[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4220819B2 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
JP4220819B2
JP4220819B2 JP2003087894A JP2003087894A JP4220819B2 JP 4220819 B2 JP4220819 B2 JP 4220819B2 JP 2003087894 A JP2003087894 A JP 2003087894A JP 2003087894 A JP2003087894 A JP 2003087894A JP 4220819 B2 JP4220819 B2 JP 4220819B2
Authority
JP
Japan
Prior art keywords
photodiode
photodiode array
light
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003087894A
Other languages
English (en)
Other versions
JP2004296836A5 (ja
JP2004296836A (ja
Inventor
勝己 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003087894A priority Critical patent/JP4220819B2/ja
Priority to TW93106308A priority patent/TWI312199B/zh
Priority to TW093108058A priority patent/TWI327780B/zh
Priority to DE602004031593T priority patent/DE602004031593D1/de
Priority to PCT/JP2004/004212 priority patent/WO2004086505A1/ja
Priority to US10/550,682 priority patent/US7663169B2/en
Priority to CNA2004800084567A priority patent/CN1768430A/zh
Priority to EP04723382A priority patent/EP1608022B1/en
Priority to KR1020057018183A priority patent/KR101047671B1/ko
Publication of JP2004296836A publication Critical patent/JP2004296836A/ja
Priority to IL171136A priority patent/IL171136A/en
Publication of JP2004296836A5 publication Critical patent/JP2004296836A5/ja
Application granted granted Critical
Publication of JP4220819B2 publication Critical patent/JP4220819B2/ja
Priority to US12/461,465 priority patent/US20090302410A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放射線検出器に関する。
【0002】
【従来の技術】
この種のホトダイオードアレイとして、従来から、バンプ電極等の形成されている面の反対側(裏面側)から光を入射させるタイプの裏面入射型ホトダイオードアレイが知られている(例えば特許文献1参照)。この特許文献1に開示されているホトダイオードアレイは、図25および図26に示すように、n型シリコン基板133に、角柱状p層134を形成してpn接合によるホトダイオード140を形成し、そのホトダイオード140が形成されている表面側(図面の下側)とは反対側の裏面(図面の上側)に、負電極膜136を介してシンチレータ131が接着されてなっている。そして、そのシンチレータ131から、波長変換された光をホトダイオード140に入射させるとともに、その入射光に応じた電流をホトダイオード140により得て、その電流を表面側の正電極135、半田球139を介して、プリント基板137に設けられた半田パッド138に接続している。
【0003】
【特許文献1】
特開平7−333348号公報
【0004】
【発明が解決しようとする課題】
ところで、上述のホトダイオードアレイ、例えばCT用ホトダイオードアレイを実装するには、チップを吸着するコレットとして、平コレットと角錐コレットを使用することができるが、通常フリップチップボンディングを行う場合は平コレットが使用されている。CT用ホトダイオードアレイは、チップ面積が大きく(例えば、1辺20mmの矩形状)、図24(b)に示すように、通常のマウンタで使用される角錐コレット161を使用すると、チップ162と角錐コレット161との隙間163により反り返りを生じ、この反り返りにより位置ずれを生じて実装精度が低下するおそれがある。また、フリップチップボンディングの際には加熱や加圧が必要となるが、角錐コレット161では熱伝達の効率が良くなくしかも、加えられる圧力によってチップエッジに損傷がもたらされるおそれもあり、角錐コレット161は薄いチップには不向きである。このような理由から、フリップチップボンディングを行う場合は、図24(a)に示すように、チップ面に面接触する平コレット160でチップ162を吸着しつつ、そのチップ162にヒータブロック164から熱と圧力を加えている。
【0005】
しかしながら、平コレット160を使用すると、チップ162のチップ面全体が平コレット160に接触することになる。この光入射面となるチップ面全体が平コレット160に接触して加圧および加熱を受けると、そのチップ面上の、ホトダイオードを構成する不純物拡散層と対応する領域に物理的なダメージ(損傷)が及ぶので、そのダメージによる外観不良や特性劣化(暗電流や雑音の増加など)がホトダイオードアレイにもたらされる。
【0006】
そこで、本発明は上記課題を解決し、実装時において、ホトダイオードが形成されている領域と対応する領域に及ぶダメージによる特性劣化を防止することが可能放射線検出器を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明による放射線検出器は、入射した放射線により発光するシンチレータパネルと、ホトダイオードアレイとを備えた放射線検出器であって、ホトダイオードアレイは、被検出光の入射面の反対面側に、複数のホトダイオードがアレイ状に形成された半導体基板を備え、半導体基板の入射面側には、光の反射を抑制するAR膜が形成され、AR膜上には、少なくともホトダイオードが形成された領域と対応する領域を被覆するように、該領域を保護するクッション層として機能すると共に被検出光を透過する膜厚1〜50μ m 樹脂膜が設けられており、シンチレータパネルは、ホトダイオードアレイの樹脂膜が設けられた側に取り付けられ、シンチレータパネルの光出射面と樹脂膜との間隙に光学樹脂が充填されていることを特徴とする
【0008】
また、上記ホトダイオードアレイは上記半導体基板が、入射面の反対面側に、周囲の領域よりも窪んだ表面側凹部を有し、その表面側凹部の底部にホトダイオードが形成されているようにすることができる。
このホトダイオードは、半導体基板の被検出光の入射面からホトダイオードまでの距離が短縮されているので、被検出光の入射により発生するキャリアの移動過程における再結合が抑制される。
【0009】
また、上記ホトダイオードは、樹脂膜を入射面側全体に設けるとよい。この場合は、製造工程を簡易にすることができる。
さらに、上記ホトダイオードアレイは、半導体基板には、隣接する各ホトダイオードの間に、その各ホトダイオードを分離する不純物領域(分離層)が設けられているとよい。これらのホトダイオードアレイは、分離層により表面リークが抑えられるために、隣接するホトダイオード同士が電気的に確実に分離されている。
上記いずれのホトダイオードアレイも、半導体基板の入射面側に、上記半導体基板と同じ導電型の高不純物濃度層が形成されていることが好ましい。このホトダイオードアレイは、半導体基板内部の光入射面付近で発生したキャリアがトラップされることなく各ホトダイオードへ効率的に移動して、光検出感度を高めることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。
(第1の実施形態)
まず、ホトダイオードアレイとその製造方法の実施形態について説明する。
図1は、本発明の実施形態に係るホトダイオードアレイ1を模式的に示す断面図である。なお、以下の説明においては、光Lの入射面(図1の上側)を裏面、その反対側(図1の下側)の面を表面としている。以下の各図においては、図示の都合上、寸法が適宜変更されている。
【0016】
ホトダイオードアレイ1は、表面側において、pn接合による複数のホトダイオード4が縦横に規則正しいアレイ状に2次元配列されて、その一つ一つのホトダイオード4がホトダイオードアレイ1の一画素としての機能を有し、全体で一つの光検出部を構成している。
ホトダイオードアレイ1は、厚さが30〜300μm(好ましくは100μm)程度で、不純物濃度が1×1012〜1015/cm3程度のn型(第1導電型)シリコン基板3を有している。そして、その表面側において、不純物濃度が1×1013〜1020/cm3程度で、膜厚が0.05〜20μm程度(好ましくは0.2μm)のp型(第2導電型)不純物拡散層5が縦横の規則正しいアレイ状に2次元配列されている。このp型不純物拡散層5とn型シリコン基板3とによるpn接合がホトダイオード4を構成している。さらに、表面側にはシリコン酸化膜22が形成され、重ねてパッシベーション膜2が形成されている。
【0017】
また、各ホトダイオード4について、電極配線9が形成されている。この電極配線9は、膜厚が1μm程度のアルミニウムからなり、表面側において、各p型不純物拡散層5に電気的に接続されている。また、各電極配線9には、所定の位置でパッシベーション膜2が開口された部分に、Ni−Auからなるアンダーバンプメタル(UBM)11を介して半田のバンプ電極12が電気的に接続されている。
【0018】
一方、n型シリコン基板3の裏面側には、高不純物濃度層であるアキュムレーション層8が設けられている。このアキュムレーション層8は裏面側の略全面にわたって略均一な深さで形成されていて、n型シリコン基板3と同じ導電型であり、n型シリコン基板3よりも不純物濃度が高くなっている。また、このアキュムレーション層8を被覆し、保護すると同時に光Lの反射を抑制するAR膜24が形成されている。AR膜24は、SiO2からなり、厚さ0.01〜数μm程度で形成されている。なお、ホトダイオードアレイ1はアキュムレーション層8を設けているが、アキュムレーション層8を設けなくても実用上十分許容しえる程度の光検出感度を有している。なお、AR膜24は、SiO2の他にSiNや必要な波長において反射防止ができるような光学膜を積層あるいは複合して形成してもよい。
【0019】
そして、表面側の各p型不純物拡散層5の存在する領域がホトダイオード4の形成されている領域(形成領域)で、それ以外の領域がホトダイオードの形成されない非形成領域となっており、少なくとも各ホトダイオード4の形成領域と対応する領域(以下「対応領域」という)の全体を被覆し得る透明樹脂膜6が裏面側AR膜24上の全体に設けられている。
【0020】
さらに、図示したホトダイオードアレイ1は、p型不純物拡散層5同士の間、すなわち、隣接するホトダイオード4同士の間に、n+型不純物領域(分離層)7を膜厚0.1〜数10μm程度で設けている。このn+型不純物領域(分離層)7は、隣接するホトダイオード4同士を電気的に分離する機能を有するもので、これを設けることにより、隣接するホトダイオード4同士が電気的に確実に分離され、ホトダイオード4同士のクロストークを低減することができる。しかし、ホトダイオードアレイ1はこのn+型不純物領域7は設けなくても、実用上十分許容し得る程度の光検出特性を有している。
【0021】
図2は、ホトダイオードアレイ1を構成する半導体チップ30の側面図およびその要部を拡大して示す断面図である。図2に示すように、半導体チップ30は幅W1が22.4mm程度で、厚さDが約0.3mmの極めて薄い板状であり、上述のホトダイオード4を多数有し(例えば、16×16個の2次元配列)、隣接する画素間のピッチW2が1.4mm程度の大面積(例えば、22.4mm×22.4mm)のチップである。
【0022】
以上のように構成されたホトダイオードアレイ1は、ホトダイオード4が形成されていない裏面側から光Lが入射すると、その被検出光Lが透明樹脂膜6及びアキュムレーション層8を通過して、pn接合部に達し、その入射光に応じたキャリアを各ホトダイオード4が生成する。このとき、アキュムレーション層8は光Lの入射によって、n型シリコン基板3内部の光入射面(裏面)付近で発生したキャリアが光入射面やAR膜24との界面でトラップすることを抑制して、そのキャリアをpn接合部へ効率的に移動させて、ホトダイオードアレイ1の光検出感度を高めるように機能する。そして、生成されたキャリアによる光電流は、各p型不純物拡散層5に接続された電極配線9とUBM11を介してバンプ電極12から取り出される。このバンプ電極12からの出力によって、入射光の検出が行われる。
【0023】
上述のとおり、ホトダイオードアレイ1は、入射面側において、各ホトダイオード4の対応領域全体を被覆し得る透明樹脂膜6が設けられている。この透明樹脂膜6は、半導体チップ30を平コレットに吸着してフリップチップボンディングを行う場合に平コレットに接触し、その平コレットと各ホトダイオード4の対応領域との間に介在する恰好で配置される。これにより、光検出部を構成するホトダイオード4の対応領域はこの透明樹脂膜6により保護され、平コレットに直接接触することはない。したがって、ホトダイオードアレイ1は対応領域が加圧によるストレスや加熱によるストレスを直接受けないので、その対応領域のアキュムレーション層8に物理的なダメージ(損傷)が及ぶことはなく、ホトダイオード4にそのようなダメージによる結晶欠陥等に起因する暗電流やノイズが発生することもない。よって、ホトダイオードアレイ1は、高精度な(S/N比が高い)光検出を行うことができる。
【0024】
また、後述するように、透明樹脂膜6は、各ホトダイオード4の対応領域を保護し得るクッション層としての機能を発揮し得るから、平コレットに吸着する際の物理的な衝撃を吸収することもでき、この点でも効果的である。
さらに、フリップチップボンディング以外、例えばホトダイオードアレイ1をシンチレータに一体化してCT用センサとする場合にも、シンチレータが直接対応領域に接触することがないから、シンチレータの取り付け時におけるダメージも回避することができる。
【0025】
ところで、透明樹脂膜6は、少なくともホトダイオード4の対応領域全体を被覆し得る範囲に設ければよい。この要件を満たしていれば、1つの透明樹脂膜6で対応領域全体を被覆してもよく、透明樹脂膜6をホトダイオード4の対応領域毎に個別に形成し、ホトダイオード4の形成領域と対応しない領域(以下「非対応領域」という)に、一部形成されない欠落部6aが形成されていてもよい(図12参照)。しかし、製造工程を簡易にするという点では、裏面側全体に設けたほうが好ましい(この点については後に詳述する)。
【0026】
そして、透明樹脂膜6は、ホトダイオード4の対応領域全体の保護膜となり、入射面側に配置されるものであるから、ホトダイオードアレイ4が検出する光(被検出光、例えば後述するシンチレータパネル31の発生する蛍光)を透過し、その被検出光に対して光学的に透明な光透過性の樹脂、例えば、エポキシ樹脂やポリイミド、アクリレート、シリコーン、フッ素、ウレタン等の樹脂からなっている。また、透明樹脂膜6は、フリップチップボンディングの際に平コレットに直に接触して、加圧され、加熱されるものであるから、この加圧や加熱から各ホトダイオード4の対応領域を保護するクッション層としての機能を発揮し得る特性を具備しているのが好ましい。この場合、例えば、熱膨張係数が1×10-6〜1×10-4/℃程度、弾性特性は弾性率10〜12000kg/cm2程度、熱伝導率は0.2〜1.85W/m℃とし、加熱により不純物イオンがホトダイオード4へ拡散せず、少なくとも後述するシンチレータパネル31からの光の吸収がなしえるような膜厚(1〜50μm(好ましくは10μm)程度)を有することが好ましい。
【0027】
次に、本実施形態に係るホトダイオードアレイ1の製造方法について、図3〜図11に基づいて説明する。
まず、図3に示すように、150〜500μm(好ましくは350μm)程度の厚さを有するn型シリコン基板3を準備して、そのn型シリコン基板3の表面および裏面に熱酸化を施し、シリコン酸化膜(SiO2)20を形成する(図4参照)。
【0028】
次に、n型シリコン基板3の表面側のシリコン酸化膜20に、所定のホトマスクを用いたパターニングを行い、n+型不純物領域7を設けようとする領域のみ開口し、その開口された部分(開口部)からリンをドープしてn+型不純物領域7を設ける。この実施の形態では、裏面側にもn+型不純物領域7を形成しているが、表面側、裏面側ともn+型不純物領域7を設けない場合はこの工程(不純物領域形成工程)を省略してもよい。その後再び基板の表面および裏面にシリコン酸化膜21を形成する(図5参照)。このシリコン酸化膜21は後続の工程において、p型不純物拡散層5を形成する際のマスクとして利用される。
【0029】
続いて、表面側のシリコン酸化膜21に、所定のホトマスクを用いたパターニングを行い、各p型不純物拡散層5を形成しようとする領域のみ開口する。そして、その開口部からボロンをドープし、p型不純物拡散層5を縦横のアレイ状に2次元配列で形成する。これにより、各p型不純物拡散層5とn型シリコン基板3のpn接合によるホトダイオード4が表面側に、縦横のアレイ状に2次元配列で形成され、このホトダイオード4が画素に対応する部分となる。その後再び熱酸化して基板の表面側にシリコン酸化膜22を形成する(図6参照)。
【0030】
次に、n型シリコン基板3の全体の厚さが所定の厚さ(30〜300μm程度)になるまで裏面を研摩してn型シリコン基板3の薄型(薄板)化を行い、裏面側にn型イオン種(例えば、リンや砒素)を0.05〜数10μm程度の深さまで拡散させて、n型シリコン基板3よりも不純物濃度が高い上述のアキュムレーション層8を形成する。さらに、表面側を保護したままの状態で裏面側からバッファ酸化膜23を除去して再度熱酸化を行い、裏面側にAR膜24を形成する(図7参照)。
【0031】
そして、ホトエッチング技術により各ホトダイオード4の形成領域において、各p型不純物拡散層5へつながるコンタクトホールをシリコン酸化膜22に形成する。続いて、蒸着により、アルミニウム金属膜を表面側の全体に形成した上で所定のホトマスクを用いてパターニングを行い、その金属膜の不要な部分を除去して電極配線9を形成する(図8参照)。
次に、n型シリコン基板3の裏面側に、透明樹脂膜6の材料となるエポキシ樹脂やポリイミド、アクリレート、シリコーン、フッ素、ウレタン等の樹脂を塗布し、それをスピンコーティングやスクリーン印刷法等により全体に広げて硬化させ、透明樹脂膜6を設ける(図9参照)。この透明樹脂膜6を設けることにより光検出部を構成するホトダイオード4の対応領域が保護されることとなる。なお透明樹脂膜6に上述の欠落部6aを形成する場合は欠落部6aの部分から、塗布した樹脂を除去すればよいが、そうしても、ホトダイオード4の対応領域は保護される。そして、以上のようにして、透明樹脂膜6を形成した後、表面側にスパッタやプラズマCVDにより、パッシベーション膜2となるSiN25を形成する。パッシベーション膜2は、SiO2やPSG、BPSGなどの絶縁膜、ポリイミド、アクリレート、エポキシ、フッ素樹脂やそれら複合膜や積層膜であってもよい。なお、パシベーション2の形成工程は透明樹脂膜6の形成する前に行ってもよい。
【0032】
続いて、そのSiN25の所定の位置にコンタクトホールを形成し、電極取り出し部とする(図10参照)。さらに、バンプ電極12を設けるが、そのバンプ電極12として半田を用いる場合、半田はアルミニウムに対する濡れ性が悪いので各電極取り出し部とバンプ電極12を仲介するためのUBM11を各電極取り出し部に形成し、そのUBM11に重ねてバンプ電極12を形成する(図11参照)。以上の工程を経ることにより、実装時におけるダメージに起因するノイズが発生せず、高精度な光検出を行えるホトダイオードアレイ1を製造することができる。
【0033】
この場合、UBM11は、無電解メッキにより、Ni−Auを形成するが、リフトオフ法により、Ti−Pt−AuやCr−Auを形成してもよい。また、バンプ電極12は半田ボール搭載法や印刷法で所定のUBM11に半田を形成し、リフロすることによって得られる。なお、バンプ電極12は、半田に限られるものではなく、金バンプ、ニッケルバンプ、銅バンプでもよく、導電性フィラー等の金属を含む導電性樹脂バンプでもよい。なお、図にはアノード電極の取り出しのみを示しているが、カソード(基板)電極もアノード電極と同様に、n+型不純物領域7から取り出すことができる(図示せず)。また、図ではアノード電極のバンプ電極12をn+型不純物領域7のエリアに形成した場合を示しているが、アノード電極のバンプ電極12は、p型不純物拡散層5のエリアに形成してもよい。
【0034】
次に、本発明の放射線検出器の第1の実施形態について説明する。
図22は、本実施形態に係る放射線検出器50の側断面図である。この放射線検出器50は、放射線を入射して、その放射線によって生じた光を光出射面31aから出射するシンチレータパネル31と、シンチレータパネル31から出射された光を光入射面から入射し、電気信号に変換する上述のホトダイオードアレイ1とを備えている。この放射線検出器50は、本発明に係るホトダイオードアレイ1を備えることを特徴としている。
【0035】
シンチレータパネル31はホトダイオードアレイ1の裏面側(入射面側)に取り付けられているが、ホトダイオードアレイ1は、その裏面側に上述した透明樹脂膜6が設けられている。そのため、シンチレータパネル31の裏面、すなわち光出射面31aが直接ホトダイオード4の対応領域に接することはない。また、シンチレータパネル31の光出射面31aと、裏面側の透明樹脂膜6との隙間には光が十分透過するように特性を考慮した屈折率を有する光学樹脂35が充填されていて、この光学樹脂35により、シンチレータパネル31から出射された光が効率よくホトダイオードアレイ1に入射するようになっている。この光学樹脂35は、シンチレータパネル31から出射された光を透過する性質を有するエポキシ樹脂や、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂等を用いることができるが、これらの複合材料を用いてもよい。
【0036】
そして、ホトダイオードアレイ1を図示しない実装配線基板上にボンディングする際には平コレットで表面を吸着する。しかし、ホトダイオードアレイ1の裏面には、上述した透明樹脂膜6が設けられているため、平コレットの吸着面が直接対応領域に接することはなく、シンチレータパネル31を取り付けたときにその光出射面31aがホトダイオード4の対応領域に直接接することもない。したがって、このようなホトダイオードアレイ1とシンチレータパネル31とを有する放射線検出器50は、実装時における対応領域のダメージによるノイズや暗電流等の発生を防止することができるから、光検出が精度よく行われ、放射線の検出も精度良く行える。
【0037】
(第2の実施形態)
次に、ホトダイオードアレイとその製造方法の第2の実施形態について説明する。
本実施形態では、図13に示すように、光Lの入射面の反対面側(表面側)に表面側凹部45を設けたn型シリコン基板43を有するホトダイオードアレイ41を対象としている。なお、このホトダイオードアレイ41は、ホトダイオードアレイ1と共通部分を有するので、以下の説明は双方の相違点を中心に行い、共通部分については、その説明を省略ないし簡略化する。
【0038】
ホトダイオードアレイ41は、n型シリコン基板43の表面側において、表面側凹部45が、縦横の規則正しいアレイ状に2次元配列で形成されている。各表面側凹部45は、その周囲の領域よりも厚さが薄くなるように窪ませて形成したもので、1.4〜1.5mm程度の配置間隔で形成されている。そして、そのそれぞれの底部45aに上述のホトダイオード4が一つづつ形成されることによって、ホトダイオード4がアレイ状に2次元配列されたホトダイオードアレイ41を構成している。
【0039】
各表面側凹部45は、表面側において、例えば1mm×1mm程度の大きさの矩形状開口部を有し、その開口部からその底部45aに向かい(表面側から裏面側に向かって)開口寸法が漸次縮小するように窪んで形成され、その底部45aまでの深さは例えば50μm程度になっている。こうすることにより、表面側凹部45は、斜面状の側面45bを有している。また、表面側には、ホトダイオード4それぞれについて、p型不純物拡散層5に電気的に接続された電極配線9が側面45bに沿って形成されている。この電極配線9にホトダイオードアレイ1と同様にパッシベーション膜2の所定の位置に開口部が形成され、さらに、UBM11を介してバンプ電極12が電気的に接続されている。また、ホトダイオード4,4の間に、n+型不純物領域7も設けられている。
【0040】
一方、ホトダイオードアレイ41は、裏面側ではその全体にアキュムレーション層8が形成され、重ねてAR膜24が形成されている。このアキュムレーション層8、AR膜24ともに、上述したホトダイオードアレイ1と同様である。そして、AR膜24上の各ホトダイオード4の対応領域を含む全体に、上述の透明樹脂膜6が設けられている。この透明樹脂膜6も上述したホトダイオードアレイ1と同様である。
【0041】
図14は、ホトダイオードアレイ41を構成する半導体チップ36の側面図およびその要部を拡大して示す断面図である。図14に示すように、半導体チップ36は、幅W1が22.4mm程度で、厚さDが約150〜300μm程度の極めて薄い板状であり、上述のホトダイオード4を多数有し(例えば、16×16個の2次元配列)、隣接する画素間のピッチW2が1.4mm程度の大面積(例えば、22.4mm×22.4mm)のチップである。
【0042】
以上のように構成されたホトダイオードアレイ41は、ホトダイオード4が形成されていない裏面側から光Lが入射すると、ホトダイオードアレイ1と同様にその被検出光Lが透明樹脂膜6とアキュムレーション層8を通過して、pn接合部に達し、その光に応じたキャリアを各ホトダイオード4が生成する。このとき各p型不純物拡散層5が表面側凹部45の底部45aに設けられているので、n型シリコン基板43の裏面からホトダイオード4までの距離が短縮されている(例えば、10〜100μm程度)。したがって、ホトダイオードアレイ41は、光Lの入射により発生するキャリアが移動する過程において、再結合により消滅してしまう事態が抑制され、そのことにより、検出感度を高く維持できるようになっている。
【0043】
また、アキュムレーション層8により、光Lの入射によって、n型シリコン基板43内部の光入射面(裏面)付近で発生したキャリアが再結合することなく各p型不純物拡散層5へ無駄なく効率的に移動することになるから、ホトダイオードアレイ41は、光検出感度が一層高くなっている(ただし、アキュムレーション層8を設けていなくても、ホトダイオードアレイ41は実用上十分許容しえる程度の検出感度を有している)。
なお、生成されたキャリアによる光電流は各p型不純物拡散層5に接続された電極配線9とUBM11を介してバンプ電極12から取り出される。このバンプ電極12からの出力によって、入射光の検出が行われる。この点については、ホトダイオードアレイ1と同様である。
【0044】
このホトダイオードアレイ41も、ホトダイオードアレイ1と同様に、各ホトダイオード4の裏面側に透明樹脂膜6が設けられているため、その半導体チップ36を平コレットに吸着してフリップチップボンディングを行う場合は、ホトダイオード4の対応領域が透明樹脂膜6により保護され、平コレットに直接接触することはない。したがって、ホトダイオードアレイ41は対応領域が加圧によるストレスや加熱によるストレスを直接受けないので、その対応領域のアキュムレーション層8に物理的なダメージ(損傷)が及ぶことはなく、ホトダイオード4にそのようなダメージに起因するノイズや暗電流等が発生することもない。よって、ホトダイオードアレイ41は高精度な(S/N比が高い)光検出を行うことができる。また、フリップチップボンディング以外、例えばホトダイオードアレイ41をシンチレータに一体化してCT用センサとする場合にも、シンチレータが直接対応領域に接触することがないから、シンチレータの取り付け時におけるダメージも回避することができる。
【0045】
次に、本実施形態に係るホトダイオードアレイ1の製造方法について、図3〜図6、図15〜図21に基づいて説明する。なお、図示の都合上、図面の一部のハッチングを省略している。
まず、図3〜図6までの各工程をホトダイオードアレイ1と同様にして実行する。次に、n型シリコン基板3の厚さが所定の厚さになるまで裏面を研摩してn型シリコン基板3の薄型(薄板)化を行う。続いて、n型シリコン基板3の表面および裏面に、LP−CVD(またはプラズマCVD)によりシリコン窒化膜(SiN)26を形成し、さらに続いて、表面側のシリコン酸化膜22とシリコン窒化膜26について、所定のホトマスクを用いてパターニングを行い、各表面側凹部45を形成しようとする領域のみ開口する(図15参照)。
【0046】
次に、n型シリコン基板3の表面において、その各p型不純物拡散層5が形成されている領域を対象として、p型不純物拡散層5の枠状周辺部5aが残るように、その内側をアルカリエッチングにより除去して表面側凹部45を形成し、これによってn型シリコン基板43を得る。すると、表面側凹部45の開口部に、p型不純物の拡散した領域として枠状周辺部5aが形成され、それに続く側面45bと、底部45bが形成される。なお、枠状周辺部5aは必須というわけではないが、これを形成すると、表面側凹部45の凹部エッチングのエッジ部分でのダメージにより発生する暗電流や雑音を防止する効果が得られる。なお、図13,14,23ではホトダイオードアレイチップに、枠状周辺部5aがない場合の例を示している。
【0047】
次いで、形成された各表面側凹部45の底部45bにボロン等をドープする。これにより、各表面側凹部45の底部45bにp型不純物拡散層5bが形成されることとなり、表面側に、そのp型不純物拡散層5bとn型シリコン基板43のpn接合によるホトダイオード4が縦横のアレイ状に2次元配列で形成される。さらに熱酸化を施し、表面側のシリコン窒化膜26で被覆されていなかった部分にシリコン酸化膜22を形成する(図16参照)。なお、このとき、図示はしないが裏面側のシリコン窒化膜26にもシリコン酸化膜が形成される。
【0048】
続いて、表面側を保護した状態のまま裏面側からシリコン窒化膜26を除去した上で、裏面側にn型イオン種(例えば、リンや砒素)のイオン注入等により、n型シリコン基板43よりも不純物濃度が高い上述のアキュムレーション層8を形成する。さらに、熱酸化を行い、裏面側にAR膜24を形成する。その後、表面側からシリコン窒化膜26を除去する(図17参照)。
【0049】
そして、ホトエッチング技術により各ホトダイオード4の形成領域において、各p型不純物拡散層5bへつながるコンタクトホールを表面側のシリコン酸化膜22に形成する。続いて、蒸着によりアルミニウム金属膜を表面側全体に形成した上で、所定のホトマスクを用いてパターニングを行い、ホトエッチング技術により、その金属膜の不要な部分を除去して電極配線9を形成する(図18参照)。次に、第1の実施形態と同じ要領で、裏面側に透明樹脂膜6を設ける(図19参照)。
【0050】
続いて、表面側にスパッタやプラズマCVDなどによりパッシベーション膜2となるSiN25を形成して、そのSiN25の所定の位置にコンタクトホールを形成する。続いて、各電極配線9の所定の位置のみが開口するようにSiN25をパターニングする(図20参照)。さらに、第1の実施形態と同様の要領で、その開口部の配線電極9と電気的に接続するNi−AuからなるUBM11を無電解メッキなどにより形成し、そのUBM11に重ねてバンプ電極12を形成すると(図21参照)、実装時におけるダメージに起因するノイズや暗電流等が発生せず、高精度な光検出を行えるホトダイオードアレイ41を製造することができる。なお、図にはアノード電極の取り出しのみを示しているが、カソード(基板)電極もアノード電極と同様に、n+型不純物領域7から取り出すことができる(図示せず)。
【0051】
次に、本発明の放射線検出器の第2の実施形態について説明する。
図23は、本実施形態に係る放射線検出器55の側断面図である。この放射線検出器55は、放射線を入射して、その放射線によって生じた光を光出射面31aから出射するシンチレータパネル31と、シンチレータパネル31から出射された光を光入射面から入射し、電気信号に変換する上述のホトダイオードアレイ41とを備えている。この放射線検出器55は、本発明に係るホトダイオードアレイ41を備えることを特徴としている。
【0052】
シンチレータパネル31はホトダイオードアレイ41の裏面側(入射面側)に取り付けられているが、ホトダイオードアレイ41は、その裏面側に上述した透明樹脂膜6が設けられている。そのため、シンチレータパネル31の裏面、すなわち、光出射面31aが直接ホトダイオード4の対応領域に接することはない。また、シンチレータパネル31の光出射面31aと、透明樹脂膜6を含む裏面側との隙間には光が十分透過するように特性を考慮した屈折率を有する第1の実施形態と同様の光学樹脂35が充填され、この光学樹脂35により、シンチレータパネル31から出射された光が効率よくホトダイオードアレイ41に入射するようになっている。
【0053】
そして、ホトダイオードアレイ41を図示しない実装配線基板上にボンディングする際には平コレットで表面を吸着する。しかし、ホトダイオードアレイ41の裏面には、上述した透明樹脂膜6が設けられているため、平コレットの吸着面が直接対応領域に接することはなく、シンチレータパネル31を取り付けたときにその光出射面31aがホトダイオード4の対応領域に直接接することもない。したがって、このようなホトダイオードアレイ41とシンチレータパネル31とを有する放射線検出器55は、実装時における対応領域のダメージによるノイズや暗電流等の発生を防止することができるから、光検出が精度よく行われ、放射線の検出も精度良く行える。
【0054】
【発明の効果】
以上詳述したように本発明によれば放射線検出器において、実装時におけるホトダイオードの対応領域のダメージによるノイズや暗電流等の発生を効果的に防止することができる。また、本発明によれば、シンチレータパネルの取り付け時におけるダメージも回避することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係るホトダイオードアレイの要部を拡大して模式的に示す断面図である。
【図2】第1の実施形態に係るホトダイオードアレイを構成する半導体チップの側面図およびその要部を拡大して示す断面図である。
【図3】第1の実施形態のホトダイオードアレイの製造工程を示す要部拡大断面図である。
【図4】図3の後続の工程を示す要部拡大断面図である。
【図5】図4の後続の工程を示す要部拡大断面図である。
【図6】図5の後続の工程を示す要部拡大断面図である。
【図7】図6の後続の工程を示す要部拡大断面図である。
【図8】図7の後続の工程を示す要部拡大断面図である。
【図9】図8の後続の工程を示す要部拡大断面図である。
【図10】図9の後続の工程を示す要部拡大断面図である。
【図11】図10の後続の工程を示す要部拡大断面図である。
【図12】欠落部付の透明樹脂膜を有するホトダイオードアレイの要部を拡大して模式的に示す断面図である。
【図13】第2の実施形態に係るホトダイオードアレイの要部を拡大して模式的に示す断面図である。
【図14】第2の実施形態に係るホトダイオードアレイを構成する半導体チップの側面図およびその要部を拡大して示す断面図である。
【図15】第2の実施形態のホトダイオードアレイの製造過程の途中の工程を示す要部拡大断面図である。
【図16】図15の後続の工程を示す要部拡大断面図である。
【図17】図16の後続の工程を示す要部拡大断面図である。
【図18】図17の後続の工程を示す要部拡大断面図である。
【図19】図18の後続の工程を示す要部拡大断面図である。
【図20】図19の後続の工程を示す要部拡大断面図である。
【図21】図20の後続の工程を示す要部拡大断面図である。
【図22】本発明に係るホトダイオードアレイを有する第1の実施形態に係る放射線検出器の要部を拡大して模式的に示す断面図である。
【図23】本発明に係るホトダイオードアレイを有する第2の実施形態に係る放射線検出器の要部を拡大して模式的に示す断面図である。
【図24】半導体チップをコレットにより吸着した状態を模式的に示し、(a)は平コレットにより吸着した状態を示す断面図、(b)は角錐コレットにより吸着した状態を示す断面図である。
【図25】従来技術のホトダイオードアレイを示す斜視図である。
【図26】図25のD−D線断面図である。
【符号の説明】
1,41…ホトダイオードアレイ
3,43…n型シリコン基板
4…ホトダイオード、5…p型不純物拡散層
6…透明樹脂膜、7…n+型不純物領域
8…アキュムレーション層
31…シンチレータパネル
45…表面側凹部、45a…底部
50,55…放射線検出器

Claims (5)

  1. 入射した放射線により発光するシンチレータパネルと、ホトダイオードアレイとを備えた放射線検出器であって、
    前記ホトダイオードアレイは、
    被検出光の入射面の反対面側に、複数のホトダイオードがアレイ状に形成された半導体基板を備え、
    前記半導体基板の前記入射面側には、光の反射を抑制するAR膜が形成され、
    前記AR膜上には、少なくとも前記ホトダイオードが形成された領域と対応する領域を被覆するように、該領域を保護するクッション層として機能すると共に前記被検出光を透過する膜厚1〜50μ m 樹脂膜が設けられており、
    前記シンチレータパネルは、前記ホトダイオードアレイの前記樹脂膜が設けられた側に取り付けられ、前記シンチレータパネルの光出射面と前記樹脂膜との間隙に光学樹脂が充填されている
    ことを特徴とする放射線検出器
  2. 前記半導体基板が、前記入射面の反対面側に、周囲の領域よりも窪んだ表面側凹部を有し、該表面側凹部の底部に前記ホトダイオードが形成されている
    ことを特徴とする請求項1記載の放射線検出器
  3. 前記樹脂膜を、前記入射面側全体に設けた
    ことを特徴とする請求項1または2記載の放射線検出器
  4. 前記半導体基板には、隣接する前記各ホトダイオードの間にその各ホトダイオードを分離する不純物領域が設けられている
    ことを特徴とする請求項1〜3のいずれか一項記載の放射線検出器
  5. 前記半導体基板の入射面側に、前記半導体基板と同じ導電型の高不純物濃度層が形成されている
    ことを特徴とする請求項1〜4のいずれか一項記載の放射線検出器
JP2003087894A 2003-03-10 2003-03-27 放射線検出器 Expired - Fee Related JP4220819B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2003087894A JP4220819B2 (ja) 2003-03-27 2003-03-27 放射線検出器
TW93106308A TWI312199B (en) 2003-03-10 2004-03-10 A photo electric diodes array and the manufacturing method of the same and a radiation ray detector
EP04723382A EP1608022B1 (en) 2003-03-27 2004-03-25 Production method of a photodiode array
PCT/JP2004/004212 WO2004086505A1 (ja) 2003-03-27 2004-03-25 ホトダイオードアレイ及びその製造方法、並びに放射線検出器
US10/550,682 US7663169B2 (en) 2003-03-27 2004-03-25 Photodiode array and production method thereof, and radiation detector
CNA2004800084567A CN1768430A (zh) 2003-03-27 2004-03-25 光电二极管阵列及其制造方法和放射线检测器
TW093108058A TWI327780B (en) 2003-03-10 2004-03-25 A photo electric diodes array and the manufacturing method of the same and a radiation ray detector
KR1020057018183A KR101047671B1 (ko) 2003-03-27 2004-03-25 광다이오드 어레이와 그 제조 방법 및 방사선 검출기
DE602004031593T DE602004031593D1 (de) 2003-03-27 2004-03-25 Herstellungsverfahren einer fotodiodenmatrix
IL171136A IL171136A (en) 2003-03-27 2005-09-27 Photodiode array Method for its production and radiation sensor
US12/461,465 US20090302410A1 (en) 2003-03-27 2009-08-12 Photodiode array and production method thereof, and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087894A JP4220819B2 (ja) 2003-03-27 2003-03-27 放射線検出器

Publications (3)

Publication Number Publication Date
JP2004296836A JP2004296836A (ja) 2004-10-21
JP2004296836A5 JP2004296836A5 (ja) 2006-04-13
JP4220819B2 true JP4220819B2 (ja) 2009-02-04

Family

ID=33095106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087894A Expired - Fee Related JP4220819B2 (ja) 2003-03-10 2003-03-27 放射線検出器

Country Status (9)

Country Link
US (2) US7663169B2 (ja)
EP (1) EP1608022B1 (ja)
JP (1) JP4220819B2 (ja)
KR (1) KR101047671B1 (ja)
CN (1) CN1768430A (ja)
DE (1) DE602004031593D1 (ja)
IL (1) IL171136A (ja)
TW (1) TWI327780B (ja)
WO (1) WO2004086505A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220819B2 (ja) * 2003-03-27 2009-02-04 浜松ホトニクス株式会社 放射線検出器
JP5394791B2 (ja) 2009-03-27 2014-01-22 浜松ホトニクス株式会社 裏面入射型固体撮像素子
JP5152099B2 (ja) * 2009-05-18 2013-02-27 富士通株式会社 基板構造
KR101687049B1 (ko) * 2009-07-17 2016-12-15 미쓰이 가가쿠 가부시키가이샤 적층체 및 그 제조 방법
JP2012151200A (ja) * 2011-01-18 2012-08-09 Nikon Corp 裏面照射型固体撮像素子及びその製造方法、並びに固体撮像装置
US8871608B2 (en) * 2012-02-08 2014-10-28 Gtat Corporation Method for fabricating backside-illuminated sensors
JP2015057589A (ja) * 2013-08-16 2015-03-26 富士フイルム株式会社 放射線画像検出装置の製造方法
CN108886070B (zh) * 2016-03-03 2022-06-17 浜松光子学株式会社 半导体光检测元件
US10686158B2 (en) * 2017-03-31 2020-06-16 Innolux Corporation Display device
KR102093317B1 (ko) * 2018-08-13 2020-03-25 주식회사 이와이엘 무기섬광체를 이용한 난수생성방법 및 난수생성장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748546A (en) * 1969-05-12 1973-07-24 Signetics Corp Photosensitive device and array
JP3099202B2 (ja) 1991-08-23 2000-10-16 エア・ウォーター株式会社 可撓性軽量太陽電池モジュールの製造方法
JP2995960B2 (ja) * 1991-10-25 1999-12-27 日本電気株式会社 赤外線ccd
JPH0618670A (ja) * 1992-06-30 1994-01-28 Hitachi Medical Corp 放射線検出器
JPH07333348A (ja) 1994-06-03 1995-12-22 Toshiba Corp 放射線検出器およびこれを用いたx線ct装置
JPH08213647A (ja) * 1995-12-07 1996-08-20 Matsushita Electron Corp 光半導体装置
US6926952B1 (en) * 1998-01-13 2005-08-09 3M Innovative Properties Company Anti-reflective polymer constructions and method for producing same
US7034306B2 (en) * 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP4397989B2 (ja) * 1998-12-28 2010-01-13 浜松ホトニクス株式会社 半導体エネルギー検出器
AU2001225485A1 (en) * 2000-01-11 2001-07-24 Hamamatsu Photonics K.K. X-ray image sensor
JP4471522B2 (ja) * 2000-03-15 2010-06-02 浜松ホトニクス株式会社 集光部品並びにこれを用いた光源モジュール、レーザー装置及び光信号増幅装置
EP1280207B1 (en) 2000-04-04 2017-03-15 Hamamatsu Photonics K.K. Semiconductor energy detector
JP4571267B2 (ja) * 2000-04-04 2010-10-27 浜松ホトニクス株式会社 放射線検出器
DE10037103A1 (de) * 2000-07-27 2002-02-14 Aeg Infrarot Module Gmbh Multispektrale Photodiode
JP4574006B2 (ja) * 2000-12-26 2010-11-04 キヤノン株式会社 画像形成装置
US6847041B2 (en) 2001-02-09 2005-01-25 Canon Kabushiki Kaisha Scintillator panel, radiation detector and manufacture methods thereof
JP2002372763A (ja) * 2001-04-10 2002-12-26 Mitsubishi Electric Corp 赤外線カメラ用光学窓およびそれを用いた赤外線カメラ並びに赤外線カメラ用光学窓の製造方法
JP2003066150A (ja) * 2001-08-30 2003-03-05 Canon Inc 蛍光板、放射線検出装置および放射線検出システム
JP4482253B2 (ja) 2001-09-12 2010-06-16 浜松ホトニクス株式会社 ホトダイオードアレイ、固体撮像装置、及び、放射線検出器
DE60321694D1 (de) * 2002-08-09 2008-07-31 Hamamatsu Photonics Kk Fotodiodenarray und strahlungsdetektor
JP2004241653A (ja) * 2003-02-06 2004-08-26 Hamamatsu Photonics Kk X線撮像素子
US6907101B2 (en) * 2003-03-03 2005-06-14 General Electric Company CT detector with integrated air gap
JP4220819B2 (ja) * 2003-03-27 2009-02-04 浜松ホトニクス株式会社 放射線検出器
US7019304B2 (en) * 2003-10-06 2006-03-28 General Electric Company Solid-state radiation imager with back-side irradiation

Also Published As

Publication number Publication date
US7663169B2 (en) 2010-02-16
EP1608022B1 (en) 2011-03-02
TWI327780B (en) 2010-07-21
US20090302410A1 (en) 2009-12-10
TW200501441A (en) 2005-01-01
EP1608022A1 (en) 2005-12-21
KR20060003335A (ko) 2006-01-10
EP1608022A4 (en) 2007-05-09
JP2004296836A (ja) 2004-10-21
CN1768430A (zh) 2006-05-03
KR101047671B1 (ko) 2011-07-08
WO2004086505A1 (ja) 2004-10-07
IL171136A (en) 2012-08-30
DE602004031593D1 (de) 2011-04-14
US20070040192A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
US8389322B2 (en) Photodiode array, method of manufacturing the same, and radiation detector
US20110057112A1 (en) Photodiode array adn production method thereof, and radiation detector
US20090302410A1 (en) Photodiode array and production method thereof, and radiation detector
JP2005045073A (ja) 裏面入射型光検出素子
JP4224060B2 (ja) ホトダイオードアレイの製造方法並びに放射線検出器
JP4220808B2 (ja) ホトダイオードアレイおよびその製造方法並びに放射線検出器
JP4220817B2 (ja) ホトダイオードアレイおよびその製造方法並びに放射線検出器
JP4808760B2 (ja) 放射線検出器の製造方法
JP4808748B2 (ja) ホトダイオードアレイの製造方法
JP4808759B2 (ja) 放射線検出器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees