[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4309645B2 - Flocculant injection control method and apparatus - Google Patents

Flocculant injection control method and apparatus Download PDF

Info

Publication number
JP4309645B2
JP4309645B2 JP2002364506A JP2002364506A JP4309645B2 JP 4309645 B2 JP4309645 B2 JP 4309645B2 JP 2002364506 A JP2002364506 A JP 2002364506A JP 2002364506 A JP2002364506 A JP 2002364506A JP 4309645 B2 JP4309645 B2 JP 4309645B2
Authority
JP
Japan
Prior art keywords
turbidity
flocculant
injection
preset
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002364506A
Other languages
Japanese (ja)
Other versions
JP2004195304A (en
Inventor
武士 松代
潮子 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002364506A priority Critical patent/JP4309645B2/en
Publication of JP2004195304A publication Critical patent/JP2004195304A/en
Application granted granted Critical
Publication of JP4309645B2 publication Critical patent/JP4309645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浄水場において沈澱処理後のろ過池への流入水に凝集剤を注入する後凝集剤注入のための凝集剤注入制御方法及び装置に関する。
【0002】
【従来の技術】
一般に、浄水場では河川や貯水池などの水源から原水を取水し、凝集、フロック形成、沈殿、ろ過および殺菌の5つの単位プロセスによって原水を処理している。その結果、被処理水から、懸濁質とコロイド質とを除去すると共に、細菌等を無害化し、清澄な水道水として需要家に供給している。
【0003】
このような、凝集、フロック形成、沈殿、ろ過による一連の除濁処理には、凝集剤を用いる方法が一般的である。凝集剤には鉄やアルミニウム等の無機金属塩が通常用いられる。また、凝集剤は、さまざまな物理的、生物化学的な影響を受け、最適凝集条件は、多くの因子によって定まる複雑な平衡の上に成り立っている。したがって、凝集剤の注入量は、原水中の凝集成分の種類と濃度、温度、pH、共存成分、攪拌条件などの因子に影響される。最適条件においては、凝集、フロック形成は順調に行われ、生成したフロックは次の沈殿プロセスで原水中の濁度成分とともに沈澱除去され、残留した少量の微小なフロックが次のろ過プロセスで完全に除去される。
【0004】
ところで、平成8年10月に厚生省(現厚生労働省)より通達された「水道におけるクリプトスポリジウム暫定対策指針」によって、ろ過池出口の濁度を常時把握し、ろ過池出口の濁度を0.1度以下に維持することが制定され、浄水場における濁度管理が重要な課題となっている。
【0005】
しかしながら、浄水場へ流入する原水の水質によって凝集条件が厳しくなると、フロック形成が不十分となることがある。この場合、次の沈澱プロセス、ろ過プロセスの除去効率が低下して、ろ過池出口の濁度が0.1度以上になるケースが報告されている。
【0006】
例えば、第52回全国水道研究発表会(2001)で報告されているように、大阪府村野浄水場のケースでは、前塩素処理を完全に停止した5月(春季)と7〜8月(夏季)にかけて、原水中のピコプランクトンが原因と推定される、ろ過池出口濁度の上昇が見られた。日射量や温度の日変化などによって、ろ過池出口濁度は夜間をピークに1日単位で周期的に上昇するケースも報告されており、通常の凝集処理とは最適注入方法が異なるものである。
【0007】
こうした場合には、沈澱池出口の処理水にさらに凝集剤を添加したのち、ろ過プロセスへ導入し、ろ過砂の表面にフロックを積層させる後凝集処理を行うことが有効であると考えられ、特許提案も行われている(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平4-11905号公報
【0009】
【発明が解決しようとする課題】
しかし、従来の後凝集剤注入では、凝集沈殿後の濁度を検出して、凝集剤の注入率を制御しているため、ろ過池出口濁度との相関が少なく、前述のような新たに制定された厳しい濁度基準を満足することができない。
【0010】
このため、前述した周期的な濁度上昇のピーク出現に応じて、水質技術者の判断により手動注入を行っており、運転監視に労力を要するとともに、注入率の最適化が難しいという問題があった。
【0011】
本発明の目的は、後凝集剤注入を自動化することで運転監視の労力を低減するとともに、注入率を最適化して、厳しい濁度基準を満足することができる凝集剤注入制御方法及び装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明による凝集剤注入制御方法及び装置では、浄水場のろ過池出口における被処理水の濁度を検出し、この検出された濁度に応じて、前記ろ過池の入口側に凝集剤を注入する場合、前記濁度の上昇率が設定範囲内となり、かつ濁度が出口濁度目標値以上となったことをトリガーとして予め設定した注入率で凝集剤の注入を開始し、予め設定した時間後、注入を停止することを特徴とする。
【0014】
また、本発明による凝集剤注入制御装置では、浄水場のろ過池出口に設けられ、ろ過池から流出する被処理水の濁度を検出する濁度計と、前記ろ過池の入口側に設けられ、このろ過池に流入する被処理水に凝集剤を注入する凝集剤注入装置と、前記濁度計の検出値を入力し、その上昇率が予め設定した設定範囲内となり、かつ検出濁度が予め設定した出口濁度目標値以上となったことを条件とする第1出力部と、又は前記濁度計の検出濁度が予め設定した出口濁度目標値より高い値の状態が、予め設定した時間範囲継続したことを条件とする第2出力部と、これら第1出力部及び第2出力部のいずれかからの出力を、前記凝集剤注入装置に対して、注入開始指令として出力する条件手段とを有する演算部とを備え、前記凝集剤注入装置は、前記注入開始指令を入力すると、凝集剤を、予め設定された注入率で予め設定された時間注入するようにしてもよい。
【0015】
本発明の凝集剤注入制御装置では、演算部に予め設定された濁度上昇率の設定範囲が、単位時間当り2.0×10−5〜15.0×10−5であり、演算部に予め設定された出口濁度目標値が、0.02度以上であり、演算部に予め設定された出口濁度目標値より高い値が、0.04度であり、演算部に予め設定された時間範囲が60〜120分であるように設定されたものを用いるとよい。
【0017】
また、本発明の凝集剤注入制御装置では、演算部が、濁度計で検出された濁度の変化に対応して、凝集剤注入装置によって注入される凝集剤の注入率を変化させるものでもよい。
【0018】
また、本発明の凝集剤注入制御装置では、演算部には、濁度の変化を近似した上に凸の近似曲線が設定され、この近似曲線により凝集剤の注入率を演算するようにしてもよい。
【0019】
この場合、近似曲線には、三角関数曲線や二次関数曲線を用いればよい。
【0020】
これらの発明では、浄水場のろ過池出口における被処理水の濁度を監視し、この検出された濁度の上昇率が設定範囲内となり、かつ濁度が出口濁度目標値以上となった場合、或いは濁度が出口濁度目標値より高い値の状態が設定時間範囲継続した場合、のいずれかをトリガーとして、ろ過池の入口側での凝集剤の注入を開始するので、ろ過池出口の濁度を、厳しい濁度基準を満足する値に制御することができる。
【0021】
【発明の実施の形態】
以下、本発明による凝集剤注入制御方法及び装置の一実施の形態を、図面を参照して説明する。
【0022】
図1は一般的な浄水場における原水処理プロセスでの凝集剤注入制御装置を示している。また、図2はこの実施の形態における凝集剤注入制御方法を説明する流れ図である。
【0023】
図1に示すように、処理対象となる原水は、河川や貯水場などの水源11から取水井12に取り込まれ、この取水井12から導水管Aを通って着水井13に導入される。着水井13では凝集条件の一つであるpHの調整が行われ、その後、導水管Bを通って急速攪拌池(以下、急攪池と略称する)14へ導入される。急攪池14には、図示しないが凝集剤添加装置が設けられており、原水処理量に対応した所定量の凝集剤が添加される。そして、攪拌作用により凝集反応とフロック形成反応が生じる。
【0024】
この急攪池14には沈殿池15が隣接されており、この沈殿池15にて、大きく成長して沈降性のよいフロックは沈澱除去される。沈澱池15で除去されなかった微細なフロックは被処理水とともに導水管Cへ導出される。導水管Cは、後続するろ過池16の入口側に連結しており、このろ過池16に流入する被処理水に対し再度凝集剤が注入される。
【0025】
すなわち、この導水管Cには凝集剤注入装置17が連結しており、流量計18を介して所定量の凝集剤が導水管C内の被処理水に注入される。このため、導水管C内には微小なフロックが形成され、この微小なフロックはさらにろ過池16に流入し、ろ過砂によって捕捉される。この結果、ろ過池16の出口からは清澄なろ過水が流出し、導水管Dを通って浄水池19に蓄えられる。
【0026】
また、導水管Cには流量計21が配設され、ろ過池16に流入する被処理水の流量を測定する。さらに、導水管Dには濁度計22が配設され、ろ過池16の出口における被処理水の濁度を測定する。この濁度計22は、ろ過池16の出口濁度が0.1度以下を維持するように監視するため、高感度の濁度計が用いられる。
【0027】
演算部23は、これら流量計18,21及び濁度計22の測定値を入力し、後述する条件の基に、凝集剤注入装置17を制御し、ろ過池16に流入する被処理水に対し所定量の凝集剤を注入させる。
【0028】
上記構成において、凝集剤の注入は、ろ過池16の出口から流出する被処理水の濁度を濁度計22の測定値により監視することで行う。原水中にピコプランクトン等の成分が大量に含まれると、ろ過池16の出口濁度はある時間帯(夜間)をピークにして、1日単位で周期的に増加することが想定される。
【0029】
そこで、濁度の上昇率と絶対値を注入トリガーにすることによって、予め設定した注入率で凝集剤の注入を開始する。すなわち、演算部23は、濁度計22の測定値を入力し、その値から濁度の上昇率を求める。濁度の上昇率はある時間間隔で上昇した濁度から演算し、その時間間隔は任意に設定することができる。本発明者らの検討によれば、その間隔は10分程度にすることが好ましい。
【0030】
なお、濁上昇率は現在の時刻における濁度を基準に将来時刻における濁度の傾きから求めても良いし、過去の時刻に遡った濁度の傾きから求めても良い。
【0031】
このようにして求めた上昇率が予め設定された範囲内となり、かつ濁度が出口濁度目標値以上となったことをトリガーとして凝集剤の注入を開始する。すなわち、日射量や温度の日変化などによって、ある時間帯をピークに1日単位で周期的に上昇する浄水場のろ過池出口濁度に対して、濁度の上昇率と絶対値を常時監視することで、最適な凝集剤注入を行うことができる。
【0032】
具体的には、演算部23に、図2で示すように、予め凝集剤注入スタート条件となる上昇率の範囲(網目部分)231を設定しておく。また、この濁度上昇率と共に、凝集剤注入スタート条件となる濁度の絶対値(出口濁度目標値でもある)232を設定しておく。そして、前述のように、測定値に基く濁度上昇率(傾き)が、予め設定された範囲231内となり、かつ測定された濁度の絶対値が、予め設定された出口濁度目標値232以上となり、しかもこれらが瞬間的なものではなく図示しない時間回路によりある時間継続したと判断された場合、これらの条件成立を条件手段233,234で検出する。そして、この条件成立をトリガーとして凝集剤注入装置17に対して凝集剤の注入スタート指令235を出力し、ろ過池16に流入する被処理水への凝集剤注入を開始する。
【0033】
ここで、凝集剤注入スタート条件となるろ過池出口濁度の単位時間あたりの濁度上昇率の範囲231は、例えば、下限は2.0×10−5 、上限は15.0×10−5であることが好ましい。このように範囲を設定することによって、ろ過池の洗浄など外的要因によって、急激にろ過池出口濁度が上昇した場合における、凝集剤注入を防止できる。この値は、浄水場の運転管理方針によって任意に設定することができる。
【0034】
上記数値は実験値を根拠としている。すなわち、ろ過池16の出口濁度を測定して、ろ過池16の入口における凝集剤注入率を制御しようとするものであり、濁度の上昇率はより短い時間で判断するのが望ましい。余り長い時間で上昇率を判断してしても、注入を開始するまでには、それだけ水が流れてしまうので、あまり注入する意味がなくなってしまう。そこで、その時間は望ましくては10分、最大でも50分と判断した。一方、濁度計の最小単位が0.001度なので、最小値は、次式から求められる。
【0035】
0.001/50=2.0×10−5
また、最大値は、前記時間を短くすることにより求められる。例えば、1分とした場合、0.001/1=1.0×10−3となるが、実際1〜2分では計器の特性上このくらの変動はあるので、データから判断して7分弱とした。この結果、次式のように最大値が求められる。
【0036】
0.001/7≒15×10−5
ここで、濁度上昇率に上限を設定したのは、前述のように、ろ過池16の逆洗などによる急激な濁度上昇により凝集剤注入をスタートさせないためである。すなわち、逆洗の間、ろ過池16に対して通常の流れとは逆方法に洗浄水を流すため、砂の巻き上がりが起こる。このため、ろ過は停止し、洗った水は別系統に排出する。運転再開は砂の巻き上がりが十分収まってから行うが、何らかの運転不具合が原因で、運転再開時に、砂の一部が処理水側に流出してしまったときに急激な濁度上昇が検出される。凝集剤は砂ろ過の前に注入するで、このようにろ過池出口側での急激な濁度上昇したものに対しては、ろ過池の入り口で凝集剤を注入しても意味がなくなってしまうためである。
【0037】
また、トリガーが働く濁度の絶対値232は0.02度以上であることが好ましい。この値は、ろ過池16の出口における目標濁度でもあり、浄水場の運転管理方針によって、任意に設定することができる。
【0038】
次に、凝集剤の注入をスタートさせる別の条件を説明する。例えば、ろ過池16の出口濁度が2.0×10−5以下の上昇率で緩やかに上昇した場合、もしくは15×10−5以上の上昇率で急激に上昇した場合、上述の条件では凝集剤注入が行われない。そこで、あるレベル以上の濁度の絶対値が一定時間継続する場合も、凝集剤を注入するようにした。
【0039】
すなわち、演算部23に、図2で示すように濁度絶対値の設定値236とその継続時間237を予め設定しておく。濁度計22で測定された出口濁度の絶対値が設定値26を上回り、かつその状態が設定時間237以上継続したことを条件に条件手段234を介して注入スタート指令235を出力する。
【0040】
この場合、濁度絶対値の設定値236は、前記出口目標値232より大きい、例えば、0.04度であることが好ましい。この値は、浄水場の運転管理方針によって、任意に設定することができる。また、濁度の絶対値が継続する時間は、好ましくは70分程度であり、60〜120分の範囲内であれば問題はない。この値も、浄水場の運転管理方針によって、任意に設定することができる。
【0041】
このようにして、ろ過池16の出口濁度が、出口濁度目標値(例えば、0・02)より高い値(例えば、0.04)以上の状態が設定時間範囲継続することをトリガーとして凝集剤の注入を開始することができる。
【0042】
ここで、条件手段234はオア条件のため、設定条件231及び232による条件成立、すなわち、濁度が上昇し、かつその濁度上昇率(傾き)が設定範囲内に入った場合と、設定条件236及び237による条件成立、すなわち、あるレベル以上の濁度が、設定時間以上継続した場合、のいずれか一方により、凝集剤の注入をスタートさせることができる。
【0043】
注入される凝集剤の注入率は予め設定した一定値とし、これを予め設定した時間注入する。実際の凝集剤の注入量は、流量計21で測定されたろ過池16への被処理水流入量から演算する。凝集剤の注入を停止する方法は、タイマーまたは時刻を設定することによって行う。すなわち、注入開始時からタイマーをスタートさせて行うか、或いは、翌日のある時間を設定することによって行う。濁度の下限値は、このタイマー間隔または停止設定時刻に合わせて設定することが好ましい。
【0044】
なお、凝集剤の注入率を一定値としたが、濁度計22で検出された濁度の変化に対応して、凝集剤注入装置17によって注入される凝集剤の注入率を変化させてもよい。
【0045】
この場合、ろ過池出口濁度は、通常は前述のように一日のある時刻(通常は深夜)をピークとして周期的に増加するので、この場合は、濁度変化を上に凸な曲線、例えば、三角関数曲線や二次関数曲線で近似できる。したがって、この近似曲線に応じて凝集剤の注入率を求め、変化させると演算が容易となる。
【0046】
このように、ろ過池16の出口部分における被処理水の濁度を直接検出し、この出口濁度の上昇率が設定範囲内に上昇したこと、或いは、あるレベル以上の濁度が設定時間以上経過したことのいずれかを条件として、ろ過池16の入口側での凝集剤注入を行うので、ろ過池16の出口濁度を厳しく定めた「水道におけるクリプトスポリジウム暫定対策指針」記載の基準を確実にクリアすることができる。
【0047】
なお、粒度分析系やパーティクルカウンターを、ろ過池16の出口側に設置した場合も同様の効果が得られることは言うまでもない。
【0048】
【発明の効果】
本発明によれば、後凝集剤注入を自動化することで運転監視の労力を低減するとともに、注入率を最適化でき、厳しい濁度基準をクリアすることができる。
【図面の簡単な説明】
【図1】本発明による凝集剤注入制御装置の一実施の形態を示すブロック図である。
【図2】同上一実施の形態における動作を説明する流れ図である。
【符号の説明】
16 ろ過池
17 凝集剤注入装置
22 濁度計
23 演算部
231 予め設定された濁度上昇率の範囲
232 予め設定された出口目標濁度
236 予め設定された出口目標濁度以上の濁度の設定値
237 濁度の継続時間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flocculant injection control method and apparatus for injecting a flocculant after injecting the flocculant into water flowing into a filter basin after the precipitation treatment in a water purification plant.
[0002]
[Prior art]
In general, in a water purification plant, raw water is taken from a water source such as a river or a reservoir, and the raw water is processed by five unit processes of aggregation, flock formation, sedimentation, filtration and sterilization. As a result, suspended solids and colloids are removed from the water to be treated, and bacteria and the like are rendered harmless and supplied to consumers as clear tap water.
[0003]
In such a series of turbidity treatment by aggregation, floc formation, precipitation, and filtration, a method using a flocculant is common. As the flocculant, inorganic metal salts such as iron and aluminum are usually used. In addition, the flocculant is affected by various physical and biochemical effects, and the optimum flocculation condition is based on a complex equilibrium determined by many factors. Therefore, the injection amount of the flocculant is affected by factors such as the type and concentration of the flocculating component in the raw water, temperature, pH, coexisting components, and stirring conditions. Under the optimum conditions, flocculation and floc formation are performed smoothly, and the generated floc is precipitated and removed together with turbidity components in the raw water in the next precipitation process, and a small amount of remaining fine floc is completely removed in the next filtration process. Removed.
[0004]
By the way, according to the “Cryptosporidium Provisional Countermeasure Guidelines for Waterworks” notified by the Ministry of Health and Welfare (current Ministry of Health, Labor and Welfare) in October 1996, the turbidity at the outlet of the filtration basin is constantly grasped, and the turbidity at the outlet of the filtration basin is set to 0.1 It has been enacted to maintain the temperature below this level, and turbidity management at water treatment plants has become an important issue.
[0005]
However, if the coagulation conditions become severe due to the quality of raw water flowing into the water purification plant, floc formation may be insufficient. In this case, it has been reported that the removal efficiency of the next precipitation process and filtration process is lowered, and the turbidity at the outlet of the filtration basin becomes 0.1 degree or more.
[0006]
For example, as reported at the 52nd National Waterworks Research Conference (2001), in the case of the Murano Water Treatment Plant in Osaka, May (spring) and July to August (summer season) when pre-chlorination was completely stopped. ), An increase in turbidity at the outlet of the filter basin, estimated to be caused by picoplankton in the raw water, was observed. It has been reported that the turbidity of the filter basin periodically increases every day from the peak at night due to the amount of solar radiation and temperature, etc., and the optimum injection method is different from the normal flocculation treatment. .
[0007]
In such a case, it is considered effective to add a flocculant to the treated water at the outlet of the sedimentation basin, introduce it into the filtration process, and then perform flocculant treatment after laminating flocs on the surface of the filtration sand. Proposals have also been made (see, for example, Patent Document 1).
[0008]
[Patent Document 1]
JP-A-4-11905 gazette
[Problems to be solved by the invention]
However, in the conventional post-flocculating agent injection, the turbidity after coagulating sedimentation is detected and the injection rate of the flocculant is controlled, so there is little correlation with the turbidity at the outlet of the filtration pond, Unable to meet established turbidity standards.
[0010]
For this reason, manual injection is performed according to the judgment of the water quality engineer according to the appearance of the peak of the periodic turbidity increase described above, and there is a problem that it is difficult to optimize the injection rate while requiring labor for operation monitoring. It was.
[0011]
An object of the present invention is to provide a coagulant injection control method and apparatus capable of reducing the operation monitoring effort by automating the post-coagulant injection and optimizing the injection rate to satisfy strict turbidity standards. There is to do.
[0012]
[Means for Solving the Problems]
In the flocculant injection control method and apparatus according to the present invention, the turbidity of the water to be treated at the outlet of the filter basin of the water purification plant is detected, and the flocculant is injected into the inlet side of the filter basin according to the detected turbidity. When the turbidity increase rate is within the set range and the turbidity is equal to or greater than the outlet turbidity target value, the injection of the flocculant is started at a preset injection rate as a trigger, and the preset time After that, the injection is stopped .
[0014]
Further, in coagulant injection system GoSo location according to the invention is provided in the filtration basin outlet water treatment plant, a turbidity meter for detecting turbidity of treatment water flowing out from the filtration basin, to the inlet side of the filtration basin The flocculant injection device for injecting the flocculant into the water to be treated flowing into the filtration pond and the detected value of the turbidimeter are input, and the rate of increase is within a preset setting range, and the detected turbidity The first output unit on the condition that the degree is equal to or higher than the preset outlet turbidity target value, or the state of the detected turbidity of the turbidimeter is higher than the preset outlet turbidity target value, Output from the second output unit on condition that the preset time range has been continued, and the output from any one of the first output unit and the second output unit as an injection start command to the coagulant injection device and an arithmetic unit and a condition means that the coagulant injection device, before If you enter the injection start command, an aggregating agent, it may be injected preset time at a preset injection rate.
[0015]
In the flocculant injection control device of the present invention, the setting range of the turbidity increase rate preset in the calculation unit is 2.0 × 10 −5 to 15.0 × 10 −5 per unit time. The preset outlet turbidity target value is 0.02 degree or higher, and the value higher than the outlet turbidity target value preset in the calculation unit is 0.04 degree and preset in the calculation unit. What is set so that the time range is 60 to 120 minutes may be used.
[0017]
Further, in the flocculant injection control device of the present invention, the calculation unit changes the injection rate of the flocculant injected by the flocculant injection device in response to the change in turbidity detected by the turbidimeter. Good.
[0018]
Further, in the flocculant injection control device of the present invention, a convex approximate curve is set in the calculation unit after approximating a change in turbidity, and the flocculant injection rate is calculated by this approximate curve. Good.
[0019]
In this case, a trigonometric function curve or a quadratic function curve may be used as the approximate curve.
[0020]
In these inventions, the turbidity of the water to be treated at the filter pond outlet of the water purification plant is monitored, the increase rate of the detected turbidity is within the set range, and the turbidity is equal to or greater than the target turbidity at the outlet. Or when the state of turbidity higher than the target turbidity value continues for a set time range, the injection of flocculant on the inlet side of the filter basin is started as a trigger. The turbidity of can be controlled to a value satisfying strict turbidity standards.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a flocculant injection control method and apparatus according to the present invention will be described with reference to the drawings.
[0022]
FIG. 1 shows a flocculant injection control device in a raw water treatment process in a general water treatment plant. FIG. 2 is a flowchart for explaining the flocculant injection control method in this embodiment.
[0023]
As shown in FIG. 1, raw water to be treated is taken into a water intake well 12 from a water source 11 such as a river or a water reservoir, and is introduced from the water intake well 12 through a water conduit A into a landing well 13. In the landing well 13, pH is adjusted as one of the coagulation conditions, and then introduced into a rapid agitation pond (hereinafter abbreviated as “rapid agitation basin”) 14 through the conduit B. Although not shown, the rapid agitation pond 14 is provided with a flocculant addition device, and a predetermined amount of the flocculant corresponding to the raw water treatment amount is added. Aggregation reaction and floc formation reaction occur due to the stirring action.
[0024]
A sedimentation basin 15 is adjacent to the rapid stirring basin 14, and flocs that grow large and have good sedimentation properties are settled and removed. Fine flocs that have not been removed in the sedimentation basin 15 are led out to the water conduit C together with the water to be treated. The water conduit C is connected to the inlet side of the subsequent filtration basin 16, and the flocculant is injected again into the water to be treated flowing into the filtration basin 16.
[0025]
That is, a flocculant injection device 17 is connected to the water conduit C, and a predetermined amount of the flocculant is injected into the water to be treated in the water conduit C via the flow meter 18. For this reason, a minute floc is formed in the water conduit C, and this minute floc further flows into the filtration basin 16 and is captured by the filtered sand. As a result, clear filtered water flows out from the outlet of the filtration basin 16 and is stored in the clean water basin 19 through the water conduit D.
[0026]
Further, a flow meter 21 is disposed in the water conduit C, and the flow rate of the water to be treated flowing into the filtration basin 16 is measured. Further, a turbidity meter 22 is disposed in the water conduit D and measures the turbidity of the water to be treated at the outlet of the filtration basin 16. Since this turbidimeter 22 is monitored so that the outlet turbidity of the filtration basin 16 is maintained at 0.1 degrees or less, a highly sensitive turbidimeter is used.
[0027]
The calculation unit 23 inputs the measurement values of the flow meters 18 and 21 and the turbidity meter 22, controls the flocculant injection device 17 based on the conditions described later, and treats the treated water flowing into the filter basin 16. A predetermined amount of flocculant is injected.
[0028]
In the above-described configuration, the flocculant is injected by monitoring the turbidity of the water to be treated flowing out from the outlet of the filter basin 16 using the measured value of the turbidimeter 22. If the raw water contains a large amount of components such as picoplankton, it is assumed that the outlet turbidity of the filter basin 16 periodically increases every day with a certain time zone (nighttime) as a peak.
[0029]
Therefore, by using the rate of increase in turbidity and the absolute value as an injection trigger, injection of the flocculant is started at a preset injection rate. That is, the calculating part 23 inputs the measured value of the turbidimeter 22, and calculates | requires the increase rate of turbidity from the value. The rate of increase in turbidity is calculated from the turbidity increased at a certain time interval, and the time interval can be arbitrarily set. According to the study by the present inventors, the interval is preferably about 10 minutes.
[0030]
The turbidity increase rate may be obtained from the turbidity slope at the future time based on the turbidity at the current time, or may be obtained from the turbidity slope going back to the past time.
[0031]
The injection of the flocculant is started when the increase rate thus obtained is within a preset range and the turbidity is equal to or greater than the outlet turbidity target value. In other words, the turbidity increase rate and absolute value are constantly monitored against the turbidity at the filter basin outlet of the water purification plant that periodically rises in units of one day at the peak of a certain time zone due to the amount of solar radiation and temperature changes. By doing so, optimal flocculant injection can be performed.
[0032]
Specifically, as shown in FIG. 2, an increase rate range (mesh portion) 231 that is a flocculant injection start condition is set in advance in the calculation unit 23. In addition to the turbidity increase rate, an absolute value of turbidity (which is also an outlet turbidity target value) 232 is set as a flocculant injection start condition. As described above, the turbidity increase rate (slope) based on the measured value is within the preset range 231, and the absolute value of the measured turbidity is the preset outlet turbidity target value 232. In addition, if it is determined that these are not instantaneous and have continued for a certain time by a time circuit (not shown), the condition means 233 and 234 detect that these conditions are satisfied. Then, when this condition is met as a trigger, a coagulant injection start command 235 is output to the coagulant injection device 17 to start injection of the coagulant into the water to be treated flowing into the filtration basin 16.
[0033]
Here, the range 231 of the turbidity increase rate per unit time of the filtration pond outlet turbidity which is a start condition for the flocculant injection is, for example, a lower limit of 2.0 × 10 −5 and an upper limit of 15.0 × 10 −5. It is preferable that By setting the range in this way, it is possible to prevent the flocculant injection when the turbidity at the outlet of the filtration basin suddenly increases due to external factors such as washing of the basin. This value can be arbitrarily set according to the operation management policy of the water purification plant.
[0034]
The above figures are based on experimental values. That is, the outlet turbidity of the filter basin 16 is measured to control the flocculant injection rate at the inlet of the filter basin 16, and it is desirable to determine the rate of increase in turbidity in a shorter time. Even if the rate of increase is judged in a too long time, the water will flow so much by the time the injection is started, so there is no point in injecting much. Therefore, it was determined that the time was desirably 10 minutes and at most 50 minutes. On the other hand, since the minimum unit of the turbidimeter is 0.001 degree, the minimum value can be obtained from the following equation.
[0035]
0.001 / 50 = 2.0 × 10 −5
Further, the maximum value is obtained by shortening the time. For example, when the 1 minute, 0.001 / 1 = 1.0 becomes a × 10 -3, since the actual 1-2 minutes some characteristics on the variation of the saddle Medical instrument, it is determined from the data 7 It was a little weaker. As a result, the maximum value is obtained as in the following equation.
[0036]
0.001 / 7≈15 × 10 −5
Here, the upper limit is set for the rate of increase in turbidity, as described above, in order to prevent the flocculant injection from being started due to a rapid increase in turbidity due to backwashing of the filter basin 16 or the like. That is, during the backwashing, the washing water is caused to flow through the filter basin 16 in a manner opposite to the normal flow, so that the sand rolls up. For this reason, filtration stops and the washed water is discharged to another system. The operation is resumed after the sand has sufficiently rolled up, but due to some operational malfunction, a sudden increase in turbidity is detected when part of the sand flows out to the treated water side when the operation is resumed. The The flocculant is injected before sand filtration, and for such a sudden increase in turbidity at the filter basin outlet side, there is no point in injecting the flocculant at the filter basin entrance. Because.
[0037]
Moreover, it is preferable that the absolute value 232 of the turbidity which a trigger works is 0.02 degree | times or more. This value is also the target turbidity at the outlet of the filtration basin 16, and can be arbitrarily set according to the operation management policy of the water purification plant.
[0038]
Next, another condition for starting the injection of the flocculant will be described. For example, the outlet turbidity of the filter basin 16 is 2. When it rises gently at an increase rate of 0 × 10 −5 or less, or when it rises rapidly at an increase rate of 15 × 10 −5 or more, the flocculant injection is not performed under the above-described conditions. Therefore, the flocculant is injected even when the absolute value of turbidity above a certain level continues for a certain period of time.
[0039]
In other words, the set value 236 of the turbidity absolute value and its duration 237 are set in advance in the calculation unit 23 as shown in FIG. The absolute value of the outlet turbidity measured by the turbidity meter 22 exceeds the set value 2 3 6, and outputs an injection start command 235 via the condition unit 234 on condition that continued its state set time 237 or more .
[0040]
In this case, the set value 236 of the turbidity absolute value is preferably larger than the exit target value 232, for example, 0.04 degree. This value can be set arbitrarily according to the operation management policy of the water treatment plant. The time for which the absolute value of turbidity continues is preferably about 70 minutes, and there is no problem as long as it is within the range of 60 to 120 minutes. This value can also be set arbitrarily according to the operation management policy of the water treatment plant.
[0041]
In this way, the turbidity at the outlet of the filtration basin 16 is agglomerated as a trigger when a state of a value (for example, 0.04) higher than the outlet turbidity target value (for example, 0.02) continues for a set time range. Agent infusion can begin.
[0042]
Here, since the condition means 234 is an OR condition, the condition is established according to the setting conditions 231 and 232, that is, when the turbidity increases and the turbidity increase rate (slope) falls within the setting range, and the setting condition When the conditions of 236 and 237 are satisfied, that is, when turbidity of a certain level or more continues for a set time or longer, injection of the flocculant can be started.
[0043]
The injection rate of the flocculant to be injected is set to a predetermined constant value, and this is injected for a preset time. The actual amount of flocculant injected is calculated from the inflow amount of the water to be treated into the filtration basin 16 measured by the flow meter 21. The method for stopping the injection of the flocculant is performed by setting a timer or time. That is, it is performed by starting a timer from the start of injection or by setting a certain time on the next day. The lower limit value of turbidity is preferably set according to this timer interval or stop set time.
[0044]
Although the injection rate of the flocculant is a constant value, the injection rate of the flocculant injected by the flocculant injection device 17 may be changed corresponding to the change in turbidity detected by the turbidimeter 22. Good.
[0045]
In this case, the turbidity at the outlet of the filter basin usually increases periodically with a peak at a certain time of day (usually midnight) as described above. In this case, the turbidity change is a convex curve, For example, it can be approximated by a trigonometric function curve or a quadratic function curve. Therefore, calculation is facilitated by obtaining and changing the injection rate of the flocculant according to the approximate curve.
[0046]
In this way, the turbidity of the water to be treated at the outlet portion of the filtration pond 16 is directly detected, and the rate of increase in the outlet turbidity has risen within the set range, or the turbidity of a certain level or more is longer than the set time. Since the flocculant is injected on the inlet side of the filter basin 16 on the condition that it has passed, the criteria described in the “Provisional Guidelines for Cryptosporidium Temporary Measures in Waterworks” that strictly set the outlet turbidity of the filter basin 16 are ensured. Can be cleared.
[0047]
Needless to say, the same effect can be obtained when a particle size analysis system or a particle counter is installed on the outlet side of the filtration basin 16.
[0048]
【The invention's effect】
According to the present invention, the post-flocculating agent injection can be automated to reduce the operation monitoring effort, optimize the injection rate, and clear strict turbidity standards.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a flocculant injection control device according to the present invention.
FIG. 2 is a flowchart for explaining the operation in the embodiment.
[Explanation of symbols]
16 Filtration pond 17 Flocculant injection device 22 Turbidimeter 23 Calculation unit 231 Preset turbidity increase rate range 232 Preset outlet target turbidity 236 Predetermined outlet target turbidity or higher turbidity setting Value 237 Turbidity duration

Claims (11)

浄水場のろ過池出口における被処理水の濁度を検出し、この検出された濁度に応じて、前記ろ過池の入口側に凝集剤を注入する場合の凝集剤注入制御方法であって、
前記濁度の上昇率が設定範囲内となり、かつ濁度が出口濁度目標値以上となったことをトリガーとして予め設定した注入率で凝集剤の注入を開始させ、予め設定した時間後、注入を停止させる凝集剤注入制御方法。
It is a flocculant injection control method for detecting the turbidity of water to be treated at the filter pond outlet of the water purification plant, and injecting the flocculant into the inlet side of the filter basin according to the detected turbidity,
The turbidity increase rate is within the set range, and when the turbidity is equal to or greater than the outlet turbidity target value, the injection of the flocculant is started at a preset injection rate, and the injection is performed after a preset time. A control method for injecting the flocculant.
浄水場のろ過池出口に設けられ、ろ過池から流出する被処理水の濁度を検出する濁度計と、
前記ろ過池の入口側に設けられ、このろ過池に流入する被処理水に凝集剤を注入する凝集剤注入装置と、
前記濁度計の検出値を入力し、その上昇率が予め設定した設定範囲内となり、かつ検出濁度が予め設定した出口濁度目標値以上となったことを条件に前記凝集剤注入装置に注入開始指令を出力する演算部とを備え、
前記凝集剤注入装置は、前記注入開始指令を入力すると、凝集剤を、予め設定された注入率で予め設定された時間注入する
ことを特徴とする凝集剤注入制御装置。
A turbidimeter that is installed at the outlet of the filtration pond of the water treatment plant and detects the turbidity of the water to be treated flowing out of the filtration pond,
A flocculant injection device that is provided on the inlet side of the filtration basin and injects the flocculant into the water to be treated flowing into the filtration basin;
The detection value of the turbidimeter is input, the rate of increase is within a preset setting range, and the flocculant injection device is provided on the condition that the detected turbidity is equal to or greater than a preset outlet turbidity target value. A calculation unit that outputs an injection start command ,
The flocculant injection control device, when the injection start command is input, injects the flocculant at a preset injection rate for a preset time .
浄水場のろ過池出口に設けられ、ろ過池から流出する被処理水の濁度を検出する濁度計と、
前記ろ過池の入口側に設けられ、このろ過池に流入する被処理水に凝集剤を注入する凝集剤注入装置と、
前記濁度計の検出値を入力し、その上昇率が予め設定した設定範囲内となり、かつ検出濁度が予め設定した出口濁度目標値以上となったことを条件とする第1出力部と、又は前記濁度計の検出濁度が予め設定した出口濁度目標値より高い値の状態が、予め設定した時間範囲継続したことを条件とする第2出力部と、これら第1出力部及び第2出力部のいずれかからの出力を、前記凝集剤注入装置に対して、注入開始指令として出力する条件手段とを有する演算部とを備え、
前記凝集剤注入装置は、前記注入開始指令を入力すると、凝集剤を、予め設定された注入率で予め設定された時間注入する
ことを特徴とする凝集剤注入制御装置。
A turbidimeter that is installed at the outlet of the filtration pond of the water treatment plant and detects the turbidity of the water to be treated flowing out of the filtration pond,
A flocculant injection device that is provided on the inlet side of the filtration basin and injects the flocculant into the water to be treated flowing into the filtration basin;
A first output unit that inputs the detected value of the turbidimeter, the rate of increase is within a preset setting range, and the detected turbidity is equal to or greater than a preset outlet turbidity target value ; Or a second output unit on condition that a state in which the detected turbidity of the turbidimeter is higher than a preset outlet turbidity target value continues for a preset time range, and the first output unit and An operation unit having a condition means for outputting an output from any one of the second output units to the flocculant injection device as an injection start command ;
When the flocculant injection device inputs the injection start command, the flocculant is injected at a preset injection rate for a preset time.
Coagulant injection control apparatus characterized by.
演算部に予め設定された濁度上昇率の設定範囲が、単位時間当り2.0×10−5〜15.0×10−5であることを特徴とする請求項2又は請求項3に記載の凝集剤注入制御装置。Setting range of a preset turbidity increase rate calculation portion, claim 2 or claim 3, characterized in that it is 2.0 × 10 -5 ~15.0 × 10 -5 per unit time Flocculant injection control device. 演算部に予め設定された出口濁度目標値が、0.02度以上であることを特徴とする請求項2又は請求項3に記載の凝集剤注入制御装置。 The flocculant injection control device according to claim 2 or 3, wherein an outlet turbidity target value preset in the calculation unit is 0.02 degrees or more. 演算部に予め設定された出口濁度目標値より高い値が、0.04度であることを特徴とする請求項に記載の凝集剤注入制御装置。The flocculant injection control device according to claim 3 , wherein a value higher than the outlet turbidity target value preset in the calculation unit is 0.04 degrees. 演算部に予め設定された時間範囲が60〜120分であることを特徴とする請求項3に記載の凝集剤注入制御装置。The flocculant injection control device according to claim 3, wherein a time range preset in the calculation unit is 60 to 120 minutes. 演算部は、濁度計で検出された濁度の変化に対応して、凝集剤注入装置によって注入される凝集剤の注入率を変化させることを特徴とする請求項2乃至請求項7のいずれかに記載の凝集剤注入制御装置。Calculation unit, in response to changes in the detected turbidity turbidimeter any of claims 2 to 7, characterized in that changing the injection rate of the coagulant to be injected by the coagulant injection device coagulant injection control apparatus crab according. 演算部には、濁度の変化を近似した上に凸の近似曲線が設定され、この近似曲線により凝集剤の注入率を演算することを特徴とする請求項2乃至請求項7のいずれかに記載の凝集剤注入制御装置。The calculation section trendline projections are set on approximating the change in turbidity, to any of the claims 2 to 7, characterized in that computing the injection rate of flocculant by the approximate curve The flocculant injection control device described. 近似曲線が三角関数曲線であることを特徴とする請求項9に記載の凝集剤注入制御装置。10. The flocculant injection control device according to claim 9 , wherein the approximate curve is a trigonometric function curve. 近似曲線が二次関数曲線であることを特徴とする請求項9に記載の凝集剤注入制御装置。The flocculant injection control device according to claim 9 , wherein the approximate curve is a quadratic function curve.
JP2002364506A 2002-12-17 2002-12-17 Flocculant injection control method and apparatus Expired - Lifetime JP4309645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364506A JP4309645B2 (en) 2002-12-17 2002-12-17 Flocculant injection control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364506A JP4309645B2 (en) 2002-12-17 2002-12-17 Flocculant injection control method and apparatus

Publications (2)

Publication Number Publication Date
JP2004195304A JP2004195304A (en) 2004-07-15
JP4309645B2 true JP4309645B2 (en) 2009-08-05

Family

ID=32762312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364506A Expired - Lifetime JP4309645B2 (en) 2002-12-17 2002-12-17 Flocculant injection control method and apparatus

Country Status (1)

Country Link
JP (1) JP4309645B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145311B2 (en) * 2009-11-10 2013-02-13 株式会社日立製作所 Water purification chemical injection control system
US8454838B2 (en) * 2011-03-30 2013-06-04 Crystal Lagoons (Curacao) B.V. Method and system for the sustainable cooling of industrial processes
JP6042666B2 (en) * 2012-09-05 2016-12-14 メタウォーター株式会社 Filtration aid injection control method and filtration aid injection control device
JP5902075B2 (en) * 2012-09-26 2016-04-13 メタウォーター株式会社 Filtration aid injection control method and filtration aid injection control device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817889A (en) * 1981-07-23 1983-02-02 Fuji Electric Co Ltd Automatic and intermittent injecting system for flocculating agent in purification plant for industrial water
JPS63137707A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Flocculant injection control device
JPH02258004A (en) * 1989-03-30 1990-10-18 Ebara Infilco Co Ltd Control method of chemical feeding to coagulator
JPH02261505A (en) * 1989-03-31 1990-10-24 Ebara Infilco Co Ltd Method for controlling chemical injection in flocculating and settling device
JP2693014B2 (en) * 1990-04-27 1997-12-17 株式会社東芝 Coagulant injection controller for water purification plants
JP3672158B2 (en) * 1997-03-10 2005-07-13 富士電機システムズ株式会社 Turbidity measuring method and apparatus
JPH11344443A (en) * 1998-06-02 1999-12-14 Meidensha Corp Highly sensitive turbidimeter for measuring filtered water
JP2000140512A (en) * 1998-11-10 2000-05-23 Meidensha Corp Filter basin control apparatus and its control
JP2000218263A (en) * 1999-02-01 2000-08-08 Meidensha Corp Water quality controlling method and device therefor
JP3905663B2 (en) * 1999-04-20 2007-04-18 オルガノ株式会社 Solid-liquid separator and flocculation condition determination method
JP2001079310A (en) * 1999-09-10 2001-03-27 Meidensha Corp Water quality control method and device therefor
JP3852660B2 (en) * 2000-01-24 2006-12-06 富士電機システムズ株式会社 Control method of filtration basin equipment
JP4800462B2 (en) * 2000-03-16 2011-10-26 オルガノ株式会社 Filtration method
JP4341164B2 (en) * 2000-10-20 2009-10-07 株式会社明電舎 Chemical injection rate control method and apparatus
JP2002233716A (en) * 2001-02-09 2002-08-20 Yaskawa Electric Corp Clean water treating method
JP2002282623A (en) * 2001-03-28 2002-10-02 Fuji Electric Co Ltd Method and apparatus for monitoring water filtrate in quick filtration
JP2003154220A (en) * 2001-11-22 2003-05-27 Japan Organo Co Ltd Filtration method and filter

Also Published As

Publication number Publication date
JP2004195304A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
KR100979096B1 (en) Optimized operation control system and method for membrane process using intermittent aeration
US7854850B2 (en) Screen blockage measurement and flow performance optimization system
JP2010513009A (en) Optimized management method of membrane filtration unit and apparatus for realizing the management method
JP5473560B2 (en) Water purification automatic continuous monitoring device and continuous water purification system monitoring system using the same
JP5691709B2 (en) Water purification method and water purification device
JP4309645B2 (en) Flocculant injection control method and apparatus
JP5193884B2 (en) Monitoring and control system for water supply facilities
JP2693014B2 (en) Coagulant injection controller for water purification plants
JP3680452B2 (en) Anomaly detection method and control method for membrane processing system
JP2006320794A (en) Water purifying facilities and their operation method
US10086320B2 (en) Screen blockage measurement and flow performance optimization system
JP3187778B2 (en) Water quality management system
JP3852660B2 (en) Control method of filtration basin equipment
JP5283550B2 (en) A method for judging backwashing from the measured value of the turbidity or the number of fine particles of filtered water after passing through the filter basin, a device for judging the backwashing from the measured value of the turbidity or the number of fine particles of filtered water after passing through the filter basin, A program for causing a computer to execute a method for determining backwashing from a measured value of the turbidity or the number of fine particles of filtered water after passing, and a recording medium
JP2002282623A (en) Method and apparatus for monitoring water filtrate in quick filtration
KR100630446B1 (en) A Circulation-Quantity According To Muddy Grade Of Swimming Pool Holding Water
JPH06304414A (en) Control device for cohesive sedimentation process in water purifying plant
KR101156592B1 (en) Apparatus for water treatment filtration facility operation and method thereof
JP7496786B2 (en) Water purification method and water purification device
JPS63137708A (en) Treated water turbidity control device in purification facilities
Manamperuma et al. Retrofitting coagulant dosing control using real-time water quality measurements to reduce coagulant consumption
KR200324921Y1 (en) A Circulation-Quantity According To Muddy Grade Of Swimming Pool Holding Water
JP6632498B2 (en) Water treatment system and water treatment method
Azman et al. Characterization of aluminium sulphate for control applications
JP4965828B2 (en) Membrane filtration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R151 Written notification of patent or utility model registration

Ref document number: 4309645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

EXPY Cancellation because of completion of term