JP4205496B2 - 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 - Google Patents
新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 Download PDFInfo
- Publication number
- JP4205496B2 JP4205496B2 JP2003174584A JP2003174584A JP4205496B2 JP 4205496 B2 JP4205496 B2 JP 4205496B2 JP 2003174584 A JP2003174584 A JP 2003174584A JP 2003174584 A JP2003174584 A JP 2003174584A JP 4205496 B2 JP4205496 B2 JP 4205496B2
- Authority
- JP
- Japan
- Prior art keywords
- amino acid
- acid sequence
- dna
- seq
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の属する技術分野】
本発明は、カルボニル基含有化合物を還元して、医薬、農薬等の中間体原料として産業上有用な化合物である光学活性アルコール類に変換する活性を有するタンパク質、該タンパク質をコードするDNA、該DNAをベクターに組み込んで得られる組換え体DNA、該組換え体DNAを保有する形質転換体に関し、さらに該形質転換体、該形質転換体処理物および/または培養液を用いた光学活性アルコール類の製造方法に関する。
【0002】
【従来の技術】
光学活性1−アシロキシ−3−クロロ−2−プロパノールは生理活性又は薬理活性成分(医薬品、農薬など)あるいはこれらの合成中間体の合成原料として有用な物質である。
光学活性1−アシロキシ−3−クロロ−2−プロパノールの製造法としては1−アセトキシ−3−クロロ−2−プロパノンを微生物により立体選択的に還元する方法(特許文献1)、1−ベンジルオキシ−3−クロロ−2−プロパノンを微生物により立体選択的に還元する方法(特許文献2)、光学活性3−クロロ−1,2−プロパンジオールをジエステル化してから酵素的加水分解によりモノエステル化する方法(特許文献3)などが知られている。しかし、いずれの方法も操作が煩雑であったり、立体選択性や生産性が不充分である等の問題点が多い。
【0003】
【特許文献1】
特開平11−103878号公報
【特許文献2】
国際公開02/00585号パンフレット
【特許文献3】
特開2000−287696号公報
【0004】
【発明が解決しようとする課題】
従って、より光学純度の高い1−アシロキシ−3−クロロ−2−プロパノールを、さらに安価かつ簡便に製造する新規な方法を提供することを本発明の課題とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、光学活性1−アシロキシ−3−クロロ−2−プロパノールの製造方法について鋭意検討した結果、原料となる1−アセトキシ−3−クロロ−2−プロパノンの還元反応を触媒する新規酵素を単離し、該酵素をコードする遺伝子を単離してその塩基配列を解析した。さらに、該遺伝子の形質転換体を作製し、組換え菌を用いて該遺伝子を発現させた該酵素形質転換体細胞、該形質転換体処理物および/または培養液を、原料となる1−アセトキシ−3−クロロ−2−プロパノンに作用させることにより、高い光学純度かつ高濃度で目的物(R)−1−アシロキシ−3−クロロ−2−プロパノールを得ることができることを見い出した。本発明はこれらの知見に基づいて成し遂げられたものである。
【0006】
すなわち、本発明の要旨は、以下のとおりである。
(1)以下の(A)〜(C)の何れかのアミノ酸配列を有するタンパク質。
(A)配列番号1に記載のアミノ酸配列。
(B)配列番号1に記載のアミノ酸配列において、1から複数個のアミノ酸が欠失、付加または置換されているアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。
(C)配列番号1に記載のアミノ酸配列と50%以上の相同性を有するアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。
(2)以下の(A)〜(C)の何れかのアミノ酸配列を有するタンパク質をコードするDNA。
(A)配列番号1に記載のアミノ酸配列。
(B)配列番号1に記載のアミノ酸配列において、1から複数個のアミノ酸が欠失、付加または置換されているアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。
(C)配列番号1に記載のアミノ酸配列と50%以上の相同性を有するアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。
(3)以下の(a)〜(c)の何れかの塩基配列を有するDNA。
(a)配列番号2に記載の塩基配列。
(b)配列番号2に記載の塩基配列において、1から複数個の塩基が欠失、付加または置換されている塩基配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質をコードする塩基配列。
(c)配列番号2に記載の塩基配列またはその相補配列とストリンジェントな条件下でハイブリダイズする塩基配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質をコードする塩基配列。
(4)(2)又は(3)に記載のDNAをベクターに組み込んで得られる組換え体DNA。
(5)(4)に記載の組換え体DNAを保有する形質転換体。
(6)(2)又は(3)に記載のDNAを染色体DNAに組み込んで得られる形質転換体。
(7)下記一般式(I)
【0007】
【化5】
【0008】
(式中、Rはアシル基を示す)で表される1−アシロキシ−3−クロロ−2−プロパノンに、(5)または(6)に記載の形質転換体細胞、該形質転換体細胞処理物および/または培養液を作用させ、下記一般式(II)
【0009】
【化6】
【0010】
(式中、Rは前記と同義である)で表される(R)−1−アシロキシ−3−クロロ−2−プロパノールを生成させることを特徴とする光学活性1−アシロキシ−3−クロロ−2−プロパノールの製造方法。
(8)下記一般式(I)
【0011】
【化7】
【0012】
(式中、Rは前記と同義である)で表される1−アシロキシ−3−クロロ−2−プロパノンに、イサチェンキア(Issatchenkia)属酵母、該菌体処理物および/または培養液を作用させ、下記一般式(II)
【0013】
【化8】
【0014】
(式中、Rは前記と同義である)で表される(R)−1−アシロキシ−3−クロロ−2−プロパノールを生成させることを特徴とする光学活性1−アシロキシ−3−クロロ−2−プロパノールの製造方法。
(9)Rがアセチル基であることを特徴とする(7)または(8)に記載の製造方法。
【0015】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明のタンパク質は、配列番号1に記載のアミノ酸配列を有するもの、又は該アミノ酸配列のホモログであってカルボニル還元酵素活性を有するもの(以下これを単に「カルボニル還元酵素」と称することがある)である。
【0016】
本明細書において、カルボニル還元酵素活性とは、カルボニル基含有化合物中のカルボニル基を不斉還元して光学活性なアルコール類とする活性をいう。このような活性は、カルボニル基含有化合物を基質として含有し、さらにNADPHを補酵素として含有する反応系において、酵素として、目的のタンパク質、該タンパク質を発現する能力を有する形質転換体、形質転換体処理物、または培養液を作用させてNADPH減少初速度を測定することにより測定することができる。
【0017】
本発明のタンパク質は、本発明によってそのアミノ酸配列および該アミノ酸配列をコードする塩基配列が明らかになったので、後述するように本発明のタンパク質のアミノ酸配列の一部又は全部をコードする塩基配列を元にして作製したプローブを用いて、カルボニル基の還元活性を有する任意の微生物から還元酵素をコードするDNAを単離した後、それを元に通常の遺伝子工学的手法を用いて得ることができる。また、本発明を完成するにあたってなされたように、カルボニル基の還元活性を有する微生物、すなわち、カルボニル還元酵素をコードするDNAを有する微生物、例えば、好ましくはイサチェンキア(Issatchenkia)属酵母の培養物より精製することも出来る。
【0018】
イサチェンキア(Issatchenkia)属酵母としては、例えば、イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株が特に本発明のカルボニル還元酵素の産生能に優れている。本菌株は、理化学研究所微生物系統保存施設(Japan Collection of Microorganism(JCM))より入手可能である。
【0019】
微生物の培養物からの本発明のタンパク質の取得方法としては、通常の酵素の精製方法を用いることができ、例えば、以下の方法で行うことができる。上記微生物をYM培地等の酵母の培養に用いられる一般的な培地で培養することで十分に増殖させた後に回収し、DTT(dithiothreitol)等の還元剤や、フェニルメタンスルホニルフルオリド(phenylmethansulfonyl fluoride;PMSF)の様なプロテアーゼ阻害剤を加えた緩衝液中で破砕して無細胞抽出液とする。無細胞抽出液から、タンパク質の溶解度による分画(有機溶媒による沈殿や硫安などによる塩析など)や、陽イオン交換、陰イオン交換、ゲル濾過、疎水、ハイドロキシアパタイトクロマトグラフィー、キレート、色素、抗体等を用いたアフィニティークロマトグラフィー等を適宜組み合わせることにより精製することが出来る。
【0020】
例えば、DEAE Sepharose Fast Flow(Amersham Biosciences社製)を用いた陰イオン交換クロマトグラフィー、Butyl Sepharose 4 Fast Flow(Amersham Biosciences社製)を用いた疎水性相互作用クロマトグラフィー、MonoQ(Amersham Biosciences社製)を用いた陰イオン交換クロマトグラフィー、Superdex 200(Amersham Biosciences社製)を用いたゲルろ過クロマトグラフィー等を経て電気泳動的にほぼ単一バンドまで精製することが出来る。
【0021】
このように精製されたイサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株に由来する本発明のタンパク質は、ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動(以下、SDS−PAGEと省略)によると約40,000Daのサブユニット1種からなり、また、Superdex200 HR10/30(Amersham Biosciences社製)を用いたゲル濾過に決定された分子量は、約40,000Daである。
【0022】
本発明のタンパク質をコードするDNAは、例えば、以下のような方法によって単離することができる。
まず、本発明のタンパク質を上記の方法等にて精製後、N末端アミノ酸配列を解析し、さらに、リジルエンドペプチダーゼ、V8プロテアーゼなどの酵素により切断し、逆相液体クロマトグラフィーなどによりペプチド断片を精製後、プロテインシーケンサーによりアミノ酸配列を解析することにより複数のアミノ酸配列を決める。
【0023】
決定したアミノ酸配列を元にPCR用のプライマーを設計し、カルボニル還元酵素生産微生物株の染色体DNAもしくは、cDNAライブラリーを鋳型とし、アミノ酸配列から設計したPCRプライマーを用いてPCRを行うことにより本発明のDNAの一部を得ることができる。さらに、得られたDNA断片をプローブとして、カルボニル還元酵素生産微生物株の染色体DNAの制限酵素消化物をファージ、プラスミドなどに導入し、大腸菌を形質転換して得られたライブラリーやcDNAライブラリーを利用して、コロニーハイブリダイゼーション、プラークハイブリダイゼーションなどにより、本発明のDNAを得ることができる。
【0024】
また、PCRにより得られたDNA断片の塩基配列を解析し、得られた配列から、既知のDNAの外側に伸長させるためのPCRプライマーを設計し、カルボニル還元酵素生産微生物株のcDNAを用いてRACE(Rapid amplification of cDNA ends)法(Molecular Cloning 3rd Ed., Cold Spring Harbor Laboratory Press、以下Molecular Cloning)により本発明のDNAを得ることも可能である。
【0025】
なお本発明のDNAは、以上のような方法によってクローニングされたゲノムDNA、あるいはcDNAの他、本発明によりその塩基配列が明らかになったため、配列番号2に基づく化学合成等によって得ることもできる。
【0026】
本発明のタンパク質のホモログとは、カルボニル基還元酵素活性を害さない範囲内において配列番号1に記載のアミノ酸配列に一個若しくは複数個のアミノ酸が欠失、置換、若しくは付加されたアミノ酸配列を有するものである。ここで複数個とは、具体的には20個以下、好ましくは10個以下、より好ましくは5個以下である。
【0027】
また、本発明のタンパク質のホモログとは、配列番号1に示されるアミノ酸配列と少なくとも50%以上、好ましくは70%以上、より好ましくは80%以上のホモロジーを有するタンパク質をいう。
ちなみに上記タンパク質のホモロジー検索は、例えば、日本DNAデータバンク(DNA Databank of JAPAN(DDBJ))等を対象に、FASTAやBLASTなどのプログラムを用いて行うことができる。配列番号1に記載のアミノ酸配列を用いてDDBJを対象にBLAST programを用いてホモロジー検索を行った結果、既知のタンパク質の中でもっとも高いホモロジーを示したのは、サッカロマイセス・セレビジエ(Saccharomyces cerevisiae)由来の機能未知のタンパク質Ydr541cpprotein(配列番号3:Accession No. AAB64983)であり、42%の相同性を示した。
【0028】
また、本発明のDNAは、上記タンパク質をコードするDNAまたはそのホモログであって、カルボニル還元酵素活性を有するタンパク質をコードするDNAである。
上記タンパク質をコードするDNAとしては、例えば、配列番号2で表される塩基配列を含むものが挙げられる。
本発明のタンパク質をコードするDNAホモログとは、カルボニル基還元酵素活性を害さない範囲内において配列番号1に記載のアミノ酸配列に1個もしくは複数個のアミノ酸が欠失、置換、若しくは付加されたアミノ酸配列を含むタンパク質をコードするDNAを含む。ここで複数個とは、具体的には60個以下、好ましくは30個以下、より好ましくは10個以下である。
【0029】
当業者であれば、配列番号2に記載のDNAに部位特異的変異導入法(Nucleic Acids Res.10,pp.6487(1982)、Methods in Enzymol.100,pp.448(1983)、Molecular Cloning、PCR A Practical Approach IRL Press pp.200(1991))等を用いて適宜置換、欠失、挿入及び/または付加変異を導入することにより本発明のDNAホモログを得ることが可能である。
【0030】
また、本発明のタンパク質のアミノ酸配列またはその一部や、本発明のタンパク質をコードするDNAまたはその一部を元に、例えばDNA Databank of JAPAN(DDBJ)等のデータベースに対してホモロジー検索を行って、本発明のタンパク質をコードするDNAホモログの塩基配列情報を手に入れることも可能である。当業者であれば、この塩基配列情報を元に寄託菌株からのPCR等により該DNA断片を手に入れることが可能である。
【0031】
さらに、本発明のDNAのホモログは、本発明のタンパク質をコードするDNAまたはその一部をプローブとして用いて、カルボニル基の還元活性を有する任意の微生物から調製したDNAに対し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等によりストリンジェントな条件下でハイブリダイゼーションを行い、ハイブリダイズするDNAを得ることによっても取得できる。本発明のタンパク質をコードするDNAの「一部」とは、プローブとして用いるのに十分な長さのDNAのことであり、具体的には15bp以上、好ましくは50bp以上、より好ましくは100bp以上のものである。
各ハイブリダイゼーションは、Molecular Cloning等に記載されている方法に準じて行うことができる。
【0032】
本明細書において「ストリンジェントな条件下でハイブリダイズするDNA」とは、DNAをプローブとして使用し、ストリンジェントな条件下、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAの塩基配列を意味し、ストリンジェントな条件としては、例えば、コロニーハイブリダイゼーション法およびプラークハイブリダイゼーション法においては、コロニーあるいはプラーク由来のDNAまたは該DNAの断片を固定化したフィルターを用いて、0.7〜1.0Mの塩化ナトリウム存在下65℃でハイブリダイゼーションを行った後、0.1〜2×SSC溶液(1×SSCの組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄する条件を挙げることができる。
【0033】
上記のようにして単離された、本発明のタンパク質をコードするDNAを公知の発現ベクターに発現可能に挿入することにより、カルボニル還元酵素発現ベクターが提供される。また、この発現ベクターで形質転換した形質転換体を培養することにより、カルボニル還元酵素を該形質転換体から得ることができる。あるいは、形質転換体は、公知の宿主の染色体DNAに本発明のDNAを発現可能に組み込むことによっても得ることができる。
【0034】
形質転換体の作製方法としては、具体的には、微生物中において安定に存在するプラスミドベクターやファージベクター中に、本発明のDNAを導入し、構築された発現ベクターを該微生物中に導入するか、もしくは、直接宿主ゲノム中に本発明のDNAを導入し、その遺伝情報を転写・翻訳させる必要がある。
このとき、本発明のDNAが宿主微生物中で発現可能なプロモーターを含んでいない場合には、適当なプロモーターを本発明のDNA鎖の5'−側上流に、より好ましくはターミネーターを3'−側下流にそれぞれ組み込む必要がある。このプロモーター及びターミネーターとしては、宿主として利用する微生物中において機能することが知られているプロモーター及びターミネーターであれば特に限定されず、これら各種微生物において利用可能なベクター、プロモーター及びターミネーターなどに関しては、例えば「微生物学基礎講座8遺伝子工学・共立出版」、特に酵母に関しては、Adv.Biochem.Eng. 43,75−102(1990)、Yeast 8,423−488(1992)などに詳細に記述されている。
【0035】
本発明のカルボニル還元酵素を発現させるための形質転換の対象となる宿主微生物としては、宿主自体が本反応に悪影響を与えない限り特に限定されることはなく、具体的には以下に示すような微生物を挙げることができる。
【0036】
エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ラクトバチルス(Lactobacillus)属などに属する宿主ベクター系の確立されている細菌。
【0037】
ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属などに属する宿主ベクター系の確立されている放線菌。
【0038】
サッカロマイセス(Saccharomyces)属、クルイベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ハンゼヌラ(Hansenula)属、ピキア(Pichia)属、キャンディダ(Candida)属などに属するの宿主ベクター系の確立されている酵母。
【0039】
ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、トリコデルマ(Trichoderma)属などに属するの宿主ベクター系の確立されているカビ。
【0040】
上記微生物の中で宿主として好ましくは、エシェリヒア(Escherichia)属、バチルス(Bacillus)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属であり、特に好ましくは、エシェリヒア(Escherichia)属、コリネバクテリウム(Corynebacterium)属である。
【0041】
形質転換体作製のための手順、宿主に適合した組換えベクターの構築および宿主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Molecular Cloningに記載の方法)。
【0042】
以下、具体的に、好ましい宿主微生物、各微生物における好ましい形質転換の手法、ベクター、プロモーター、ターミネーターなどの例を挙げるが、本発明はこれらの例に限定されない。
【0043】
エシェリヒア属、特にエシェリヒア・コリ(Escherichia coli)においては、プラスミドベクターとしては、pBR、pUC系プラスミドが挙げられ、lac(β−ガラクトシダーゼ)、trp(トリプトファンオペロン)、tac、trc(lac、trpの融合)、λファージPL、PRなどに由来するプロモーターなどが挙げられる。また、ターミネーターとしては、trpA由来、ファージ由来、rrnBリボソーマルRNA由来のターミネーターなどが挙げられる。
【0044】
バチルス属においては、ベクターとしては、pUB110系プラスミド、pC194系プラスミドなどを挙げることができ、また、染色体にインテグレートすることもできる。プロモーター及びターミネーターとしては、アルカリプロテアーゼ、中性プロテアーゼ、α−アミラーゼ等の酵素遺伝子のプロモーターやターミネーターなどが利用できる。
【0045】
シュードモナス属においては、ベクターとしては、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・セパシア(Pseudomonas cepacia)などで確立されている一般的な宿主ベクター系や、トルエン化合物の分解に関与するプラスミド、TOLプラスミドを基本にした広宿主域ベクター(RSF1010などに由来する自律的複製に必要な遺伝子を含む)pKT240(Gene,26,273−82(1983))を挙げることができる。
【0046】
ブレビバクテリウム属、特にブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)においては、ベクターとしては、pAJ43(Gene 39,281(1985))などのプラスミドベクターを挙げることができる。プロモーター及びターミネーターとしては、大腸菌で使用されている各種プロモーター及びターミネーターが利用可能である。
【0047】
コリネバクテリウム属、特にコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)においては、ベクターとしては、pCS11(特開昭57−183799号公報)、pCB101(Mol.Gen.Genet.196,175(1984))などのプラスミドベクターが挙げられる。
【0048】
サッカロマイセス(Saccharomyces)属、特にサッカロマイセス・セレビジエ(Saccharomyces cerevisiae)においては、ベクターとしては、YRp系、YEp系、YCp系、YIp系プラスミドが挙げられる。また、アルコール脱水素酵素、グリセルアルデヒド−3−リン酸脱水素酵素、酸性フォスファターゼ、β−ガラクトシダーゼ、ホスホグリセレートキナーゼ、エノラーゼといった各種酵素遺伝子のプロモーター、ターミネーターが利用可能である。
【0049】
シゾサッカロマイセス(Schizosaccharomyces)属においては、ベクターとしては、Mol.Cell.Biol.6,80(1986)に記載のシゾサッカロマイセス・ポンベ由来のプラスミドベクターを挙げることができる。特に、pAUR224は、宝酒造から市販されており容易に利用できる。
【0050】
アスペルギルス(Aspergillus)属においては、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリジー (Aspergillus oryzae)などがカビの中で最もよく研究されており、プラスミドや染色体へのインテグレーションが利用可能であり、菌体外プロテアーゼやアミラーゼ由来のプロモーターが利用可能である(Trendsin Biotechnology 7,283−287(1989))。
【0051】
また、上記以外でも、各種微生物に応じた宿主ベクター系が確立されており、それらを適宜使用することができる。
また、微生物以外でも、植物、動物において様々な宿主・ベクター系が確立されており、特に蚕を用いた昆虫などの動物中(Nature 315,592−594(1985))や菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種タンパク質を発現させる系、及び大腸菌無細胞抽出液や小麦胚芽などの無細胞タンパク質合成系を用いた系が確立されており、好適に利用できる。
【0052】
さらに本発明は、上記の方法などで得られる本発明の形質転換体細胞、該形質転換体細胞処理物および/または培養液を、反応基質である下記一般式(I)
【0053】
【化9】
【0054】
(式中、Rはアシル基を示す)で表される1−アシロキシ−3−クロロ−2−プロパノンに作用させることにより、該化合物のカルボニル基を不斉還元させ、下記一般式(II)
【0055】
【化10】
【0056】
(式中、Rは前記と同義である)で表される(R)−1−アシロキシ−3−クロロ−2−プロパノールを製造することができる。
【0057】
また本発明は、配列番号1に記載のアミノ酸配列と50%以上の相同性を有するアミノ酸配列からなるタンパク質であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質をコードする塩基配列を有するDNAをベクターに組み込んで得られる組換え体DNAを保有する形質転換体、又は、該DNAを染色体DNAに組み込んで得られる形質転換体細胞、該形質転換体細胞処理物および/または培養液を、反応基質である上記一般式(I)で表される化合物に作用させることにより、該化合物のカルボニル基を不斉還元させ、上記一般式(II)で表される光学活性アルコールを製造することもできる。
【0058】
また本発明は、イサチェンキア(Issatchenkia)属酵母、該細菌処理物および/または培養液を、反応基質である上記一般式(I)で表される化合物に作用させることにより、該化合物のカルボニル基を不斉還元させ、上記一般式(II)で表される光学活性アルコールを製造することもできる。
【0059】
イサチェンキア(Issatchenkia)属酵母細菌としては、例えば、イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株が好適に使用される。
【0060】
前記一般式(I)及び(II)において、置換基Rのアシル基としては反応に悪影響を与えない基であれば特に限定はないが、具体的に好ましい置換基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、及びピバロイル基などのアルカノイル基、ホルミル基、シクロヘキサンカルボニル基などの脂環式アシル基、並びにベンゾイル基、及びトルオイル基などの芳香族アシル基から選ばれる基が挙げられる。これらアシル基のうち、さらに好ましい置換基としてはアセチル基、プロピオニル基、ブチリル基、イソブチリル基、及びベンゾイル基から選ばれる基が挙げられる。
上記一般式(I)で表される化合物は、例えばJ. Med. Chem (1997) 20(5),644に記載の方法に従って、容易に合成することができる。
【0061】
また、反応基質となる上記一般式(I)で表される化合物は、通常、基質濃度が0.01〜90%w/v、好ましくは0.1〜30%w/vの範囲で用いられる。反応基質は、反応開始時に一括して添加しても良いが、酵素の基質阻害があった場合の影響を減らすと言う点や生成物の蓄積濃度を向上させるという観点からすると、連続的もしくは間欠的に添加することが望ましい。
【0062】
本発明の製造方法において、式(I)のカルボニル基含有化合物(反応基質)に上記形質転換体細胞を作用させるに当たっては、該形質転換体細胞をそのまま、あるいは該形質転換体細胞処理物、例えば、該形質転換体細胞をアセトン、ジメチルスルホキシド(DMSO)、トルエン等の有機溶媒や界面活性剤により処理したもの、凍結乾燥処理したもの、物理的または酵素的に破砕したもの等の細胞処理物、該形質転換体細胞中の本発明の酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲル等に代表される担体に固定化したもの等を用いることができる。反応液に添加する形質転換体細胞及び/又は該形質転換体細胞処理物の量は、形質転換体細胞を添加する場合は反応液にその細胞の濃度が通常、湿菌体重で0.1〜50%w/v程度、好ましくは1〜20%w/vとなるように添加し、酵素のような調製物を用いる場合には、酵素の比活性を求め、添加したときに上記細胞濃度になるような量を添加する。
【0063】
また、本発明の製造方法においては、補酵素NADP+もしくはNADPHを添加するのが好ましく、通常、0.001mM〜100mM、好ましくは0.01〜10mM添加する。
上記補酵素を添加する場合には、NADPHから生成するNADP+をNADPHへ再生させることが生産効率向上のため好ましく、再生方法としては、
1)宿主微生物自体のNADP+還元能を利用する方法、
2)NADP+からNADPHを生成する能力を有する微生物やその処理物、あるいは、グルコース脱水素酵素、ギ酸脱水素酵素、アルコール脱水素酵素、アミノ酸脱水素酵素、有機酸脱水素酵素(リンゴ酸脱水素酵素など)などのNADPHの再生に利用可能な酵素(再生酵素)を反応系内に添加する方法、
3)形質転換体を製造するに当たり、NADPHの再生に利用可能な酵素である上記再生酵素類の遺伝子を本発明のDNAと同時に宿主に導入する方法、
が挙げられる。
【0064】
このうち、上記1)の方法においては、反応系にグルコースやエタノール、ギ酸などを添加する方が好ましい。
また、上記2)の方法においては、上記再生酵素類を含む微生物、該微生物菌体をアセトン処理したもの、凍結乾燥処理したもの、物理的または酵素的に破砕したもの等の菌体処理物、該酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲル等に代表される担体に固定化したもの等を用いてもよく、また市販の酵素を用いても良い。
この場合、上記再生酵素の使用量としては、具体的には、本発明のカルボニル還元酵素に比較して、酵素活性で通常、0.01〜100倍、好ましくは0.5〜20倍程度となるよう添加する。
また、上記再生酵素の基質となる化合物、例えば、グルコース脱水素酵素を利用する場合のグルコース、ギ酸脱水素酵素を利用する場合のギ酸、アルコール脱水素酵素を利用する場合のエタノールもしくはイソプロパノールなどの添加も必要となるが、その添加量としては、反応原料であるカルボニル基含有化合物に対して通常、0.1〜20倍モル当量、好ましくは1〜5倍モル当量添加する。
【0065】
また、上記3)の方法においては、本発明のDNAと上記再生酵素類のDNAを染色体に組み込む方法、単一のベクター中に両DNAを導入し、宿主を形質転換する方法及び両DNAをそれぞれ別個にベクターに導入した後に宿主を形質転換する方法を用いることができるが、両DNAをそれぞれ別個にベクターに導入した後に宿主を形質転換する方法の場合、両ベクター同士の不和合性を考慮してベクターを選択する必要がある。
単一のベクター中に複数の遺伝子を導入する場合には、プロモーター及びターミネーターなど発現制御に関わる領域をそれぞれの遺伝子に連結する方法やラクトースオペロンのような複数のシストロンを含むオペロンとして発現させることも可能である。
【0066】
本発明の製造方法は、反応基質及び本発明の形質転換体、該形質転換体処理物および/または培養液、並びに、必要に応じて添加された各種補酵素及びその再生システムを含有する水性媒体中もしくは該水性媒体と有機溶媒との混合物中で行われる。
上記、水性媒体としては、水又は緩衝液が挙げられ、また、有機溶媒としては、酢酸エチル、酢酸ブチル、トルエン、クロロホルム、n−ヘキサン、ジメチルスルホキシド等、反応基質の溶解度が高い物を使用することができる。
本発明の方法は、通常4〜60℃、好ましくは10〜45℃の反応温度で、通常pH3〜11、好ましくはpH5〜8で行われる。反応時間は通常、1〜72時間程度である。また、膜リアクターなどを利用して行うことも可能である。
【0067】
本発明の方法により生成する光学活性アルコールは、反応終了後、反応液中の菌体やタンパク質を遠心分離、膜処理などにより分離した後に、酢酸エチル、トルエンなどの有機溶媒による抽出、蒸留、カラムクロマトグラフィー、晶析等を適宜組み合わせることにより精製を行うことができる。
【0068】
【実施例】
以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
【0069】
(1)カルボニル還元酵素の単離
イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株を2Lの培地(グルコース80g、酵母エキス(Difco社製)20g、ペプトン(極東製薬製)40g/L)で培養し、遠心分離により菌体を調製した。得られた湿菌体150gを10mMリン酸カリウム緩衝液(pH7)、0.1mM DTT(以下これを単に「バッファー」と称する)で懸濁し、ダイノーミルKDL(シンマルエンタープライゼス製)により破砕後、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。この無細胞抽出液に90g/Lの濃度になるようPEG6000を添加し4℃で1時間静置後、遠心分離により沈殿を除去した。この上清より、DEAE Sepharose Fast Flow(Amersham Biosciences社製)を用いた陰イオン交換クロマトグラフィー、Butyl Sepharose 4 Fast Flow(Amersham Biosciences社製)を用いた疎水性相互作用クロマトグラフィー、MonoQ(Amersham Biosciences社製)を用いた陰イオン交換クロマトグラフィー、及びSuperdex 200(Amersham Biosciences社製)を用いたゲルろ過クロマトグラフィーを経て目的のカルボニル還元酵素を電気泳動的に単一バンドまで精製した。
【0070】
精製の際、カルボニル還元酵素の活性は、酵素液を含む反応液(100mM Tris−HCl pH7.5、0.32mM NADPH、2mM 1−アセトキシ−3−クロロ−2−プロパノン)の340nmの吸光度の減少を37℃でモニターすることによりNADPHの消費量を算出することにより測定した。測定にはSPECTRAmax 190(Molecular Devices社製)を使用した。尚、上記反応において1分間に1nmolのNADPHを消費する活性を1Uとした。
精製の結果を下表1に示す。
【0071】
【表1】
【0072】
上記活性画分をポリアクリルアミドゲル電気泳動(SDS−PAGE)により解析した結果、ほぼ単一バンドであり、その分子量は約40,000Daであった。以下、本酵素をIsADH1と呼ぶ。
【0073】
(2)IsADH1の基質特異性
様々なカルボニル化合物について酵素液を含む反応液(100mM Tris−HCl pH7.5、0.32mM NADPH、2mM 基質)を調製し、340nmの吸光度の減少を37℃でモニターすることによりそれぞれの化合物に対する酵素活性を測定した。測定にはSPECTRAmax 190(Molecular Devices社製)を使用した。1−アセトキシ−3−クロロ−2−プロパノンに対する活性を100として、他の化合物に対する活性を下表2にまとめた。
【0074】
【表2】
【0075】
(3)カルボニル還元酵素のアミノ酸配列の解析
上記(1)で得られたカルボニル還元酵素を含む画分を脱塩、濃縮後、エドマン法によりN末端アミノ酸の解析を行い18残基のN末端アミノ酸配列を決定した。結果を配列番号4に示す。
また、精製したカルボニル還元酵素を、リジルエンドペプチダーゼを用いた消化法(タンパク質実験ノート・下、羊土社)により消化して得たペプチドを逆相HPLC(アマシャム バイオサイエンス社製 μRPC C2/C18 PC3.2/3)を用い、ペプチドを分離し、分取した。分取したペプチドピーク1種をエドマン法によりアミノ酸配列の解析を行い、アミノ酸配列を配列番号5に示した。
【0076】
(4)イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株由来の本発明DNAの配列解析及び形質転換体の作製
イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株を実施例(1)に示した培地で培養し、菌体を調製した。
菌体からのゲノムDNAをDNeasy tissue kit(Qiagen社製)を用いて抽出、精製した。得られたゲノムDNAを元に、逆転写酵素SuperScript II Reverse Transcriptase(インビトロジェン社製)を用いて、酵素添付のプロトコルによりcDNAを合成した。
【0077】
上記(3)で得られた配列番号4のN末端アミノ酸配列を元にセンスデジェネレイト(degenerate)プライマー及び配列番号5の内部アミノ酸配列を元にアンチセンスのデジェネレイト(degenerate)プライマーを計2種類合成した。それぞれの塩基配列を配列番号6,7に示した。この2種のプライマーを用いて、イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata)JCM1828株のcDNAに対してデジェネレイト(degenerate)PCRを行ったところ、約350bpの増幅断片が認められた。
【0078】
このDNA断片を、アガロースゲル電気泳動を行い、約350bpの断片のバンドを切り出しMinElute Gel Extraction Kit(Qiagen社製)にて精製して回収した。得られたDNA断片を、pGEM−Teasy Vector(Promega社製)にライゲーションし、大腸菌DH5α株(東洋紡社製)を形質転換した。形質転換株を、アンピシリン(100μg/mL)を含むLB寒天培地で生育させ、いくつかのコロニーを用いて、T7プライマー(Promega社製)とSP6プライマー(Promega社製)を用いたコロニーダイレクトPCRを行い、挿入断片のサイズを確認した。目的とするDNA断片が挿入されていると考えられるコロニーを、100μg/mLアンピシリンを含むLB培地で培養し、QIAPrep Spin Mini Prep kit(Qiagen社製)によりプラスミドを精製した。
精製したプラスミドを用いて、挿入DNAの塩基配列をダイターミネーター法により解析した。決定された塩基配列を配列番号8として示した。
【0079】
次に、イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株のゲノムDNAを元に、Molecular cloning記載の方法に従ってRACE反応用のcDNAを合成し、同文献記載の方法で5'−及び3'−RACE反応を行った。反応には上記塩基配列を元に設計した配列番号9および10に示す2種の遺伝子特異的プライマーを用いた。
【0080】
RACE反応による増幅遺伝子断片の配列解析の結果、本カルボニル還元酵素の推定cDNA配列を配列番号11に、該DNAがコードするアミノ酸配列を配列番号1に示した。配列番号1のアミノ酸配列をコードする塩基配列を配列番号2に示した。
【0081】
引き続き、上記配列番号11に記載の配列を元に、クローニング用のプライマーとして配列番号12に記載の塩基配列及び配列番号13に記載の塩基配列を合成し、上記プライマーを各50pmol、dNTP各1000nmol、イサチェンキア・スクチュラータ変種スクチュラータ(Issatchankia scutulata var. scutulata) JCM1828株のcDNA 250ng、ExTaq DNApolymerase用10×緩衝液(タカラバイオ社製)10μL、ExTaq DNA polymerase 5ユニット(タカラバイオ社製)を含む100μLの反応液を用い、変性(95℃、1分)、アニール(58℃、1分)、伸長(72℃、1分)を30サイクル、PTC−200(MJ Research社製)を用いて行った。PCR反応液の一部をアガロースゲル電気泳動により解析した結果、特異的と思われるバンドが検出できた。
【0082】
上記反応液をMinElute PCR Purification kit(Qiagen社製)にて精製した。精製したDNA断片を制限酵素EcoRIとXbaIで消化し、アガロースゲル電気泳動を行い、目的とするバンドの部分を切り出し、Qiagen Gel Extraction kit(Qiagen社製)により精製後回収した。得られたDNA断片を、EcoRI、及びXbaIで消化したpUC118とLigation high(東洋紡績社製)を用いて、ライゲーションし、大腸菌JM109株を形質転換した。
形質転換体をアンピシリン(50μg/mL)を含むLB寒天培地上で生育させ、コロニーダイレクトPCRを行い、挿入断片のサイズを確認した。
目的とするDNA断片が挿入されていると考えられる形質転換体を50μg/mLのアンピシリンを含むLB培地で培養し、QIAPrepSpin Mini Prep kit(Qiagen社製)を用いてプラスミドを精製し、pUCIsADH1とした。
プラスミドに挿入したDNAの塩基配列をダイターミネーター法により解析したところ、挿入されたDNA断片は、配列番号2の塩基配列と一致した。
【0083】
(5)本発明のDNAによって形質転換した大腸菌を用いた(R)−1−アセトキシ−3−クロロ−2−プロパノール合成
上記(4)で得られた形質転換体をアンピシリン(50μg/mL)、0.1mM イソプロピル β−D−チオガラクトピラノシド(IPTG)を含むLB培地で37℃で18時間生育させ、得られた菌体ブロス5mLを遠心分離により集菌後、下記に示す方法により、1−アセトキシ−3−クロロ−2−プロパノンを基質として還元活性を確認した。
【0084】
上記菌体に500μLの反応液(0.6g/L NADP+(オリエンタル酵母社製)、50mMリン酸カリウムバッファー(pH7.0)、20g/L グルコース、0.2g/Lグルコースデヒドロゲナーゼ(天野製薬社製、76unit/mg)、10g/L 1−アセトキシ−3−クロロ−2−プロパノン)を添加後30℃で20時間振とう反応させた。反応終了後の反応液を酢酸エチル抽出し、(R)−1−アセトキシ−3−クロロ−2−プロパノールを定量した。
【0085】
定量は酢酸エチル溶液をガスクロマトグラフィー(GC)を用いて測定した。GCの条件は以下の通りである。
カラム:β−DEX225 (SUPELCO社製、30m×0.25mmID、0.25μm film)
キャリア:He 1.5ml/min、 split 1/50
カラム温度:150℃
注入温度:220℃
検出:FID 250℃
GC:島津GC−14A
【0086】
この結果、(R)−1−アセトキシ−3−クロロ−2−プロパノールの収量は4.2mgであり、光学純度は>99.9%e.e.であった。
また該遺伝子を含まないプラスミドpUC118を持つ大腸菌を上記と同様の方法で培養し、反応させてみたが上記生成物は認められなかった。
【0087】
【発明の効果】
医薬、農薬等の中間体原料として産業上有用な化合物である光学活性アルコール類を高光学純度かつ高収率で得ることができる製造方法を提供する。
【配列表】
Claims (8)
- 下記(A)または(B)のアミノ酸配列を有するタンパク質。
(A)配列番号1に記載のアミノ酸配列。
(B)配列番号1に記載のアミノ酸配列において、1から複数個のアミノ酸が欠失、付加または置換されているアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。 - 下記(A)または(B)のアミノ酸配列を有するタンパク質をコードするDNA。
(A)配列番号1に記載のアミノ酸配列。
(B)配列番号1に記載のアミノ酸配列において、1から複数個のアミノ酸が欠失、付加または置換されているアミノ酸配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質のアミノ酸配列。 - 下記(a)〜(c)の何れかの塩基配列を有するDNA。
(a)配列番号2に記載の塩基配列。
(b)配列番号2に記載の塩基配列において、1から複数個の塩基が欠失、付加または置換されている塩基配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質をコードする塩基配列。
(c)配列番号2に記載の塩基配列またはその相補配列とストリンジェントな条件下でハイブリダイズする塩基配列であって、カルボニル基を還元して光学活性アルコールを合成する能力を有するタンパク質をコードする塩基配列。 - 請求項2又は3に記載のDNAをベクターに組み込んで得られる組換え体DNA。
- 請求項4に記載の組換え体DNAを保有する形質転換体。
- 請求項2又は3に記載のDNAを染色体DNAに組み込んで得られる形質転換体。
- Rがアセチル基であることを特徴とする請求項7に記載の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003174584A JP4205496B2 (ja) | 2003-06-19 | 2003-06-19 | 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003174584A JP4205496B2 (ja) | 2003-06-19 | 2003-06-19 | 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005006552A JP2005006552A (ja) | 2005-01-13 |
JP4205496B2 true JP4205496B2 (ja) | 2009-01-07 |
Family
ID=34098027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003174584A Expired - Fee Related JP4205496B2 (ja) | 2003-06-19 | 2003-06-19 | 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4205496B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020213731A1 (ja) | 2019-04-19 | 2020-10-22 | 株式会社エーピーアイ コーポレーション | (1r,3r)-3-(トリフルオロメチル)シクロヘキサン-1-オール及びその中間体の製造法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070013269A (ko) * | 2004-02-04 | 2007-01-30 | 가부시키가이샤 에이피아이 코포레이션 | 광학활성을 가지는 알콜 또는 카본산의 제조방법 |
US7811560B2 (en) * | 2006-01-30 | 2010-10-12 | Auxilium Us Holdings, Llc | Compositions and methods for treating collagen-mediated diseases |
EP2445890B1 (en) | 2009-06-22 | 2015-05-06 | SK Biopharmaceuticals Co., Ltd. | Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester |
US8404461B2 (en) | 2009-10-15 | 2013-03-26 | SK Biopharmaceutical Co. Ltd. | Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester |
EP2802652B1 (en) | 2012-01-12 | 2019-06-05 | Endo Global Ventures | Clostridium histolyticum enzyme |
US11123280B2 (en) | 2017-03-01 | 2021-09-21 | Endo Ventures Limited | Method of assessing and treating cellulite |
KR20240001279A (ko) | 2017-03-28 | 2024-01-03 | 엔도 벤쳐즈 리미티드 | 개선된 콜라게나제 생성 방법 |
-
2003
- 2003-06-19 JP JP2003174584A patent/JP4205496B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020213731A1 (ja) | 2019-04-19 | 2020-10-22 | 株式会社エーピーアイ コーポレーション | (1r,3r)-3-(トリフルオロメチル)シクロヘキサン-1-オール及びその中間体の製造法 |
Also Published As
Publication number | Publication date |
---|---|
JP2005006552A (ja) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4630486B2 (ja) | 新規な(r)−2,3−ブタンジオール脱水素酵素、その製造方法、及びこれを利用した光学活性アルコールの製造方法 | |
JP4651896B2 (ja) | (r)−2−オクタノール脱水素酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法 | |
JP2000236883A (ja) | 新規なカルボニル還元酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法 | |
AU2003221082B2 (en) | Novel carbonyl reductase, gene encoding it and process for producing optically active alcohols using the same | |
WO2010024445A1 (ja) | 光学活性なアミン誘導体を製造するための方法 | |
JP2005000002A (ja) | 新規なカルボニル還元酵素、その酵素をコードするdnaを含むポリヌクレオチド、その製造方法、およびこれを利用した光学活性アルコールの製造方法 | |
JP4205496B2 (ja) | 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 | |
JP2004357639A (ja) | (2s,3s)−2,3−ブタンジオール脱水素酵素 | |
US7250278B2 (en) | α-keto acid reductase, method for producing the same, and method for producing optically active α-hydroxy acids using the same | |
JP4295531B2 (ja) | 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法 | |
JP4270918B2 (ja) | 新規カルボニル還元酵素及びこれをコードする遺伝子、ならびにこれらを利用した光学活性アルコールの製造方法 | |
EP2128258B1 (en) | Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items | |
JP4688313B2 (ja) | 新規なエノン還元酵素、その製造方法、およびこれを利用したα,β−不飽和ケトンの炭素−炭素2重結合を選択的に還元する方法 | |
US6780619B2 (en) | D-aminoacylase and gene encoding the same | |
JP2005245439A (ja) | (s)−2−ペンタノール又は(s)−2−ヘキサノールの製造方法 | |
JP4729919B2 (ja) | 微生物の培養方法及び光学活性カルボン酸の製造方法 | |
JP2005218348A (ja) | 光学活性α−ヒドロキシアミドの製造方法 | |
JP2005027552A (ja) | 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法 | |
JP4397088B2 (ja) | 還元酵素をコードする遺伝子 | |
JPWO2005123921A1 (ja) | 新規グリセロール脱水素酵素、その遺伝子、及びその利用法 | |
JPWO2005005648A1 (ja) | 新規な光学活性カルボン酸の製造法 | |
WO2005108592A1 (ja) | 光学活性プロパルギルアルコールの製造方法 | |
JP2002209592A (ja) | (s)−4−ハロ−3−ヒドロキシ酪酸エステルの製造に有用な酵素をコードする遺伝子、その取得方法、およびこれを利用した光学活性アルコールの製造方法 | |
WO2008047819A1 (fr) | Nouvelle ester hydrolase, gène codant pour ladite enzyme et utilisation | |
JP2006280207A (ja) | 新規カルボニル還元酵素、その遺伝子、およびその利用法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081016 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4205496 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |