JP4362266B2 - 燃料ガスの供給不足検出方法および燃料電池の制御方法 - Google Patents
燃料ガスの供給不足検出方法および燃料電池の制御方法 Download PDFInfo
- Publication number
- JP4362266B2 JP4362266B2 JP2002135068A JP2002135068A JP4362266B2 JP 4362266 B2 JP4362266 B2 JP 4362266B2 JP 2002135068 A JP2002135068 A JP 2002135068A JP 2002135068 A JP2002135068 A JP 2002135068A JP 4362266 B2 JP4362266 B2 JP 4362266B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel gas
- anode side
- side electrode
- fuel cell
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04582—Current of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/04902—Current of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04955—Shut-off or shut-down of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、電解質の一方の面に設けられたアノード側電極に燃料ガスを供給するとともに、前記電解質の他方の面に設けられたカソード側電極に酸化剤ガスを供給して発電を行う際、前記燃料ガスの供給不足を検出する燃料ガスの供給不足検出方法および燃料電池の制御方法に関する。
【0002】
【従来の技術】
例えば、固体高分子型燃料電池は、高分子イオン交換膜(陽イオン交換膜)からなる電解質膜(電解質)の両側に、それぞれアノード側電極およびカソード側電極を対設した電解質膜・電極構造体を、セパレータによって挟持することにより構成されている。この種の燃料電池は、通常、電解質(電解質膜)・電極構造体およびセパレータを所定数だけ積層することにより、燃料電池スタックとして使用されている。
【0003】
この燃料電池において、アノード側電極に供給された燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)は、触媒電極上で水素がイオン化され、電解質を介してカソード側電極側へと移動する。その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。なお、カソード側電極には、酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されているために、このカソード側電極において、水素イオン、電子および酸素が反応して水が生成される。
【0004】
ところで、上記の燃料電池に供給される燃料ガス量は、通常、気体用流量計で計測され、前記燃料電池の運転時における負荷に対応した燃料ガス量が、常時、該燃料電池に供給されるように制御されている。
【0005】
この場合、燃料電池を車載用として使用するためには、コストの削減や小型化を図るべく、前記燃料電池に供給される燃料ガス量を計測するための機器類(気体用流量計等)を省略する必要がある。
【0006】
しかしながら、燃料電池に対して発電に必要な燃料ガス量が供給されているか否かを検出する手段がないため、特に、高負荷運転時にはストイキ不足(燃料ガス不足)が発生し易い。これにより、燃料電池の発電性能が著しく低下してしまうというおそれがある。
【0007】
そこで、例えば、特開平6−243882号公報に開示されているように、燃料電池スタックの出力電圧を、複数の単位セルをセル区間として複数のセル区間について検出し、検出電圧の最低値が負荷電力の大きさに係わりなく一定電圧低下したとき保護停止する燃料電池発電装置の保護停止方法が知られている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記の従来技術では、複数のセル区間に区分し、各セル区間の電圧を複数の電圧検出器により検出するとともに、判断部において各検出電圧を予め定める保護レベルの設定値と照合するようにしている。これにより、装置全体の構成が相当に複雑化かつ大型化するとともに、コストが高騰するという問題が指摘されている。
【0009】
本発明はこの種の問題を解決するものであり、簡単かつ経済的な構成で、アノード側電極での燃料ガスの不足を良好に検出することが可能な燃料ガスの供給不足検出方法を提供することを目的とする。
【0010】
また、本発明は、簡単かつ経済的な構成で、種々の異なる電流条件において最適な運転条件で運転することが可能な燃料電池の制御方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の請求項1に係る燃料ガスの供給不足検出方法では、アノード側電極に燃料ガスが十分に供給されている場合における、電解質のアノード側に設けられた参照電極と前記アノード側電極との間の電位差と電流との関係を示す基準線が設定され、検出された前記電位差が前記電流に対して前記基準線と一致するか否かを測定し、前記基準線よりも高電位側にずれる関係線に沿って移行した際、前記アノード側電極に供給される前記燃料ガスが不足していると判断する。
【0012】
具体的には、参照電極とアノード側電極との間の電位差(以下、アノード電位差ともいう)を燃料電池に係る負荷(電流)毎に計測する。その際、アノード側電極内に発電に必要な量の燃料ガスが供給されている場合に、アノード電位差が電流に応じて直線的に変化するため、この直線的な変化が基準線として設定される。
【0013】
これに対して、アノード側電極内に供給される燃料ガス量が不足すると、参照電極とアノード側電極との間の電位差が、燃料ガス量の不足の程度に応じて非直線的な変化に移行していく。これは、電解質・電極構造体の発電面内に、電流に対して燃料ガス(水素)の不足が生じると、この発電面内で水素の分解反応(H2→2H2+2e-)以外の反応、例えば、水の分解反応や炭素の酸化反応等が進行し、アノード側電極内部の電位が、水素の標準電極電位よりも高い電位になることによるものと推定される。
【0014】
従って、アノード側電極に接続された参照電極からの検出電位の変化傾向(基準線と一致するか否か)を測定することにより、前記アノード側電極内の燃料ガスの状況、すなわち、燃料ガス量が十分であるか不足であるかを容易かつ確実に判断することが可能になる。
【0015】
また、本発明の請求項2に係る燃料電池の制御方法では、アノード側電極に燃料ガスが十分に供給されている場合における、電解質のアノード側に設けられた参照電極と前記アノード側電極との間の電位差と電流との関係を示す基準線が設定され、検出された前記電位差が前記電流に対して前記基準線と一致するか否かを測定し、前記基準線よりも高電位側にずれる関係線に沿って移行した際、前記アノード側電極に供給される前記燃料ガスが不足していると判断する。そして、不足している燃料ガスの流量を増加してアノード側電極に供給し、あるいは、電流を減少させている。
【0016】
このため、アノード側電極内の燃料ガスの不足が確実に検出され、この検出結果に基づいて前記燃料ガス量や電流値を調整することができる。これにより、燃料電池の制御が、簡単かつ経済的な構成で、効率的に遂行されるとともに、燃料ガスのストイキを有効に下げて燃料ガスの利用率を向上させることが可能になる。
【0017】
【発明の実施の形態】
図1は、本発明の実施形態に係る制御方法を実施するための燃料電池システム10の概略構成図であり、図2は、前記燃料電池システム10に組み込まれる燃料電池12の要部分解斜視図である。
【0018】
燃料電池12は、電解質膜・電極構造体(電解質・電極接合体)14と、前記電解質膜・電極構造体14を挟持する第1および第2セパレータ16、18とを備える。電解質膜・電極構造体14と第1および第2セパレータ16、18との間には、後述する連通孔の周囲および電極面(発電面)の外周を覆って、ガスケット等のシール部材19が介装されている。
【0019】
電解質膜・電極構造体14と第1および第2セパレータ16、18の矢印B方向(図2中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔20a、冷却媒体を排出するための冷却媒体排出連通孔22b、および燃料ガス、例えば、水素含有ガスを排出するための燃料ガス排出連通孔24bが設けられる。
【0020】
電解質膜・電極構造体14と第1および第2セパレータ16、18の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス供給連通孔24a、冷却媒体を供給するための冷却媒体供給連通孔22a、および酸化剤ガスを排出するための酸化剤ガス排出連通孔20bが設けられる。
【0021】
電解質膜・電極構造体14は、例えば、パーフルオロスルホン酸の薄膜に水が含浸されてなる固体高分子電解質膜26と、該固体高分子電解質膜26を挟持するアノード側電極28およびカソード側電極30とを備える。
【0022】
アノード側電極28およびカソード側電極30は、カーボンペーパー等からなるガス拡散層と、白金合金が表面に担持された多孔質カーボン粒子を前記ガス拡散層の表面に一様に塗布した電極触媒層とをそれぞれ有する。電極触媒層は、互いに固体高分子電解質膜26を介装して対向するように、前記固体高分子電解質膜26の両面に接合されている。シール部材19の中央部には、アノード側電極28およびカソード側電極30に対応して開口部43が形成されている。
【0023】
電解質膜・電極構造体14のアノード側には、燃料ガスの入口である燃料ガス供給連通孔24aの近傍に発電部31の外部に位置して切り欠き部位28aを設けている。この切り欠き部位28aには、参照電極32が取り付けられており、前記参照電極32に導線34の端部が接続されている。この参照電極32は、例えば、白金をリボン状に構成している。
【0024】
第1セパレータ16の電解質膜・電極構造体14側の面16aには、例えば、矢印B方向に延在する複数本の溝部からなる酸化剤ガス流路36が設けられるとともに、この酸化剤ガス流路36は、酸化剤ガス供給連通孔20aと酸化剤ガス排出連通孔20bとに連通する。
【0025】
図3に示すように、第2セパレータ18の電解質膜・電極構造体14側の面18aには、燃料ガス供給連通孔24aと燃料ガス排出連通孔24bとに連通する燃料ガス流路38が形成される。この燃料ガス流路38は、矢印B方向に延在する複数本の溝部を備えている。
【0026】
図2に示すように、第2セパレータ18の面18bには、冷却媒体供給連通孔22aと冷却媒体排出連通孔22bとに連通する冷却媒体流路40が形成される。この冷却媒体流路40は、矢印B方向に延在する複数本の溝部を備えている。アノード側セパレータである第2セパレータ18には、導線42の端部が接続されている。
【0027】
導線42は、燃料ガスの供給不足が惹起し易い場所に設置されることが好ましい。具体的には、第2セパレータ18では、燃料ガス流路38の出口側に導線42を設けることが望ましく、また、燃料電池12をスタックに構成した場合には、連通孔の最深部側のセパレータに前記導線42を設置することが望ましい。
【0028】
図1に示すように、燃料電池システム10は、導線34、42が接続されて参照電極32と第2セパレータ18との間のアノード電位差を、常時、計測するコントロールユニット44を備える。このコントロールユニット44は、燃料ガス供給部46と酸化剤ガス供給部(図示せず)とを制御する。
【0029】
燃料ガス供給部46は、燃料ガスタンク48を備え、この燃料ガスタンク48は、流量制御弁50、インジェクタ51および発電条件計測部52を介して燃料電池12の燃料ガス供給連通孔24aに連通する。燃料電池12の燃料ガス排出連通孔24bは、圧力制御弁54を介してインジェクタ51の吸い込み口側に連通可能である。
【0030】
このように構成される燃料電池12の動作について、これを組み込む燃料電池システム10との関連で説明する。
【0031】
燃料電池12を運転するに際しては、図2に示すように、燃料ガス供給連通孔24aに水素含有ガス等の燃料ガスが供給されるとともに、酸化剤ガス供給連通孔20aに酸素含有ガス等の酸化剤ガスが供給される。さらに、冷却媒体供給連通孔22aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
【0032】
酸化剤ガスは、酸化剤ガス供給連通孔20aから第1セパレータ16の酸化剤ガス流路36に導入され、電解質膜・電極構造体14を構成するカソード側電極30に沿って移動する。一方、燃料ガスは、燃料ガス供給連通孔24aから第2セパレータ18の燃料ガス流路38に導入され、電解質膜・電極構造体14を構成するアノード側電極28に沿って移動する。
【0033】
従って、各電解質膜・電極構造体14では、カソード側電極30に供給される酸化剤ガスと、アノード側電極28に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる。
【0034】
次いで、アノード側電極28に供給されて消費された燃料ガスは、燃料ガス排出連通孔24bに沿って矢印A方向に排出される。同様に、カソード側電極30に供給されて消費された酸化剤ガスは、酸化剤ガス排出連通孔20bに沿って矢印A方向に排出される。
【0035】
また、冷却媒体供給連通孔22aに供給された冷却媒体は、第2セパレータ18の冷却媒体流路40に導入された後、矢印B方向に沿って流通する。この冷却媒体は、電解質膜・電極構造体14を冷却した後、冷却媒体排出連通孔22bから排出される。
【0036】
次に、燃料電池システム10を用い、本実施形態に係る燃料ガスの供給不足検出方法および燃料電池の制御方法に関連して、以下に説明する。
【0037】
まず、上記のように燃料電池12が運転を行っている際、図1に示すように、コントロールユニット44には、導線34、42を介して参照電極32の電位とアノード側電極28(第2セパレータ18)の電位とが入力され、その電位差が、常時、計測される。その計測値は、横軸を電流とし、縦軸をアノード電位差としてプロットされる。その際、アノード側電極28の発電に必要な燃料ガス量が十分に供給されていると、アノード電位差が電流に応じて直線的に変化し、基準線L1が得られる(図4参照)。なお、この基準線L1の傾きは、アノード側電極28および第2セパレータ18の電気抵抗によって変化する。
【0038】
これに対して、アノード側電極28に供給される燃料ガス量が不足すると、アノード電位差が燃料ガス不足の程度に応じて、基準線L1とは異なる関係線L0に沿って移行していく(図5参照)。これは、電解質膜・電極構造体14の発電面内の電流に対して水素の不足が発生するため、発電面内で水素の分解反応以外の反応、例えば、水の分解反応や炭素の酸化反応等が進行し、アノード側電極28の内部の電位が水素標準電極電位よりも高い電位になることによるものと推定される。
【0039】
そこで、本実施形態に係る方法について、図6に示すフローチャートを参照しながら以下に説明する。
【0040】
まず、発電条件計測部52を介して燃料電池システム10の各種発電条件が計測される(ステップS1)。具体的には、燃料ガスの湿度、温度および圧力等の発電条件が計測される。そして、コントロールユニット44において、燃料電池12の電流密度が計算され、この電流密度が既定値以下であるか否かが判断される(ステップS2)。計算された電流密度が既定値以下である際には、すなわち、燃料電池12が低負荷運転時である際には(ステップS2中、YES)、ステップS3に進む。
【0041】
一方、計算された電流密度が既定値以上である際には、すなわち、燃料電池12が定常運転時である際には(ステップS2中、NO)、ステップS4に進み、予めコントロールユニット44にマップとして記憶されている基準線L1と、実際に検出されたアノード電位差とが比較される。
【0042】
実際のアノード電位差と電流との関係が、基準線L1とは異なる関係線L0として検出された際には(図5参照)、ステップS5において、燃料ガスに不足が生じていると判断される(ステップS5中、YES)。従って、ステップS6に進み、燃料電池システム10において燃料ガス量を増加させることが可能であるか否かが判断される。
【0043】
燃料電池12において、燃料ガス量の増加が可能である際には(ステップS6中、YES)、ステップS7に進んで、コントロールユニット44が流量制御弁50および圧力制御弁54等を制御して、燃料ガスタンク48から燃料電池12に供給される燃料ガス量を増加させる。
【0044】
これに対し、燃料ガス量の増加が不可能であると判断された際には(ステップS6中、NO)、ステップS8に進んで、燃料電池12の電流を減少させることが可能であるか否かが判断される。電流負荷の減少が可能である際には(ステップS8中、YES)、ステップS9に進んで、燃料電池12の出力電流を絞る一方、負荷電流の減少ができない際には(ステップS8中、NO)、ステップS10に進んで、燃料電池システム10の運転が停止される。
【0045】
また、ステップS2で燃料電池12が低負荷運転時であると判断された際に、ステップS3では、アノード電位差を検出し、直線近似により基準線L1が決定される。そして、この新たに決定された基準線L1に基づいて、ステップS4以下の処理が行われる。
【0046】
この場合、本実施形態では、アノード側電極28に参照電極32が設けられ、この参照電極32とアノード側セパレータである第2セパレータ18との電位差がコントロールユニット44で、常時、計測される。そして、この計測値が予め記憶されているアノード電位差のマップ、すなわち、基準線L1と比較されることにより、アノード側電極28内の燃料ガスが不足であるか否か確実に検出される。
【0047】
これにより、簡単な構成および制御で、燃料ガス量が不足であるか十分であるかの判断が正確に行われるため、例えば、従来、使用されていた気体用流量計を不要にすることが可能になる。従って、燃料電池システム10全体をコンパクトかつ経済的に得ることができるとともに、燃料ガスのストイキを有効に下げて、燃料ガスの利用率を向上させることが可能になるという効果が得られる。しかも、ストイキ不足による燃料電池12の発電性能の低下を確実に阻止することができる。
【0048】
さらに、本実施形態では、アノード側電極28内の燃料ガス量の不足が検出された後、燃料ガス量の増加や電流の減少等が行われている。これにより、燃料電池12の制御が、簡単かつ経済的な構成で効率的に遂行され、前記燃料電池12を良好な状態に維持して、所望の発電性能を確保することが可能になる。
【0049】
【発明の効果】
本発明に係る燃料ガスの供給不足検出方法では、アノード側電極に燃料ガスが十分に供給されている場合における、アノード側に接続された参照電極からの検出電位と電流との関係を示す基準線を設定し、検出電位と電流とが、この基準線と一致するか否かを測定し、前記基準線よりも高電位側にずれる関係線に沿って移行した際に、前記アノード側電極に燃料ガス不足が発生していると判断することができる。
【0050】
これにより、簡単な制御および構成で、燃料ガスの供給不足が確実に検出され、前記燃料ガスのストイキを有効に下げて燃料ガスの利用率を向上させることが可能になる。
【0051】
また、本発明に係る燃料電池の制御方法では、アノード側電極に燃料ガスの供給不足が検出された後、不足している燃料ガスの流量を増加して前記アノード側電極に供給する、あるいは、電流を減少させる処理が行われる。このため、燃料ガスのストイキを有効に下げるとともに、異なった電流条件においても、最適な運転条件で燃料電池を運転することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る方法を実施するための燃料電池システムの概略構成図である。
【図2】前記燃料電池システムに組み込まれる燃料電池の要部分解斜視図である。
【図3】前記燃料電池を構成する第2セパレータの正面説明図である。
【図4】燃料ガスが十分に供給されている際のアノード電位差と電流との関係を示す図である。
【図5】前記燃料ガスの供給不足が発生している際のアノード電位差と電流との関係を示す図である。
【図6】本実施形態に係る方法を説明するフローチャートである。
【符号の説明】
10…燃料電池システム 12…燃料電池
14…電解質膜・電極構造体 16、18…セパレータ
19…シール部材 20a…酸化剤ガス供給連通孔
20b…酸化剤ガス排出連通孔 22b…冷却媒体排出連通孔
24a…燃料ガス供給連通孔 24b…燃料ガス排出連通孔
26…固体高分子電解質膜 28…アノード側電極
28a…切り欠き部位 30…カソード側電極
31…発電部 32…参照電極
34、42…導線 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
44…コントロールユニット 46…燃料ガス供給部
48…燃料ガスタンク
Claims (2)
- 電解質の一方の面に設けられたアノード側電極に燃料ガスを供給するとともに、前記電解質の他方の面に設けられたカソード側電極に酸化剤ガスを供給して発電を行う際、前記燃料ガスの供給不足を検出する燃料ガスの供給不足検出方法であって、
前記アノード側電極に前記燃料ガスが十分に供給されている場合における、前記電解質のアノード側に設けられた参照電極と前記アノード側電極との間の電位差と電流との関係を示す基準線を設定する工程と、
検出された前記電位差が前記電流に対して前記基準線と一致するか否かを測定し、前記基準線よりも高電位側にずれる関係線に沿って移行した際、前記アノード側電極に供給される前記燃料ガスが不足していると判断する工程と、
を有することを特徴とする燃料ガスの供給不足検出方法。 - 電解質の一方の面に設けられたアノード側電極に燃料ガスを供給するとともに、前記電解質の他方の面に設けられたカソード側電極に酸化剤ガスを供給して発電を行う燃料電池の制御方法であって、
前記アノード側電極に前記燃料ガスが十分に供給されている場合における、前記電解質のアノード側に設けられた参照電極と前記アノード側電極との間の電位差と電流との関係を示す基準線を設定する工程と、
検出された前記電位差が前記電流に対して前記基準線と一致するか否かを測定し、前記基準線よりも高電位側にずれる関係線に沿って移行した際、前記アノード側電極に供給される前記燃料ガスが不足していると判断する工程と、
不足している前記燃料ガスの流量を増加して前記アノード側電極に供給する、あるいは、電流を減少させる工程と、
を有することを特徴とする燃料電池の制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002135068A JP4362266B2 (ja) | 2002-05-10 | 2002-05-10 | 燃料ガスの供給不足検出方法および燃料電池の制御方法 |
US10/514,089 US7527882B2 (en) | 2002-05-10 | 2003-05-08 | Method for detecting undersupply of fuel gas and method for controlling fuel cell |
EP03721067A EP1505676B1 (en) | 2002-05-10 | 2003-05-08 | Method for detecting undersupply of fuel gas and method for controlling fuel cell |
PCT/JP2003/005746 WO2003096461A1 (fr) | 2002-05-10 | 2003-05-08 | Procede de detection de penurie de gaz combustible, et procede de controle de pile a combustible |
CA2485573A CA2485573C (en) | 2002-05-10 | 2003-05-08 | Method for detecting undersupply of fuel gas and method for controlling fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002135068A JP4362266B2 (ja) | 2002-05-10 | 2002-05-10 | 燃料ガスの供給不足検出方法および燃料電池の制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003331895A JP2003331895A (ja) | 2003-11-21 |
JP4362266B2 true JP4362266B2 (ja) | 2009-11-11 |
Family
ID=29416730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002135068A Expired - Fee Related JP4362266B2 (ja) | 2002-05-10 | 2002-05-10 | 燃料ガスの供給不足検出方法および燃料電池の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7527882B2 (ja) |
EP (1) | EP1505676B1 (ja) |
JP (1) | JP4362266B2 (ja) |
CA (1) | CA2485573C (ja) |
WO (1) | WO2003096461A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4977947B2 (ja) | 2004-07-16 | 2012-07-18 | 日産自動車株式会社 | 燃料電池システム |
JP4505315B2 (ja) * | 2004-11-24 | 2010-07-21 | 本田技研工業株式会社 | 燃料電池 |
JP4886203B2 (ja) * | 2005-03-30 | 2012-02-29 | 本田技研工業株式会社 | 燃料電池スタックの制御方法 |
JP4986104B2 (ja) * | 2005-08-30 | 2012-07-25 | 横河電機株式会社 | 燃料電池の特性測定方法および特性測定装置 |
JP5098154B2 (ja) * | 2005-11-04 | 2012-12-12 | ソニー株式会社 | 電気化学エネルギー生成装置及びその運転方法 |
JP2007165162A (ja) * | 2005-12-15 | 2007-06-28 | Toyota Motor Corp | 燃料電池システム及び移動体 |
JP5017907B2 (ja) * | 2006-04-03 | 2012-09-05 | トヨタ自動車株式会社 | 燃料電池システム |
JP5043559B2 (ja) * | 2007-08-23 | 2012-10-10 | 本田技研工業株式会社 | 燃料電池システム |
JP5146053B2 (ja) * | 2008-03-28 | 2013-02-20 | 株式会社エクォス・リサーチ | 燃料電池システム |
JP6418245B2 (ja) * | 2014-11-07 | 2018-11-07 | 日産自動車株式会社 | 燃料電池の状態判定装置及び方法 |
JP6252459B2 (ja) * | 2014-12-12 | 2017-12-27 | トヨタ自動車株式会社 | 燃料電池の検査方法 |
DE102015001572A1 (de) * | 2015-02-10 | 2016-08-11 | Forschungszentrum Jülich GmbH | Verfahren zur Ermittlung von Überspannungen in Brennstoffzellen |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4171253A (en) | 1977-02-28 | 1979-10-16 | General Electric Company | Self-humidifying potentiostated, three-electrode hydrated solid polymer electrolyte (SPE) gas sensor |
JPH0831332B2 (ja) * | 1987-06-26 | 1996-03-27 | 株式会社日立製作所 | 溶融炭酸塩型燃料電池の運転方法 |
US4898793A (en) | 1987-11-04 | 1990-02-06 | Mitsubishi Denki Kabushiki Kaisha | Fuel cell device |
JP3053184B2 (ja) | 1988-08-12 | 2000-06-19 | 三菱電機株式会社 | 電池特性の解析方法 |
JPH06243882A (ja) * | 1993-02-16 | 1994-09-02 | Fuji Electric Co Ltd | 燃料電池発電装置の保護停止方法 |
JP3451111B2 (ja) | 1993-06-29 | 2003-09-29 | 本田技研工業株式会社 | 固体高分子型燃料電池の制御方法 |
JPH07282832A (ja) * | 1994-04-14 | 1995-10-27 | Toyota Motor Corp | 燃料電池の駆動装置 |
JPH10106602A (ja) | 1996-10-03 | 1998-04-24 | Fuji Electric Co Ltd | リン酸型燃料電池 |
JPH11260388A (ja) | 1998-03-09 | 1999-09-24 | Fuji Electric Co Ltd | 燃料電池 |
JP2002520778A (ja) * | 1998-07-02 | 2002-07-09 | バラード パワー システムズ インコーポレイティド | 電気化学的燃料電池スタックのためのセンサー電池 |
US6517962B1 (en) | 1999-08-23 | 2003-02-11 | Ballard Power Systems Inc. | Fuel cell anode structures for voltage reversal tolerance |
JP2001133867A (ja) | 1999-11-01 | 2001-05-18 | Canon Inc | カメラ |
JP2001338667A (ja) * | 2000-05-31 | 2001-12-07 | Toyota Central Res & Dev Lab Inc | 燃料電池制御システム |
-
2002
- 2002-05-10 JP JP2002135068A patent/JP4362266B2/ja not_active Expired - Fee Related
-
2003
- 2003-05-08 WO PCT/JP2003/005746 patent/WO2003096461A1/ja active Application Filing
- 2003-05-08 CA CA2485573A patent/CA2485573C/en not_active Expired - Fee Related
- 2003-05-08 US US10/514,089 patent/US7527882B2/en not_active Expired - Fee Related
- 2003-05-08 EP EP03721067A patent/EP1505676B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20050208349A1 (en) | 2005-09-22 |
EP1505676A1 (en) | 2005-02-09 |
EP1505676B1 (en) | 2011-12-28 |
JP2003331895A (ja) | 2003-11-21 |
US7527882B2 (en) | 2009-05-05 |
EP1505676A4 (en) | 2009-11-04 |
WO2003096461A1 (fr) | 2003-11-20 |
CA2485573C (en) | 2011-02-22 |
CA2485573A1 (en) | 2003-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4905182B2 (ja) | 燃料電池システム | |
KR101053991B1 (ko) | 연료전지시스템 및 전원제어방법 | |
JP5936976B2 (ja) | 燃料電池の運転方法 | |
US7597977B2 (en) | Diagnostic method for fuel cell | |
JP4362266B2 (ja) | 燃料ガスの供給不足検出方法および燃料電池の制御方法 | |
US20140162151A1 (en) | Humidification control method for fuel cell | |
JP2002184438A (ja) | ガス加湿機能を有する燃料電池システム | |
KR20220124104A (ko) | 연료 전지 시스템 | |
JP2005063724A (ja) | 燃料電池システム | |
JP4852854B2 (ja) | 燃料電池システム | |
JP2010108815A (ja) | 電気化学装置 | |
JP4945882B2 (ja) | 燃料電池の性能解析方法 | |
JP4886203B2 (ja) | 燃料電池スタックの制御方法 | |
JP4143375B2 (ja) | 燃料電池の始動方法 | |
JP2007323993A (ja) | 燃料電池システム | |
JP2006120375A (ja) | 燃料電池システム及びその運転方法 | |
JP5502547B2 (ja) | 燃料電池用液絡検出装置 | |
JPH08273690A (ja) | 燃料電池システム | |
JP4505315B2 (ja) | 燃料電池 | |
JP5011670B2 (ja) | 燃料電池の電圧調整装置 | |
US11799108B2 (en) | Fuel cell system | |
JP2009032568A (ja) | 燃料電池システム | |
JP2022162240A (ja) | 燃料電池システム | |
JP2022069754A (ja) | 燃料電池システム | |
JP5670831B2 (ja) | 燃料電池システム及びその停止方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090817 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130821 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140821 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |