JP4391734B2 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP4391734B2 JP4391734B2 JP2002281349A JP2002281349A JP4391734B2 JP 4391734 B2 JP4391734 B2 JP 4391734B2 JP 2002281349 A JP2002281349 A JP 2002281349A JP 2002281349 A JP2002281349 A JP 2002281349A JP 4391734 B2 JP4391734 B2 JP 4391734B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- substrate
- holding plate
- radiation thermometer
- substrate holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Description
【発明の属する技術分野】
本発明は、半導体装置用の基板に薄膜形成、不純物ドーピング、および表面処理などの成膜処理を行う半導体装置の製造方法に関し、特に、半導体製造装置の炉内を温度制御しながら熱処理を行うことによって基板に成膜処理を施す半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
従来より、拡散装置やCVD装置などのような半導体製造装置によって、半導体基板(半導体ウエーハ)に薄膜形成、不純物ドーピング、および表面処理などの成膜処理を行う場合は、半導体製造装置の炉内温度を適切な温度に維持して熱処理を施しながらプロセス処理を行っている。したがって、炉内の温度制御は、外乱が生じたときの補償や目標温度の変化に対して高い精度で追従ができるように制御が行われている。また、このような半導体製造装置は、半導体基板を安定的に保持したり均一に加熱するための基板保持手段と、この基板保持手段を介してその上に載置されている半導体基板を加熱するためのヒータなど加熱手段とを有し、非接触の放射温度計を用いて基板保持手段の温度をモニタしながら温度制御を行い、半導体基板に一連のプロセス処理を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、基板保持手段の温度をモニタする放射温度計は、被測定部分に直接接触して温度を測定する熱電対などのような直接温度計と異なり、被測定物体から放射される熱エネルギーを非接触で検出して温度値に換算している。したがって、放射温度計の検出部分が汚れていたりすると、放射熱エネルギーを効率よく検出することができなくなり、結果的に測定温度に誤差が生じて正確な温度を測定することができなくなる。このため、半導体基板を所望の温度に制御して熱処理することができなくなって、半導体基板の薄膜形成、不純物ドーピング、および表面処理などの成膜処理を安定的且つ高品質に実施することができなくなる。つまり、放射温度計の検出面が汚れていたりすると、目標温度で温度制御して熱処理を行うことができなくなり、半導体基板の製品歩留りを低下させる原因となる。
【0004】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、放射温度計の検出面の状態が変化しても、常に安定した温度制御によって熱処理を行うことができるようにして、製品歩留りのよい半導体装置を製造することができる半導体装置の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明における半導体装置の製造方法は、基板保持板に基板を載置した状態で、基板保持板(基板保持板)の温度を放射温度計によりモニタしながら基板を所望の処理温度に加熱して成膜処理を行う半導体装置の製造方法であって、基板の成膜処理前に加熱手段の温度を所定温度に保って安定させたとき、初期状態の放射温度計が基板保持板の温度を初期測定温度Tcとしてモニタするステップと、基板のプロセス処理後に加熱手段の温度を前記所定温度に保って安定させたとき、放射温度計が基板保持板の温度をプロセス経過時測定温度Tc’としてモニタするステップと、プロセス経過時測定温度Tc’と初期測定温度Tcとの温度差ΔT=Tc−Tc’を演算するステップと、放射温度計が測定した基板保持板の測定温度に対して、温度差ΔTを加算して温度補正を行い、加熱手段の供給電力量を制御するステップとを含むことを特徴とする。
【0006】
尚、上記のステップにおける基板のプロセス処理後とは、例えば、基板の処理後に行うガスクリーニング後などである。このようなガスクリーニングの前後においては放射温度計の検出面の状態が変化しているので、初期測定温度Tcとプロセス経過時測定温度Tc’の温度差ΔTが顕著に表れる。したがって、この温度差ΔTだけ現在測定した温度に対して加算して温度補正を行えば、ガスクリーニングなどによって放射温度計の検出面の状態が変化しても、測定温度を常に正確な温度としてフィードバックして温度制御を行うことができるので、極めて高精度な温度制御を実現することができる。
【0007】
つまり、本発明における半導体装置の製造方法によれば、放射温度計の表面状態の変化やその他の経時変化などによって炉内温度や基板保持板の温度を正確に測定することができなくなっても、放射温度計の状態変化前後の温度差分だけ温度補正して温度コントローラで温度制御することにより、結果的に、放射温度計が正確な温度検出を行って温度制御した状態と等価な度制御を行うことができる。したがって、プロセス処理後においても極めて安定した温度制御を行って熱処理を施すことができるので、半導体装置の製品歩留りの向上を図ることができる。
【0008】
【発明の実施の形態】
以下、図面を用いて、本発明における半導体装置の製造方法に関する実施の形態を詳細に説明する。尚、以下の説明では、基板(例えば半導体基板)を製造する場合の実施の形態について述べる。
図1は、半導体製造装置における半導体基板搬送時の基板処理室の構成図である。また、図2は、半導体製造装置における予備加熱時の基板処理室の構成図である。さらに、図3は、半導体製造装置における半導体基板処理時の基板処理室の構成図である。尚、図1、図2、および図3に示す半導体製造装置は熱CVD薄膜形成装置の概略的な構成図を示している。そして、図1は開閉弁9を下降させて(つまり、基板挿入口8を開放して)半導体基板1を基板処理室50に搬入した状態を示し、図2は開閉弁9を上昇させて(つまり、基板挿入口8を閉鎖して)半導体基板1を予備加熱している状態を示し、さらに、図3は開閉弁9を上昇させて(つまり、基板挿入口8を閉鎖して)半導体基板1を成膜処理している状態を示している。
【0009】
図1において、半導体製造装置(基板処理装置)30は半導体基板1を1枚ごとに処理ができるように構成されている。この基板処理装置30の一面には、半導体基板1を基板処理室50に搬入するための基板挿入口8と、この基板挿入口8を開閉するための開閉弁9が設けられている。また、基板処理室50の内部には、搬入された半導体基板1を基板保持板2の表面に対して平行に支持するための石英ピンできた基板支持ピン4が設けられている。
【0010】
また、基板処理装置30の内部には、半導体基板1を所望の温度に加熱するための加熱手段であるヒータ3と、成膜処理するときの半導体基板1を保持すると共にヒータ3からの熱を均一化して半導体基板1に伝導するための前記基板保持板(サセプタ)2とによって構成されるヒータユニット20が設けられている。さらに、ヒータユニット20は、半導体基板1の搬送時や成膜処理時などの状態に応じて異なる位置に多段階調整できるように昇降機構10によって支持されている。また、基板処理装置30の上部には、基板処理室50に所望のガス種を所望のガス流量およびガス比率で供給するためのガス供給口6と、半導体基板1の処理面にガスを均一に供給するためのガス分散板5が設けられている。また、基板処理装置30の両側面には、未反応のとき及び反応過程で生成されたガスを排気するための排気口7が設けられている。図2および図3においても構成は同じであるのでその説明は省略する。
【0011】
次に、図1、図2および図3を用いて上記の構造を有する基板処理装置において半導体基板1に成膜処理を施す過程を説明する。先ず、図1に示すように、半導体基板1は、基板処理室50の基板挿入口8より外部に通じる図示しない基板搬送室に設けられた搬送機構によって基板処理室50に搬送され、基板保持板2の面と空間を隔てて平行になるように、石英ピンの基板支持ピン4上に載置される。半導体基板1を基板処理室50へ挿入し基板支持ピン4上に載置した後は、図示しない搬送室と基板処理室50との間を隔離するために、開閉弁9によって基板挿入口8が閉じられる。
【0012】
次に、図2に示すように、基板支持ピン4を降下させて、半導体基板1を基板保持板2の表面近傍まで近づけて半導体基板1を予備加熱する。このとき、基板挿入口8は開閉弁9によって閉じられているので、半導体基板1は短時間で効率よく予備加熱される。
【0013】
さらに、図3に示すように、ヒータ3と基板保持板(サセプタ)2からなるヒータユニット20および基板支持ピン4が昇降機構10によって持ち上げられ、半導体基板1を予備加熱位置から成膜処理位置まで上昇させる。ヒータユニット20を上昇させる際は、基板支持ピン4上の半導体基板1と基板保持板2の間隔がさらに狭くなり、半導体基板1が成膜処理の位置に到達する前に半導体基板1は基板保持板2の上に密着して載置される。したがって、半導体基板1は、ヒータ3によって加熱される基板保持板2の伝導熱によって加熱されることになる。
【0014】
図3の成膜処理中における半導体基板1の温度は、半導体基板1の直接の加熱体である基板保持板2の温度を制御することにより、半導体基板1と空間的に隔てられたヒータ3の温度を制御するのに比べて、より高速且つ正確に温度制御が行われる。さらに、半導体基板1を均一に成膜処理するためには、基板保持板2を図示しない回転機構によって回転する。そのため、基板保持板2の温度モニタには、非接触で温度を測定することができる放射温度計(パイロメータ)が用いられる。
【0015】
次に、図3に示すように、基板処理装置30の上部のガス供給口6より導入されたガスはガス分散板5によって分散されて、加熱された半導体基板1の処理面に均等に拡散される。これによって、半導体基板1の表面層には、均一に、薄膜形成、不純物ドーピング、表面処理などの成膜処理が施される。
【0016】
ここで、半導体基板1を熱処理するときの温度検出の方法について説明する。図4は、図3に示す半導体基板処理時の半導体製造装置における温度検出部分の概念図である。図4に示すように、ヒータ3によって基板保持板2が加熱され、さらに、基板保持板2の表面に載置されている半導体基板1が加熱される。このとき、ヒータ3の表面温度は複数の熱電対11によって検出される。また、半導体基板1の温度は、放射温度計12が基板保持板2の温度を非接触で測定することによって検出される。そして、熱電対11の検出温度情報と放射温度計12の検出温度情報は図示しないカスケード制御ループ系の温度コントローラにフィードバックされ、温度コントローラがヒータ3へ供給する電力量を制御することによって半導体基板1の温度制御が行われる。
【0017】
図5は、一般のカスケード制御ループ系による温度コントローラの構成図である。通常、図1〜図3に示すような基板処理装置は、図5に示すようなカスケード制御ループを構成した温度コントローラによって温度制御が行われている。カスケード制御ループは、目標温度Yと放射温度計12からの検出温度との偏差を出力する第1の加算器21と、第1の加算器21の出力レベルに応じてPID(比例、積分、微分)演算し、ヒータ熱電対11からの検出温度が追従すべき値に制御する第1のPID調節部22と、第1のPID調節部22の出力レベルとヒータ熱電対11からの検出温度の偏差を出力する第2の加算器23と、第2の加算器23の出力レベルに応じてPID演算し、ヒータ3へ供給する電力量Zを制御する第2のPID調節部24とによって構成されている。このような構成のカスケード制御ループによる温度コントローラによってヒータ3へ供給する電力量Zを制御することにより、基板保持板3(つまり、半導体基板1)は目標温度Yに精度よく追従するので、半導体基板1を高精度に温度制御することができる。
【0018】
このようにして温度制御を行って熱処理しながら半導体基板1の成膜処理を施した後は、ヒータユニット20は再び図1に示すように搬送位置まで降下する。ヒータユニット20の降下の際は、基板支持ピン4は再び半導体基板1を突き上げ、半導体基板1と基板保持板2との間に半導体基板1を搬送するための空間を作る。そして、半導体基板1は基板挿入口8から搬送機構によって図の左方の図示しない搬送室へ運び出される。
【0019】
ところで、図5のような温度コントローラによる温度制御において、半導体基板1を所望の温度にするためのヒータ3の温度をTaとし、ヒータ3を温度Taに保って充分に温度を安定させたとき、基板保持板2の温度をTbとし、この基板保持板2を放射温度計12で測定したときの測定温度をTcとする。このとき、放射温度計12が理想的な状態で温度を正確に測定できるとすれば、基板保持板2の温度Tbは放射温度計12で測定した測定温度Tcと等しく、Tb=Tcである。
【0020】
しかし、放射温度計12は半導体基板1のプロセス処理中またはプロセス処理後におけるガスクリーニングなどによって検出面の表面状態が変化して、放射温度計12が受光する放射エネルギーの受光効率が変わるので、結果的に、放射エネルギーより測定温度Tcを演算するためのパラメータ値が変わってしまう。このため、放射温度計12がモニタしている温度測定値も変化し、結果的に、基板保持板2を正確な温度で測定することができなくなる。
【0021】
ここで、ガスクリーニングなどによって放射温度計12の表面状態が変化したときでも、ヒータ3を所定の温度Taに保ち、十分に温度が安定したときの基板保持板2の温度Tb’は再現する。つまり、常にTb=Tb’となる。しかし、ガスクリーニングなどによって放射温度計12の表面状態が変化した場合は、放射温度計12がモニタした測定温度Tc’は変化してしまい、ガスクリーニング前に放射温度計12で測定した基板保持板2の測定温度Tcと異なった値となる。つまり、Tc≠Tc’となる。よって、放射温度計12の表面状態の変化前のモニタ温度(測定温度)Tcをフィードバックして図5に示すような温度コントローラが温度制御した場合は、Tc−Tc’=ΔTの温度差分の誤差が生じた状態で温度制御を行うことになる。この結果、目標温度Yに対してΔTの温度差が生じたまま半導体基板1を熱処理して成膜処理を施すため、半導体基板1の製品歩留りが低下して安定した製品品質レベルを維持することができない。
【0022】
そこで、本発明による半導体装置の製造方法では、半導体基板1のプロセス処理中またはプロセス処理後におけるクリーニングなどによって放射温度計12の表面状態が変化して検出温度に誤差が生じた場合は、クリーニング前における基板保持板2の基準温度に対してクリーニング後の検出温度の誤差分を加味して基準温度の温度補正を行う。このような温度補正を行うことにより、高精度な温度制御による熱処理を実現して製品歩留りのよい半導体基板1の製造を行うことができる。言い換えれば、本発明による半導体装置の製造方法は、温度制御モニタである放射温度計の状態変化による測定温度の誤差分を、一定温度を測定することで検出し、この検出値に基づいて補正する。
【0023】
さらに詳しく述べれば、半導体基板1のプロセス処理の過程においてクリーニングなどを行った後にヒータ3の温度を一定値に保って安定にさせる。そして、このときの放射温度計12によって測定した基板保持板2の測定温度Tc’と、クリーニングなどを行う前の初期状態で放射温度計12が測定した基板保持板2の測定温度Tcとの温度差、つまり、Tc−Tc’=△Tを求める。そして、この温度差ΔT分の温度を温度コントローラで補正することによって、見掛け上、放射温度計12はその汚れ等に拘わらず正確な温度を測定したことと同じことになる。
【0024】
図5を用いて述べれば、放射温度計12がプロセス終了後に測定した基板保持板2の温度Tに対して上記のクリーニング前後の温度差△Tを加算し、(△T+T)の値を温度コントローラの第1の加算器21にフィードバックすれば、放射温度計12がプロセス処理前の正確な温度を測定した場合と等価な電力量Zを第2のPID調節部24よりヒータ3に供給することができる。したがって、プロセス処理(クリーニングなど)によって放射温度計12の表面状態が変化しても、温度コントローラは、放射温度計12の表面状態が変化する前の測定温度で半導体保持板2(つまり、半導体基板1)の温度を制御することができる。このような構成を得るために、例えば図7に示すように温度補正部27を設け、この温度補正部27により得られる△Tを放射温度計12による測定結果に加算するようにすればよい。
【0025】
次に、フローチャートを用いて温度補正部27の動作である、放射温度計12が測定したモニタ温度の自動補正の流れを説明する。図6は、本発明による半導体装置の製造方法において、放射温度計12が状態変化する前後のモニタ温度の自動補正の流れを示すフローチャートである。先ず、放射温度計12のモニタ温度の自動補正の条件を述べる。ヒータ3によって加熱される基板保持板2の温度はヒータ3の温度によって決定される。また、ヒータ3の温度を一定値に制御すれば、放射温度計12のモニタ温度が変化しても基板保持板2の温度は一定である。さらに、半導体基板1の成膜処理時の熱処理は、応答性の良い放射温度計12の検出したモニタ温度をフィードバックした温度制御によって行われる。
【0026】
図6のフローチャートに従って処理の流れを説明すると、先ず、半導体基板1のプロセス処理開始時において、ステップS1で、熱電対11によってヒータ3の温度を測定する。このとき、ヒータ3の中心部、中間部、および外周部の温度を測定し、それぞれの測定温度はThc1、Thm1、Tho1とする。さらに、放射温度計12によって基板保持板2の温度を非接触で測定する。このとき、基板保持板2の中心部、中間部、および外周部の温度を測定し、それぞれの測定温度はTpc、Tpm、Tpoとする。
【0027】
次に、ステップS2において、プロセス処理中またはプロセス処理後にクリーニングなどのイベントによって放射温度計12の表面状態が変化すると、ステップS3で、熱電対11によってヒータ3の温度を測定するが、このときヒータ3の温度変化がない。つまり、ヒータ3の中心部、中間部、および外周部の温度は、それぞれ、前回の測定値と同じThc1、Thm1、Tho1である。さらに、放射温度計12によって基板保持板2の温度を非接触で測定する。このとき、放射温度計12の検出面の状態が変化しているので基板保持板2の測定温度は変化し、基板保持板2の中心部、中間部、および外周部の測定温度は、それぞれTpc1、Tpm1、Tpo1である。
【0028】
そこで、ステップS4で、ヒータ3をイベント発生前と同じ温度になるように制御するために、放射温度計補正用レシピを自動的に動作させて、イベント発生前後の放射温度計12の測定温度の温度差を演算する。そして、ステップS5で、放射温度計12のイベント発生前後の測定温度の温度差として、中心部:ΔTc=Tpc1−Tpc、中間部:ΔTm=Tpm1−Tpm、外周部:ΔTo=Tpo1−Tpoを求め、これらの温度差ΔTc/ΔTm/ΔToを温度制御の補正値とする。
【0029】
次に、ステップS6において、先に求めた放射温度計12の補正値ΔTc/ΔTm/ΔToを用いて、放射温度計12の現在の(つまり、イベント発生後の)測定値の補正を行う。すなわち、放射温度計12の現在の測定値は、初期に測定した基準温度に対してステップS5で演算した補正値を加算(または減算)した値とし、それぞれ、中心部:Tpc’=Tpc+ΔTc、中間部:Tpm’=Tpm+ΔTm、外周部:Tpo’=Tpo+ΔToとする。そして、このような補正後の補正測定値Tpc’/Tpm’/Tpo’に基づいて、温度コントローラがヒータ3の電力量Zを制御して温度制御を行う。これによって、基板保持板2(つまり、半導体基板1)はイベント発生前と同じ温度に制御される。このような温度補正は、半導体基板1のプロセス処理中は繰り返し行われる。
【0030】
このように、放射温度計12の検出面が汚れるなど状態が変化しても、初期に測定した基準温度に対して放射温度計の測定温度の誤差分を補正して温度制御を行うことにより、放射温度計12の測定温度の誤差の大きさに関わらず、常に、正確に温度に基づいて温度制御を行うことができる。
【0031】
以上述べた実施の形態は本発明を説明するための一例であり、本発明は、上記の実施の形態に限定されるものではなく、発明の要旨の範囲で種々の変形が可能である。上記の実施の形態では、半導体基板のプロセス処理後におけるクリーニングなどのイベント発生ごとに温度補正を行う例を述べたが、これに限ることはなく、イベントの発生の有無に関係なく、定期的に上記のような方法によって放射温度計12の温度補正を行ってもよい。
【0032】
【発明の効果】
以上説明したように、本発明によれば、放射温度計を用いて温度制御を行う半導体製造装置装置(基板処理装置)において、放射温度計の表面状態の変化やその他の経時変化などによって炉内温度や基板保持板の温度を正確に測定することができなくなっても、放射温度計の状態変化前後の温度差分だけ基準温度に対して温度補正して温度コントローラで温度制御することにより、結果的に、放射温度計が正確な温度検出によって温度制御を行った状態と等価は温度制御を行うことができる。したがって、このような温度補正方法を用いることにより、半導体製造装置のクリーニング前後においても再現性よく温度制御を行うことができるので、半導体基板の製品歩留りの向上を図ることができる。
【図面の簡単な説明】
【図1】 半導体製造装置(基板処理装置)における半導体基板搬送時の基板処理室の構成図である。
【図2】 半導体製造装置(基板処理装置)における予備加熱時の基板処理室の構成図である。
【図3】 半導体製造装置(基板処理装置)における半導体基板処理時の基板処理室の構成図である。
【図4】 図3に示す半導体基板処理時の半導体製造装置における温度検出部分の概念図である。
【図5】 カスケード制御ループ系による温度コントローラの構成図である。
【図6】 本発明による半導体装置の製造方法において、放射温度計が状態変化する前後のモニタ温度の自動補正の流れを示すフローチャートである。
【図7】 本発明の温度コントローラの一例を示す構成図である。
【符号の説明】
1 半導体基板、2 基板保持板、3 ヒータ、4 基板支持ピン、5 ガス分散板、6 ガス供給口、7 排気口、8 基板挿入口、9 開閉弁、10 昇降機構、11 熱電対、12 放射温度計、20 ヒータユニット、21 第1の加算器、22 第1のPID調節部、23 第2の加算器、24 第2のPID調節部、30 基板処理装置、50 基板処理室。
Claims (4)
- 処理室内において基板保持板に基板を載置した状態で、前記基板保持板の温度を前記処理室内に設けられた放射温度計によりモニタしながら前記基板保持板を加熱手段により加熱することで前記基板を所望の処理温度に加熱して成膜処理を行う半導体装置の製造方法であって、
前記基板の成膜処理前に前記加熱手段の温度を所定温度に保って安定させたとき、初期状態の前記放射温度計により前記基板保持板の温度を初期測定温度Tcとして測定するステップと、
前記基板のプロセス処理後に前記加熱手段の温度を前記所定温度に保って安定させたとき、前記放射温度計により前記基板保持板の温度をプロセス経過時測定温度Tc'として測定するステップと、
前記プロセス経過時測定温度Tc'と前記初期測定温度Tcとの温度差ΔT=Tc−Tc'を演算するステップと、
前記放射温度計が測定した前記基板保持板の測定温度に対して、前記温度差ΔTを加算することで温度補正を行い、前記加熱手段の供給電力量を制御するステップと、
を含むことを特徴とする半導体装置の製造方法。 - 前記基板のプロセス処理後とは、基板の処理後に行う前記処理室内のガスクリーニング後であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記加熱手段は前記処理室内に設けられることを特徴とする請求項1記載の半導体装置の製造方法。
- 処理室内において基板保持板に基板を載置した状態で、前記基板保持板の温度を前記処理室内の前記基板保持板の下方に設けられた放射温度計によりモニタしながら、前記基板保持板を前記処理室内の前記基板保持板の下方であって前記放射温度計の検出部よりも下方に設けられた加熱手段により加熱することで前記基板を所望の処理温度に加熱して成膜処理を行う半導体装置の製造方法であって、
前記基板の成膜処理前に前記加熱手段の温度を所定温度に保って安定させたとき、初期状態の前記放射温度計により前記基板保持板の温度を初期測定温度Tcとして測定するステップと、
前記基板のプロセス処理後に前記加熱手段の温度を前記所定温度に保って安定させたとき、前記放射温度計により前記基板保持板の温度をプロセス経過時測定温度Tc'として測定するステップと、
前記プロセス経過時測定温度Tc'と前記初期測定温度Tcとの温度差ΔT=Tc−Tc'を演算するステップと、
前記放射温度計が測定した前記基板保持板の測定温度に対して、前記温度差ΔTを加算することで温度補正を行い、前記加熱手段の供給電力量を制御するステップと、
を含むことを特徴とする半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002281349A JP4391734B2 (ja) | 2002-09-26 | 2002-09-26 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002281349A JP4391734B2 (ja) | 2002-09-26 | 2002-09-26 | 半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004119707A JP2004119707A (ja) | 2004-04-15 |
JP4391734B2 true JP4391734B2 (ja) | 2009-12-24 |
Family
ID=32275819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002281349A Expired - Lifetime JP4391734B2 (ja) | 2002-09-26 | 2002-09-26 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4391734B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6361495B2 (ja) * | 2014-12-22 | 2018-07-25 | 東京エレクトロン株式会社 | 熱処理装置 |
JP6524944B2 (ja) * | 2016-03-18 | 2019-06-05 | 信越半導体株式会社 | 気相エッチング方法及びエピタキシャル基板の製造方法 |
-
2002
- 2002-09-26 JP JP2002281349A patent/JP4391734B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004119707A (ja) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6924463B2 (en) | Pyrometer calibrated wafer temperature estimator | |
US6744018B2 (en) | Substrate processing apparatus and method for manufacturing semiconductor device | |
US7138607B2 (en) | Determining method of thermal processing condition | |
US6703592B2 (en) | System of controlling the temperature of a processing chamber | |
US20110223693A1 (en) | Heat treatment apparatus and method of processing substrate | |
US6329643B1 (en) | Method of temperature-calibrating heat treating apparatus | |
JP2005011852A (ja) | 熱処理装置及び熱処理方法 | |
JP3688264B2 (ja) | 熱処理方法及び熱処理装置 | |
JP4546623B2 (ja) | 熱処理装置の制御条件決定方法 | |
JP4847803B2 (ja) | 温度制御方法、熱処理装置、及び半導体装置の製造方法 | |
JP3764689B2 (ja) | 半導体製造方法および半導体製造装置 | |
JP4391734B2 (ja) | 半導体装置の製造方法 | |
US20040144488A1 (en) | Semiconductor wafer processing apparatus | |
JP2002110556A (ja) | 熱処理装置 | |
JPH07201765A (ja) | 熱処理装置および熱処理方法 | |
JPH05267200A (ja) | 半導体熱処理装置 | |
JP3901958B2 (ja) | 熱処理装置設定温度の作成方法、および熱処理方法 | |
CN111261497A (zh) | 外延晶片的制造方法及装置 | |
JP2001085339A (ja) | 温度制御方法 | |
JPH11140651A (ja) | Cvd装置およびcvd処理方法 | |
JP2005333032A (ja) | モニタ用被処理体の温度換算関数の形成方法、温度分布の算出方法及び枚葉式の熱処理装置 | |
JP4892620B2 (ja) | 熱処理装置、温度制御方法、半導体装置の製造方法及び補正値取得方法 | |
KR20200005356A (ko) | 수동소자를 이용한 급속 열처리 장치 | |
JP2002198320A (ja) | 加熱処理装置、加熱処理方法および半導体装置の製造方法 | |
JP2006210768A (ja) | 熱処理装置及び基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4391734 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |