[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4390267B2 - Single double effect absorption refrigerator and operation control method thereof - Google Patents

Single double effect absorption refrigerator and operation control method thereof Download PDF

Info

Publication number
JP4390267B2
JP4390267B2 JP2004250626A JP2004250626A JP4390267B2 JP 4390267 B2 JP4390267 B2 JP 4390267B2 JP 2004250626 A JP2004250626 A JP 2004250626A JP 2004250626 A JP2004250626 A JP 2004250626A JP 4390267 B2 JP4390267 B2 JP 4390267B2
Authority
JP
Japan
Prior art keywords
heat source
regenerator
condenser
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004250626A
Other languages
Japanese (ja)
Other versions
JP2006064346A (en
Inventor
裕嗣 石野
慶太 円城寺
雅博 岡
伸一 上篭
俊之 星野
数恭 伊良皆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004250626A priority Critical patent/JP4390267B2/en
Priority to KR1020050079521A priority patent/KR101137582B1/en
Priority to CNB2005100994569A priority patent/CN100529591C/en
Priority to CN2008100822922A priority patent/CN101231043B/en
Publication of JP2006064346A publication Critical patent/JP2006064346A/en
Application granted granted Critical
Publication of JP4390267B2 publication Critical patent/JP4390267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、一重二重効用吸収冷凍機(吸収冷温水機を含む)に係わるものである。   The present invention relates to a single double-effect absorption refrigerator (including an absorption chiller / heater).

この種の吸収冷凍機としては、例えば図5に示したようにガスバーナ4で生成する燃焼熱を熱源として吸収液を加熱し冷媒を蒸発分離する高温再生器5、その高温再生器5から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する二重効用再生器の低温再生器6、その低温再生器6に並設され、低温再生器6から供給される冷媒蒸気を凝縮する二重効用凝縮器の凝縮器7、コージェネレーション装置などから低熱源供給管28を介して供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液を加熱し冷媒を蒸発分離する一重効用再生器の低熱源再生器9、その低熱源再生器9に並設され、低熱源再生器9から供給される冷媒蒸気を凝縮する一重効用凝縮器の凝縮器10、凝縮器7および凝縮器10から供給される冷媒液を蒸発させる蒸発器1、その蒸発器1で蒸発した冷媒蒸気を低温再生器6から供給される濃吸収液に吸収させる吸収器2、稀吸収液ポンプP1、中間吸収液ポンプP3、冷媒ポンプP5などを備えた一重二重効用吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 5, a high-temperature regenerator 5 that heats the absorption liquid by using combustion heat generated by the gas burner 4 as a heat source and evaporates and separates the refrigerant is supplied from the high-temperature regenerator 5. The low-temperature regenerator 6 is a double-effect regenerator that heats the absorption liquid by using the refrigerant vapor as a heat source and evaporates and separates the refrigerant, and the refrigerant vapor supplied from the low-temperature regenerator 6 is condensed in parallel with the low-temperature regenerator 6. The absorption liquid is heated by using a relatively low temperature hot waste water of, for example, about 80 ° C. supplied from the condenser 7 of the double effect condenser, the cogeneration device, etc. via the low heat source supply pipe 28, and the refrigerant is evaporated. A low heat source regenerator 9 of a single effect regenerator to be separated, a condenser 10 of a single effect condenser which is provided in parallel to the low heat source regenerator 9 and condenses the refrigerant vapor supplied from the low heat source regenerator 9, a condenser 7 And supplied from condenser 10 An evaporator 1 for evaporating the refrigerant liquid to be evaporated, an absorber 2 for absorbing the refrigerant vapor evaporated in the evaporator 1 by the concentrated absorbent supplied from the low temperature regenerator 6, a rare absorbent pump P1, an intermediate absorbent pump P3, A single double-effect absorption refrigerator 100X equipped with a refrigerant pump P5 and the like is well known (see, for example, Patent Document 1).

なお、図中12は低温熱交換器、13は高温熱交換器、26は図示しない熱負荷に冷熱または温熱を循環供給して冷暖房などを行うためのブライン管、27は冷却水管、28Aは低熱源供給管28に設けられたバイパス管、28Bは低熱源供給管28に設けられた三方弁である。   In the figure, 12 is a low-temperature heat exchanger, 13 is a high-temperature heat exchanger, 26 is a brine pipe for circulating and supplying cooling or heating to a heat load (not shown), 27 is a cooling water pipe, and 28A is low. A bypass pipe 28 </ b> B provided in the heat source supply pipe 28 is a three-way valve provided in the low heat source supply pipe 28.

上記構成の一重二重効用吸収冷凍機100Xにおいては、冷却水が供給される凝縮器10に並設されて内部が低温度に保たれている低熱源再生器9には、熱源の温排水が供給されていないときにも吸収器2から稀吸収液が稀吸収液ポンプP1により供給される。そして、低熱源再生器9に流入する稀吸収液の温度は低熱源再生器9内の飽和温度より高いため自己フラッシュして温度が下がり、熱ロスが発生すると云った問題点があった。   In the single double-effect absorption refrigerator 100X having the above-described configuration, the low-temperature heat source regenerator 9 that is arranged in parallel with the condenser 10 to which the cooling water is supplied and is maintained at a low temperature has a hot drainage of the heat source. Even when not supplied, the rare absorbent is supplied from the absorber 2 by the rare absorbent pump P1. Further, since the temperature of the rare absorbent flowing into the low heat source regenerator 9 is higher than the saturation temperature in the low heat source regenerator 9, there is a problem that the temperature is reduced by self-flashing and heat loss occurs.

また、吸収器2の稀吸収液が稀吸収液ポンプP1により低熱源再生器9に循環供給されていないときに、熱源の温排水が低熱源再生器9に漏れ込むと、その漏れ込んだ温排水により低熱源再生器9内の吸収液が加熱され、吸収液が過剰に濃縮されて結晶化することがあると云った問題点もあった。
特開平06−341729号公報(図1)
Further, when the hot water drainage of the heat source leaks into the low heat source regenerator 9 when the rare absorbent in the absorber 2 is not circulated and supplied to the low heat source regenerator 9 by the rare absorbent pump P1, the leaked temperature There is also a problem that the absorbing solution in the low heat source regenerator 9 is heated by the waste water, and the absorbing solution may be excessively concentrated and crystallized.
Japanese Patent Laid-Open No. 06-341729 (FIG. 1)

そのため、吸収器から低熱源再生器に流入する稀吸収液が自己フラッシュすることがないように、また、吸収液が低熱源再生器で過剰に加熱・濃縮されて結晶化することがないようにする必要があり、その解決が課題となっていた。   Therefore, the rare absorption liquid flowing into the low heat source regenerator from the absorber does not self-flush, and the absorption liquid is not excessively heated and concentrated in the low heat source regenerator to be crystallized. It was necessary to solve this, and the solution was an issue.

本発明は上記従来技術の課題を解決するため、蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、   In order to solve the above-mentioned problems of the prior art, the present invention provides an evaporator absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, a hot waste water, etc. Connect a low heat source regenerator condenser body, a high temperature regenerator, a low temperature heat exchanger, a high temperature heat exchanger, a rare absorbent pump, an intermediate absorbent pump, etc. In the single double-effect absorption refrigerator that constitutes,

稀吸収液ポンプと低温熱交換器とが介在して吸収器と低熱源再生器とを接続した吸収液管の低熱源再生器側に第2の稀吸収液ポンプを設け、その第2の稀吸収液ポンプの上流側と、中間吸収液ポンプが介在して低熱源再生器と高温再生器とを接続した吸収液管の中間吸収液ポンプ上流側とを連通し、低熱源再生器に熱源流体が伝熱管内を流れ、その管外に吸収液が滴下される滴下液膜式構造を採用したことを主要な特徴とする冷凍機であり、   A second rare absorption liquid pump is provided on the low heat source regenerator side of the absorption liquid pipe connected to the absorber and the low heat source regenerator through the rare absorption liquid pump and the low temperature heat exchanger, and the second rare absorption liquid pump is provided. The upstream side of the absorption liquid pump communicates with the upstream side of the intermediate absorption liquid pump of the absorption liquid pipe connecting the low heat source regenerator and the high temperature regenerator through the intermediate absorption liquid pump, and the heat source fluid is connected to the low heat source regenerator. Is a refrigerating machine characterized by adopting a dripping liquid film structure in which the inside of the heat transfer pipe flows and the absorbing liquid is dropped outside the pipe,

もしくは、低熱源再生器凝縮器胴の凝縮器の内部を経由して配管した冷却流体管路に、前記凝縮器の内部を迂回する迂回路と、その迂回路の流路抵抗を増加させる抵抗増大手段と、冷却流体管路の冷却流体が前記凝縮器の内部を流れるか、前記迂回路を流れるかを選択するための流路選択手段とを設けたことを主要な特徴とする冷凍機である。   Alternatively, a low-heat source regenerator condenser body is connected to a cooling fluid pipe routed through the inside of the condenser, and a detour that bypasses the inside of the condenser and a resistance increase that increases the flow resistance of the detour And a flow path selecting means for selecting whether the cooling fluid in the cooling fluid conduit flows through the condenser or the detour. .

請求項1、3、4の発明によれば、低熱源再生器の内部が低温度になっているときには吸収器から吐出する稀吸収液は低熱源再生器を迂回し、高温再生器に直接流入させることができるので、稀吸収液が低熱源再生器において自己フラッシュすることがない。そのため、従来装置で問題となっていた熱ロスの発生が防止できるようになった。   According to the first, third, and fourth aspects of the invention, when the inside of the low heat source regenerator is at a low temperature, the rare absorbent discharged from the absorber bypasses the low heat source regenerator and flows directly into the high temperature regenerator. Therefore, the rare absorption liquid does not self-flash in the low heat source regenerator. As a result, it has become possible to prevent the occurrence of heat loss, which has been a problem with conventional devices.

また、低熱源再生器には滴下液膜式構造が採用され、低熱源再生器内の伝熱管は吸収液に埋没することがないため、第2の稀吸収液ポンプの運転を停止しているときに低熱源再生器内の伝熱管にコージェネレーションシステムなどから温排水などが供給されることがあっても、低熱源再生器で吸収液が加熱・濃縮され過ぎて結晶化する、と云った不都合が生じることはない。   The low heat source regenerator employs a dropping liquid film structure, and the heat transfer tube in the low heat source regenerator is not buried in the absorbent, so the operation of the second rare absorbent pump is stopped. Even when hot wastewater is supplied to the heat transfer tubes in the low heat source regenerator from a cogeneration system, the absorption liquid is heated and concentrated in the low heat source regenerator and crystallizes. There is no inconvenience.

請求項2の発明によれば、低熱源再生器にコージェネレーションシステムなどから所定温度の熱源流体が供給されないときには、低熱源再生器に並設された凝縮器の内部に冷却水が流れないようにすることが可能であり、したがって低熱源再生器の内部温度の著しい低下が防止でき、吸収器から吐出する稀吸収液がその低熱源再生器に流入しても、稀吸収液は低熱源再生器において自己フラッシュすることがない。そのため、請求項2の発明においても、従来装置で問題となっていた熱ロスの発生が防止できるようになった。   According to the invention of claim 2, when the heat source fluid at a predetermined temperature is not supplied to the low heat source regenerator from a cogeneration system or the like, the cooling water is prevented from flowing into the condensers arranged in parallel with the low heat source regenerator. Therefore, even if the rare absorption liquid discharged from the absorber flows into the low heat source regenerator, the rare absorption liquid remains in the low heat source regenerator. In self-flash. Therefore, in the invention of claim 2 as well, it has become possible to prevent the occurrence of heat loss, which has been a problem with conventional devices.

また、低熱源再生器凝縮器胴の凝縮器の内部を経由する冷却流体路と、その凝縮器の内部を迂回する迂回路の流路抵抗とが略同一に設けられているので、冷却流体が低熱源再生器凝縮器胴の凝縮器を経由して流れるときと、迂回して流れるときで流量に差がなくなる。したがって、冷却流体の流路を切替えても蒸発器吸収器胴および低温再生器凝縮器胴における冷却流体の冷却作用に差はなくなるので、冷凍性能の変動が抑えられる。   In addition, since the cooling fluid path that passes through the inside of the condenser of the low heat source regenerator condenser and the bypass path resistance that bypasses the inside of the condenser are provided approximately the same, the cooling fluid is There is no difference in flow rate when flowing through the condenser of the low heat source regenerator condenser cylinder and when flowing through the condenser. Therefore, even if the flow path of the cooling fluid is switched, there is no difference in the cooling action of the cooling fluid in the evaporator absorber cylinder and the low temperature regenerator condenser cylinder, so that fluctuations in refrigeration performance can be suppressed.

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、稀吸収液ポンプと低温熱交換器とが介在して吸収器と低熱源再生器とを接続した吸収液管の低熱源再生器側に第2の稀吸収液ポンプを設け、その第2の稀吸収液ポンプの上流側と、中間吸収液ポンプが介在して低熱源再生器と高温再生器とを接続した吸収液管の中間吸収液ポンプ上流側とを連通し、低熱源再生器に熱源流体が伝熱管内を流れ、その管外に吸収液が滴下される滴下液膜式構造を採用すると共に、第2の稀吸収液ポンプの運転/停止を低熱源再生器に流入もしくは低熱源再生器から吐出した熱源の温度と、蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御し、第2の稀吸収液ポンプの回転速度を蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御するようにした。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Rare absorption in a single-double-effect absorption refrigerator configured by connecting a condenser cylinder, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, rare absorption liquid pump, intermediate absorption liquid pump, etc. A second rare absorption liquid pump is provided on the low heat source regenerator side of the absorption liquid pipe connected with the absorber and the low heat source regenerator via the liquid pump and the low temperature heat exchanger, and the second rare absorption liquid is provided. The heat source fluid is transferred to the low heat source regenerator through communication between the upstream side of the pump and the intermediate absorption liquid pump upstream side of the absorption liquid pipe connecting the low heat source regenerator and the high temperature regenerator via the intermediate absorption liquid pump. While adopting a dripping liquid film structure in which the absorption liquid is dripped outside the pipe, The operation / stop of the rare absorbent pump 2 is controlled based on the temperature of the heat source flowing into or discharged from the low heat source regenerator and the temperature of the brine flowing into or discharged from the evaporator. The rotation speed of the rare absorption liquid pump No. 2 was controlled based on the temperature of the brine flowing into or discharged from the evaporator.

以下、本発明の第1の実施例を図面に基づいて詳細に説明する。なお、理解を容易にするため、前記図5において説明した部分と同様の機能を有する部分には、同一の符号を付した。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. For easy understanding, parts having the same functions as those described with reference to FIG.

図1は本発明の第1の実施例を示す説明図であり、図1に例示した一重二重効用吸収冷凍機100は、蒸発器1と吸収器2とを収納した蒸発器吸収器胴3、ガスバーナ4を備えた高温再生器5、低温再生器6、低温再生器6に並設された凝縮器7、低温再生器6と凝縮器7とを収納した低温再生器凝縮器胴8、温排水などを熱源とする低熱源再生器9、低熱源再生器9に並設された凝縮器10、低熱源再生器9と凝縮器10とを収納した低熱源再生器凝縮器胴11、低温熱交換器12、高温熱交換器13、冷媒ドレン熱回収器14、ブライン(例えば水)が流れるブライン管26、冷却水管27、低熱源供給管28、第1の稀吸収液ポンプP1、第2の稀吸収液ポンプP2、中間吸収液ポンプP3、濃吸収液ポンプP4、冷媒ポンプP5などを備えており、それらは図示したように配管接続されている。また、符号Cは、一重二重効用吸収冷凍機100の制御器である。   FIG. 1 is an explanatory view showing a first embodiment of the present invention. A single double-effect absorption refrigerator 100 illustrated in FIG. 1 is an evaporator absorber cylinder 3 in which an evaporator 1 and an absorber 2 are housed. A high-temperature regenerator 5 having a gas burner 4, a low-temperature regenerator 6, a condenser 7 arranged in parallel with the low-temperature regenerator 6, a low-temperature regenerator condenser body 8 containing the low-temperature regenerator 6 and the condenser 7, Low heat source regenerator 9 using waste water as a heat source, condenser 10 provided in parallel with low heat source regenerator 9, low heat source regenerator condenser body 11 containing low heat source regenerator 9 and condenser 10, low temperature heat Exchanger 12, high-temperature heat exchanger 13, refrigerant drain heat recovery unit 14, brine pipe 26 through which brine (for example, water) flows, cooling water pipe 27, low heat source supply pipe 28, first rare absorbent pump P1, second Rare absorbent pump P2, intermediate absorbent pump P3, concentrated absorbent pump P4, refrigerant pump P5, etc. With which they are connected by piping as shown. Moreover, the code | symbol C is a controller of the single double effect absorption refrigerator 100. FIG.

すなわち、本発明の第1の実施例の一重二重効用吸収冷凍機100においては、吸収器2の下部に形成された稀吸収液溜りと低熱源再生器9の気相部とを接続している稀吸収液管15の上流側に第1の稀吸収液ポンプP1、下流側に第2の稀吸収液ポンプP2が設けられている。   That is, in the single double-effect absorption refrigerator 100 of the first embodiment of the present invention, the rare absorption liquid reservoir formed in the lower part of the absorber 2 and the gas phase part of the low heat source regenerator 9 are connected. A first rare absorbent pump P1 is provided upstream of the rare absorbent pipe 15 and a second rare absorbent pump P2 is provided downstream.

そして、稀吸収液管15の第1の稀吸収液ポンプP1の吐出側、すなわち下流側は吸収器2の上部側に設けられた溶液冷却吸収器2Aを経由した後、低温熱交換器12が介在する稀吸収液管15Aと、冷媒ドレン熱回収器14が介在する稀吸収液管15Bとに分岐し、その後合流して第2の稀吸収液ポンプP2の吸込側、すなわち上流側に接続され、下流端部は低熱源再生器9内の上部に配置された散布器9Aに接続されている。   The discharge side of the first rare absorbent pump P1, that is, the downstream side of the rare absorbent pipe 15 passes through the solution cooling absorber 2A provided on the upper side of the absorber 2, and then the low-temperature heat exchanger 12 is It branches into the rare absorption liquid pipe 15A that intervenes and the rare absorption liquid pipe 15B that the refrigerant drain heat recovery unit 14 interposes, and then merges and is connected to the suction side, that is, the upstream side of the second rare absorption liquid pump P2. The downstream end is connected to a spreader 9 </ b> A disposed at the upper part in the low heat source regenerator 9.

また、第2の稀吸収液ポンプP2の上流側と、低熱源再生器9の下部に形成された中間吸収液溜りと高温再生器5の気相部とを接続している中間吸収液管16の中間吸収液ポンプP3上流側とは、バイパス管17により接続されている。   Further, an intermediate absorption liquid pipe 16 that connects the upstream side of the second rare absorption liquid pump P2, the intermediate absorption liquid reservoir formed at the lower part of the low heat source regenerator 9, and the gas phase part of the high temperature regenerator 5. The intermediate absorption liquid pump P3 is connected to the upstream side by a bypass pipe 17.

また、低温再生器6の吸収液溜りと溶液冷却吸収器2Aの気相部とを接続する濃吸収液管18は、濃吸収液ポンプP4、低温熱交換器12を経由して配管され、濃吸収液ポンプP4の上流側と低温熱交換器12下流側とがバイパス管19により接続されている。   Further, a concentrated absorbent liquid pipe 18 that connects the absorbent reservoir of the low temperature regenerator 6 and the gas phase part of the solution cooled absorber 2A is piped through the concentrated absorbent pump P4 and the low temperature heat exchanger 12, and is concentrated. The upstream side of the absorption liquid pump P4 and the downstream side of the low-temperature heat exchanger 12 are connected by a bypass pipe 19.

また、冷媒ドレン熱回収器14には、低温再生器6で吸収液を加熱して凝縮し、凝縮器7に導入される冷媒ドレンが冷媒ドレン管20を介して供給されるように設けられている。   The refrigerant drain heat recovery unit 14 is provided such that the refrigerant is heated and condensed by the low-temperature regenerator 6, and the refrigerant drain introduced into the condenser 7 is supplied via the refrigerant drain pipe 20. Yes.

また、低熱源再生器凝縮器胴11の低熱源再生器9においては、低熱源供給管28が接続された伝熱管9Bが散布器9Aの下方に設置され、中間吸収液管16は低熱源再生器9の底部分に接続されている。   Further, in the low heat source regenerator 9 of the low heat source regenerator condenser 11, a heat transfer tube 9B to which a low heat source supply pipe 28 is connected is installed below the spreader 9A, and the intermediate absorption liquid pipe 16 is a low heat source regenerator. It is connected to the bottom part of the vessel 9.

したがって、吸収器2から稀吸収液ポンプP1、P2により搬送され、散布器9Aから伝熱管9Bの上に散布された稀吸収液は、滴下する過程で低熱源供給管28から供給される温排水などの熱により加熱される。そして、冷媒を蒸発分離して濃縮され、底に溜まった吸収液は、中間吸収液管16を介して高温再生器5に送られる。   Therefore, the warm wastewater supplied from the low heat source supply pipe 28 in the process of dripping the rare absorbent which is transported from the absorber 2 by the rare absorbent pumps P1 and P2 and sprayed on the heat transfer pipe 9B from the spreader 9A. It is heated by heat. Then, the absorption liquid concentrated by evaporating and separating the refrigerant and accumulated at the bottom is sent to the high-temperature regenerator 5 through the intermediate absorption liquid pipe 16.

なお、稀吸収液管15に設けられた第2の稀吸収液ポンプP2は、例えば図示しないインバータモータにより駆動されるようになっており、低熱源供給管28の低熱源再生器9出口側に設けた温度センサS1が検出する温排水出口温度T1に基づいて、制御器Cにより例えば図2(A)に示すように制御される。   The second rare absorbent pump P2 provided in the rare absorbent pipe 15 is driven by, for example, an inverter motor (not shown), and is provided at the low heat source regenerator 9 outlet side of the low heat source supply pipe 28. Based on the warm drain outlet temperature T1 detected by the provided temperature sensor S1, the controller C performs control as shown in FIG.

すなわち、温度センサS1が検出する温排水出口温度T1が、例えば設定温度70℃より低いときには第2の稀吸収液ポンプP2の運転を停止し、運転停止中に例えば設定温度75℃以上になると第2の稀吸収液ポンプP2は起動するように制御器Cにより制御される。   That is, when the warm drain outlet temperature T1 detected by the temperature sensor S1 is lower than the set temperature 70 ° C., for example, the operation of the second rare absorbent pump P2 is stopped. The second rare absorbent pump P2 is controlled by the controller C so as to start.

また、第2の稀吸収液ポンプP2の起動/停止は、制御器Cにより例えば図2(B)に示したようにも制御される。すなわち、ブライン管26の蒸発器1出口側に設けた温度センサS2が検出するブライン出口温度T2が、設定温度SP(例えば7℃)より2℃以上低いときには第2の稀吸収液ポンプP2の運転を停止し、運転停止中に設定温度SP−1.5℃以上になると第2の稀吸収液ポンプP2は起動するようにも制御される。   Further, the start / stop of the second rare absorbent pump P2 is also controlled by the controller C as shown in FIG. That is, when the brine outlet temperature T2 detected by the temperature sensor S2 provided on the outlet side of the evaporator 1 of the brine pipe 26 is lower by 2 ° C. or more than the set temperature SP (for example, 7 ° C.), the second rare absorbent pump P2 is operated. And the second rare absorbent pump P2 is also controlled to start when the temperature reaches the set temperature SP-1.5 ° C. or higher during operation stop.

また、第2の稀吸収液ポンプP2は制御器Cにより、例えば図3に示すようにも制御される。すなわち、温度センサS2が検出するブライン出口温度T2が、設定温度SPより例えば1℃以上低いときには第2の稀吸収液ポンプP2に供給する駆動電源の周波数を最低とし、設定温度SPより例えば1℃以上高いときには第2の稀吸収液ポンプP2に供給する駆動電源の周波数を最大とし、温度センサS2がその間の温度を示したときには温度に比例する周波数を供給して、第2の稀吸収液ポンプP2の回転速度が制御される。   Further, the second rare absorbent pump P2 is also controlled by the controller C as shown in FIG. That is, when the brine outlet temperature T2 detected by the temperature sensor S2 is, for example, 1 ° C. or more lower than the set temperature SP, the frequency of the drive power supplied to the second rare absorbent pump P2 is minimized, and for example, 1 ° C. from the set temperature SP. When the frequency is higher than this, the frequency of the drive power supply supplied to the second rare absorbent pump P2 is maximized, and when the temperature sensor S2 indicates the temperature in between, a frequency proportional to the temperature is supplied to provide the second rare absorbent pump P2. The rotational speed of P2 is controlled.

なお、制御器Cは、温度センサS1、S2の何れかが第2の稀吸収液ポンプP2の運転を停止すべき温度を検出したときには、他方の温度センサが検出する温度に関係なく第2の稀吸収液ポンプP2の運転を停止するように制御する。   Note that when any of the temperature sensors S1 and S2 detects the temperature at which the operation of the second rare absorbent pump P2 is to be stopped, the controller C detects the second regardless of the temperature detected by the other temperature sensor. Control is performed to stop the operation of the rare absorbent pump P2.

それ故、本発明の第1の実施例の一重二重効用吸収冷凍機100においては、低熱源再生器凝縮器胴11の低熱源再生器9には低熱源供給管28を介してコージェネレーションシステムなどから、通常は例えば80℃程度の温排水が常時流入するが、コージェネレーションシステムなどの立ち上げときや停止時など、低熱源供給管28を介して低熱源再生器9に流入する温排水の温度が低く、あるいは温排水の流入がなく、したがって温度センサS1が検出する温排水の温度が設定温度70℃以下に低下すると、第2の稀吸収液ポンプP2の運転は停止する。   Therefore, in the single double effect absorption refrigerator 100 of the first embodiment of the present invention, the low heat source regenerator 9 of the low heat source regenerator condenser body 11 is connected to the cogeneration system via the low heat source supply pipe 28. Normally, for example, warm wastewater of about 80 ° C. always flows in, but the warm wastewater flowing into the low heat source regenerator 9 through the low heat source supply pipe 28 when the cogeneration system or the like is started up or stopped. When the temperature is low or there is no inflow of warm wastewater, and therefore the temperature of the warm wastewater detected by the temperature sensor S1 falls below the set temperature of 70 ° C., the operation of the second rare absorbent pump P2 is stopped.

そのため、吸収器2から稀吸収液管15に吐出した稀吸収液は、一部は低温熱交換器12において濃吸収液と熱交換して温度上昇し、残部は冷媒ドレン熱回収器14において冷媒ドレンと熱交換して温度上昇し、低熱源再生器9を迂回して高温再生器5に直接流入するので、低熱源再生器9において自己フラッシュすることはなく、前記図5に示した従来の一重二重効用吸収冷凍機100Xのときのような熱ロスがなくなる。また、低熱源供給管28を介してコージェネレーションシステムなどに還流する温排水の温度が低下し過ぎることがない。   Therefore, a part of the rare absorbent discharged from the absorber 2 to the rare absorbent pipe 15 is heat-exchanged with the concentrated absorbent in the low-temperature heat exchanger 12 and the temperature rises, and the remainder is refrigerant in the refrigerant drain heat recovery unit 14. The temperature rises by exchanging heat with the drain and bypasses the low heat source regenerator 9 and flows directly into the high temperature regenerator 5, so that it does not self-flush in the low heat source regenerator 9, and the conventional one shown in FIG. The heat loss as in the case of the single double effect absorption refrigerator 100X is eliminated. In addition, the temperature of the warm waste water that circulates to the cogeneration system or the like via the low heat source supply pipe 28 does not decrease too much.

しかも、低熱源再生器9の伝熱管9Bは吸収液に埋没する構造とはなっていないため、第2の稀吸収液ポンプP2の運転を停止しているとときに伝熱管9Bにコージェネレーションシステムなどから低熱源供給管28を介して熱源となる温排水などが供給されることがあっても、低熱源再生器9で吸収液が加熱・濃縮され過ぎて結晶化する、と云った不都合が生じることはない。   In addition, since the heat transfer tube 9B of the low heat source regenerator 9 is not structured to be buried in the absorption liquid, the cogeneration system may be connected to the heat transfer pipe 9B when the operation of the second rare absorption liquid pump P2 is stopped. Even when warm wastewater or the like serving as a heat source is supplied from the low heat source supply pipe 28, the absorption liquid is excessively heated and concentrated in the low heat source regenerator 9 to cause crystallization. It does not occur.

また、本発明の第1の実施例の一重二重効用吸収冷凍機100においては、第2の稀吸収液ポンプP2の回転速度を温度センサS2が検出するブライン出口温度T2に基づいて制御器Cが制御するので、安定した冷熱提供が可能になる。   Further, in the single double effect absorption refrigerator 100 of the first embodiment of the present invention, the controller C is based on the brine outlet temperature T2 detected by the temperature sensor S2 of the rotation speed of the second rare absorbent pump P2. Therefore, stable cooling can be provided.

さらに、本発明の第1の実施例の一重二重効用吸収冷凍機100においては、第2の稀吸収液ポンプP2の起動/停止制御により、吸収器2の稀吸収液を低熱源再生器9に搬入するか否かを選択するようにしたため、第2の稀吸収液ポンプP2とバイパス管17とを設ける必要があったが、従来の一重二重効用吸収冷凍機100Xで低熱源供給管28に設けていたバイパス管28Aと、高価な三方弁28Bを省略することができたので、コストの削減も図れる。   Furthermore, in the single double-effect absorption refrigerator 100 of the first embodiment of the present invention, the rare absorbent in the absorber 2 is removed from the low heat source regenerator 9 by the start / stop control of the second rare absorbent pump P2. Therefore, it is necessary to provide the second rare absorption liquid pump P2 and the bypass pipe 17. However, in the conventional single double effect absorption refrigerator 100X, the low heat source supply pipe 28 is required. Since the bypass pipe 28A and the expensive three-way valve 28B provided in the above can be omitted, the cost can be reduced.

なお、本発明の第1の実施例の一重二重効用吸収冷凍機100においては、ガスバーナ4で生成される燃焼排ガスが第1、第2の廃熱回収器23、24を経由して排気されるように構成し、第1の廃熱回収器23においては高温再生器5に流入する中間吸収液により燃焼排ガスが保有する廃熱を回収し、第2の廃熱回収器24においてガスバーナ4に供給される燃焼用空気により燃焼排ガスが保有する廃熱を回収して、高温再生器5に流入する中間吸収液とガスバーナ4に供給される燃焼用空気の温度を上げて、ガスバーナ4で燃焼する燃料の消費が抑えられるように構成されている。   In the single double-effect absorption refrigerator 100 according to the first embodiment of the present invention, the combustion exhaust gas generated by the gas burner 4 is exhausted via the first and second waste heat recovery units 23 and 24. In the first waste heat recovery unit 23, the waste heat retained in the combustion exhaust gas is recovered by the intermediate absorption liquid flowing into the high temperature regenerator 5, and the second waste heat recovery unit 24 supplies the gas burner 4 with the waste heat. The waste heat possessed by the combustion exhaust gas is recovered by the supplied combustion air, the temperature of the intermediate absorption liquid flowing into the high-temperature regenerator 5 and the combustion air supplied to the gas burner 4 is increased, and the gas burner 4 burns. The fuel consumption is suppressed.

本発明の第2の実施例を図4に基づいて説明する。
図4に示した本発明の第2の実施例の一重二重効用吸収冷凍機100Aは、前記図1に示した本発明の第1の実施例の一重二重効用吸収冷凍機100が備えていた第2の稀吸収液ポンプP2と、バイパス管17の設置が省略され、その代わりとして冷却水管27にバイパス管27Aと三方弁27Bとを設け、冷却水管27内を流れる冷却水を、低熱源再生器凝縮器胴11において低熱源再生器9に並設された凝縮器10に流したり、凝縮器10を迂回して流したりすることができるようになっている。
A second embodiment of the present invention will be described with reference to FIG.
The single double effect absorption refrigerator 100A of the second embodiment of the present invention shown in FIG. 4 is provided in the single double effect absorption refrigerator 100 of the first embodiment of the present invention shown in FIG. The installation of the second rare absorption liquid pump P2 and the bypass pipe 17 is omitted. Instead, the cooling water pipe 27 is provided with a bypass pipe 27A and a three-way valve 27B, and the cooling water flowing in the cooling water pipe 27 is supplied to the low heat source. In the regenerator condenser body 11, it can flow to the condenser 10 arranged in parallel with the low heat source regenerator 9, or can flow around the condenser 10.

そして、バイパス管27Aには、バイパス管27Aの流路抵抗が凝縮器10を経由する流路の抵抗と略同一なるように増大させるためのオリフィス27Cが設けられている。   The bypass pipe 27A is provided with an orifice 27C for increasing the flow path resistance of the bypass pipe 27A so as to be substantially the same as the resistance of the flow path passing through the condenser 10.

したがって、この第2の実施例の一重二重効用吸収冷凍機100Aにおいても、低熱源再生器9に所定の温度の温排水が流入しないときには、三方弁27Bを操作して冷却水が凝縮器10を迂回して流れるようにすることが可能であり、それ故凝縮器10に並設された低熱源再生器9内の温度が大きく低下することはないので、吸収器2から稀吸収液管15に吐出し、低温熱交換器12、冷媒ドレン熱回収器14において熱交換して温度上昇して流入しても、稀吸収液は低熱源再生器9において自己フラッシュすることはなく、図5に示した従来の一重二重効用吸収冷凍機100Xのときのような熱ロスはなくなる。   Therefore, also in the single-double-effect absorption refrigerator 100A of the second embodiment, when the warm waste water of a predetermined temperature does not flow into the low heat source regenerator 9, the three-way valve 27B is operated and the cooling water is condensed into the condenser 10 Therefore, since the temperature in the low heat source regenerator 9 provided in parallel with the condenser 10 does not greatly decrease, the rare absorbing liquid pipe 15 is absorbed from the absorber 2. Even if the low temperature heat exchanger 12 and the refrigerant drain heat recovery unit 14 exchange heat and rise in temperature and flow in, the rare absorption liquid does not self-flush in the low heat source regenerator 9, and FIG. The heat loss as in the conventional single double effect absorption refrigerator 100X shown is eliminated.

しかも、バイパス管27Aにはオリフィス27Cが設置されて、バイパス管27Aの流路抵抗と凝縮器10を経由する流路の抵抗とが略同一になっているので、冷却水が凝縮器10を経由して流れるときと、バイパス管27Aを経由して流れるときでその流量に差はなくなる。したがって、冷却水の流路を切替えても、蒸発器吸収器胴3と低温再生器凝縮器胴8における冷却水の冷却作用は変動しないので、安定した冷凍性能が得られる。   In addition, since the orifice 27C is installed in the bypass pipe 27A, the flow path resistance of the bypass pipe 27A and the resistance of the flow path through the condenser 10 are substantially the same, so that the cooling water passes through the condenser 10. Therefore, there is no difference in the flow rate between when it flows and when it flows via the bypass pipe 27A. Therefore, even if the flow path of the cooling water is switched, the cooling action of the cooling water in the evaporator absorber cylinder 3 and the low-temperature regenerator condenser cylinder 8 does not vary, so that stable refrigeration performance can be obtained.

なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.

例えば、吸収器2に設けた溶液冷却吸収器2Aは必ずしも設ける必要はない。また、冷却水管27は、冷却水が吸収器2、凝縮器6、10に分岐して流れるように構成することも可能である。   For example, the solution cooling absorber 2A provided in the absorber 2 is not necessarily provided. The cooling water pipe 27 can also be configured such that the cooling water branches and flows to the absorber 2 and the condensers 6 and 10.

また、温度センサS1は低熱源供給管28の低熱源再生器9入口側に設け、低熱源供給管28を介して低熱源再生器9に流入する温排水の温度を温度センサS1により検出し、その温度に基づいて制御器Cが第2の稀吸収液ポンプP2の起動/停止を制御するように構成することも可能である。   The temperature sensor S1 is provided on the low heat source regenerator 9 inlet side of the low heat source supply pipe 28, and the temperature sensor S1 detects the temperature of the hot wastewater flowing into the low heat source regenerator 9 through the low heat source supply pipe 28. It is also possible to configure the controller C to control the start / stop of the second rare absorbent pump P2 based on the temperature.

また、温度センサS2はブライン管26の蒸発器1入口側に設け、ブライン管26を介して蒸発器1に流入するブラインの温度を温度センサS2により検出し、その温度に基づいて制御器Cが第2の稀吸収液ポンプP2の起動/停止と、その回転速度とを制御するように構成することも可能である。   The temperature sensor S2 is provided on the inlet side of the evaporator 1 of the brine pipe 26, the temperature of the brine flowing into the evaporator 1 through the brine pipe 26 is detected by the temperature sensor S2, and the controller C is based on the temperature. It is also possible to control the start / stop of the second rare absorbent pump P2 and its rotational speed.

第1の実施例の一重二重効用吸収冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the single double effect absorption refrigerator of a 1st Example. 第2の稀吸収液ポンプの制御例を示す説明図である。It is explanatory drawing which shows the example of control of a 2nd rare absorption liquid pump. 第2の稀吸収液ポンプの他の制御例を示す説明図である。It is explanatory drawing which shows the other control example of a 2nd rare absorption liquid pump. 第2の実施例の一重二重効用吸収冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the single double effect absorption refrigerator of a 2nd Example. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of symbols

1 蒸発器
2 吸収器
3 蒸発器吸収器胴
5 高温再生器
6 低温再生器
7 凝縮器
8 低温再生器凝縮器胴
9 低熱源再生器
9A 散布器
9B 伝熱管
10 凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷媒ドレン熱回収器
15、15A、15B 稀吸収液管
16 中間吸収液管
17 バイパス管
20 冷媒ドレン管
26 ブライン管
27 冷却水管
27A バイパス管
27B 三方弁
27C オリフィス
28 低熱源供給管
28A バイパス管
28B 三方弁
C 制御器
P1 第1の稀吸収液ポンプ
P2 第2の稀吸収液ポンプ
P3 中間吸収液ポンプ
P4 濃吸収液ポンプ
P5 冷媒ポンプ
S1、S2 温度センサ
100、100A、100X 一重二重効用吸収冷凍機
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Evaporator absorber cylinder 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser cylinder 9 Low heat source regenerator 9A Sprinkler 9B Heat transfer tube 10 Condenser 11 Low heat source regenerator condensation Body 12 Low temperature heat exchanger 13 High temperature heat exchanger 14 Refrigerant drain heat recovery device 15, 15A, 15B Rare absorption liquid pipe 16 Intermediate absorption liquid pipe 17 Bypass pipe 20 Refrigerant drain pipe 26 Brine pipe 27 Cooling water pipe 27A Bypass pipe 27B Three-way Valve 27C Orifice 28 Low heat source supply pipe 28A Bypass pipe 28B Three-way valve C Controller P1 First rare absorbent pump P2 Second rare absorbent pump P3 Intermediate absorbent pump P4 Concentrated absorbent pump P5 Refrigerant pump S1, S2 Temperature Sensor 100, 100A, 100X Single double effect absorption refrigerator

Claims (4)

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、稀吸収液ポンプと低温熱交換器とが介在して吸収器と低熱源再生器とを接続した吸収液管の低熱源再生器側に第2の稀吸収液ポンプを設け、その第2の稀吸収液ポンプの上流側と、中間吸収液ポンプが介在して低熱源再生器と高温再生器とを接続した吸収液管の中間吸収液ポンプ上流側とを連通し、低熱源再生器に熱源流体が伝熱管内を流れ、その管外に吸収液が滴下される滴下液膜式構造を採用したことを特徴とする一重二重効用吸収冷凍機。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Rare absorption in a single-double-effect absorption refrigerator configured by connecting a condenser cylinder, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, rare absorption liquid pump, intermediate absorption liquid pump, etc. A second rare absorption liquid pump is provided on the low heat source regenerator side of the absorption liquid pipe connected with the absorber and the low heat source regenerator via the liquid pump and the low temperature heat exchanger, and the second rare absorption liquid is provided. The heat source fluid is transferred to the low heat source regenerator through communication between the upstream side of the pump and the intermediate absorption liquid pump upstream side of the absorption liquid pipe connecting the low heat source regenerator and the high temperature regenerator via the intermediate absorption liquid pump. It features a dripping liquid film structure that flows inside the heat pipe and the absorbent is dripped outside the pipe. Single double-effect absorption chillers to be. 蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、低熱源再生器凝縮器胴の凝縮器の内部を経由して配管した冷却流体管路に、前記凝縮器の内部を迂回する迂回路と、その迂回路の流路抵抗を増加させる抵抗増大手段と、冷却流体管路の冷却流体が前記凝縮器の内部を流れるか、前記迂回路を流れるかを選択するための流路選択手段とを設けたことを特徴とする一重二重効用吸収冷凍機。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Low heat source in single-double-effect absorption refrigerator constructed by connecting pipes to condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, rare absorption liquid pump, intermediate absorption liquid pump, etc. A cooling fluid pipe routed through the inside of the condenser of the regenerator condenser body, a detour that bypasses the interior of the condenser, a resistance increasing means that increases the flow resistance of the detour, and cooling A single-double-effect absorption refrigerator having a flow path selecting means for selecting whether a cooling fluid in a fluid pipe flows in the condenser or the detour. 請求項1記載の一重二重効用吸収冷凍機において、第2の稀吸収液ポンプの運転/停止を、低熱源再生器に流入もしくは低熱源再生器から吐出した熱源の温度と、蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御することを特徴とする運転制御方法。   The single double-effect absorption refrigerator according to claim 1, wherein the operation / stop of the second rare absorption liquid pump flows into the low heat source regenerator or the temperature of the heat source discharged from the low heat source regenerator and into the evaporator. Or the operation control method characterized by controlling based on the temperature of the brine discharged from the evaporator. 請求項1記載の一重二重効用吸収冷凍機において、第2の稀吸収液ポンプの回転速度を、蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御することを特徴とする運転制御方法。   The single-double-effect absorption refrigerator according to claim 1, wherein the rotational speed of the second rare absorbent pump is controlled on the basis of the temperature of the brine flowing into or discharged from the evaporator. Control method.
JP2004250626A 2004-08-30 2004-08-30 Single double effect absorption refrigerator and operation control method thereof Expired - Fee Related JP4390267B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004250626A JP4390267B2 (en) 2004-08-30 2004-08-30 Single double effect absorption refrigerator and operation control method thereof
KR1020050079521A KR101137582B1 (en) 2004-08-30 2005-08-29 Single and double effect absorption refrigerator and operation control method therefor
CNB2005100994569A CN100529591C (en) 2004-08-30 2005-08-30 Single double effect absorbing type refrigerator and operation method thereof
CN2008100822922A CN101231043B (en) 2004-08-30 2005-08-30 Single and double effect absorption refrigerator and operation control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250626A JP4390267B2 (en) 2004-08-30 2004-08-30 Single double effect absorption refrigerator and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2006064346A JP2006064346A (en) 2006-03-09
JP4390267B2 true JP4390267B2 (en) 2009-12-24

Family

ID=36110978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250626A Expired - Fee Related JP4390267B2 (en) 2004-08-30 2004-08-30 Single double effect absorption refrigerator and operation control method thereof

Country Status (3)

Country Link
JP (1) JP4390267B2 (en)
KR (1) KR101137582B1 (en)
CN (2) CN100529591C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210896B2 (en) * 2009-01-19 2013-06-12 三洋電機株式会社 Single double-effect absorption chiller / heater
CN101619907B (en) * 2009-07-24 2011-04-13 大连三洋制冷有限公司 High-efficiency vapor double effect lithium bromide absorption type refrigerating unit
JP5575519B2 (en) * 2010-03-26 2014-08-20 三洋電機株式会社 Absorption refrigerator
CN104567091B (en) * 2013-10-25 2017-03-01 矢崎能源系统公司 hot water heating absorption refrigerator
CN108375238B (en) * 2017-01-31 2021-06-15 荏原冷热系统株式会社 Absorption refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363518B2 (en) * 1993-06-01 2003-01-08 三洋電機株式会社 Operation control method of single double effect absorption refrigerator
JP3278342B2 (en) * 1996-02-20 2002-04-30 東京瓦斯株式会社 Low temperature regenerator of absorption chiller / heater
CN1211710A (en) * 1997-09-12 1999-03-24 华中理工大学 Absorption type refrigerating circulation
JPH11108486A (en) * 1997-10-02 1999-04-23 Ebara Corp Double effect absorption water cooler/heater

Also Published As

Publication number Publication date
JP2006064346A (en) 2006-03-09
CN1743764A (en) 2006-03-08
CN101231043A (en) 2008-07-30
KR20060050771A (en) 2006-05-19
CN101231043B (en) 2010-12-22
KR101137582B1 (en) 2012-04-19
CN100529591C (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2002147885A (en) Absorption refrigerating machine
JP4390267B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2003343940A (en) Absorption water cooler/heater
JP2012202589A (en) Absorption heat pump apparatus
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP4090262B2 (en) Absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
JP4315855B2 (en) Absorption refrigerator
JP2004333061A (en) Absorption refrigerating machine for single/double effect
JP3851204B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP7054855B2 (en) Absorption chiller
JP4330522B2 (en) Absorption refrigerator operation control method
JP4107981B2 (en) Control method of absorption heat pump device
JP3811632B2 (en) Waste heat input type absorption refrigerator
KR20080001999U (en) Apparatus for preventing warming changeover valve pipe from crystallization in absorption water cooler and heater
JPH11281187A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4390267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees