JP4291718B2 - 導電性パターン形成方法及び導電性パターン材料 - Google Patents
導電性パターン形成方法及び導電性パターン材料 Download PDFInfo
- Publication number
- JP4291718B2 JP4291718B2 JP2004090653A JP2004090653A JP4291718B2 JP 4291718 B2 JP4291718 B2 JP 4291718B2 JP 2004090653 A JP2004090653 A JP 2004090653A JP 2004090653 A JP2004090653 A JP 2004090653A JP 4291718 B2 JP4291718 B2 JP 4291718B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- bond
- substrate
- conductive pattern
- graft polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1612—Process or apparatus coating on selected surface areas by direct patterning through irradiation means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1893—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Description
また、他の導電性パターン形成方法としては、フォトレジストを用いた導電性パターン材料なども知られている。この方法は、フォトレジストポリマーを塗布したり、ドライフィルム上のフォトレジストを貼付した基材を、任意のフォトマスクを介してUV露光し、格子状などのパターンを形成する方法であり、高い導電性を必要とする電磁波シールドの形成に有用である。
しかしながら、近年、マイクロマシンの開発の進行や超LSIの一層の小型化に伴い、これらの配線構造もナノ単位の微細なものを要求されるようになってきており、従来の金属エッチングでは微細化に限界があり、また、細線部の加工中の断線なども懸念されている。
近年、高度情報化社会の発展に伴って、電子機器の発展にはめざましいものがあるが、特に、高度情報化社会の発展を支えているコンピュータ技術の発展には、半導体LSIの高集積化はもちろんのこと、磁気ディスクの高記録密度化も大きな要因を占めている。磁気ディスクの高記録密度化には、磁気特性媒体層の極少欠陥化、高い平滑性が求められている。
これらの目的に対し、現在では、基材表面に磁気特性を有する金属微粒子が分散した膜が利用されており、更にはその金属微粒子をパターン化することで記録容量が上がることが知られている。即ち、金属微粒子吸着領域をパターン状に設けることもまた重要性を増しているが、このような記録密度の向上に即応する微細な金属微粒子パターン形成も、前記金属薄膜パターンと同様の問題を有しており、微細で解像度の高い金属微粒子パターンを形成することも困難であった。
即ち、本発明の目的は、微細で解像度及び導電性の高いパターンを形成しうる導電性パターン形成方法、及び、微細で解像度及び導電性の高いパターンが形成されてなる応用範囲の広い導電性パターン材料を提供することにある。
また、本発明の他の目的は、微細電気配線や電磁波シールドの如く、高い導電性と微細で解像度の高い任意のパターン形成を必要とする材料の作製に適する導電性パターン形成方法、及び導電性パターン材料を提供することにある。
本発明のさらなる目的は、金属微粒子が高密度に分散され、その密着性及び耐久性に優れた微細で解像度の高いパターン状の金属微粒子分散層を、生産性が高く、簡易な工程により形成しうる導電性パターン形成方法、及び、上記特性を有する導電性パターン材料を提供することにある。
即ち、本発明の導電性パターン形成方法の第1の態様は、光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程と、該基材上に、ラジカル重合可能な不飽和化合物を接触させて、パターン状に露光して、グラフトポリマー生成領域と非生成領域とを形成する工程と、該グラフトポリマー生成領域に金属イオン又は金属塩を付与する工程と、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程と、を有することを特徴とする導電性パターン形成方法である。
なお、上記(3)の態様によれば、親水性グラフトポリマー生成領域を形成している化合物が正の電荷を有していても、必要な金属イオン又は金属塩を付与することができる。
このため、本発明におけるグラフトポリマー生成領域は、薄層であっても、高精細、且つ、高強度なグラフトポリマーパターンとなる。また、金属塩等がグラフトポリマーにイオン的に付着(吸着)した際には、吸着した分子は強固に固定されるため、薄層で、且つ、高強度な金属領域となり、特に、当該金属領域が金属薄膜(連続層)となった場合には、断線のない微細な配線パターンを形成し得るものと考えられる。
また、電磁波シールドの如く、高い導電性と微細で解像度の高い任意のパターン形成を必要とする材料の作製に適する導電性パターン形成方法、及び導電性パターン材料を提供することができる。
さらに、本発明によれば、金属微粒子が高密度に分散され、その密着性及び耐久性に優れた微細で解像度の高いパターン状の金属微粒子分散層を、生産性が高く、簡易な工程により形成しうる導電性パターン形成方法、及び、上記特性を有する導電性パターン材料を提供することができる。
1.導電性パターン形成方法
本発明の導電性パターン形成方法の第1の態様は、光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程(以下、適宜、「光開裂化合物結合工程」と称する。)と、該基材上に、ラジカル重合可能な不飽和化合物を接触させて、パターン状に露光して、グラフトポリマー生成領域と非生成領域とを形成する工程(以下、適宜、「グラフトポリマー生成工程」と称する。)と、該グラフトポリマー生成領域に金属イオン又は金属塩を付与する工程(以下、金属イオン又は金属塩付与工程と称する。)と、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程(以下、適宜「金属(微粒子)膜形成工程」と称する。)と、を有することを特徴とする。
まず、本発明における光開裂化合物結合工程からグラフトポリマー生成工程までの概略について、図1を用いて説明する。ここで、図1は本発明における光開裂化合物結合工程からグラフトポリマー生成工程の概略を示す概念図である。
図1(a)に示されるように、基材表面には当初より官能基(図中、Zで表される)が存在する。ここに、基材結合部位(Q)と、光開裂によりラジカル重合を開始しうる重合開始部位(Y)と、を有する化合物(Q−Y)を付与し、基材表面に接触させる。これにより、図1(b)に示されるように、基材表面に存在する官能基(Z)と、基材結合部位(Q)と、が結合して、基材表面に化合物(Q−Y)が導入される〔光開裂化合物結合工程〕。その後、図1(c)に示されるように、モノマー等の公知のグラフトポリマー原料を接触させた状態で、パターン露光を行う。これにより、図1(d)に示されるように、露光領域においては、化合物(Q−Y)の重合開始部位(Y)を起点としてグラフトポリマーが生成され(グラフトポリマー生成領域)、その一方、未露光領域においては、グラフトポリマーは生成しない(グラフトポリマー非生成領域)〔グラフトポリマー生成工程〕。
図1においてZで表示される基は、基材表面に存在する官能基であり、具体的には、例えば、水酸基、カルボキシル基、アミノ基などが挙げられる。これらの官能基はシリコン基板、ガラス基板における基材の材質に起因して基材表面にもともと存在しているものでもよく、基材表面にコロナ処理などの表面処理を施すことにより表面に存在させたものであってもよい。
この光により開裂する単結合としては、カルボニルのα開裂、β開裂反応、光フリー転位反応、フェナシルエステルの開裂反応、スルホンイミド開裂反応、スルホニルエステル開裂反応、N−ヒドロキシスルホニルエステル開裂反応、ベンジルイミド開裂反応、活性ハロゲン化合物の開裂反応、などを利用して開裂が可能な単結合が挙げられる。これらの反応により、光により開裂しうる単結合が切断される。この開裂しうる単結合としては、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合等が挙げられる。
例示された如き化合物(Q−Y)を基材表面に存在する官能基Zに結合させる方法としては、化合物(Q−Y)を、トルエン、ヘキサン、アセトンなどの適切な溶媒に溶解又は分散し、その溶液又は分散液を基材表面に塗布する方法、又は、溶液又は分散液中に基材を浸漬する方法などを適用すればよい。このとき、溶液中又は分散液の化合物(Q−Y)の濃度としては、0.01質量%〜30質量%が好ましく、特に0.1質量%〜15質量%であることが好ましい。接触させる場合の液温としては、0℃〜100℃が好ましい。接触時間としては、1秒〜50時間が好ましく、10秒〜10時間がより好ましい。
また、一般的には、平板状の基材が用いられるが、必ずしも平板状の基材に限定されず、円筒形などの任意の形状の基材表面にも同様にグラフトポリマーを導入することができる。
また、一般的には、平板状の基材が用いられるが、必ずしも平板状の基材に限定されず、円筒形などの任意の形状の基材表面にも同様にグラフトポリマーを導入することができる。
基材の厚みは、使用目的に応じて選択され、特に限定はないが、一般的には、10μm〜10cm程度である。
本発明の導電性パターン形成方法の第1の態様においては、金属イオン又は金属塩の付着・吸着の観点から、極性基である親水性基を有する、親水性ポリマー、親水性マクロマー、親水性モノマーなどが好ましい。
また、本発明の導電性パターン形成方法の第2の態様においては、ラジカル重合可能な官能基及び無電解メッキ触媒又はその前駆体と相互作用する官能基を有する化合物が用いられる。このような化合物としては、第1の態様において用いられるラジカル重合可能な不飽和化合物と同様な化合物が用いられ、無電解メッキ触媒又はその前駆体と相互作用する官能基としては、極性基が相当する。
以下に、グラフトポリマー生成工程において好適に用いられる、ラジカル重合可能な不飽和化合物について具体的に例示する。
重合性不飽和基を有する親水性ポリマーとは、分子内に、ビニル基、アリル基、(メタ)アクリル基などのエチレン付加重合性不飽和基が導入されたラジカル重合性基含有親水性ポリマーを指す。このラジカル重合性基含有親水性ポリマーは、重合性基を主鎖末端及び/又は側鎖に有することを要し、その双方に重合性基を有することが好ましい。以下、重合性基を(主鎖末端及び/又は側鎖に)有する親水性ポリマーを、ラジカル重合性基含有親水性ポリマーと称する。
合成方法としては、(a)親水性モノマーとエチレン付加重合性不飽和基を有するモノマーとを共重合する方法、(b)親水性モノマーと二重結合前駆体を有するモノマーとを共重合させ、次に塩基などの処理により二重結合を導入する方法、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法、が挙げられる。これらの中でも、特に好ましいのは、合成適性の観点から、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法である。
また、(c)の方法で用いられる親水性ポリマーとしては、これらの親水性モノマーから選ばれる少なくとも一種を用いて得られる親水性ホモポリマー若しくはコポリマーが用いられる。
本発明において用い得るマクロモノマーの製造方法は、例えば、平成1年9月20日にアイピーシー出版局発行の「マクロモノマーの化学と工業」(編集者 山下雄也)の第2章「マクロモノマーの合成」に各種の製法が提案されている。
本発明で用い得る親水性マクロモノマーで特に有用なものとしては、アクリル酸、メタクリル酸などのカルホキシル基含有のモノマーから誘導されるマクロモノマー、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルステレンスルホン酸、及びその塩のモノマーから誘導されるスルホン酸系マクロモノマー、(メタ)アクリルアミド、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルカルボン酸アミドモノマーから誘導されるアミド系マクロモノマー、ヒドロキシエチルメタクリレー卜、ヒドロキシエチルアクリレート、グリセロールモノメタクリレートなどの水酸基含有モノマーから誘導されるマクロモノマー、メトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールアクリレートなどのアルコキシ基若しくはエチレンオキシド基含有モノマーから誘導されるマクロモノマーである。またポリエチレングリコール鎖若しくはポリプロピレングリコール鎖を有するモノマーも本発明のマクロモノマーとして有用に使用することができる。
これらの親水性マクロモノマーのうち有用なものの分子量は、250〜10万の範囲で、特に好ましい範囲は400〜3万である。
親水性モノマーとしては、アンモニウム、ホスホニウムなどの正の荷電を有するモノマー、若しくは、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などの負の荷電を有するか負の荷電に解離しうる酸性基を有するモノマーが挙げられるが、その他にも、例えば、水酸基、アミド基、スルホンアミド基、アルコキシ基、シアノ基などの非イオン性の基を有する親水性モノマーを用いることもできる。
例えば、(メタ)アクリル酸若しくはそのアルカリ金属塩及びアミン塩、イタコン酸若しくはそのアルカリ金属塩及びアミン塩、アリルアミン若しくはそのハロゲン化水素酸塩、3−ビニルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸若しくはそのアルカリ金属塩及びアミン塩、スチレンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、2−スルホエチレン(メタ)アクリレート、3−スルホプロピレン(メタ)アクリレート若しくはそのアルカリ金属塩及びアミン塩、2−アクリルアミド−2−メチルプロパンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート若しくはそれらの塩、2−ジメチルアミノエチル(メタ)アクリレート若しくはそのハロゲン化水素酸塩、3−トリメチルアンモニウムプロピル(メタ)アクリレート、3−トリメチルアンモニウムプロピル(メタ)アクリルアミド、N,N,N−トリメチル−N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)アンモニウムクロライド、などを使用することができる。 また、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N−モノメチロール(メタ)アクリルアミド、N−ジメチロール(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルアセトアミド、ポリオキシエチレングリコールモノ(メタ)アクリレートなども有用である。
上述のラジカル重合可能な不飽和化合物を溶解、分散するための溶媒としては、該化合物や必要に応じて添加される添加剤が溶解可能ならば特に制限はない。
例えば、親水性モノマー等の親水性の化合物が適用される場合であれば、水、水溶性溶剤などの水性溶剤が好ましく、これらの混合物や、溶剤に更に界面活性剤を添加したものなどが好ましい。水溶性溶剤は、水と任意の割合で混和しうる溶剤を言い、そのような水溶性溶剤としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリンの如きアルコール系溶剤、酢酸の如き酸、アセトンの如きケトン系溶剤、ホルムアミドの如きアミド系溶剤、などが挙げられる。
また、疎水性モノマー等の疎水性の化合物が適用される場合であれば、メタノール、エタノール、1−メトキシ−2−プロパノールの如きアルコール系の溶剤、メチルエチルケトンの如きケトン系溶剤、トルエンの如き炭化水素系の溶剤などが好ましい。
上述の光開裂化合物結合工程からグラフトポリマー生成工程までを用いれば、高精細なパターン露光を施すことにより、露光に応じた高精細(高解像度)パターンが形成される。高精細パターン形成のための露光方法としては、光学系を用いた光ビーム走査露光、マスクを用いた露光などが挙げられ、所望のパターンの解像度に応じた露光方法をとればよい。
高精細パターン露光としては、具体的には、i線ステッパー、g線ステッパー、KrFステッパー、ArFステッパーのようなステッパー露光などが挙げられる。
精製後の基材は、その表面に残存するホモポリマーが完全の除去され、基材と強固に結合したパターン状のグラフトポリマーのみが存在することになる。
上記工程で得られたグラフトポリマー生成領域と非生成領域とからなるグラフトポリマーパターンは、露光の解像度に応じた微細なパターンとなる。
具体的な金属イオン又は金属塩を付与する方法としては、(1)グラフトポリマーがイオン性基(極性基)を有する場合、そのグラフトポリマーのイオン性基に金属イオンを吸着させる方法、(2)グラフトポリマーがポリビニルピロリドンなどのように金属塩に対し親和性の高い場合、そのグラフトポリマー生成領域に、金属塩又は金属塩を含有する溶液を含浸させる方法、(3)親水性グラフトポリマー生成領域(親水性領域)に、金属塩が含有する溶液、又は、金属塩が溶解した溶液に浸漬して、そのグラフトポリマー生成領域に金属イオン及び/又は金属塩を含む溶液を含浸させる方法、の何れかの方法を適宜選択して用いることができる。特に、(3)の方法によれば、グラフトポリマーの性質が特に問われないため、所望の金属イオン又は金属塩を付与させることができる。
即ち、第2の態様においては、無電解メッキ触媒又はその前駆体と相互作用する官能基(即ち、極性基)を有するグラフトポリマーが、無電解メッキ触媒又はその前駆体と相互作用し、次いで行われる無電解メッキ処理により金属薄膜が形成されることになる。
<金属イオン又は金属塩付与工程>
〔金属イオン及び金属塩〕
金属イオン及び金属塩について説明する。
本発明において、金属塩としては、グラフトポリマー生成領域に付与するために適切な溶媒に溶解して、金属イオンと塩基(陰イオン)に解離されるものであれば特に制限はなく、M(NO3)n、MCln、M2/n(SO4)、M3/n(PO4)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Ag、Cu、Al、Ni、Co、Fe、Pdが挙げられ、導電膜としてはAg、磁性膜としてはCoが好ましく用いられる。
金属イオン又は金属塩をグラフトポリマー生成領域に付与する際、(1)グラフトポリマーがイオン性基を有し、そのイオン性基に金属イオンを吸着させる方法を用いる場合には、上記の金属塩を適切な溶媒で溶解し、解離した金属イオンを含むその溶液を、グラフトポリマー生成領域が存在する基材表面に塗布するか、或いは、その溶液中にグラフトポリマー生成領域を有する基材を浸漬すればよい。金属イオンを含有する溶液を接触させることで、前記イオン性基には、金属イオンがイオン的に吸着することができる。これら吸着を充分に行なわせるという観点からは、接触させる溶液の金属イオン濃度、或いは金属塩濃度は1〜50質量%の範囲であることが好ましく、10〜30質量%の範囲であることが更に好ましい。また、接触時間としては、10秒から24時間程度であることが好ましく、1分から180分程度であることが更に好ましい。
〔還元剤〕
本発明において、グラフトポリマー生成領域(親水性領域)に吸着又は含浸して存在する金属塩、或いは、金属イオンを還元し、金属(微粒子)膜を成膜するために用いられる還元剤としては、用いた金属塩化合物を還元し、金属を析出させる物性を有するものであれば特に制限はなく、例えば、次亜リン酸塩、テトラヒドロホウ素酸塩、ヒドラジンなどが挙げられる。
これらの還元剤は、用いる金属塩、金属イオンとの関係で適宜選択することができるが、例えば、金属イオン、金属塩を供給する金属塩水溶液として、硝酸銀水溶液などを用いた場合にはテトラヒドロホウ素酸ナトリウムが、二塩化パラジウム水溶液を用いた場合には、ヒドラジンが、好適なものとして挙げられる。
グラフトパターンを構成するグラフトポリマーが負の電荷を有する官能基をもつものであれば、ここに正の電荷を有する金属イオンを吸着させ、その吸着した金属イオンを還元させることで金属単体(金属薄膜や金属微粒子)が析出する領域が形成される。
グラフトパターンを構成するグラフトポリマーが先に詳述したように親水性の官能基として、カルボキシル基、スルホン酸基、若しくはホスホン酸基などの如きアニオン性を有する場合は、パターン部分が選択的に負の電荷を有するようになり、ここに正の電荷を有する金属イオンを吸着させ、その吸着した金属イオンを還元させることで金属(微粒子)膜領域(例えば、配線など)が形成される。
一方、グラフトパターンを構成するグラフトポリマー鎖が特開平10−296895号公報に記載のアンモニウム基などの如きカチオン性基を有する場合は、パターン部分が選択的に正の電荷を有するようになり、ここに金属塩を含有する溶液、又は金属塩が溶解した溶液を含浸させ、その含浸させた溶液の中の金属イオン又は金属塩中の金属イオンを還元させることで金属(微粒子)膜領域(配線)が形成される。
これらの金属イオンは、親水性表面の親水性基に付与(吸着)し得る最大量、結合されることが耐久性の点で好ましい。
本発明で形成されるパターンは、SEM、AFMによる表面観察、断面観察より、表面グラフト膜中にぎっしりと金属微粒子が分散していることが確認される。また、作製される金属微粒子の大きさとしては、粒径1μm〜1nm程度である。
加熱処理工程における加熱温度としては、100℃以上が好ましく、更には150℃以上が好ましく、特に好ましくは200℃程度である。加熱温度は、処理効率や支持体基材の寸法安定性などを考慮すれば400℃以下であることが好ましい。また、加熱時間に関しては、10分以上が好ましく、更には30分〜60分間程度が好ましい。加熱処理による作用機構は明確ではないが、一部の近接する金属微粒子同士が互いに融着することで導電性が向上するものと考えている。
本工程においては、上記グラフトポリマー生成工程おいて形成された相互作用性領域上に、無電解メッキ触媒又はその前駆体を付与する。
本工程において用いられる無電解メッキ触媒とは、主に0価金属であり、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。本発明においては、特に、Pd、Agがその取り扱い性の良さ、触媒能の高さから好ましい。0価金属を相互作用性領域に固定する手法としては、例えば、相互作用性領域中の上の相互作用性基と相互作用するように荷電を調節した金属コロイドを、相互作用性領域に適用する手法が用いられる。一般に、金属コロイドは、荷電を持った界面活性剤又は荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。金属コロイドの荷電は、ここで使用される界面活性剤又は保護剤により調節することができ、このように荷電を調節した金属コロイドを、グラフトパターンが有する相互作用性基と相互作用させることで、グラフトパターン上に選択的に金属コロイド(無電解メッキ触媒)を吸着させることができる。
本工程において用いられる無電解メッキ触媒前駆体とは、化学反応により無電解メッキ触媒となりうるものであれば、特に制限なく使用することができる。主には上記無電解メッキ触媒で用いた0価金属の金属イオンが用いられる。無電解メッキ触媒前駆体である金属イオンは、還元反応により無電解メッキ触媒である0価金属になる。無電解メッキ触媒前駆体である金属イオンは、基材へ付与した後、無電解メッキ浴への浸漬前に、別途還元反応により0価金属に変化させて無電解メッキ触媒としてもよいし、無電解メッキ触媒前駆体のまま無電解メッキ浴に浸漬し、無電解メッキ浴中の還元剤により金属(無電解メッキ触媒)に変化させてもよい。
本工程では、相互作用性領域に、無電解メッキ触媒又はその前駆体を付与された基材上に、無電解メッキを行うことで、パターン状に金属膜が形成される。即ち、本工程における無電解メッキを行うことで、前記工程により得られたグラフトパターン上に該パターンに従った高密度の金属膜(金属パターン)が形成される。形成された金属パターンは、優れた導電性、密着性を有する。
無電解メッキとは、メッキとして析出させたい金属イオンを溶かした溶液を用いて、化学反応によって金属を析出させる操作のことをいう。
本工程における無電解メッキは、例えば、無電解メッキ触媒がパターン状に付与された基材を、水洗して余分な無電解メッキ触媒(金属)を除去した後、無電解メッキ浴に浸漬して行なう。使用される無電解メッキ浴としては一般的に知られている無電解メッキ浴を使用することができる。
また、無電解メッキ触媒前駆体がパターン状に付与された基材を、無電解メッキ触媒前駆体がクラフトパターンに吸着又は含浸した状態で無電解メッキ浴に浸漬する場合には、基材を水洗して余分な前駆体(金属塩など)を除去した後、無電解メッキ浴中へ浸漬される。この場合には、無電解メッキ浴中において、前駆体の還元とこれに引き続き無電解メッキが行われる。ここ使用される無電解メッキ浴としても、上記同様、一般的に知られている無電解メッキ浴を使用することができる。
無電解メッキ浴に用いられる金属の種類としては、銅、すず、鉛、ニッケル、金、パラジウム、ロジウムが知られており、中でも、導電性の観点からは、銅、金が特に好ましい。
また、上記金属に合わせて最適な還元剤、添加物がある。例えば、銅の無電解メッキの浴は、銅塩としてCu(SO4)2、還元剤としてHCOH、添加剤として銅イオンの安定剤であるEDTAやロッシェル塩などのキレート剤が含まれている。また、CoNiPの無電解メッキに使用されるメッキ浴には、その金属塩として硫酸コバルト、硫酸ニッケル、還元剤として次亜リン酸ナトリウム、錯化剤としてマロン酸ナトリウム、りんご酸ナトリウム、こはく酸ナトリウムが含まれている。また、パラジウムの無電解メッキ浴は、金属イオンとして(Pd(NH3)4)Cl2、還元剤としてNH3、H2NNH2、安定化剤としてEDTAが含まれている。これらのメッキ浴には、上記成分以外の成分が入っていてもよい。
本発明の導電性パターン形成方法の第2の態様においては、上記無電解メッキ工程を行った後、電気メッキを行う工程(電気メッキ工程)を有してもよい。
本工程では、前記無電解メッキの後、この工程により形成された金属膜を電極とし、さらに電気メッキを行うことができる。これにより基材との密着性に優れた金属パターン(導電性パターン)をベースとして、そこに新たに任意の厚みをもつ金属膜を容易に形成することができる。この工程を付加することにより、パターン状の金属膜を目的に応じた厚みに形成することができ、本発明の導電性パターンを配線パターンなど種々の応用に適用するのに好適である。
電気メッキの方法としては、従来公知の方法を用いることができる。なお、本工程の電気メッキに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。
本発明の導電性パターン材料は、上記の本発明の導電性パターン形成方法を用いて得られる導電性パターン材料である。
即ち、本発明の導電性パターン材料の第1の態様は、光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を表面に結合させてなる基材上に、ラジカル重合可能な不飽和化合物を接触させて、パターン状に露光し、該基材上にグラフトポリマー生成領域と非生成領域とを形成した後、該グラフトポリマー生成領域に金属イオン又は金属塩を付与し、その後、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させたことを特徴とする。
また、本発明の導電性パターン材料の第2の態様は、光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を表面に結合させてなる基材上に、ラジカル重合可能な官能基及び無電解メッキ触媒又はその前駆体と相互作用する官能基を有する化合物を接触させて、パターン状に露光し、該基材上にグラフトポリマー生成領域と非生成領域とを形成した後、該グラフトポリマー生成領域に無電解メッキ触媒又はその前駆体を付与し、その後、無電解メッキを行いパターン状の金属薄膜を形成したことを特徴とする。
本発明の導電性パターン材料の各態様において、光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物は、当該重合開始部位として、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことが好ましい。
本発明においては、さらに精細な10μm以下の線幅のパターンをも形成することができ、このような任意のパターン形状の金属配線或いは金属微粒子吸着層を容易に形成し得るため、目的に応じた種々の設定が可能である。
(合成例1:化合物Aの合成)
前記例示化合物1の合成は、以下の2つのステップにより行われる。それぞれのステップのスキームを挙げて説明する。
1.ステップ1(化合物aの合成)
DMAc50gとTHF50gの混合溶媒に1−ヒドロキシシクロヘキシルフェニルケトン 24.5g(0.12mol)を溶かし、氷浴下でNaH(60% in oil) 7.2g(0.18mol)を徐々に加えた。そこに、11−ブロモ−1−ウンデセン(95%)44.2g(0.18mol)を滴下し、室温で反応を行った。1時間で反応が終了した。反応溶液を氷水中に投入し、酢酸エチルで抽出し、黄色溶液状の化合物aを含む混合物が得られた。この混合物37gをアセトニトリル370mlに溶かし、水7.4gを加えた。p−トルエンスルホン酸一水和物1.85gを加え、室温で20分間撹拌した。酢酸エチルで有機相を抽出し、溶媒を留去した。カラムクロマトグラフィー(充填剤:ワコーゲルC−200、展開溶媒:酢酸エチル/ヘキサン=1/80)で化合物aを単離した。
合成スキームを以下に示す。
δ=1.2−1.8(mb,24H),2.0(q,2H),3.2(t,J=6.6,2H),4.9−5.0(m,2H)5.8(ddt,J=24.4,J=10.5,J=6.6,1H.),7.4(t,J=7.4,2H),7.5(t,J=7.4,1H),8.3(d,1H)
化合物a5.0g(0.014mol)にSpeir catalyst(H2PtCl6・6H2O/2−PrOH、0.1mol/l)を2滴加え、氷浴下でトリクロロシラン2.8g(0.021mol)を滴下して撹拌した。さらに1時間後にトリクロロシラン1.6g(0.012mol)を滴下してから室温に戻した。3時間後に反応が終了した。反応終了後、未反応のトリクロロシランを減圧留去し、化合物Aを得た。
合成スキームを以下に示す。
δ=1.2−1.8(m,30H),3.2(t,J=6.3,2H),7.3−7.7(m,3H),8.3(d,2H)
ポリアクリル酸(平均分子量25,000)18gをDMAc(ジメチルアセトアミド)300gに溶解し、そこに、ハイドロキノン0.41gと2−メタクリロイルオキシエチルイソシアネート19.4gとジブチルチンジラウレート0.25gを添加し、65℃で4時間反応させた。得られたポリマーの酸価は7.02meq/gであった。1mol/lの水酸化ナトリウム水溶液でカルボキシル基を中和し、酢酸エチルに加えポリマーを沈殿させ、よく洗浄し、重合性基を有する親水性ポリマーPを得た。
(光開裂化合物結合工程)
ガラス基板(日本板硝子)を、終夜、ピランハ液(硫酸/30%過酸化水素=1/1vol混合液)に浸漬した後、純水で洗浄した。その基板を、窒素置換したセパラブルフラスコ中に入れ12.5wt%の化合物Aの脱水トルエン溶液に1時間浸漬した。取り出し後、トルエン、アセトン、純水で順に洗浄した。得られた基版を基板A1とする。
親水性ポリマーP(0.5g)を純水4.0gとアセトニトリル2.0gの混合溶媒に溶かし、グラフト形成層用塗布液を調製した。そのグラフト形成層用塗布液を、スピンコーターで基板A1に塗布した。スピンコーターは、まず300rpmで5秒間、その後1000rpmで20秒間回転させた。グラフト形成層塗布後の基板A1は、100℃で2分間乾燥した。乾燥後のグラフト形成層の膜厚は2μmであった。
グラフト形成層を塗布した基板上に、パターンマスク(NC−1、凸版印刷社製)を密着させるようにクリップで留め、露光機(UVX−02516S1LP01、ウシオ電機社製)で1分間露光した。露光後マスクを取り外し、純水で充分洗浄した。
以上のようにして、パターンA1(グラフトポリマー生成領域及び非生成領域)を形成した。
得られたパターンA1を、AFM(ナノピクス1000、セイコーインスツルメンツ社製,DFMカンチレバー使用)で観察した。その結果、線幅8μm、空隙幅8μmが交互に存在するパターンが形成されていることが確認された。
パターンA1が形成された基板を、硝酸銀(和光純薬製)15質量%の水溶液に12時間浸漬した後、蒸留水で洗浄した。その後、100mlの蒸留水に当該基板を浸漬し、その蒸留水中に、0.2mol/lのテトラヒドロホウ素酸ナトリウムを30ml滴下することにより、吸着している銀イオンを還元したところ、パターンA1の表面に均一なAg金属膜(金属(微粒子)膜)が形成された。形成されたAg金属膜は、厚さ0.1μmであった。これにより、Ag(微粒子)膜が形成された導電性パターン材料A1を得た。
この表面を電子顕微鏡で観察したところ、線幅8μm、空隙幅8μmが交互に存在するの良好な導電性パターンが形成されていることが判明した。
(光開裂化合物結合工程)
ITOを蒸着したガラス基板(日本板硝子(株)製、表面抵抗10Ω/□、品番.49J183)を使用し、イソプロピルアルコール、アセトン、メタノール、純水の順で、それぞれ5分以上超音波洗浄し、窒素吹き付け乾燥した。その基板を、窒素置換したセパラブルフラスコ中に入れ12.5wt%の化合物Aの脱水トルエン溶液に1時間〜終夜浸漬した。取り出し後、トルエン、アセトン、純水ので順に洗浄した。得られた基板を基板A2とする。
実施例1と同様にして、グラフト形成層用塗布液を基板A2に塗布し、乾燥した。乾燥後のグラフト形成層の膜厚は2μmであった。
実施例1と同様にして、パターンマスクを用いてパターン露光を行った。露光後マスクを取り外し、純水で充分洗浄した。
以上のようにして、パターンA2(グラフトポリマー生成領域及び非生成領域)を形成した。
得られたパターンA2を、AFM(ナノピクス1000、セイコーインスツルメンツ社製,DFMカンチレバー使用)で観察した。その結果、線幅8μm、空隙幅8μmが交互に存在するパターンが形成されていることが確認された。
パターンB2が形成された基板を、実施例1と同様に処理したところ、パターンA2の表面に均一なAg金属膜(金属(微粒子)膜)が形成された。形成されたAg金属膜は、厚さ0.1μmであった。これにより、Ag(微粒子)膜が形成された導電性パターン材料A2を得た。
この表面を電子顕微鏡で観察したところ、線幅8μm、空隙幅8μmが交互に存在するの良好な導電性パターンが形成されていることが判明した。
(光開裂化合物結合工程)
片面をコロナ処理した厚さ188μmのPET(二軸延伸ポリエチレンテレフタレートフィルム)を5cm×5cmのサイズに切り、その基板を、窒素置換したセパラブルフラスコ中に入れ、12.5wt%の化合物Aの脱水トルエン溶液に1時間浸漬した。取り出し後、トルエン、アセトン、純水で順に洗浄した。得られた基板を基板A3とする。
アクリル酸の20wt%の水溶液1.0mlを基板A3の表面に垂らし,石英ガラスをかぶせPET基板(基板A3)と石英板との間にアクリル酸の水溶液を挟み込んだ。
実施例1と同様にして、パターンマスクを用いてパターン露光を行った。露光後マスクを取り外し、純水で充分洗浄した。
以上のようにして、パターンA3(グラフトポリマー生成領域及び非生成領域)を形成した。
得られたパターンA3を、AFM(ナノピクス1000、セイコーインスツルメンツ社製,DFMカンチレバー使用)で観察した。その結果、線幅7μm、空隙幅7μmが交互に存在するパターンが形成されていることが確認された。
パターンA3が形成された基板を、実施例1と同様に処理したところ、パターンA3の表面に均一なAg金属膜(金属(微粒子)膜)が形成された。形成されたAg金属膜は、厚さ0.1μmであった。これにより、Ag(微粒子)膜が形成された導電性パターン材料A3を得た。
この表面を電子顕微鏡で観察したところ、線幅8μm、空隙幅8μmが交互に存在するの良好な導電性パターンが形成されていることが判明した。
上記により得られた、Ag(微粒子)膜が形成された導電性パターン材料A1、A2及びA3について、導電性パターンが形成された部分の表面導電性をLORESTA−FP(三菱化学(株)製)を用いて四探針法により測定したところ、それぞれ以下の結果が得られた。
導電性パターン材料A1: 100Ω/□
導電性パターン材料A2: 90Ω/□
導電性パターン材料A3: 80Ω/□
1.膜強度(密着性)
Ag(微粒子)膜が形成された、導電性パターン材料A1、A2及びA3を、JIS 5400に順じて碁盤目テープ法により膜密着性を評価した。カットした碁盤目に対するテープの引き剥がしテストを行ったところ、、導電性パターン材料A1、A2及びA3のいずれについても、1目の剥離も見られず、基板と金属薄膜との密着性が良好であることが確認された。
Ag(微粒子)膜が形成された、導電性パターン材料A1、A2及びA3の表面を、水で湿らせた布(BEMCOT、旭化成工業(株)製)を用いて手で往復30回摺擦した。摺擦後に、目視にて表面を観察したところ、導電性パターン材料A1、A2及びA3のいずれについても、金属(微粒子)膜の剥がれなどは見られなかった。
また、摺擦後の試料を前記と同様にして碁盤目テープ法により膜密着性を評価したところ、導電性パターン材料A1、A2及びA3のいずれについても、1目の剥離も見られず、摺擦後においても、金属(微粒子)膜と基板との密着性は低下せず、耐久性に優れることが確認された。
実施例1〜3と同様にして得られたパターンA1〜A3がそれぞれ形成された基板と同様の基板を、硝酸パラジウム(和光純薬製)0.1質量%の水溶液に1時間浸漬した後、蒸留水で洗浄した。その後、下記組成の無電解メッキ浴に20分間浸漬し、導電性パターン材料B1〜B3を作製した。
<無電解メッキ浴成分>
・OPCカッパ−H T1(奥野製薬(株)製) 6mL
・OPCカッパ−H T2(奥野製薬(株)製) 1.2mL
・OPCカッパ−H T3(奥野製薬(株)製) 10mL
・水 83mL
導電性パターン材料B1(実施例4)については、線幅8μm、空隙幅8μmが交互に存在する良好なパターンが確認された。導電性パターン材料B2(実施例5)については、線幅9μm、空隙幅9μmが交互に存在する良好なパターンが確認された。導電性パターン材料B3(実施例6)については、線幅9μm、空隙幅9μmが交互に存在する良好なパターンが確認された。
得られた導電性パターン材料B1〜B3について、Cu薄膜が形成された導電性パターン部分の表面導電性を、実施例1と同様の方法で測定したところ、それぞれ、以下の結果が得られた。
導電性パターン材料B1: 50Ω/□
導電性パターン材料B2: 30Ω/□
導電性パターン材料B3: 60Ω/□
1.膜強度(密着性)
実施例1〜3の評価と同様にして、Cu薄膜が形成された導電性パターン材料B1〜B3の膜密着性を評価した。カットした碁盤目に対するテープの引き剥がしテストを行ったところ、1目の剥離も見られず、基板と導電性パターンとの密着性が良好であることが確認された。
Claims (8)
- 光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程と、
該基材上に、ラジカル重合可能な不飽和化合物を接触させて、パターン状に露光して、グラフトポリマー生成領域と非生成領域とを形成する工程と、
該グラフトポリマー生成領域に金属イオン又は金属塩を付与する工程と、
該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程と、
を有することを特徴とする導電性パターン形成方法。 - 前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことを特徴とする請求項1に記載の導電性パターン形成方法。
- 光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を表面に結合させてなる基材上に、ラジカル重合可能な不飽和化合物を接触させて、パターン状に露光し、該基材上にグラフトポリマー生成領域と非生成領域とを形成した後、該グラフトポリマー生成領域に金属イオン又は金属塩を付与し、その後、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させたことを特徴とする導電性パターン材料。
- 前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことを特徴とする請求項3に記載の導電性パターン材料。
- 光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を基材に結合させる工程と、
該基材上に、ラジカル重合可能な官能基及び無電解メッキ触媒又はその前駆体と相互作用する官能基を有する化合物を接触させて、パターン状に露光して、グラフトポリマー生成領域と非生成領域とを形成する工程と、
該グラフトポリマー生成領域に無電解メッキ触媒又はその前駆体を付与する工程と、
無電解メッキを行いパターン状の金属薄膜を形成する工程と、
を有する導電性パターン形成方法。 - 前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことを特徴とする請求項5に記載の導電性パターン形成方法。
- 光開裂によりラジカル重合を開始しうる重合開始部位と基材結合部位とを有する化合物を表面に結合させてなる基材上に、ラジカル重合可能な官能基及び無電解メッキ触媒又はその前駆体と相互作用する官能基を有する化合物を接触させて、パターン状に露光し、該基材上にグラフトポリマー生成領域と非生成領域とを形成した後、該グラフトポリマー生成領域に無電解メッキ触媒又はその前駆体を付与し、その後、無電解メッキを行いパターン状の金属薄膜を形成したことを特徴とする導電性パターン材料。
- 前記重合開始部位が、C−C結合、C−N結合、C−O結合、C−Cl結合、N−O結合、及びS−N結合からなる群より選択されるいずれかを含むことを特徴とする請求項7に記載の導電性パターン材料。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004090653A JP4291718B2 (ja) | 2004-03-25 | 2004-03-25 | 導電性パターン形成方法及び導電性パターン材料 |
US11/086,429 US7393567B2 (en) | 2004-03-23 | 2005-03-23 | Pattern forming method, arranged fine particle pattern forming method, conductive pattern forming method, and conductive pattern material |
EP05006376A EP1589376A1 (en) | 2004-03-23 | 2005-03-23 | Conductive pattern forming method, and conductive pattern material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004090653A JP4291718B2 (ja) | 2004-03-25 | 2004-03-25 | 導電性パターン形成方法及び導電性パターン材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005275173A JP2005275173A (ja) | 2005-10-06 |
JP4291718B2 true JP4291718B2 (ja) | 2009-07-08 |
Family
ID=35174890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004090653A Expired - Fee Related JP4291718B2 (ja) | 2004-03-23 | 2004-03-25 | 導電性パターン形成方法及び導電性パターン材料 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4291718B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7780877B2 (en) * | 2005-12-14 | 2010-08-24 | Japan Atomic Energy Agency | High-frequency substrate and production method therefor |
KR20080107314A (ko) * | 2007-06-06 | 2008-12-10 | 후지필름 가부시키가이샤 | 박층 금속막 재료 및 그 제조 방법 |
JP2009098588A (ja) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | 感光性組成物、それを用いて得られる積層体、金属含有膜材料、その製造方法及び遮光材料 |
JP6085076B2 (ja) * | 2009-03-16 | 2017-02-22 | リンテック株式会社 | 粘着シートおよび半導体ウエハの加工方法、半導体チップの製造方法 |
-
2004
- 2004-03-25 JP JP2004090653A patent/JP4291718B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005275173A (ja) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7291427B2 (en) | Surface graft material, conductive pattern material, and production method thereof | |
JP4903479B2 (ja) | 金属パターン形成方法、金属パターン、及びプリント配線板 | |
JP2009503806A (ja) | グラフトポリマーパターン形成方法及び導電性パターン形成方法 | |
EP1581031B1 (en) | Methods of forming a pattern and a conductive pattern | |
JP4420776B2 (ja) | グラフトポリマーパターン形成方法、グラフトポリマーパターン材料、導電性パターン材料の製造方法、及び導電性パターン材料 | |
US7393567B2 (en) | Pattern forming method, arranged fine particle pattern forming method, conductive pattern forming method, and conductive pattern material | |
JP4920318B2 (ja) | 導電性パターン形成方法、及びワイヤグリッド型偏光子 | |
KR100887251B1 (ko) | 도전성 패턴재료의 제조방법 | |
JP4252919B2 (ja) | 導電性パターン材料、金属微粒子パターン材料及びパターン形成方法 | |
JP2008207401A (ja) | 積層体、その製造方法、それを用いた配線基板及び表示装置 | |
JP2006057059A (ja) | 表面導電性材料の製造方法 | |
JP4348256B2 (ja) | 導電性パターン材料の製造方法 | |
JP4291718B2 (ja) | 導電性パターン形成方法及び導電性パターン材料 | |
JP4216751B2 (ja) | 導電性パターン形成方法及び導電性パターン材料 | |
JP2008106345A (ja) | 導電性膜の形成方法、それを用いて形成された導電性膜、並びにプリント配線基板、薄層トランジスタ、及び装置 | |
JP4708859B2 (ja) | 薄層トランジスタ、それを用いたアクティブマトリックス型表示装置、及び、液晶表示装置 | |
JP4328252B2 (ja) | 導電性パターン形成方法 | |
JP2008242412A (ja) | 積層体、導電性パターン形成方法及びそれにより得られた導電性パターン、プリント配線基板及び薄層トランジスタ、並びにそれらを用いた装置 | |
JP4583848B2 (ja) | マトリクスアレイ基板の製造方法、マトリクスアレイ基板、液晶表示装置、pdp用データー電極の製造方法、pdp用データー電極、及びpdp | |
JP4328251B2 (ja) | 導電性パターン形成方法 | |
JP2008088273A (ja) | 疎水性ポリマー、それを用いた導電性膜を有する積層体、導電性パターンの製造方法、該積層体を利用したプリント配線基板、薄層トランジスタ及びこれらを備えてなる装置 | |
JP2006104045A (ja) | 導電性ガラス基板、導電性ガラス基板形成方法及び導電性パターン形成方法 | |
JP2007042683A (ja) | 導電性パターン形成方法 | |
JP2006077273A (ja) | 導電性パターン材料、導電性パターン材料の製造方法、及びpdp | |
JP2008083200A (ja) | グラフトポリマーパターン形成方法、導電性パターン形成方法及び有機el表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060516 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090403 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |