成された第1電極7と、Alで形成された第2電極8と、絶縁部9とを備えた構成である。
【0019】
なお、半導体発光素子の上下方向は、実際の使用状態での方位性に依存するため一義的に規定できないが、第1実施形態の記述では説明の便宜上、図1、図2に示すように、支持基板1の配置側を下(下面)側、第2導電型クラッド層5の配置側を上(上面)側というように上下方向を規定するものとする。
【0020】
ここで、第2電極8は、第2導電型クラッド層5の上面に接続されるように形成され、第2電極8の上面及び第2電極8の溝部6側の側面には、絶縁部9を備えている。つまり、第1実施形態においては、絶縁部9は、第1電極7と第2電極8とが直接的に面する対向面に形成されている。
【0021】
また、第1電極7は、溝部6に対して、第1導電型クラッド層3の表面が露出した露出領域に接続され、この露出領域から第2電極8の側面に設けた絶縁部9、第2電極8の上面の一部にわたり形成されている。なお、絶縁部9は、第1電極7と第2電極8との間の電気的な絶縁分離を行うために、第1電極7と第2電極8との間に少なくとも設けられていればよい。
【0022】
ここで、支持基板1は、例えば絶縁性のサファイア基板であり、第1導電型クラッド層3は、例えばn型AlGaNのようなn型GaNよりなる高キャリア濃度n+層であり、活性層4は、例えばn型InGaNのような3族窒化物半導体を用いて形成されたものである。また、第2導電型クラッド層5は、例えばp型AlGaNのようなp型GaNよりなる高キャリア濃度n+層であり、絶縁部9は、例えば絶縁膜であり、その材料は例えば、透明性を有しているSiO2を用いる。なお、絶縁部9は、絶縁性を備えており、更に好ましくは透明性を有するものがであればよい。
【0023】
また、バッファ層2は支持基板1と第1導電型クラッド層3との格子不整合を緩和するために設けられるもので、例えばAlN、GaN、AlGaNにより形成される。なお、活性層4をn型InGaNで形成する場合には、活性層4の発光色は、Inの組成比を適宜調整したり、あるいはSi、Ge、S等のn型不純物やZn、Mg等のp型不純物を適宜ドープすることにより、紫外〜赤色の範囲で所望の色に調節可能である。
【0024】
なお、第1導電型クラッド層3の露出領域は、例えば第1導電型クラッド層3の全面に活性層4及び第2導電型クラッド層5を積層形成した後、活性層4及び第2導電型クラッド層5のうち露出領域相当箇所上部に積層されている部分を第1導電型クラッド層3が露出するまでエッチング除去することで形成することができる。なお、溝部6は、この第1導電型クラッド層3の露出領域を含み、活性層4、第2導電型クラッド層5のエッチング除去された箇所で構成されている。
【0025】
第2電極8は、第2導電型クラッド層5の上に、後に第2電極8の側面に設ける絶縁部9相当箇所を考慮し、溝部6を取り囲むように形成される。そして、第2電極8の上面及び第2電極8の溝部6側の側面には、絶縁部9が形成される。
【0026】
その後、第1導電型クラッド層3の露出領域から活性層4、第2導電型クラッド層5、第2電極8の溝部6側の側面に設けた絶縁部9、第2電極8の上面に設けた絶縁部9の一部にわたって、第1導電型クラッド層3に接続した第1電極7が形成される。
【0027】
第1電極7及び第2電極8は、例えば所定のマスクを用いて形成することができるもので、両電極の材料としてはAlの他に、例えばNi、Au、Ti等の金属を使用することができる。
【0028】
なお、第1実施形態においても、半導体発光素子は、順方向バイアス、すなわちp型である第2導電型クラッド層5に形成した第2電極8にプラス電圧にし、第1電極7をマイナス電圧に印加することにより、活性層4にてホールと電子が結合し発光する。
【0029】
かかる半導体発光素子においては、少なくとも、第1電極7と第2電極8との対向面に絶縁部9を設けることで、従来のように、第1電極7と第2電極8とを電気的に絶縁分離するための溝を形成する必要はなくなるので、半導体発光素子全体に占める活性層4の面積割合を大きくすることができ、単位電力あたりの発光効率が向上する。
【0030】
ここで、第1実施形態における変形例として、第1電極7及び第2電極8の材料として、透光性を有する透明電極を用いてもよい。透明電極の材料としては、例えば、In2O3とSnO2の複合化合物であるITOや、Cd2SnO4を用いることができる。
【0031】
この場合、第1の電極7及び第2電極8に透明電極を用いることで、活性層4より生じる光を半導体発光素子表面(上面)からも取り出せるようにすることで、更に単位電力あたりの発光効率が向上する。また、半導体発光素子の両面、つまり、表面(上面)と裏面(下面)から光の取り出しが可能なフリップチップ実装との組み合わせにおいては、単位電力あたりの発光効率が向上する。
【0032】
また、第1電極7及び第2電極8の材料として、透光性を有する透明電極を用いた場合に、図2に示すように、半導体発光素子の絶縁部9の表面に凹凸部91設けた構成であってもよい。なお、凹凸部91は、例えば、サンドブラスト法で形成することができる。なお、図2において、光の取り出しの様子は矢印で示している。
【0033】
この場合、絶縁部9の表面に凹凸部91設けることで、絶縁部9表面での全反射が抑制されるので、半導体発光素子表面(上面)からの光の取り出し効率が更に向上する。
【0034】
なお、第1実施形態及びその変形例においては、漏れ電流の経路となる可能性がある活性層4及び第2導電型クラッド層5は、例えば数μmレベルと非常に薄く、ハイインピーダンス状態となるため、第2電極8から第1電極7に向けて漏れ電流は、活性層4を流れる電流に比べ、ほとんどの場合において、無視できるレベルに制限される。
【0035】
次に、第1実施形態における絶縁部9の形成箇所の変形例を示した実施形態を、本発明の第2実施形態として図3に基づいて説明する。図3は、本発明の第2実施形態に係る半導体発光素子を示す概略断面図である。なお、第1実施形態との同一箇所には同一符号を付して、共通部分の説明は省略する。
【0036】
第2実施形態においては、半導体発光素子は、図3に示すように、絶縁部9が溝部6にける第1導電型クラッド層3の露出領域の一部まで拡大された構成であり、この点が、第1電極7と第2電極8とが直接的に面する対向面に絶縁部9を形成した第1実施形態の構成と異なる点である。
【0037】
第2実施形態においては、絶縁部9は、溝部6の側面及び第1導電型クラッド層3の露出領域の一部まで形成されているが、少なくとも溝部6の側面を覆うように形成されていればよい。
【0038】
かかる半導体発光素子においては、第2電極8から第1電極7に向けて流れる漏れ電流の経路となりうる溝部6の側面、つまり、溝部6の活性層4側及び第2導電型クラッド層5側に対して、少なくとも絶縁部9を形成して漏れ電流の影響を取り除くことで、単位電力あたりの発光効率が向上する。
【0039】
次に、第1実施形態における溝部6をクシ歯状に形成した実施形態を、本発明の第3実施形態として図4に基づいて説明する。図4は、本発明の第3実施形態に係る半導体発光素子を示す平面図及び概略断面図である(図4(a)は、平面図であり、図4(b)は、図4(a)のX−X断面における概略断面図であり、図4(a)においては、平面視における絶縁部9の段差部の図示は省略している)。なお、第1実施形態との同一箇所には同一符号を付して、共通部分の説明は省略する。
【0040】
第3実施形態においては、半導体発光素子は、図4に示すように、平面視において例えば5つのクシ歯状になるように各溝部6を備え、その各溝部6に第1電極7を設けた構成である。なお、各第1電極7は、第1電極7と一体形成されたAlからなるクシ芯部71により各々電気的に接続されている。
【0041】
かかる半導体発光素子においては、溝部6を平面視においてクシ歯状に形成したすることにより、発光に寄与する活性層4を流れる電流が均一化されるため、更に単位電力あたりの発光効率が向上する。
【0042】
ここで、第2実施形態における溝部6をクシ歯状に形成しても勿論よい。この場合も、同様に、活性層4を流れる電流が均一化されるため、更に単位電力あたりの発光効率が向上する。また、第2実施形態及び第3実施形態において、第1実施形態における変形例に示したように、第1電極7及び第2電極8の材料として、透光性を有する透明電極を用いてもよいし、更に絶縁部9の表面に凹凸部を設けた構成であってもよい。
【0043】
【発明の効果】
以上説明したように、本発明の請求項1に係る半導体発光素子は、第2導電型半導体層より活性層を貫通し第1導電型半導体層に至る溝部に第1電極を設け、第2導電型半導体層に第2電極を設けるとともに、少なくとも、第1電極と第2電極との対向面に絶縁部を設けることで、半導体発光素子全体に占める活性層の面積割合を大きくすることができ、単位電力あたりの発光効率が向上する。
【0044】
また、本発明の請求項2に係る半導体発光素子は、請求項1に記載の半導体発光素子の効果に加えて、第2電極から第1電極に向けて流れる漏れ電流の経路となりうる溝部の側面、つまり、溝部の活性層側及び第2導電型半導体層側に対して少なくとも絶縁部を形成して、漏れ電流の影響を取り除くことで、更に単位電力あたりの発光効率が向上する。
【0045】
また、本発明の請求項3に係る半導体発光素子は、請求項1又は請求項2に記載の半導体発光素子の効果に加えて、溝部が平面視においてクシ歯状であることで、発光に寄与する活性層を流れる電流の均一化がされるので、更に単位電力あたりの発光効率が向上する。
【0046】
また、本発明の請求項4に係る半導体発光素子は、請求項1乃至請求項3のいずれかに記載の半導体発光素子の効果に加えて、第1電極及び第2電極を構成する材料が透光性を有することで、活性層より生じる光を半導体発光素子表面(上面)からも取り出せるようになるので、更に単位電力あたりの発光効率が向上する。また、半導体発光素子の両面、つまり、表面(上面)と裏面(下面)から光の取り出しが可能なフリップチップ実装との組み合わせにおいては、単位電力あたりの発光効率が向上する。
【0047】
また、本発明の請求項5に係る半導体発光素子は、請求項4に記載の半導体発光素子の効果に加えて、絶縁部は、表面に凹凸部を備えることで、絶縁部の表面で全反射する光量が低減できるため、半導体発光素子表面(上面)からの光の取り出し効率が更に向上する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る半導体発光素子を示す概略断面図である。
【図2】本発明の第1実施形態に係る半導体発光素子の変形例を示す概略断面図である。
【図3】本発明の第2実施形態に係る半導体発光素子を示す概略断面図である。
【図4】本発明の第3実施形態に係る半導体発光素子を示す平面図及び概略断面図である。
【図5】従来例に係る半導体発光素子を示す概略断面図である。
【符号の説明】
1 支持基板
2 バッファ層
3 第1導電型クラッド層
4 活性層
5 第2導電型クラッド層
6 溝部
7 第1電極
8 第2電極
9 絶縁部
91 凹凸部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device having a structure in which electrodes for applying a voltage to a light emitting layer are formed on the same surface side of a support substrate.
[0002]
[Prior art]
As a conventional semiconductor light emitting device, for example, as shown in FIG. 5, on a sapphire substrate as a support substrate 1, AlN as a buffer layer 2, an n layer 3 made of an n-type gallium nitride-based compound semiconductor, N-GaN, which is a low carrier concentration n-layer 4 which is a light-emitting layer and an active layer, a p-layer 5 made of a p-type gallium nitride-based compound semiconductor, and formed from the upper surface of the p-layer 5 to the n-layer 3 A groove 50, a hole 60 formed from the upper surface of the p-layer 5 to the n-layer 3, a first electrode 7 joined to the n-layer 3 in the hole 60 and formed up to the upper surface of the p-layer 5, 5 having a second electrode 8 formed on the upper surface of the first electrode 7 so as to be electrically insulated and separated from the first electrode 7 by a groove 50 (see Patent Document 1).
[0003]
In the above-described semiconductor light emitting device, since the first electrode 7 and the second electrode 8 are electrically insulated and separated by the groove 50, the semiconductor light emitting device is forward biased, that is, the second electrode 8 is By applying a positive voltage to the first electrode 7 and applying a negative voltage, a current flows from the second electrode 8 toward the first electrode 7, and the low carrier concentration n layer 4 located at the interface between the p layer 5 and the n layer 3 The holes and electrons combine to emit light.
[0004]
[Patent Document 1]
Japanese Patent No. 2696095
[Problems to be solved by the invention]
In the above-described semiconductor light emitting device, since the above-described groove realizes electrical insulation separation between the first electrode and the second electrode, the semiconductor light emitting device occupies the entire semiconductor light emitting device by the amount of the groove. There is a problem that the area of the active layer is restricted and the luminous efficiency per unit power is reduced.
[0006]
The present invention has been made to solve the above problems, and has as its object to provide a semiconductor light emitting device having improved luminous efficiency per unit power.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor light emitting device according to claim 1 of the present invention includes a supporting substrate, a first conductivity type semiconductor layer, an active layer that is a light emitting layer, and a second conductivity type semiconductor layer. A semiconductor light emitting device provided by sequentially laminating the semiconductor light emitting device, comprising a groove extending from the second conductivity type semiconductor layer to the first conductivity type semiconductor layer through the active layer, wherein a first electrode is provided in the groove, A second electrode is provided on the second conductivity type semiconductor layer, and an insulating part is provided at least on a surface facing the first electrode and the second electrode.
[0008]
In the semiconductor light emitting device having such a configuration, the area ratio of the active layer to the entire semiconductor light emitting device can be increased by providing the insulating portion on at least the surface facing the first electrode and the second electrode. As a result, the luminous efficiency per unit power is improved.
[0009]
According to a second aspect of the present invention, in the semiconductor light emitting device according to the first aspect, at least a side surface of the groove is provided.
[0010]
The semiconductor light emitting element having such a configuration, by covering at least the side surface of the groove, the side surface of the groove that can be a path of a leakage current flowing from the second electrode toward the first electrode, that is, the side surface of the groove. By forming at least the insulating portion on the active layer side and the second conductivity type semiconductor layer side to remove the influence of leakage current, the luminous efficiency per unit power is further improved.
[0011]
According to a third aspect of the present invention, in the semiconductor light emitting device according to the first or second aspect, the groove has a comb shape in a plan view.
[0012]
In the semiconductor light emitting device having such a configuration, the current flowing in the active layer contributing to light emission is made uniform by forming the grooves in a comb shape in a plan view, so that the light emission efficiency per unit power is further improved. I do.
[0013]
According to a fourth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to third aspects, the material forming the first electrode and the second electrode is translucent. Having.
[0014]
In the semiconductor light emitting device having such a configuration, since the material forming the first electrode and the second electrode has a light transmitting property, light generated from the active layer can be extracted from the surface (upper surface) of the semiconductor light emitting device. Further, the luminous efficiency per unit power is improved.
[0015]
According to a fifth aspect of the present invention, in the semiconductor light emitting device according to the fourth aspect, the insulating portion has an uneven portion on a surface.
[0016]
In the semiconductor light emitting device having such a configuration, since the amount of light totally reflected on the surface of the insulating portion can be reduced by providing the insulating portion with the unevenness on the surface, the light extraction efficiency from the surface (upper surface) of the semiconductor light emitting device is improved. Further improve.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic sectional view showing a semiconductor light emitting device according to the first embodiment of the present invention, and FIG. 2 is a schematic sectional view showing a modification of the semiconductor light emitting device according to the first embodiment.
[0018]
In the first embodiment, as shown in FIG. 1, the semiconductor light emitting device includes a support substrate 1, a buffer layer 2, a first conductive type clad layer 3 which is a first conductive type semiconductor, and a first conductive type clad layer. An active layer 4 which is a light emitting semiconductor layer and a low carrier concentration n layer sandwiched between the layer 3 and a second conductive type clad layer 5 described later, and a second conductive type clad layer 5 which is a second conductive type semiconductor. It has a structure in which the second conductive type clad layer 5 penetrates the active layer 4 and reaches the first conductive type clad layer 3, a first electrode 7 formed of Al, and a layer formed of Al. And a second electrode 8 and an insulating part 9.
[0019]
Note that the vertical direction of the semiconductor light emitting element cannot be uniquely defined because it depends on the azimuth in an actual use state. However, in the description of the first embodiment, for convenience of explanation, as shown in FIGS. The vertical direction is defined such that the side on which the support substrate 1 is disposed is a lower (lower) side, and the side on which the second conductive type clad layer 5 is disposed is an upper (upper) side.
[0020]
Here, the second electrode 8 is formed so as to be connected to the upper surface of the second conductivity type clad layer 5, and the insulating portion 9 is provided on the upper surface of the second electrode 8 and the side surface of the second electrode 8 on the groove 6 side. It has. That is, in the first embodiment, the insulating portion 9 is formed on the facing surface where the first electrode 7 and the second electrode 8 directly face.
[0021]
In addition, the first electrode 7 is connected to the exposed region where the surface of the first conductivity type clad layer 3 is exposed, and the insulating portion 9 provided on the side surface of the second electrode 8 from the exposed region, It is formed over a part of the upper surface of the two electrodes 8. Note that the insulating portion 9 only needs to be provided at least between the first electrode 7 and the second electrode 8 in order to electrically isolate the first electrode 7 from the second electrode 8. .
[0022]
Here, the support substrate 1 is, for example, an insulating sapphire substrate, the first conductivity type cladding layer 3 is a high carrier concentration n + layer made of n-type GaN such as n-type AlGaN, and the active layer 4 is , For example, formed using a group III nitride semiconductor such as n-type InGaN. Further, the second conductivity type cladding layer 5 is a high carrier concentration n + layer made of p-type GaN such as p-type AlGaN, and the insulating part 9 is an insulating film, for example. Use the existing SiO 2 . The insulating portion 9 has an insulating property, and more preferably has transparency.
[0023]
The buffer layer 2 is provided to alleviate lattice mismatch between the support substrate 1 and the first conductivity type cladding layer 3, and is formed of, for example, AlN, GaN, or AlGaN. When the active layer 4 is formed of n-type InGaN, the emission color of the active layer 4 may be adjusted by appropriately adjusting the composition ratio of In, or by n-type impurities such as Si, Ge, and S, Zn, Mg, and the like. Can be adjusted to a desired color in the range from ultraviolet to red by appropriately doping the p-type impurity.
[0024]
The exposed region of the first conductivity type clad layer 3 is formed by, for example, forming an active layer 4 and a second conductivity type clad layer 5 on the entire surface of the first conductivity type clad layer 3 and then forming the active layer 4 and the second conductivity type. It can be formed by etching and removing the portion of the clad layer 5 that is stacked above the portion corresponding to the exposed region until the first conductivity type clad layer 3 is exposed. The groove 6 includes the exposed region of the first conductivity type cladding layer 3 and is formed at a location where the active layer 4 and the second conductivity type cladding layer 5 are etched away.
[0025]
The second electrode 8 is formed on the second conductivity type cladding layer 5 so as to surround the groove 6 in consideration of a portion corresponding to the insulating portion 9 provided on the side surface of the second electrode 8 later. An insulating portion 9 is formed on the upper surface of the second electrode 8 and on the side surface of the second electrode 8 on the side of the groove 6.
[0026]
Thereafter, the active layer 4, the second conductive type clad layer 5, the insulating portion 9 provided on the side surface of the second electrode 8 on the groove portion 6 side, and the upper surface of the second electrode 8 are provided from the exposed region of the first conductive type clad layer 3. The first electrode 7 connected to the first conductivity type clad layer 3 is formed over a part of the insulating portion 9.
[0027]
The first electrode 7 and the second electrode 8 can be formed using, for example, a predetermined mask. As a material for both electrodes, for example, a metal such as Ni, Au, Ti, or the like is used in addition to Al. Can be.
[0028]
In the first embodiment as well, the semiconductor light emitting device has a forward bias, that is, a positive voltage is applied to the second electrode 8 formed on the p-type second conductive clad layer 5, and a negative voltage is applied to the first electrode 7. By the application, holes and electrons are combined in the active layer 4 to emit light.
[0029]
In such a semiconductor light emitting device, the insulating portion 9 is provided at least on the opposing surface of the first electrode 7 and the second electrode 8 so that the first electrode 7 and the second electrode 8 are electrically connected as in the related art. Since it is not necessary to form a groove for insulating and separating, the area ratio of the active layer 4 to the entire semiconductor light emitting device can be increased, and the luminous efficiency per unit power can be improved.
[0030]
Here, as a modification of the first embodiment, a transparent electrode having a light-transmitting property may be used as a material of the first electrode 7 and the second electrode 8. As a material of the transparent electrode, for example, ITO, which is a composite compound of In 2 O 3 and SnO 2 , and Cd 2 SnO 4 can be used.
[0031]
In this case, by using transparent electrodes for the first electrode 7 and the second electrode 8, light generated from the active layer 4 can be extracted also from the surface (upper surface) of the semiconductor light emitting element, thereby further emitting light per unit power. Efficiency is improved. Further, in a combination of flip-chip mounting in which light can be extracted from both surfaces of the semiconductor light emitting element, that is, the front surface (upper surface) and the back surface (lower surface), the luminous efficiency per unit power is improved.
[0032]
When a transparent electrode having a light-transmitting property is used as a material of the first electrode 7 and the second electrode 8, as shown in FIG. 2, an uneven portion 91 is provided on the surface of the insulating portion 9 of the semiconductor light emitting element. It may be a configuration. Note that the uneven portion 91 can be formed by, for example, a sandblast method. In FIG. 2, the state of light extraction is indicated by arrows.
[0033]
In this case, by providing the uneven portion 91 on the surface of the insulating portion 9, total reflection on the surface of the insulating portion 9 is suppressed, so that the light extraction efficiency from the surface (upper surface) of the semiconductor light emitting element is further improved.
[0034]
In the first embodiment and its modified example, the active layer 4 and the second conductivity type clad layer 5 which may become leakage current paths are extremely thin, for example, at a level of several μm, and are in a high impedance state. Therefore, the leakage current from the second electrode 8 to the first electrode 7 is limited to a negligible level in most cases as compared with the current flowing through the active layer 4.
[0035]
Next, an embodiment showing a modification of the formation portion of the insulating section 9 in the first embodiment will be described as a second embodiment of the present invention with reference to FIG. FIG. 3 is a schematic sectional view showing a semiconductor light emitting device according to the second embodiment of the present invention. The same portions as those in the first embodiment are denoted by the same reference numerals, and description of common portions is omitted.
[0036]
In the second embodiment, as shown in FIG. 3, the semiconductor light emitting device has a configuration in which the insulating portion 9 is enlarged to a part of the exposed region of the first conductivity type cladding layer 3 in the groove 6. However, this is different from the configuration of the first embodiment in which the insulating portion 9 is formed on the facing surface where the first electrode 7 and the second electrode 8 face directly.
[0037]
In the second embodiment, the insulating portion 9 is formed up to the side surface of the groove 6 and a part of the exposed region of the first conductivity type cladding layer 3. However, the insulating portion 9 is formed so as to cover at least the side surface of the groove 6. Just fine.
[0038]
In such a semiconductor light emitting device, a side surface of the groove 6 that can be a path of a leakage current flowing from the second electrode 8 toward the first electrode 7, that is, on the active layer 4 side and the second conductivity type clad layer 5 side of the groove 6. On the other hand, by forming at least the insulating portion 9 and removing the influence of the leakage current, the luminous efficiency per unit power is improved.
[0039]
Next, an embodiment in which the grooves 6 in the first embodiment are formed in a comb shape will be described as a third embodiment of the present invention with reference to FIG. 4A and 4B are a plan view and a schematic cross-sectional view illustrating a semiconductor light emitting device according to a third embodiment of the present invention (FIG. 4A is a plan view, and FIG. 4) is a schematic cross-sectional view taken along line XX of FIG. 4, and in FIG. 4A, illustration of a step portion of the insulating portion 9 in a plan view is omitted.) The same portions as those in the first embodiment are denoted by the same reference numerals, and description of common portions is omitted.
[0040]
In the third embodiment, as shown in FIG. 4, the semiconductor light emitting device includes, for example, five grooves 6 in a plan view, and the first electrode 7 is provided in each groove 6. Configuration. The first electrodes 7 are electrically connected to each other by a comb core 71 made of Al integrally formed with the first electrodes 7.
[0041]
In such a semiconductor light emitting device, the current flowing through the active layer 4 contributing to light emission is made uniform by forming the groove portions 6 in a comb shape in a plan view, so that the light emission efficiency per unit power is further improved. .
[0042]
Here, the groove 6 in the second embodiment may be formed in a comb shape. Also in this case, similarly, the current flowing through the active layer 4 is made uniform, so that the luminous efficiency per unit power is further improved. Further, in the second embodiment and the third embodiment, as shown in the modification of the first embodiment, a transparent electrode having a light transmitting property may be used as the material of the first electrode 7 and the second electrode 8. Alternatively, a configuration in which an uneven portion is provided on the surface of the insulating portion 9 may be used.
[0043]
【The invention's effect】
As described above, in the semiconductor light emitting device according to claim 1 of the present invention, the first electrode is provided in the groove extending from the second conductive type semiconductor layer to the first conductive type semiconductor layer through the active layer. By providing the second electrode on the mold semiconductor layer and providing an insulating portion on at least the opposing surface of the first electrode and the second electrode, the area ratio of the active layer to the entire semiconductor light emitting element can be increased, The luminous efficiency per unit power is improved.
[0044]
According to a second aspect of the present invention, in addition to the effect of the first aspect, the side surface of the groove may be a path of a leakage current flowing from the second electrode toward the first electrode. That is, by forming at least an insulating portion on the active layer side and the second conductivity type semiconductor layer side of the trench to remove the influence of leakage current, the luminous efficiency per unit power is further improved.
[0045]
In addition, the semiconductor light emitting device according to claim 3 of the present invention contributes to light emission in addition to the effect of the semiconductor light emitting device according to claim 1 or 2, in which the grooves are comb-shaped in plan view. Since the current flowing through the active layer becomes uniform, the luminous efficiency per unit power is further improved.
[0046]
According to a fourth aspect of the present invention, in addition to the effects of the first to third aspects, the material forming the first and second electrodes is transparent. By having light properties, light generated from the active layer can be extracted also from the surface (upper surface) of the semiconductor light emitting element, so that the luminous efficiency per unit power is further improved. Further, in a combination of flip-chip mounting in which light can be extracted from both surfaces of the semiconductor light emitting element, that is, the front surface (upper surface) and the back surface (lower surface), the luminous efficiency per unit power is improved.
[0047]
According to the semiconductor light emitting device of the present invention, in addition to the effect of the semiconductor light emitting device of the fourth aspect, the insulating portion has an uneven portion on the surface, so that the surface of the insulating portion is totally reflected. Since the amount of light to be emitted can be reduced, the efficiency of extracting light from the surface (upper surface) of the semiconductor light emitting element is further improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a semiconductor light emitting device according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view showing a modification of the semiconductor light emitting device according to the first embodiment of the present invention.
FIG. 3 is a schematic sectional view showing a semiconductor light emitting device according to a second embodiment of the present invention.
FIG. 4 is a plan view and a schematic cross-sectional view illustrating a semiconductor light emitting device according to a third embodiment of the present invention.
FIG. 5 is a schematic sectional view showing a semiconductor light emitting device according to a conventional example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 support substrate 2 buffer layer 3 first conductivity type cladding layer 4 active layer 5 second conductivity type cladding layer 6 groove 7 first electrode 8 second electrode 9 insulating portion 91 uneven portion